

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Dehydration Algorithms

Dehydrators are simplistic time machines. They transport data elements that arrived prematurely in terms of their context right to the future where they might be needed, without loading the system while waiting. This concept is achieved by attaching a time-indexed data store to a clock, storing elements as they arrive to the dehydrator and re-introducing them as inputs to the system once a predetermined time period has passed. From: Fast Data [https://goo.gl/DDFFPO]

In general, the goal of a dehydration mechanism is to store data for a predetermined time, and releasing it upon request without loading the using system.
That is, beyond being speedy and resilient, we want all operations on this time centric data-store to be have a minimal signature, using just IDs when possible (minimizing cross-process communication).

Storing Data in a DB based on a key of id and indexed by time is a common technique in construction of all time dependent systems, but using Redis as a Key-Value store enabled more flexibility when constructing a data-store for the specific goal of being a dehydrator.

Naive Algorithm 1

These goals can be achieved relatively easily using naive implementation of a unified list where items are being stored as an (id, element, insert time + TTL). tuple and are added to the list (Push) in O(1). The obvious down side is that pulling a specific element from the list (Pull) is done at O(n) and polling for expired items is also done at O(n), where n is the number of all stored elements in the list.
so:

	Push - O(1)

	Pull - O(n)

	Poll - O(n)

Naive Algorithm 2

An improvement can be done to this algorithm using a queue instead of a the list where items are being stored as the same tuple, but are sorted based on expiration time, not insertion time. This would skew runtimes to be:

	Push - O(log n), since now we need to scan the queue in order to find where to insert the new element.

	Pull - still done at O(n)

	Poll - is now improved to O(m) where m is the number of expired items.

Adding an element map

Using a hash map to help us locate elements faster would improve runtimes to be:

	Push - O(log n).

	Pull - O(1) now that we just need to check the map to find a specific element.

	Poll - O(m)

Queue-Map Algorithm

this is the algorithm that is used in this module
This Algorithm takes the best from both algorithms, and combines it in a new manner - the idea behind assumes you will have a set of different TTL which is significantly smaller (<<) in size then the amount of items that are stored. Using this assumption we could now store items in a queue based on their TTL. Each queue would be self-sorted by expiration due to the fact that each two consecutive events with the same TTL would have expiration times that correspond with the order in which they have arrived. Polling is done by iterating over the queues and from each queue pop all the elements which expired, once you see an element that has not expired yet, move to next queue.
Using these rules, and by holding a map of sorted TTL queues we can now:

	Push in O(1) since pulling the TTL Queue from the map takes O(1) and inserting at the head of this queue is also O(1).

	Pull in O(1).

	Poll in O(n) - where n is minimized to just the number of expired elements, notice we regard the number of different TTLs to be a constant and << # of dehydrated elements in the system.

ReDe Provided Commands

Commands described in this document

	REDE.PUSH

	REDE.GIDPUSH

	REDE.PULL

	REDE.POLL

	REDE.LOOK

	REDE.TTN

	REDE.UPDATE

Performance of main commands in events/second by version

Command	0.1.0	0.2.0 <	0.3.0 <
————-	:——:	:——-:	:——-:
PUSH	16,000	23,000	22,000
PULL	19,500	31,000	31,500
POLL	1,700	265,000	305,000

for requests/second redis-benchmark results can be found here

PUSH

syntex: PUSH dehydrator_name ttl element element_id

Available since: 0.1.0

Time Complexity: O(1)

Push an element into the dehydrator for ttl milliseconds, marking it with element_id

Note: if the key does not exist this command will create a Dehydrator on it.

Return Value

“OK” on success, Error if key is not a dehydrator or if an element with element_id already exists.

Example

redis> REDE.PUSH my_dehydrator 3000 "Dehydrate this" 101
OK
redis> REDE.LOOK my_dehydrator 101
"Dehydrate this"
redis> REDE.POLL my_dehydrator
(empty list or set)

wait for 3 seconds

redis> REDE.POLL my_dehydrator
"Dehydrate this"

GIDPUSH

syntex: GIDPUSH dehydrator_name ttl element

Available since: 0.4.0

Time Complexity: O(1)

Push an element into the dehydrator for ttl milliseconds, marking it with an auto-generated element_id
This command is slower then PUSH as the GUID generating process takes time.

Note: if the key does not exist this command will create a Dehydrator on it.

Return Value

The generated GUID on success, Error if key is not a dehydrator.

