
RedGrapes Documentation

Michael Sippel

Dec 15, 2019

OVERVIEW

1 Motivation 3

2 Example 5

3 Requirements 7

4 Build a Project using RedGrapes 9

5 Examples & Tests 11

6 Getting Started 13
6.1 Task Creation . 13
6.2 Task Properties . 14
6.3 Describing Dataflows . 15
6.4 Refining Tasks . 18
6.5 Access Demotion . 20

7 Best Practices 21
7.1 Singleton for Manager . 21
7.2 Lifetimes of Captured Variables . 21
7.3 Task-Results . 21
7.4 Writing Container Classes . 22

8 Debugging 23
8.1 Task Backtraces . 23
8.2 Writing out the Task-Graph . 23

9 Domain Specific Extensions 25
9.1 Creating new Resource-Types . 25
9.2 Extending Task Properties . 26

10 Asynchronous Operations 27
10.1 Creating Events . 27
10.2 Polling . 27

11 Writing Custom Schedulers 29

12 Components 31
12.1 Resources & Dependency-Description . 31
12.2 Tasks . 32
12.3 Scheduler . 32

i

Index 35

ii

RedGrapes Documentation

RedGrapes is a C++14 framework for declaratively creating and scheduling task-graphs, based on high-level resource
descriptions.

OVERVIEW 1

RedGrapes Documentation

2 OVERVIEW

CHAPTER

ONE

MOTIVATION

Writing scalable software using bare threads is hard and error-prone, especially if the workload depends on input
parameters and asynchronous operations further complicating the program flow. For this reason the decoupling of
processing stages from their execution is useful because it allows to dynamically schedule them. This is typically done
with task-graphs, which are directed acyclic graphs (DAGs), whose vertices are some sort of computation and the
edges denote the execution precedence order. This execution precedence results from the dataflow between the tasks,
which gets complex pretty fast and may also be dynamic which makes it nearly impossible to manually write explicit
task dependencies. So ideally these would be derived from some sort of high-level description of the dataflow. The
goal of this project is to provide a task-based programming framework, where the task-graph gets created declaratively.

3

RedGrapes Documentation

4 Chapter 1. Motivation

CHAPTER

TWO

EXAMPLE

TODO

5

RedGrapes Documentation

6 Chapter 2. Example

CHAPTER

THREE

REQUIREMENTS

• C++14

• Boost >= 1.62

7

RedGrapes Documentation

8 Chapter 3. Requirements

CHAPTER

FOUR

BUILD A PROJECT USING REDGRAPES

RedGrapes is a C++ header-only library so you only need to set the include path. If you are using CMake, the following
is sufficient:

find_package(redGrapes REQUIRED CONFIG PATHS "[path to redGrapes]")
include_directories(SYSTEM ${redGrapes_INCLUDE_DIRS})

9

RedGrapes Documentation

10 Chapter 4. Build a Project using RedGrapes

CHAPTER

FIVE

EXAMPLES & TESTS

In order to build the examples and tests, do the typical cmake procedure:

mkdir build
cd build
cmake ..
make -j

11

RedGrapes Documentation

12 Chapter 5. Examples & Tests

CHAPTER

SIX

GETTING STARTED

This chapter shows exemplary how to use RedGrapes. The features are introduced in the order of the sections from
basic to more advanced. Most code snippets are compilable and you may be able to understand the basic usage by
looking through them.

6.1 Task Creation

6.1.1 The Manager

The very first thing to do in every application using RedGrapes is to create a manager. It combines all required
components and provides us with an interface for creating tasks. You also might want to create a namespace alias.

#include <redGrapes/manager.hpp>

namespace rg = redGrapes;

int main()
{

rg::Manager<> mgr;

return 0;
}

Its template arguments allow an application specific configuration and are discussed in the following sections (see also
Extending Task Properties as well as Writing Custom Schedulers), but it is also usable with defaults. The runtime
parameter is the number of worker threads which are created additionally to the main thread. By default, it uses the
result of std::hardware_concurrency().

rg::Manager<TaskProperties, EnqueuePolicy, Scheduler> mgr(n_threads);

By the the manager-object’s destructor, the thread (which is the main thread) will behave as additional worker thread
until all tasks are consumed. Only then the destruction of the manager returns.

