

Welcome to Realtime Stock’s documentation!

Contents:

	Realtime Stock
	Features

	Credits

	Installation
	Stable release

	From sources

	Usage
	Stock Class

	Utility Functions

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

Indices and tables

	Index

	Module Index

	Search Page

Realtime Stock

[image: _images/realtime-stock.svg]
 [https://pypi.python.org/pypi/realtime-stock][image: _images/realtime-stock1.svg]
 [https://travis-ci.org/condereis/realtime-stock][image: Documentation Status]
 [https://realtime-stock.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/condereis/realtime-stock/]Realtime Stock is a Python package to gather realtime stock quotes from Yahoo Finance. The package enables you to handle single stocks or portfolios, optimizing the nunber of requests necessary to gather quotes for a large number of stocks.

	Repository: https://github.com/condereis/realtime-stock

	Free software: MIT license

Features

Stock class

	Method to get stock’s latest price.

	Method to get all stock’s information provided by Yahoo Finance.

	Method get stock’s daily historical information.

	Method download stock’s historical data from Yahoo Finance.

Utility functions

	Function to request recent quotes about a list of tickers.

	Function to get stock’s daily historical information.

	Function to download historical data about a list of tickers.

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install Realtime Stock, run this command in your terminal:

$ pip install realtime-stock

This is the preferred method to install Realtime Stock, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Realtime Stock can be downloaded from the Github repo [https://github.com/condereis/realtime-stock].

You can either clone the public repository:

$ git clone git://github.com/condereis/realtime-stock

Or download the tarball [https://github.com/condereis/realtime-stock/tarball/master]:

$ curl -OL https://github.com/condereis/realtime-stock/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

Stock Class

To use Realtime Stock in a project:

>>> from rtstock.stock import Stock
>>> stock = Stock('AAPL')

This will create a new instance of rtstock.stock.Stock using the ‘AAPL’ (Apple) ticker.
The main methods of the Stock class are:

	get_historical(start_date, end_date)

	get_info()

	get_latest_price()

	save_historical(output_folder)

The exemple below shows get_info being called:

>>> stock.get_latest_price()
{
 'LastTradePriceOnly': '95.89',
 'LastTradeTime': '4:00pm'
}

Utility Functions

Another option is to use the functions from the rtstock.utils to perform the desired
requests, for single or multiple stocks. Those functions are:

	download_historical(tickers_list, output_folder)

	request_historical(ticker, start_date, end_date)

	request_quotes(tickers_list, selected_columns=[‘*’])

The exemple below shows request_historical being called:

>>> from rtstock.utils import request_historical
>>> request_historical('AAPL', '2016-03-01', '2016-03-02')
[
 {
 'Close': '100.75',
 'Low': '99.639999',
 'High': '100.889999',
 'Adj_Close': '100.140301',
 'Date': '2016-03-02',
 'Open': '100.510002',
 'Volume': '33169600'
 },
 {
 'Close': '100.529999',
 'Low': '97.419998',
 'High': '100.769997',
 'Adj_Close': '99.921631',
 'Date': '2016-03-01',
 'Open': '97.650002',
 'Volume': '50407100'
 }
]

For further information on each individual method and function check rtstock package.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/condereis/realtime-stock/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Realtime Stock could always use more documentation, whether as part of the
official Realtime Stock docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/condereis/realtime-stock/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up realtime-stock for local development.

	Fork the realtime-stock repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/realtime-stock.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv realtime-stock
$ cd realtime-stock/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 rtstock tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/condereis/realtime-stock/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_rtstock

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 rtstock	

 	
 	
 rtstock.error	

 	
 	
 rtstock.stock	

 	
 	
 rtstock.utils	

Index

 D
 | G
 | R
 | S

D

 	
 	download_historical() (in module rtstock.utils)

G

 	
 	get_historical() (rtstock.stock.Stock method)

 	get_info() (rtstock.stock.Stock method)

 	
 	get_latest_price() (rtstock.stock.Stock method)

 	get_ticker() (rtstock.stock.Stock method)

R

 	
 	request_historical() (in module rtstock.utils)

 	request_quotes() (in module rtstock.utils)

 	RequestError

 	
 	rtstock (module)

 	rtstock.error (module)

 	rtstock.stock (module)

 	rtstock.utils (module)

S

 	
 	save_historical() (rtstock.stock.Stock method)

 	
 	set_ticker() (rtstock.stock.Stock method)

 	Stock (class in rtstock.stock)

Credits

Development Lead

	Rafael Lopes Conde dos Reis <rafael.lcreis@gmail.com>

Contributors

None yet. Why not be the first?

