

Resource-based, Declarative task-Graphs for Parallel, Event-driven Scheduling

RedGrapes is a C++14 framework for declaratively creating and scheduling task-graphs, based on high-level resource descriptions.

OVERVIEW

	Motivation

	Example

INSTALLATION

	Requirements

	Build a Project using RedGrapes

	Examples & Tests

USAGE

	Getting Started
	Task Creation

	Task Properties

	Describing Dataflows

	Refining Tasks

	Access Demotion

	Best Practices
	Singleton for Manager

	Lifetimes of Captured Variables

	Task-Results

	Writing Container Classes

	Debugging
	Task Backtraces

	Writing out the Task-Graph

	Domain Specific Extensions
	Creating new Resource-Types

	Extending Task Properties

	Asynchronous Operations
	Creating Events

	Polling

	Writing Custom Schedulers

INTERNAL COMPONENTS

	Components
	Resources & Dependency-Description

	Tasks

	Scheduler

Motivation

Writing scalable software using bare threads is hard and error-prone, especially if the workload depends on input parameters and asynchronous operations further complicating the program flow.
For this reason the decoupling of processing stages from their execution is useful because it allows to dynamically schedule them. This is typically done with task-graphs, which are directed acyclic graphs (DAGs), whose vertices are some sort of computation and the edges denote the execution precedence order.
This execution precedence results from the dataflow between the tasks, which gets
complex pretty fast and may also be dynamic which makes it nearly impossible to
manually write explicit task dependencies. So ideally these would be derived
from some sort of high-level description of the dataflow. The goal of this
project is to provide a task-based programming framework, where the task-graph
gets created declaratively.

Example

TODO

Requirements

	C++14

	Boost >= 1.62

Build a Project using RedGrapes

RedGrapes is a C++ header-only library so you only need to set the include path.
If you are using CMake, the following is sufficient:

find_package(redGrapes REQUIRED CONFIG PATHS "[path to redGrapes]")
include_directories(SYSTEM ${redGrapes_INCLUDE_DIRS})

Examples & Tests

In order to build the examples and tests, do the typical cmake procedure:

mkdir build
cd build
cmake ..
make -j

Getting Started

This chapter shows exemplary how to use RedGrapes.
The features are introduced in the order of the sections from basic to more advanced.
Most code snippets are compilable and you may be able to understand the basic usage by looking through them.

	Task Creation
	The Manager

	Starting a Task

	Return Values

	Task Properties

	Describing Dataflows
	Task Dependencies

	Resources
	Resource Access

	Shared Resource Objects

	Access Guards

	Full Example

	Refining Tasks
	Property Constraints

	Resource Scopes

	Access Demotion

Task Creation

The Manager

The very first thing to do in every application using RedGrapes is to create a manager.
It combines all required components and provides us with an interface for creating tasks.
You also might want to create a namespace alias.

#include <redGrapes/manager.hpp>

namespace rg = redGrapes;

int main()
{
 rg::Manager<> mgr;

 return 0;
}

Its template arguments allow an application specific configuration and are discussed in the following sections (see also Extending Task Properties as well as Writing Custom Schedulers), but it is also usable with defaults.
The runtime parameter is the number of worker threads which are created additionally to the main thread. By default, it uses the result of std::hardware_concurrency().

rg::Manager<TaskProperties, EnqueuePolicy, Scheduler> mgr(n_threads);

By the the manager-object’s destructor, the thread (which is the main thread) will behave as additional worker thread until all
tasks are consumed. Only then the destruction of the manager returns.

Starting a Task

To create a task, the manager method emplace_task() is used. The first parameter is any nullary callable.
By using emplace_task() the scheduler is automatically activated and the task will get scheduled and executed in one of the worker threads.

#include <iostream>
#include <redGrapes/manager.hpp>

namespace rg = redGrapes;

int main()
{
 rg::Manager<> mgr;

 mgr.emplace_task(
 []
 {
 std::cout << "Hello World!" << std::endl;
 }
);

 return 0;
}

Caution

Tasks are executed asynchronously, so be sure that all captures outlive the tasks execution.
For best practice see Lifetimes of Captured Variables.