13

RedGrapes Documentation

6.1.2 Starting a Task

To create a task, the manager method emplace_task() is used. The first parameter is any nullary callable. By
using emplace_task() the scheduler is automatically activated and the task will get scheduled and executed in
one of the worker threads.

#include <iostream>
#include <redGrapes/manager.hpp>

namespace rg = redGrapes;

int main()
{

rg::Manager<> mgr;

mgr.emplace_task(
[]
{

std::cout << "Hello World!" << std::endl;
}

);

return 0;
}

Caution: Tasks are executed asynchronously, so be sure that all captures outlive the tasks execution. For best
practice see Lifetimes of Captured Variables.

6.1.3 Return Values

The callable passed to emplace_task() can have any return type. The result can be retrieved through a future
object which is returned by emplace_task().

auto result = mgr.emplace_task([]{ return 123; });
assert(result.get() == 123);

Caution: Always use auto on task results. Do not cast them to std::future, deadlocks might occur! (See
Task-Results)

6.2 Task Properties

Every task has properties, which contain additional scheduling or debug information about that task. What these task-
properties are, must be configured by the user. This is typically done by combining multiple predefined and custom
property classes, each providing a builder. RedGrapes provides the means for combining such independent property
definitions accordingly from a variadic template:

redGrapes::TaskProperties< Property1, Property2, ... >

When creating a task using emplace_task(), the second parameter is the task properties. Each individual property
class should have sensible defaults and provide builder functions for creating property-configurations nicely.

14 Chapter 6. Getting Started

RedGrapes Documentation

Here is a full example using the predefined LabelProperty:

#include <iostream>
#include <redGrapes/manager.hpp>
#include <redGrapes/property/label.hpp>

namespace rg = redGrapes;

using TaskProperties = rg::TaskProperties< rg::LabelProperty >;

int main()
{

rg::Manager< TaskProperties > mgr;

mgr.emplace_task(
[] { std::cout << "Hello World!" << std::endl; },
TaskProperties::Builder().label("Example Task")

);

return 0;
}

Another essential predefined property is the ResourceProperty, which will be discussed in the next section!

6.3 Describing Dataflows

Dataflows occour whenever tasks share any kind of data, i.e. one task outputs data which is used as input for the next.
Dataflows between tasks determine their dependencies, i.e. which tasks must be absolutely kept in order and serial.
In RedGrapes this is expressed using resources. Each resource represents shared data. Their possible usage by tasks
is modelled by an access policy, which defines all possible access modes for a task on this resource, e.g. read/write.
An specific configuration of a resource and its access mode is called resource access. Tasks can now store a list of
resoruce accesses in their properties which is then used to derive the task precedence.

6.3.1 Task Dependencies

When creating a new task, it is inserted into the precedence graph based on an EqueuePolicy, which compares
the properties of two tasks and decides whether they are dependent. This is done in reverse with all previ-
ously inserted tasks to calculate the task dependencies. The manager must be configured with an enqueue policy.
redGrapes::ResourceEnqueuePolicy is predefined and uses the resource properties which are defined with
redGrapes::ResourceProperty.

using TaskProperties =
rg::TaskProperties<

redGrapes::ResourceProperty,
/* other properties ... */

>;

rg::Manager<
TaskProperties,
rg::ResourceEnqueuePolicy

> mgr;

6.3. Describing Dataflows 15

RedGrapes Documentation

6.3.2 Resources

The next thing to do is to represent the resources in your code. Any data that is shared between tasks should be
represented as resource. Generally resources are just identifiers but there are also wrappers which are memory managed
to make resource usage more safe. A very simple, predefined access policy is IOAccess. It supports the access modes
read and write, where reads can be executed independently.