Example

redis> REDE.GIDPUSH my_dehydrator 3000 "Dehydrate this"
SFTL5409QWRAR9EPU2W4NG4S6D8T2TZ
redis> REDE.LOOK my_dehydrator SFTL5409QWRAR9EPU2W4NG4S6D8T2TZ
"Dehydrate this"
redis> REDE.POLL my_dehydrator
(empty list or set)

wait for 3 seconds

redis> REDE.POLL my_dehydrator
"Dehydrate this"

PULL

syntex: PULL dehydrator_name element_id

Available since: 0.1.0

Time Complexity: O(1)

Pull the element corresponding with element_id and remove it from the dehydrator before it expires.

Return Value

The element represented by element_id on success, Null if key is empty or not a dehydrator, or element with element_id does not exist.

Example

redis> REDE.PUSH my_dehydrator 3000 "Dehydrate this" 101
OK
redis> REDE.PULL my_dehydrator 101
"Dehydrate this"
redis> REDE.PULL my_dehydrator 101
(nil)

POLL

syntex: POLL dehydrator_name

Available since: 0.1.0

*Time Complexity: O(max{N.M}) where N is the number of expired elements and M is the number of different TTLs elements were pushed with. *

Pull and return all the expired elements in dehydrator_name.

Return Value

List of all expired elements on success, or an empty list if no elements are expired, the key is empty or the key contains something other the a dehydrator.

Example

redis> REDE.PUSH my_dehydrator 3000 "Dehydrate this" 101
OK
redis> REDE.PUSH my_dehydrator 1000 "Dehydrate that" 102
OK
redis> REDE.POLL my_dehydrator
(empty list or set)

wait for 1 second

redis> REDE.POLL my_dehydrator
("Dehydrate that")

wait additional 2 seconds

redis> REDE.POLL my_dehydrator
("Dehydrate this")

XPOLL

syntex: XPOLL dehydrator_name

Available since: 0.5.0

*Time Complexity: O(max{N.M}) where N is the number of expired elements and M is the number of different TTLs elements were pushed with. *

Return the IDs of all the expired elements in dehydrator_name, without pulling.

Return Value

List of IDs for all expired elements on success, or an empty list if no elements are expired, the key is empty or the key contains something other the a dehydrator.

Example

redis> REDE.PUSH my_dehydrator 3000 "Dehydrate this" 101
OK
redis> REDE.PUSH my_dehydrator 1000 "Dehydrate that" 102
OK
redis> REDE.XPOLL my_dehydrator
(empty list or set)

wait for 1 second

redis> REDE.XPOLL my_dehydrator
1) "102"

wait additional 2 seconds

redis> REDE.XPOLL my_dehydrator
1) "101"
2) "102"

XACK

syntex: XPOLL dehydrator_name

Available since: 0.5.0

*Time Complexity: O(N) where N is the number of IDs given. *

Pull and return all the expired elements of dehydrator_name from within the given set of IDs.

Return Value

List of all expired elements on success, populated with (nil)s wherever an error has occured. If no elements are expired, the key is empty or the key contains something other the a dehydrator, an empty list will be returned.

Example

redis> REDE.PUSH my_dehydrator 3000 "Dehydrate this" 101
OK
redis> REDE.PUSH my_dehydrator 1000 "Dehydrate that" 102
OK

wait for 1 second

redis> REDE.POLL my_dehydrator
1) "Dehydrate that"

wait additional 2 seconds

redis> REDE.XPOLL my_dehydrator
(101)
redis> REDE.XACK my_dehydrator 101 102 103
1) "Dehydrate this"
2) (nil)
3) (nil)

LOOK

syntex: LOOK dehydrator_name element_id

Available since: 0.1.0

Time Complexity: O(1)

Show the element corresponding with element_id and without removing it from the dehydrator.

Return Value

The element represented by element_id on success, Null if key is empty or not a dehydrator, or element with element_id does not exist.

Example

redis> REDE.PUSH my_dehydrator 3000 "Dehydrate this" 101
OK
redis> REDE.PUSH my_dehydrator 3000 "Dehydrate that" 102
OK
redis> REDE.LOOK my_dehydrator 101
"Dehydrate this"
redis> REDE.LOOK my_dehydrator 102
"Dehydrate that"
redis> REDE.LOOK my_dehydrator 102
(nil)

TTN

syntex: TTN dehydrator_name

Available since: 0.2.1

*Time Complexity: O(M) where M is the number of different TTLs elements were pushed with.

Show the time left (in milliseconds) until the next element will expire.

Return Value

int representing the number of milliseconds until next element will expire. Null if dehydrator_name does not contain a dehydrator.

