

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Read The Docs 1.0 documentation

Welcome to Read The Docs

Read the Docs [http://readthedocs.org/] hosts documentation for the open source community.
We support Sphinx [http://sphinx.pocoo.org/] docs written with reStructuredText [http://sphinx.pocoo.org/rest.html] and Markdown [http://daringfireball.net/projects/markdown/syntax] docs written with Mkdocs [http://www.mkdocs.org/].
We pull your code from your Subversion [http://subversion.tigris.org/], Bazaar [http://bazaar.canonical.com/], Git [http://git-scm.com/], and Mercurial [http://mercurial.selenic.com/] repositories.
Then we build documentation and host it for you.
Think of it as Continuous Documentation.

The code is open source, and available on github [http://github.com/rtfd/readthedocs.org].

The main documentation for the site is organized into a couple sections:

	User Documentation

	Features

	About Read the Docs

Information about development is also available:

	Developer Documentation

	Designer Documentation

	Operations Documentation

User Documentation

	Getting Started
	Write Your Docs

	Import Your Docs

	Versions
	How we envision versions working

	Redirects on root URLs

	Build Process
	How we build documentation

	Understanding what’s going on

	Builder Responsibility

	Packages installed in the build environment

	Writing your own builder

	Deleting a stale or broken build environment

	Read the Docs features
	Github and Bitbucket Integration

	Auto-updating

	Internationalization

	Canonical URLs

	Versions

	Version Control Support Matrix

	PDF Generation

	Search

	Alternate Domains

	Support
	Getting Help

	Backwards Incompatible Changes

	Commercial Support

	Frequently Asked Questions
	My project isn’t building with autodoc

	How do I change behavior for Read the Docs?

	I get import errors on libraries that depend on C modules

	Client Error 401 when building documentation

	Can I make search engines only see one version of my docs?

	Deleting a stale or broken build environment

	How do I host multiple projects on one CNAME?

	Where do I need to put my docs for RTD to find it?

	I want to use the Blue/Default Sphinx theme

	I want to use the Read the Docs theme locally

	Image scaling doesn’t work in my documentation

	I want comments in my docs

	How do I support multiple languages of documentation?

	Do I need to be whitelisted?

	Does Read The Docs work well with “legible” docstrings?

Features

	Webhooks
	Github

	Bitbucket

	Others

	Badges
	Status Badges

	Project Pages

	Style

	Alternate Domains
	Subdomain Support

	CNAME Support

	CNAME SSL

	rtfd.org

	Localization of Documentation
	Single project in another language

	Project with multiple translations

	VCS Integration
	GitHub

	Bitbucket

	Canonical URLs
	Example

	Enabling

	Implementation

	Links

	Single Version Documentation
	Enabling

	Effects

	Privacy Levels
	Understanding the Privacy Levels

	Project Objects

	Version Objects

Business Documentation

	Read the Docs Business Features
	Organizations
	Member Types

	Example

	Sharing
	Enabling

	Effects

	Analytics
	Viewing

Developer Documentation

	Installation
	What’s available

	Contributing to Read the Docs
	Tickets

	Translations

	Running tests
	Continuous Integration

	Architecture
	Diagram

	How we use symlinks
	Nginx

	Subdomains

	CNAMEs

	Interesting Settings
	SLUMBER_USERNAME

	SLUMBER_PASSWORD

	USE_SUBDOMAIN

	PRODUCTION_DOMAIN

	MULTIPLE_APP_SERVERS

	DEFAULT_PRIVACY_LEVEL

	INDEX_ONLY_LATEST

	DOCUMENT_PYQUERY_PATH

	USE_PIP_INSTALL

	Internationalization
	Making Strings Localizable

	Strings in Templates

	Strings in Python

	Administrative Tasks
	Updating Localization Files

	Compiling to MO

	Transifex Integration

	Read the Docs Public API
	A basic API client using slumber

	Example of adding a user to a project

	API Endpoints

	Root

	Builds

	Build

	Files

	File

	Projects

	Project

	Users

	User

	Versions

	Version

	Filtering Examples

	API
	bookmarks

	builds

	doc_builder

	core

	projects

	vcs_support

Designer Documentation

	Designing Read the Docs
	Style Catalog

	Typekit Fonts

	Readthedocs.org Changes

	Sphinx Template Changes

	Contributing

	Read the Docs Theme
	Contributing to the theme

	How the Table of Contents builds

	Other style notes

	How do I use this locally, and on Read the Docs?

About Read the Docs

	Read the Docs Open Source Philosophy
	Official Support

	Unsupported

	Rationale

	Sponsors of Read the Docs
	Current sponsors

	Past sponsors

	Sponsorship Information

	Talks about Read the Docs
	Random

Operations Documentation

	Configuration of the production servers
	Deploying Code

	Deploying Nginx

	Elastic Search Setup

	Servers

	Site Checkout

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Getting Started

This document will show you how to get up and running with Read the Docs.
You will have your docs imported on Read the Docs in 5 minutes,
displayed beautifully for the world.

If you are already using Sphinx or Markdown for your docs, skip ahead to
Import Your Docs.

Write Your Docs

You have two options for format for your documentation:

	In reStructuredText

	In Markdown

In reStructuredText

There is a screencast [https://www.youtube.com/watch?feature=player_embedded&v=oJsUvBQyHBs] that will help you get started if you prefer.