Return Values

The callable passed to emplace_task() can have any return type. The result can be retrieved through a future object which is returned by emplace_task().

auto result = mgr.emplace_task([]{ return 123; });
assert(result.get() == 123);

Caution

Always use auto on task results. Do not cast them to std::future, deadlocks might occur!
(See Task-Results)

Task Properties

Every task has properties, which contain additional scheduling or debug information about that task. What these task-properties are, must be configured by the user.
This is typically done by combining multiple predefined and custom property classes, each providing a builder.
RedGrapes provides the means for combining such independent property definitions accordingly from a variadic template:

redGrapes::TaskProperties< Property1, Property2, ... >

When creating a task using emplace_task(), the second parameter is the task properties.
Each individual property class should have sensible defaults and provide builder functions for creating property-configurations nicely.

Here is a full example using the predefined LabelProperty:

#include <iostream>
#include <redGrapes/manager.hpp>
#include <redGrapes/property/label.hpp>

namespace rg = redGrapes;

using TaskProperties = rg::TaskProperties< rg::LabelProperty >;

int main()
{
 rg::Manager< TaskProperties > mgr;

 mgr.emplace_task(
 [] { std::cout << "Hello World!" << std::endl; },
 TaskProperties::Builder().label("Example Task")
);

 return 0;
}

Another essential predefined property is the ResourceProperty, which will be discussed in the next section!

Describing Dataflows

Dataflows occour whenever tasks share any kind of data, i.e. one task outputs data which is used as input for the next. Dataflows between tasks determine their dependencies, i.e. which tasks must be absolutely kept in order and serial.
In RedGrapes this is expressed using resources. Each resource represents shared data. Their possible usage by tasks is modelled by an access policy, which defines all possible access modes for a task on this resource, e.g. read/write. An specific configuration of a resource and its access mode is called resource access. Tasks can now store a list of resoruce accesses in their properties which is then used to derive the task precedence.

Task Dependencies

When creating a new task, it is inserted into the precedence graph based on an EqueuePolicy, which compares the properties of two tasks and decides whether they are dependent. This is done in reverse with all previously inserted tasks to calculate the task dependencies. The manager must be configured with an enqueue policy. redGrapes::ResourceEnqueuePolicy is predefined and uses the resource properties which are defined
with redGrapes::ResourceProperty.

using TaskProperties =
 rg::TaskProperties<
 redGrapes::ResourceProperty,
 /* other properties ... */
 >;

rg::Manager<
 TaskProperties,
 rg::ResourceEnqueuePolicy
> mgr;

Resources

The next thing to do is to represent the resources in your code. Any data that is shared between tasks should be represented as resource. Generally resources are just identifiers but there are also wrappers which are memory managed to make resource usage more safe.
A very simple, predefined access policy is IOAccess. It supports the access modes read and write, where reads can be executed independently.

#include <redGrapes/resource/resource.hpp>
#include <redGrapes/access/io.hpp>

// just an identifier, no association with actual data
rg::Resource< rg::access::IOAccess > r1;

Resource Access

Resource accesses are created with the method Resource::make_access(AccessPolicy) and can be added to tasks like normal properties. This is the information used by the enqueue policy.

mgr.emplace_task(
 []{ /* ... */ },
 TaskProperties::Builder().resources({ r1.make_access(rg::access::IOAccess::read) })
);

Shared Resource Objects

Using just the previously described mechanisms would require for each shared object an additional resource object and doesn’t give any guarantees about what is actually done in the task.
So we could just get the resource accesses wrong and don’t know about it. Furthermore the data must absolutely outlive the execution of all tasks.

rg::SharedResourceObject< T, AccessPolicy > is an Resource<AccessPolicy> and additionally stores an shared_ptr<T>. So we firstly have the data and the resource identifier
united into one object and secondly all lifetime issues are solved through reference counting.

Tip

To avoid lifetime issues, be strict and never capture anything by reference. Only allow copy and move captures.

Access Guards

By manually adding the resource accesses to the task properties we still cannot check if all operations inside the task are correctly represented by them. The solution to this problem
are access guards: Wrappers around a shared resource object, for each possible access mode one, that only allows the operations corresponding to the access. For read/write this
would be an dereference to T const& or T& respectively.

Additionally we need to create both the guard object and the task property together with one expression. This is done with so called
property building parameters. These are function parameters which are bound to the task immediately at creation (to make it ultimately nullary again), but additionally implement a trait in which they can use the property-builder to modify the task properties. Each access-guard simply implements this trait and so by taking all resources by parameter instead of capture we can use the correct wrapper.

See also Creating new Resource-Types.

For convenience the guard objects also provide methods to create new guard objects with a subset of the access.