History

1.0.0 (2016-07-27)

	First release on PyPI.

	Stock class implemented.

	Function to request recent quotes about a list of tickers.

	Function to get stock’s daily historical information.

	Function to download historical data about a list of tickers..

rtstock

	rtstock package
	Submodules

	rtstock.error module

	rtstock.stock module

	rtstock.utils module

	Module contents

rtstock package

Submodules

rtstock.error module

Exceptions module.

Custom exceptions used by Realtime Stock package.

	
exception rtstock.error.RequestError

	Bases: exceptions.Exception

Class for request exception.

rtstock.stock module

Stock module.

This module contains all the classes used to retrieve information
about a single stock from Yahoo Finances. That includes, real-time
quotes information as well as historical data.

	
class rtstock.stock.Stock(ticker)

	Bases: object

Class for handling stock.

Provides methods to retrieve real-time quotes and historical
data from Yahoo Finance database.

>>> from rtstock.stock

	
	import Stock

	>>>
>>> stock = Stock('AAPL')
>>> print(stock)
<Stock AAPL>

	param ticker

	Stock ticker in Yahoo Finances format.

	type ticker

	string

	
get_historical(start_date, end_date)

	Get stock’s daily historical information.

Returns a dictionary with Adj Close, Close, High, Low, Open and
Volume, between the start_date and the end_date. Is start_date and
end_date were not provided all the available information will be
retrieved. Information provided by YQL platform.
Check here [http://goo.gl/8AROUD] for more information on YQL.

Warning

Request limited to a period not greater than 366 days.
Use download_historical() to download the full historical data.

>>> stock.get_historical('2016-03-01', '2016-03-02')
[
 {
 'Close': '100.75',
 'Low': '99.639999',
 'High': '100.889999',
 'Adj_Close': '100.140301',
 'Date': '2016-03-02',
 'Open': '100.510002',
 'Volume': '33169600'
 },
 {
 'Close': '100.529999',
 'Low': '97.419998',
 'High': '100.769997',
 'Adj_Close': '99.921631',
 'Date': '2016-03-01',
 'Open': '97.650002',
 'Volume': '50407100'
 }
]

	Parameters

	
	start_date (string on the format of "yyyy-mm-dd") – Start date

	end_date (string on the format of "yyyy-mm-dd") – End date

	Returns

	Daily historical information.

	Return type

	list of dictionaries

	
get_info()

	Get all stock’s information provided by Yahoo Finance.

There is no guarantee that all the fields will be available for all
stocks. That being said, the following fields will be retrieved by
this method as a python dictionary from YQL platform:

	Ask

	AverageDailyVolume

	Bid

	BookValue

	Change

	Change_PercentChange

	ChangeFromFiftydayMovingAverage

	ChangeFromTwoHundreddayMovingAverage

	ChangeFromYearHigh

	ChangeFromYearLow

	ChangeinPercent

	Currency

	DaysHigh

	DaysLow

	DaysRange

	DividendPayDate

	DividendShare

	DividendYield

	EarningsShare

	EBITDA

	EPSEstimateCurrentYear

	EPSEstimateNextQuarter

	EPSEstimateNextYear

	ExDividendDate

	FiftydayMovingAverage

	LastTradeDate

	LastTradePriceOnly

	LastTradeTime

	LastTradeWithTime

	MarketCapitalization

	Name

	OneyrTargetPrice

	Open

	PEGRatio

	PERatio

	PercebtChangeFromYearHigh

	PercentChange

	PercentChangeFromFiftydayMovingAverage

	PercentChangeFromTwoHundreddayMovingAverage

	PercentChangeFromYearLow

	PreviousClose

	PriceBook

	PriceEPSEstimateCurrentYear

	PriceEPSEstimateNextYear

	PriceSales

	ShortRatio

	StockExchange

	Symbol

	TwoHundreddayMovingAverage

	Volume

	YearHigh

	YearLow

	YearRange

Check here [http://goo.gl/8AROUD] for more information on YQL.