#include <redGrapes/resource/resource.hpp>
#include <redGrapes/access/io.hpp>

// just an identifier, no association with actual data
rg::Resource< rg::access::IOAccess > r1;

Resource Access

Resource accesses are created with the method Resource::make_access(AccessPolicy) and can be added
to tasks like normal properties. This is the information used by the enqueue policy.

mgr.emplace_task(
[]{ /* ... */ },
TaskProperties::Builder().resources({ r1.make_access(rg::access::IOAccess::read

→˓) })
);

Shared Resource Objects

Using just the previously described mechanisms would require for each shared object an additional resource object
and doesn’t give any guarantees about what is actually done in the task. So we could just get the resource accesses
wrong and don’t know about it. Furthermore the data must absolutely outlive the execution of all tasks.

rg::SharedResourceObject< T, AccessPolicy > is an Resource<AccessPolicy> and addition-
ally stores an shared_ptr<T>. So we firstly have the data and the resource identifier united into one object and
secondly all lifetime issues are solved through reference counting.

Tip: To avoid lifetime issues, be strict and never capture anything by reference. Only allow copy and move captures.

Access Guards

By manually adding the resource accesses to the task properties we still cannot check if all operations inside the task
are correctly represented by them. The solution to this problem are access guards: Wrappers around a shared resource
object, for each possible access mode one, that only allows the operations corresponding to the access. For read/write
this would be an dereference to T const& or T& respectively.

Additionally we need to create both the guard object and the task property together with one expression. This is done
with so called property building parameters. These are function parameters which are bound to the task immediately
at creation (to make it ultimately nullary again), but additionally implement a trait in which they can use the property-
builder to modify the task properties. Each access-guard simply implements this trait and so by taking all resources
by parameter instead of capture we can use the correct wrapper.

See also Creating new Resource-Types.

For convenience the guard objects also provide methods to create new guard objects with a subset of the access.

16 Chapter 6. Getting Started

RedGrapes Documentation

#include <redGrapes/resource/ioresource.hpp>

rg::IOResource< int > r1;

mgr.emplace_task(
[](auto r1)
{

// ok.
std::cout << *r1 << std::endl;

// compile-time error!

*r1 = 123;
},
r1.read()

);

Tip: Altough it is possible to capture resources and add their properties via builders, it is recommended to access
them through the parameters, because then the resource usage in the task is checked at compile time.

6.3.3 Full Example

In this example Task 2 and Task 3 will be executed after Task 1. When enough threads are available, Task 2 and Task 3
will run in parallel.

#include <redGrapes/manager.hpp>
#include <redGrapes/resource/ioresource.hpp>
#include <redGrapes/property/inherit.hpp>
#include <redGrapes/property/resource.hpp>
#include <redGrapes/property/label.hpp>

namespace rg = redGrapes;

using TaskProperties =
rg::TaskProperties<

rg::ResourceProperty,
rg::LabelProperty

>;

int main()
{

rg::Manager< TaskProperties, rg::ResourceEnqueuePolicy > mgr;

rg::IOResource< int > a;

mgr.emplace_task(
[](auto a){ *a = 123; },
TaskProperties::Builder().label("Task 1"),
a.write()

);

mgr.emplace_task(
[](auto a){ int x = *a; },
TaskProperties::Builder().label("Task 2"),
a.read()

(continues on next page)

6.3. Describing Dataflows 17

RedGrapes Documentation

(continued from previous page)

);

mgr.emplace_task(
[](auto a){ int x = *a; },
TaskProperties::Builder().label("Task 3"),
a.read()

);

return 0;
}

6.4 Refining Tasks

It is possible to create a sub-graph inside a task during its execution. This is done without further thought by just calling
emplace_task() inside another task. Either you always capture the manager by reference or create a singleton
(See Singleton for Manager).

mgr.emplace_task(
[&mgr]
{

mgr.emplace_task(
[]{ /* ... */ },
TaskProperties::Builder().label("Child Task")

);
},
TaskProperties::Builder().label("Parent Task")

);

6.4.1 Property Constraints

Because the properties of the parent task already made decisions about the scheduling, any child tasks are not allowed
to revert these assumptions. So the properties of child tasks are constrained and assertet at task creation. This is
implemented by the EnqueuePolicy. In case of using the predefined ResourceEnqueuePolicy, it asserts the resource
accesses of the parent task to be supersets of its child tasks. That means firstly no new resources should be introduced
and secondly all access modes must be less or equally “mutable”, e.g. a child task cannot write a resource that is only
read by the parent task.