Example

redis> REDE.PUSH my_dehydrator 3000 "Dehydrate this" 101
OK
redis> REDE.PUSH my_dehydrator 1000 "Dehydrate that" 102
OK
redis> REDE.TTN my_dehydrator
1000

wait for 1 second

redis> REDE.TTN my_dehydrator
0
redis> REDE.POLL my_dehydrator
("Dehydrate that")
redis> REDE.TTN my_dehydrator
2000

UPDATE

syntex: UPDATE dehydrator_name element_id new_element

Available since: 0.2.1

Time Complexity: O(1)

Change the element corresponding with element_id with new_element and return the original.

Return Value

The element that was represented by element_id on success, Error if key is empty or not a dehydrator, or if element with element_id does not exist.

Note: the expiration time of new_element will not be the same as the original element.

Example

redis> REDE.PUSH my_dehydrator 3000 "Dehydrate this" 101
OK
redis> REDE.UPDATE my_dehydrator 101 "Dehydrate that"
"Dehydrate this"
redis> REDE.LOOK my_dehydrator 101
"Dehydrate that"

 <<<<<<< HEAD

Redis-Benchmark Results

the code used to generate these results is available in src/redis-benchmark.c

$./redis-benchmark -t rede -n 1000000

====== REDE.PUSH ======
 1000000 requests completed in 5.88 seconds
 50 parallel clients
 3 bytes payload
 keep alive: 1

99.94% <= 1 milliseconds
99.97% <= 2 milliseconds
99.98% <= 3 milliseconds
99.98% <= 4 milliseconds
99.98% <= 5 milliseconds
99.99% <= 6 milliseconds
99.99% <= 7 milliseconds
100.00% <= 8 milliseconds
100.00% <= 8 milliseconds
170183.80 requests per second

====== REDE.PUSH ======
 1000000 requests completed in 5.97 seconds
 50 parallel clients
 3 bytes payload
 keep alive: 1

99.91% <= 1 milliseconds
99.97% <= 2 milliseconds
99.97% <= 3 milliseconds
99.99% <= 4 milliseconds
99.99% <= 5 milliseconds
100.00% <= 6 milliseconds
100.00% <= 7 milliseconds
100.00% <= 8 milliseconds
100.00% <= 8 milliseconds
167532.25 requests per second

====== REDE.PUSH - 10000 second elements (needed for POLL) ======
 1000000 requests completed in 6.70 seconds
 50 parallel clients
 3 bytes payload
 keep alive: 1

99.85% <= 1 milliseconds
99.96% <= 2 milliseconds
99.98% <= 3 milliseconds
99.99% <= 4 milliseconds
99.99% <= 5 milliseconds
99.99% <= 6 milliseconds
100.00% <= 7 milliseconds
100.00% <= 8 milliseconds
100.00% <= 8 milliseconds
149342.89 requests per second

====== REDE.PUSH - 15 second elements (needed for POLL) ======
 1000000 requests completed in 6.59 seconds
 50 parallel clients
 3 bytes payload
 keep alive: 1

99.65% <= 1 milliseconds
99.93% <= 2 milliseconds
99.94% <= 3 milliseconds
99.96% <= 4 milliseconds
99.98% <= 5 milliseconds
99.99% <= 6 milliseconds
99.99% <= 7 milliseconds
100.00% <= 8 milliseconds
100.00% <= 9 milliseconds
100.00% <= 10 milliseconds
100.00% <= 10 milliseconds
151653.02 requests per second

====== REDE.PUSH - 10 second elements (needed for POLL) ======
 1000000 requests completed in 7.09 seconds
 50 parallel clients
 3 bytes payload
 keep alive: 1

99.90% <= 1 milliseconds
99.95% <= 2 milliseconds
99.96% <= 3 milliseconds
99.97% <= 4 milliseconds
99.99% <= 5 milliseconds
99.99% <= 6 milliseconds
99.99% <= 7 milliseconds
99.99% <= 8 milliseconds
100.00% <= 9 milliseconds
100.00% <= 10 milliseconds
100.00% <= 10 milliseconds
141063.61 requests per second

====== REDE.PUSH - 5 second elements (needed for POLL) ======
 1000000 requests completed in 7.33 seconds
 50 parallel clients
 3 bytes payload
 keep alive: 1

99.74% <= 1 milliseconds
99.96% <= 2 milliseconds
99.98% <= 3 milliseconds
99.98% <= 4 milliseconds
99.99% <= 5 milliseconds
99.99% <= 6 milliseconds
99.99% <= 8 milliseconds
100.00% <= 9 milliseconds
100.00% <= 9 milliseconds
136425.66 requests per second