#include <redGrapes/resource/ioresource.hpp>

rg::IOResource< int > r1;

mgr.emplace_task(
 [](auto r1)
 {
 // ok.
 std::cout << *r1 << std::endl;

 // compile-time error!
 *r1 = 123;
 },
 r1.read()
);

Tip

Altough it is possible to capture resources and add their properties via builders, it is recommended to access them through the parameters, because then the resource usage in the task is checked at compile time.

Full Example

In this example Task 2 and Task 3 will be executed after Task 1. When enough threads are available, Task 2 and Task 3 will run in parallel.

#include <redGrapes/manager.hpp>
#include <redGrapes/resource/ioresource.hpp>
#include <redGrapes/property/inherit.hpp>
#include <redGrapes/property/resource.hpp>
#include <redGrapes/property/label.hpp>

namespace rg = redGrapes;

using TaskProperties =
 rg::TaskProperties<
 rg::ResourceProperty,
 rg::LabelProperty
 >;

int main()
{
 rg::Manager< TaskProperties, rg::ResourceEnqueuePolicy > mgr;

 rg::IOResource< int > a;

 mgr.emplace_task(
 [](auto a){ *a = 123; },
 TaskProperties::Builder().label("Task 1"),
 a.write()
);

 mgr.emplace_task(
 [](auto a){ int x = *a; },
 TaskProperties::Builder().label("Task 2"),
 a.read()
);

 mgr.emplace_task(
 [](auto a){ int x = *a; },
 TaskProperties::Builder().label("Task 3"),
 a.read()
);

 return 0;
}

Refining Tasks

It is possible to create a sub-graph inside a task during its execution.
This is done without further thought by just calling emplace_task() inside another task.
Either you always capture the manager by reference or create a singleton (See Singleton for Manager).

mgr.emplace_task(
 [&mgr]
 {
 mgr.emplace_task(
 []{ /* ... */ },
 TaskProperties::Builder().label("Child Task")
);
 },
 TaskProperties::Builder().label("Parent Task")
);

Property Constraints

Because the properties of the parent task already made decisions about the scheduling, any child tasks are not allowed to
revert these assumptions. So the properties of child tasks are constrained and assertet at task creation. This is implemented by the EnqueuePolicy. In case of using the predefined ResourceEnqueuePolicy, it asserts the resource accesses of the parent task to be supersets of its child tasks. That means firstly no new resources should be introduced and secondly all access modes must be less or equally “mutable”, e.g. a child task cannot write a resource that is only read by the parent task.

Note

Not meeting the resource constraint will throw an exception when calling emplace_task(). This is only possible because we don’t use access guards in this example.

 rg::Resource< rg::access::IOAccess > r1;

 mgr.emplace_task(
 [&mgr, r1]
 {
 // OK.
 mgr.emplace_task(
 []{ /* ... */ },
 TaskProperties::Builder()
 .label("good child")
 .resources({ r1.make_access(rg::access::IOAccess::read) })
);

 // throws runtime error
 mgr.emplace_task(
 []{ /* ... */ },
 TaskProperties::Builder()
 .label("bad child")
 .resources({ r1.make_access(rg::access::IOAccess::write) })
);
 },
 TaskProperties::Builder()
 .label("Parent Task")
 .resources({ r1.make_access(rg::access::IOAccess::read) })
);

Resource Scopes

It is also possible to create resources which exist locally inside a task and are only relevant for sub-tasks.

rg::IOResource< int > r1;

mgr.emplace_task(
 [&mgr](auto r1)
 {
 rg::IOResource< int > local_resource;

 mgr.emplace_task(
 [](auto r1, auto r2){ /* ... */ },
 TaskProperties::Builder().label("Child Task 1"),
 r1.read(),
 // use local_resource here without violating the subset constraint
 local_resource.write(),
);

 mgr.emplace_task(
 [](auto r){ /* ... */ },
 TaskProperties::Builder().label("Child Task 2"),
 local_resource.read()
);
 },
 TaskProperties::Builder().label("Parent Task")

 // can't and doesn't need local_resource
 r1.read()
);

Note

The context in which the constructor of a resource is called determines its scope-level.
Local resources should therefore be constructed inside of the parent task.

Access Demotion

A very cool feature is that functors can modify their own properties while runnig.
This allows us for example to demote resource accesses so that other functors can start earlier.
Of course the possible changes at runtime have to be well constrained, similarly to creating sub-tasks.

This is done by creating a patch in the same manner with builders as the initial properties. This patch is then applied to the current task by the manager method update_properties(). This method must be called inside of a task and applies for exactly the task it is called in.
This call also automatically triggers the scheduler to reevaluate outgoing edges in the task-graph.