Note: Not meeting the resource constraint will throw an exception when calling emplace_task(). This is only
possible because we don’t use access guards in this example.

rg::Resource< rg::access::IOAccess > r1;

mgr.emplace_task(
[&mgr, r1]
{

// OK.
mgr.emplace_task(

[]{ /* ... */ },
TaskProperties::Builder()

.label("good child")

(continues on next page)

18 Chapter 6. Getting Started

RedGrapes Documentation

(continued from previous page)

.resources({ r1.make_access(rg::access::IOAccess::read) })
);

// throws runtime error
mgr.emplace_task(

[]{ /* ... */ },
TaskProperties::Builder()

.label("bad child")

.resources({ r1.make_access(rg::access::IOAccess::write) })
);

},
TaskProperties::Builder()

.label("Parent Task")

.resources({ r1.make_access(rg::access::IOAccess::read) })
);

6.4.2 Resource Scopes

It is also possible to create resources which exist locally inside a task and are only relevant for sub-tasks.

rg::IOResource< int > r1;

mgr.emplace_task(
[&mgr](auto r1)
{

rg::IOResource< int > local_resource;

mgr.emplace_task(
[](auto r1, auto r2){ /* ... */ },
TaskProperties::Builder().label("Child Task 1"),
r1.read(),
// use local_resource here without violating the subset constraint
local_resource.write(),

);

mgr.emplace_task(
[](auto r){ /* ... */ },
TaskProperties::Builder().label("Child Task 2"),
local_resource.read()

);
},
TaskProperties::Builder().label("Parent Task")

// can't and doesn't need local_resource
r1.read()

);

Note: The context in which the constructor of a resource is called determines its scope-level. Local resources should
therefore be constructed inside of the parent task.

6.4. Refining Tasks 19

RedGrapes Documentation

6.5 Access Demotion

A very cool feature is that functors can modify their own properties while runnig. This allows us for example to
demote resource accesses so that other functors can start earlier. Of course the possible changes at runtime have to be
well constrained, similarly to creating sub-tasks.

This is done by creating a patch in the same manner with builders as the initial properties. This patch is then applied
to the current task by the manager method update_properties(). This method must be called inside of a task
and applies for exactly the task it is called in. This call also automatically triggers the scheduler to reevaluate outgoing
edges in the task-graph.

The builder ResourceProperty provides in its builder interface the methods add_resources() and
remove_resources for changing the resource access information.

Note: In the case of ResourceProperty it is only possible to demote the access, i.e. the new access has to be a subset
of the old (e.g. we can change a write to read).

Caution: When using access demotion, it is possible again to mess up the actual resource usage and properties,
despite access guards, because we can’t “delete” a symbol inside a scope.

rg::IOResource< int > r1;

mgr.emplace_task(
[&mgr](auto r1)
{

// OK.
mgr.update_properties(

TaskProperties::Patch::Builder()
.remove_resources({ r1.write() })
.add_resources({ r1.read() })

);

// compiles, but is wrong
// be sure to avoid this

*r1 = 123;

// throws runtime error, only demotion allowed
mgr.update_properties(

TaskProperties::Patch::Builder()
.add_resources({ r1.write() })

);
},
r1.write()

);

20 Chapter 6. Getting Started

CHAPTER

SEVEN

BEST PRACTICES

7.1 Singleton for Manager

An easy way to make the manager globally accessible is to create a singleton:

using TaskProperties = rg::TaskProperties< /*...*/ >;
static auto & mgr()
{

static rg::Manager<
TaskProperties,
rg::ResourceEnqueuePolicy,
MyScheduler

> m;

return m;
}

void foo()
{

mgr().emplace_task([]{ /* ... */ });
}

7.2 Lifetimes of Captured Variables

use shared_ptr

7.3 Task-Results

always use auto

21

RedGrapes Documentation

7.4 Writing Container Classes

If you implement a structure which should be used as resource, then just derive from the corresponding resource type:

struct MyContainer : rg::IOResource {
// ...