====== REDE.POLL ======
 1000000 requests completed in 6.38 seconds
 50 parallel clients
 3 bytes payload
 keep alive: 1

99.94% <= 1 milliseconds
99.97% <= 2 milliseconds
99.98% <= 3 milliseconds
99.98% <= 5 milliseconds
99.98% <= 6 milliseconds
99.99% <= 7 milliseconds
99.99% <= 8 milliseconds
100.00% <= 8 milliseconds
156666.14 requests per second

=======

Redis-Benchmark Results

the code used to generate these results is available in src/redis-benchmark.c

$./redis-benchmark -t rede -n 1000000

====== REDE.PUSH ======
 1000000 requests completed in 5.88 seconds
 50 parallel clients
 3 bytes payload
 keep alive: 1

99.94% <= 1 milliseconds
99.97% <= 2 milliseconds
99.98% <= 3 milliseconds
99.98% <= 4 milliseconds
99.98% <= 5 milliseconds
99.99% <= 6 milliseconds
99.99% <= 7 milliseconds
100.00% <= 8 milliseconds
100.00% <= 8 milliseconds
170183.80 requests per second

====== REDE.PUSH ======
 1000000 requests completed in 5.97 seconds
 50 parallel clients
 3 bytes payload
 keep alive: 1

99.91% <= 1 milliseconds
99.97% <= 2 milliseconds
99.97% <= 3 milliseconds
99.99% <= 4 milliseconds
99.99% <= 5 milliseconds
100.00% <= 6 milliseconds
100.00% <= 7 milliseconds
100.00% <= 8 milliseconds
100.00% <= 8 milliseconds
167532.25 requests per second

====== REDE.PUSH - 10000 second elements (needed for POLL) ======
 1000000 requests completed in 6.70 seconds
 50 parallel clients
 3 bytes payload
 keep alive: 1

99.85% <= 1 milliseconds
99.96% <= 2 milliseconds
99.98% <= 3 milliseconds
99.99% <= 4 milliseconds
99.99% <= 5 milliseconds
99.99% <= 6 milliseconds
100.00% <= 7 milliseconds
100.00% <= 8 milliseconds
100.00% <= 8 milliseconds
149342.89 requests per second

====== REDE.PUSH - 15 second elements (needed for POLL) ======
 1000000 requests completed in 6.59 seconds
 50 parallel clients
 3 bytes payload
 keep alive: 1

99.65% <= 1 milliseconds
99.93% <= 2 milliseconds
99.94% <= 3 milliseconds
99.96% <= 4 milliseconds
99.98% <= 5 milliseconds
99.99% <= 6 milliseconds
99.99% <= 7 milliseconds
100.00% <= 8 milliseconds
100.00% <= 9 milliseconds
100.00% <= 10 milliseconds
100.00% <= 10 milliseconds
151653.02 requests per second

====== REDE.PUSH - 10 second elements (needed for POLL) ======
 1000000 requests completed in 7.09 seconds
 50 parallel clients
 3 bytes payload
 keep alive: 1

99.90% <= 1 milliseconds
99.95% <= 2 milliseconds
99.96% <= 3 milliseconds
99.97% <= 4 milliseconds
99.99% <= 5 milliseconds
99.99% <= 6 milliseconds
99.99% <= 7 milliseconds
99.99% <= 8 milliseconds
100.00% <= 9 milliseconds
100.00% <= 10 milliseconds
100.00% <= 10 milliseconds
141063.61 requests per second

====== REDE.PUSH - 5 second elements (needed for POLL) ======
 1000000 requests completed in 7.33 seconds
 50 parallel clients
 3 bytes payload
 keep alive: 1

99.74% <= 1 milliseconds
99.96% <= 2 milliseconds
99.98% <= 3 milliseconds
99.98% <= 4 milliseconds
99.99% <= 5 milliseconds
99.99% <= 6 milliseconds
99.99% <= 8 milliseconds
100.00% <= 9 milliseconds
100.00% <= 9 milliseconds
136425.66 requests per second

====== REDE.POLL ======
 1000000 requests completed in 6.38 seconds
 50 parallel clients
 3 bytes payload
 keep alive: 1

99.94% <= 1 milliseconds
99.97% <= 2 milliseconds
99.98% <= 3 milliseconds
99.98% <= 5 milliseconds
99.98% <= 6 milliseconds
99.99% <= 7 milliseconds
99.99% <= 8 milliseconds
100.00% <= 8 milliseconds
156666.14 requests per second

b9db41d4b2fa25a10ef13ae197533a9748c31b8c

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