The builder ResourceProperty provides in its builder interface the methods add_resources() and remove_resources for changing the resource access information.

Note

In the case of ResourceProperty it is only possible to demote the access, i.e. the new access has to be a subset of the old (e.g. we can change a write to read).

Caution

When using access demotion, it is possible again to mess up the actual resource usage and properties, despite access guards, because we can’t “delete” a symbol inside a scope.

rg::IOResource< int > r1;

mgr.emplace_task(
 [&mgr](auto r1)
 {
 // OK.
 mgr.update_properties(
 TaskProperties::Patch::Builder()
 .remove_resources({ r1.write() })
 .add_resources({ r1.read() })
);

 // compiles, but is wrong
 // be sure to avoid this
 *r1 = 123;

 // throws runtime error, only demotion allowed
 mgr.update_properties(
 TaskProperties::Patch::Builder()
 .add_resources({ r1.write() })
);
 },
 r1.write()
);

Best Practices

Singleton for Manager

An easy way to make the manager globally accessible is to create a singleton:

using TaskProperties = rg::TaskProperties< /*...*/ >;
static auto & mgr()
{
 static rg::Manager<
 TaskProperties,
 rg::ResourceEnqueuePolicy,
 MyScheduler
 > m;

 return m;
}

void foo()
{
 mgr().emplace_task([]{ /* ... */ });
}

Lifetimes of Captured Variables

use shared_ptr

Task-Results

always use auto

Writing Container Classes

If you implement a structure which should be used as resource, then just derive from the corresponding resource type:

struct MyContainer : rg::IOResource {
 // ...
}

TODO: Access Guards

Debugging

Task Backtraces

Sometimes it is useful to create a backtrace of tasks. This can be done with the manager method backtrace(). It returns a std::vector<TaskProperties>.

mgr().emplace_task(
 []
 {
 mgr().emplace_task(
 []
 {
 int depth = 0;
 for(auto t : mgr().backtrace())
 std::cout << "[" << depth++ << "]" << t.label << std::endl;
 },
 TaskProperties::Builder().label("Child Task")
);
 },
 TaskProperties::Builder().label("Parent Task")
);

This will give us the output:

[0] Child Task
[1] Parent Task

Writing out the Task-Graph

TODO

Domain Specific Extensions

	Creating new Resource-Types
	Combining Access Types

	Extending Task Properties

Creating new Resource-Types

Lets suppose your own resource does more than only read/write.
Then you want to define your own AccessPolicy which encodes the possible accesses to your resource type. This implementation must satisfy the AccessPolicy concept.

Consider an array where you can specify, which element you want to access. Two accesses have to be executed sequential, if they use the same index.

struct MyArrayAccess {
 int index;

 static bool is_serial(MyArrayAccess a, MyArrayAccess b) {
 return (a.index == b.index);
 }
 static bool is_superset_of(MyArrayAccess a, MyArrayAccesss b) {
 return (a.index == b.index);
 }
}

struct MyArray : rmngr::Resource<MyArrayAccess> {
 std::array<...> data;

 rmngr::ResourceAccess access_index(int index) const {
 return this->make_access(MyArrayAccess{ index });
 }
}

Combining Access Types

TODO

Extending Task Properties

TODO

Asynchronous Operations

e.g. Compute Kernels, MPI calls need to be represented as tasks, but their execution only consists of starting an asynchronous process. The task however should not finish until the
asynchronous operation is done, but not through blocking inside the task. So we need to delay the removal of the task from the graph. This is done with events, which can be registered
inside a task and then can be triggered by some polling loop.

Creating Events

Manager::create_event() creates an event object, on which the current task now depends. That means it will not be removed from the graph before the event is reached, even
if the task itself is done executing.
The removal of the task from the graph can then be triggerd with Manager::reach_event(EventID). If there are multiple events, the task will disappear when all events are reached.

See examples/8_event.cpp [https://github.com/ComputationalRadiationPhysics/redGrapes/blob/dev/examples/8_event.cpp]

Polling

Instead of blocking, a worker thread can be configured to use a polling function when no tasks are available for this thread.

Writing Custom Schedulers

TODO

Components

Resources & Dependency-Description

Resource

	
group AccessPolicy

	
	Description
	An implementation of the concept AccessPolicy creates a new resource-type (Resource<AccessPolicy>) and should define the possible access modes / configurations for this resource-type (e.g. read/write)

	Required public member functions
	
	static bool is_serial(AccessPolicy, AccessPolicy) check if the two accesses have to be in order. (e.g. two reads return false, an occuring write always true)

	static bool is_superset(AccessPolicy a, AccessPolicy b) check if access a is a superset of access b (e.g. accessing [0,3] is a superset of accessing [1,2])

	
template<typename AccessPolicy = DefaultAccessPolicy>
class Resource : public redGrapes::ResourceBase

	Represents a concrete resource. Copied objects represent the same resource.