}

TODO: Access Guards

22 Chapter 7. Best Practices

CHAPTER

EIGHT

DEBUGGING

8.1 Task Backtraces

Sometimes it is useful to create a backtrace of tasks. This can be done with the manager method backtrace(). It
returns a std::vector<TaskProperties>.

mgr().emplace_task(
[]
{

mgr().emplace_task(
[]
{

int depth = 0;
for(auto t : mgr().backtrace())

std::cout << "[" << depth++ << "]" << t.label << std::endl;
},
TaskProperties::Builder().label("Child Task")

);
},
TaskProperties::Builder().label("Parent Task")

);

This will give us the output:

[0] Child Task
[1] Parent Task

8.2 Writing out the Task-Graph

TODO

23

RedGrapes Documentation

24 Chapter 8. Debugging

CHAPTER

NINE

DOMAIN SPECIFIC EXTENSIONS

9.1 Creating new Resource-Types

Lets suppose your own resource does more than only read/write. Then you want to define your own AccessPolicy
which encodes the possible accesses to your resource type. This implementation must satisfy the AccessPolicy concept.

Consider an array where you can specify, which element you want to access. Two accesses have to be executed
sequential, if they use the same index.

struct MyArrayAccess {
int index;

static bool is_serial(MyArrayAccess a, MyArrayAccess b) {
return (a.index == b.index);

}
static bool is_superset_of(MyArrayAccess a, MyArrayAccesss b) {

return (a.index == b.index);
}

}

struct MyArray : rmngr::Resource<MyArrayAccess> {
std::array<...> data;

rmngr::ResourceAccess access_index(int index) const {
return this->make_access(MyArrayAccess{ index });

}
}

25

RedGrapes Documentation

9.1.1 Combining Access Types

TODO

9.2 Extending Task Properties

TODO

26 Chapter 9. Domain Specific Extensions

CHAPTER

TEN

ASYNCHRONOUS OPERATIONS

e.g. Compute Kernels, MPI calls need to be represented as tasks, but their execution only consists of starting an
asynchronous process. The task however should not finish until the asynchronous operation is done, but not through
blocking inside the task. So we need to delay the removal of the task from the graph. This is done with events, which
can be registered inside a task and then can be triggered by some polling loop.

10.1 Creating Events

Manager::create_event() creates an event object, on which the current task now depends. That means it will
not be removed from the graph before the event is reached, even if the task itself is done executing. The removal of
the task from the graph can then be triggerd with Manager::reach_event(EventID). If there are multiple
events, the task will disappear when all events are reached.

See examples/8_event.cpp

10.2 Polling

Instead of blocking, a worker thread can be configured to use a polling function when no tasks are available for this
thread.

27

https://github.com/ComputationalRadiationPhysics/redGrapes/blob/dev/examples/8_event.cpp

RedGrapes Documentation

28 Chapter 10. Asynchronous Operations

CHAPTER

ELEVEN

WRITING CUSTOM SCHEDULERS

TODO

29

RedGrapes Documentation

30 Chapter 11. Writing Custom Schedulers

CHAPTER

TWELVE

COMPONENTS

12.1 Resources & Dependency-Description

12.1.1 Resource

group AccessPolicy Description
An implementation of the concept AccessPolicy creates a new resource-type
(Resource<AccessPolicy>) and should define the possible access modes / configurations for
this resource-type (e.g. read/write)

Required public member functions

• static bool is_serial(AccessPolicy, AccessPolicy) check if the two accesses
have to be in order. (e.g. two reads return false, an occuring write always true)

• static bool is_superset(AccessPolicy a, AccessPolicy b) check if access a
is a superset of access b (e.g. accessing [0,3] is a superset of accessing [1,2])

template<typename AccessPolicy = DefaultAccessPolicy>
class Resource : public redGrapes::ResourceBase

Represents a concrete resource. Copied objects represent the same resource.