	Returns

	Dictionary with all the available information.

	Return type

	dictionary

	
get_latest_price()

	Get stock’s latest price.

Get the latest available quote from Yahoo Finance along with its
respective time.

>>> stock.get_latest_price()
{
 'LastTradePriceOnly': '95.89',
 'LastTradeTime': '4:00pm'
}

	Returns

	Dictionary with latest price and trade time.

	Return type

	dictionary

	
get_ticker()

	Get stock’s ticker.

>>> stock.get_ticker()
'AAPL'

	Returns

	Ticker.

	Return type

	string

	
save_historical(output_folder)

	Download historical data from Yahoo Finance.

Downloads full historical data from Yahoo Finance as CSV. The following
fields are available: Adj Close, Close, High, Low, Open and Volume.
Files will be saved to output_folder as <ticker>.csv.

	Parameters

	output_folder (string) – Output folder path

	
set_ticker(ticker)

	Set stock’s ticker.

>>> stock.set_ticker('YHOO')
>>> print(stock)
<Stock YHOO>

	Parameters

	ticker (string) – Stock ticker in Yahoo Finances format.

rtstock.utils module

Utility functions.

This module contains utility functions to gather information
from Yahoo Finance.

	
rtstock.utils.download_historical(tickers_list, output_folder)

	Download historical data from Yahoo Finance.

Downloads full historical data from Yahoo Finance as CSV. The following
fields are available: Adj Close, Close, High, Low, Open and Volume. Files
will be saved to output_folder as <ticker>.csv.

	Parameters

	
	tickers_list (list of strings) – List of tickers that will be returned.

	output_folder (string) – Output folder path

	
rtstock.utils.request_historical(ticker, start_date, end_date)

	Get stock’s daily historical information.

Returns a dictionary with Adj Close, Close, High, Low, Open and
Volume, between the start_date and the end_date. Is start_date and
end_date were not provided all the available information will be
retrieved. Information provided by YQL platform.
Check here [http://goo.gl/8AROUD] for more information on YQL.

Warning

Request limited to a period not greater than 366 days.
Use download_historical() to download the full historical data.

>>> request_historical('AAPL', '2016-03-01', '2016-03-02')
[
 {
 'Close': '100.75',
 'Low': '99.639999',
 'High': '100.889999',
 'Adj_Close': '100.140301',
 'Date': '2016-03-02',
 'Open': '100.510002',
 'Volume': '33169600'
 },
 {
 'Close': '100.529999',
 'Low': '97.419998',
 'High': '100.769997',
 'Adj_Close': '99.921631',
 'Date': '2016-03-01',
 'Open': '97.650002',
 'Volume': '50407100'
 }
]

	Parameters

	
	start_date (string on the format of "yyyy-mm-dd") – Start date

	end_date (string on the format of "yyyy-mm-dd") – End date

	Returns

	Daily historical information.

	Return type

	list of dictionaries

	
rtstock.utils.request_quotes(tickers_list, selected_columns=[u'*'])

	Request Yahoo Finance recent quotes.

Returns quotes information from YQL. The columns to be requested are
listed at selected_columns. Check here [http://goo.gl/8AROUD] for more
information on YQL.

>>> request_quotes(['AAPL'], ['Name', 'PreviousClose'])
{
 'PreviousClose': '95.60',
 'Name': 'Apple Inc.'
}

	Parameters

	
	table (string) – Table name.

	tickers_list (list of strings) – List of tickers that will be returned.

	selected_columns (list of strings, optional) – List of columns to be returned, defaults to [‘*’]

	Returns

	Requested quotes.

	Return type

	json

	Raises

	TypeError, TypeError

Module contents

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Realtime Stock’s documentation!

 		
 Realtime Stock

 		
 Features

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Stock Class

 		
 Utility Functions

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