	Template Parameters
	
	AccessPolicy: Defines the access-modes (e.g. read/write) that are possible with this resource. Required to implement the concept AccessPolicy

Subclassed by redGrapes::SharedResourceObject< T, AccessPolicy >

Public Functions

	
ResourceAccess make_access(AccessPolicy pol) const

	Create an ResourceAccess, which represents an concrete access configuration associated with this resource.

	Return
	ResourceAccess on this resource

	Parameters
	
	pol: AccessPolicy object, containing all access information

ResourceAccess

	
class ResourceAccess

	
Public Functions

	
bool is_same_resource(ResourceAccess const &a) const

	Check if the associated resource is the same

	Return
	true if a is associated with the same resource as this

	Parameters
	
	a: another ResourceAccess

ResourceUser

	
class ResourceUser

	Subclassed by redGrapes::ResourceProperty

Tasks

	
template<typename NullaryCallable>
class DelayedFunctor

	

Scheduler

Precedence Graph

	
template<typename T, typename EnqueuePolicy, template<class> typename Graph = DefaultGraph>
class QueuedPrecedenceGraph : public redGrapes::PrecedenceGraph<T, Graph>

	Precedence-graph generated from a queue using an enqueue-policy

Public Types

	
template<>
using VertexID = typename PrecedenceGraph::VertexID

	

Public Functions

	
QueuedPrecedenceGraph()

	

	
QueuedPrecedenceGraph(std::weak_ptr<RecursiveGraph<T, Graph>> parent_graph, VertexID parent_vertex)

	

	
auto push(T a)

	

	
auto update_vertex(VertexID a)

	

	
void finish(VertexID vertex)

	

Recursive Graph

	
template<typename T, template<class> typename T_Graph = DefaultGraph>
class RecursiveGraph

	Boost-Graph adaptor storing a tree of subgraphs which refine a node. Every vertex of a refinement has an edge to the refinements root node.

Public Types

	
template<>
using Graph = T_Graph<std::pair<T, std::shared_ptr<RecursiveGraph>>>

	

	
template<>
using VertexID = typename boost::graph_traits<Graph>::vertex_descriptor

	

Public Functions

	
virtual ~RecursiveGraph()

	

	
auto shared_lock()

	

	
auto unique_lock()

	

	
Graph &graph(void)

	get graph object

	
bool empty()

	

	
void add_subgraph(VertexID vertex, std::shared_ptr<RecursiveGraph> subgraph)

	

	
void remove_vertex(VertexID vertex)

	

	
std::pair<Iterator, Iterator> vertices()

	

	
template<typename Result>
void collect_vertices(std::vector<Result> &collection, std::function<std::experimental::optional<Result>(T const&)> const &filter_map, size_t limit = std::numeric_limits<size_t>::max(),)

	

	
void write_dot(std::ostream &out, std::function<unsigned int(T const&)> const &id, std::function<std::string(T const&)> const &label, std::function<std::string(T const&)> const &color)

	

	
void write_refinement_dot(std::ostream &out, std::function<unsigned int(T const&)> const &id, std::function<std::string(T const&)> const &label, std::function<std::string(T const&)> const &color)

	

	
struct Iterator

	
Public Functions

	
template<>
T const &operator*()

	

	
template<>
bool operator==(Iterator const &other)

	

	
template<>
bool operator!=(Iterator const &other)

	

	
template<>
void operator++()

	

Public Members

	
template<>
RecursiveGraph &r

	

	
template<>
boost::graph_traits<Graph>::vertex_iterator g_it

	

	
template<>
std::unique_ptr<std::pair<Iterator, Iterator>> sub

	

	
template<>
std::shared_lock<std::shared_mutex> lock

	

Building the Graph with Policies

Thread Pool

	
group Thread

	
	Required public member functions
	
	constructor: Thread(Callable, Args&&...) spawns a new thread which executes the callable with the given arguments

	void join()

	
template<typename Scheduler, typename Thread = std::thread>
class ThreadDispatcher

	Manages a thread pool. Worker-threads request jobs from scheduler and execute them, until the ThreadDispatcher gets destroyed and all workers finished.