Template Parameters

• AccessPolicy: Defines the access-modes (e.g. read/write) that are possible with this resource.
Required to implement the concept AccessPolicy

Subclassed by redGrapes::SharedResourceObject< T, AccessPolicy >

Public Functions

ResourceAccess make_access(AccessPolicy pol) const
Create an ResourceAccess, which represents an concrete access configuration associated with this resource.

Return ResourceAccess on this resource

Parameters

• pol: AccessPolicy object, containing all access information

31

RedGrapes Documentation

12.1.2 ResourceAccess

class ResourceAccess

Public Functions

bool is_same_resource(ResourceAccess const &a) const
Check if the associated resource is the same

Return true if a is associated with the same resource as this

Parameters

• a: another ResourceAccess

12.1.3 ResourceUser

class ResourceUser
Subclassed by redGrapes::ResourceProperty

12.2 Tasks

template<typename NullaryCallable>
class DelayedFunctor

12.3 Scheduler

12.3.1 Precedence Graph

template<typename T, typename EnqueuePolicy, template<class> typename Graph = DefaultGraph>
class QueuedPrecedenceGraph : public redGrapes::PrecedenceGraph<T , Graph>

Precedence-graph generated from a queue using an enqueue-policy

Public Types

template<>
using VertexID = typename PrecedenceGraph::VertexID

Public Functions

QueuedPrecedenceGraph()

QueuedPrecedenceGraph(std::weak_ptr<RecursiveGraph<T, Graph>> parent_graph, VertexID
parent_vertex)

auto push(T a)

auto update_vertex(VertexID a)

void finish(VertexID vertex)

32 Chapter 12. Components

RedGrapes Documentation

12.3.2 Recursive Graph

template<typename T, template<class> typename T_Graph = DefaultGraph>
class RecursiveGraph

Boost-Graph adaptor storing a tree of subgraphs which refine a node. Every vertex of a refinement has an edge
to the refinements root node.

Public Types

template<>
using Graph = T_Graph<std::pair<T, std::shared_ptr<RecursiveGraph>>>

template<>
using VertexID = typename boost::graph_traits<Graph>::vertex_descriptor

Public Functions

virtual ~RecursiveGraph()

auto shared_lock()

auto unique_lock()

Graph &graph(void)
get graph object

bool empty()

void add_subgraph(VertexID vertex, std::shared_ptr<RecursiveGraph> subgraph)

void remove_vertex(VertexID vertex)

std::pair<Iterator, Iterator> vertices()

template<typename Result>
void collect_vertices(std::vector<Result> &collection, std::function<std::experimental::optional<Result>)T

const&
> const &filter_map, size_t limit = std::numeric_limits<size_t>::max()

void write_dot(std::ostream &out, std::function<unsigned int)T const&
> const &id, std::function<std::stringT const&> const &label, std::function<std::stringT const&>
const &color

void write_refinement_dot(std::ostream &out, std::function<unsigned int)T const&
> const &id, std::function<std::stringT const&> const &label, std::function<std::stringT const&>
const &color

struct Iterator

12.3. Scheduler 33

RedGrapes Documentation

Public Functions

template<>
T const &operator*()

template<>
bool operator==(Iterator const &other)

template<>
bool operator!=(Iterator const &other)

template<>
void operator++()

Public Members

template<>
RecursiveGraph &r

template<>
boost::graph_traits<Graph>::vertex_iterator g_it

template<>
std::unique_ptr<std::pair<Iterator, Iterator>> sub

template<>
std::shared_lock<std::shared_mutex> lock

12.3.3 Building the Graph with Policies

12.3.4 Thread Pool

group Thread Required public member functions

• constructor: Thread(Callable, Args&&...) spawns a new thread which executes the
callable with the given arguments

• void join()

template<typename Scheduler, typename Thread = std::thread>
class ThreadDispatcher

Manages a thread pool. Worker-threads request jobs from scheduler and execute them, until the ThreadDis-
patcher gets destroyed and all workers finished.