	Template Parameters
	
	JobSelector: must implement bool empty() and void consume_job()

	Thread: must satisfy Thread

Index

 R

R

 	
 	redGrapes::DelayedFunctor (C++ class)

 	redGrapes::QueuedPrecedenceGraph (C++ class)

 	redGrapes::QueuedPrecedenceGraph::finish (C++ function)

 	redGrapes::QueuedPrecedenceGraph::push (C++ function)

 	redGrapes::QueuedPrecedenceGraph::QueuedPrecedenceGraph (C++ function), [1]

 	redGrapes::QueuedPrecedenceGraph::update_vertex (C++ function)

 	redGrapes::QueuedPrecedenceGraph<T, EnqueuePolicy, Graph>::VertexID (C++ type)

 	redGrapes::RecursiveGraph (C++ class)

 	redGrapes::RecursiveGraph::add_subgraph (C++ function)

 	redGrapes::RecursiveGraph::collect_vertices (C++ function)

 	redGrapes::RecursiveGraph::empty (C++ function)

 	redGrapes::RecursiveGraph::graph (C++ function)

 	redGrapes::RecursiveGraph::Iterator (C++ class)

 	redGrapes::RecursiveGraph::remove_vertex (C++ function)

 	redGrapes::RecursiveGraph::shared_lock (C++ function)

 	redGrapes::RecursiveGraph::unique_lock (C++ function)

 	redGrapes::RecursiveGraph::vertices (C++ function)

 	redGrapes::RecursiveGraph::write_dot (C++ function)

 	
 	redGrapes::RecursiveGraph::write_refinement_dot (C++ function)

 	redGrapes::RecursiveGraph::~RecursiveGraph (C++ function)

 	redGrapes::RecursiveGraph<T, T_Graph>::Graph (C++ type)

 	redGrapes::RecursiveGraph<T, T_Graph>::Iterator::g_it (C++ member)

 	redGrapes::RecursiveGraph<T, T_Graph>::Iterator::lock (C++ member)

 	redGrapes::RecursiveGraph<T, T_Graph>::Iterator::operator!= (C++ function)

 	redGrapes::RecursiveGraph<T, T_Graph>::Iterator::operator* (C++ function)

 	redGrapes::RecursiveGraph<T, T_Graph>::Iterator::operator++ (C++ function)

 	redGrapes::RecursiveGraph<T, T_Graph>::Iterator::operator== (C++ function)

 	redGrapes::RecursiveGraph<T, T_Graph>::Iterator::r (C++ member)

 	redGrapes::RecursiveGraph<T, T_Graph>::Iterator::sub (C++ member)

 	redGrapes::RecursiveGraph<T, T_Graph>::VertexID (C++ type)

 	redGrapes::Resource (C++ class)

 	redGrapes::Resource::make_access (C++ function)

 	redGrapes::ResourceAccess (C++ class)

 	redGrapes::ResourceAccess::is_same_resource (C++ function)

 	redGrapes::ResourceUser (C++ class)

 	redGrapes::ThreadDispatcher (C++ class)

 _static/minus.png

_static/plus.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Resource-based, Declarative task-Graphs for Parallel, Event-driven Scheduling

 		
 Motivation

 		
 Example

 		
 Requirements

 		
 Build a Project using RedGrapes

 		
 Examples & Tests

 		
 Getting Started

 		
 Task Creation

 		
 The Manager

 		
 Starting a Task

 		
 Return Values

 		
 Task Properties

 		
 Describing Dataflows

 		
 Task Dependencies

 		
 Resources

 		
 Full Example

 		
 Refining Tasks

 		
 Property Constraints

 		
 Resource Scopes

 		
 Access Demotion

 		
 Best Practices

 		
 Singleton for Manager

 		
 Lifetimes of Captured Variables

 		
 Task-Results

 		
 Writing Container Classes

 		
 Debugging

 		
 Task Backtraces

 		
 Writing out the Task-Graph

 		
 Domain Specific Extensions

 		
 Creating new Resource-Types

 		
 Combining Access Types

 		
 Extending Task Properties

 		
 Asynchronous Operations

 		
 Creating Events

 		
 Polling

 		
 Writing Custom Schedulers

 		
 Components

 		
 Resources & Dependency-Description

 		
 Resource

 		
 ResourceAccess

 		
 ResourceUser

 		
 Tasks

 		
 Scheduler

 		
 Precedence Graph

 		
 Recursive Graph

 		
 Building the Graph with Policies

 		
 Thread Pool