Template Parameters

• JobSelector: must implement bool empty() and void consume_job()

• Thread: must satisfy Thread

34 Chapter 12. Components

INDEX

R
redGrapes::DelayedFunctor (C++ class), 32
redGrapes::QueuedPrecedenceGraph (C++

class), 32
redGrapes::QueuedPrecedenceGraph::finish

(C++ function), 32
redGrapes::QueuedPrecedenceGraph::push

(C++ function), 32
redGrapes::QueuedPrecedenceGraph::QueuedPrecedenceGraph

(C++ function), 32
redGrapes::QueuedPrecedenceGraph::update_vertex

(C++ function), 32
redGrapes::QueuedPrecedenceGraph<T,

EnqueuePolicy, Graph>::VertexID
(C++ type), 32

redGrapes::RecursiveGraph (C++ class), 33
redGrapes::RecursiveGraph::~RecursiveGraph

(C++ function), 33
redGrapes::RecursiveGraph::add_subgraph

(C++ function), 33
redGrapes::RecursiveGraph::collect_vertices

(C++ function), 33
redGrapes::RecursiveGraph::empty (C++

function), 33
redGrapes::RecursiveGraph::graph (C++

function), 33
redGrapes::RecursiveGraph::Iterator

(C++ class), 33
redGrapes::RecursiveGraph::remove_vertex

(C++ function), 33
redGrapes::RecursiveGraph::shared_lock

(C++ function), 33
redGrapes::RecursiveGraph::unique_lock

(C++ function), 33
redGrapes::RecursiveGraph::vertices

(C++ function), 33
redGrapes::RecursiveGraph::write_dot

(C++ function), 33
redGrapes::RecursiveGraph::write_refinement_dot

(C++ function), 33
redGrapes::RecursiveGraph<T,

T_Graph>::Graph (C++ type), 33

redGrapes::RecursiveGraph<T,
T_Graph>::Iterator::g_it (C++
member), 34

redGrapes::RecursiveGraph<T,
T_Graph>::Iterator::lock (C++
member), 34

redGrapes::RecursiveGraph<T,
T_Graph>::Iterator::operator!=
(C++ function), 34

redGrapes::RecursiveGraph<T,
T_Graph>::Iterator::operator*
(C++ function), 34

redGrapes::RecursiveGraph<T,
T_Graph>::Iterator::operator++
(C++ function), 34

redGrapes::RecursiveGraph<T,
T_Graph>::Iterator::operator==
(C++ function), 34

redGrapes::RecursiveGraph<T,
T_Graph>::Iterator::r (C++ mem-
ber), 34

redGrapes::RecursiveGraph<T,
T_Graph>::Iterator::sub (C++
member), 34

redGrapes::RecursiveGraph<T,
T_Graph>::VertexID (C++ type),
33

redGrapes::Resource (C++ class), 31
redGrapes::Resource::make_access (C++

function), 31
redGrapes::ResourceAccess (C++ class), 32
redGrapes::ResourceAccess::is_same_resource

(C++ function), 32
redGrapes::ResourceUser (C++ class), 32
redGrapes::ThreadDispatcher (C++ class), 34

35

	Motivation
	Example
	Requirements
	Build a Project using RedGrapes
	Examples & Tests
	Getting Started
	Task Creation
	Task Properties
	Describing Dataflows
	Refining Tasks
	Access Demotion

	Best Practices
	Singleton for Manager
	Lifetimes of Captured Variables
	Task-Results
	Writing Container Classes

	Debugging
	Task Backtraces
	Writing out the Task-Graph

	Domain Specific Extensions
	Creating new Resource-Types
	Extending Task Properties

	Asynchronous Operations
	Creating Events
	Polling

	Writing Custom Schedulers
	Components
	Resources & Dependency-Description
	Tasks
	Scheduler

	Index