Sphinx [http://sphinx-doc.org/] is a tool that makes it easy to create beautiful documentation.
Assuming you have Python [https://www.python.org/] already, install Sphinx [http://sphinx-doc.org/latest/install.html]:

$ pip install sphinx sphinx-autobuild

Create a directory inside your project to hold your docs:

$ cd /path/to/project
$ mkdir docs

Run sphinx-quickstart in there:

$ cd docs
$ sphinx-quickstart

This will walk you through creating the basic configuration; in most cases, you
can just accept the defaults. When it’s done, you’ll have an index.rst, a
conf.py and some other files. Add these to revision control.

Now, edit your index.rst and add some information about your project.
Include as much detail as you like (refer to the reStructuredText [http://sphinx-doc.org/rest.html] syntax
or this template [http://docs.writethedocs.org/en/latest/writing/beginners-guide-to-docs/#id1] if you need help). Build them to see how they look:

$ make html

Note

You can use sphinx-autobuild to auto-reload your docs. Run sphinx-autobuild . _build_html instead.

Edit your files and rebuild until you like what you see, then commit your changes and push to your public repository.
Once you have Sphinx documentation in a public repository, you can start using Read the Docs.

In Markdown

Mkdocs [http://www.mkdocs.org/] is a tool that makes it easy to create beautiful documentation.
Assuming you have Python [https://www.python.org/] already, install Mkdocs [http://www.mkdocs.org/#installation]:

$ pip install mkdocs

Create a directory inside your project to hold your docs:

$ cd /path/to/project
$ mkdocs new docs

Create a README.md:

$ cd docs

Now, edit your index.md and add some information about your project.
Include as much detail as you like (refer to the Markdown [http://daringfireball.net/projects/markdown/syntax] syntax
or this template [http://docs.writethedocs.org/en/latest/writing/beginners-guide-to-docs/#id1] if you need help). Build them to see how they look:

$ mkdocs build

Note

You can use mkdocs to auto-reload your docs. Run mkdocs serve instead.

Edit your files and rebuild until you like what you see, then commit your changes and push to your public repository.
Once you have Mkdocs documentation in a public repository, you can start using Read the Docs.

Import Your Docs

Sign up [http://readthedocs.org/accounts/signup] for an account on RTD, then log in [http://readthedocs.org/accounts/login]. Visit your dashboard [http://readthedocs.org/dashboard] and click
Import [http://readthedocs.org/dashboard/import] to add your project to the site. Fill in the name and description, then
specify where your repository is located. This is normally the URL or path name
you’d use to checkout, clone, or branch your code. Some examples:

	Git: http://github.com/ericholscher/django-kong.git

	Subversion: http://varnish-cache.org/svn/trunk

	Mercurial: https://bitbucket.org/ianb/pip

	Bazaar: lp:pasta

Note

Make sure to choose your Documentation Type correctly as either Sphinx or Mkdocs.

Add an optional homepage URL and some tags, then click “Create”.

Within a few seconds your code will automatically be fetched from your public repository,
and the documentation will be built.
Check out our Build Process page to learn more about how we build your docs,
and to troubleshoot any issues that arise.

If you want to keep your code updated as you commit,
configure your code repository to hit our Post Commit Hooks [http://readthedocs.org/docs/read-the-docs/en/latest/webhooks.html].
This will rebuild your docs every time you push your code.

We support multiple versions of your code. You can read more about how to use this well on our Versions page.

If you have any more trouble, don’t hesitate to reach out to us. The Support page has more information on getting in touch.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Versions

Read the Docs supports multiple versions of your repository.
On the initial import,
we will create a latest version.
This will point at the default branch for your VCS control: master, default, or trunk.

We also create a stable version,
if your project has any tagged releases.
stable will be automatically kept up to date to point at your highest version.

How we envision versions working

In the normal case,
the latest version will always point to the most up to date development code.
If you develop on a branch that is different than the default for your VCS,
you should set the Default Branch to that branch.

You should push a tag for each version of your project.
These tags should be numbered in a way that is consistent with semantic versioning [http://semver.org/].
This will map to your stable branch by default.

If you have documentation changes on a long-lived branch,
you can build those too.
This will allow you to see how the new docs will be built in this branch of the code.
Generally you won’t have more than 1 active branch over a long period of time.
The main exception here would be release branches,
which are branches that are maintained over time for a specific release number.

Redirects on root URLs

When a user hits the root URL for your documentation,
for example http://pip.readthedocs.org/,
they will be redirected to the Default version.
This defaults to latest,
but could also point to your latest released version.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Build Process

Files: tasks.py [https://github.com/rtfd/readthedocs.org/blob/master/readthedocs/projects/tasks.py] - doc_builder/ [https://github.com/rtfd/readthedocs.org/tree/master/readthedocs/doc_builder]

How we build documentation

When we import your documentation, we look at two things first: your Repository URL and the Documentation Type.
We will clone your repository,
and then build your documentation using the Documentation Type specified.

Sphinx

When you choose Sphinx as your Documentation Type,
we will first look for a conf.py file in your repository.
If we don’t find one,
we will generate one for you.
We will look inside a doc or docs directory first,
and then default to the top-level of your documentation.

Then Sphinx will build any files with an .rst extension.
If you have a README.rst,
it will be transformed into an index.rst automatically.

Mkdocs

When you choose Mkdocs as your Documentation Type,
we will first look for a mkdocs.yml file in your repository.
If we don’t find one,
we will generate one for you.
We will look inside a doc or docs directory first,
and then default to the top-level of your documentation.

Then Mkdocs will build any files with an .md extension.
If you have a README.md,
it will be transformed into an index.md automatically.

Understanding what’s going on

Understanding how Read the Docs builds your project will help you with debugging the problems you have with the site. It should also allow you to take advantage of certain things that happen during the build process.

The first step of the process is that we check out your code from the repository you have given us. If the code is already checked out, we update the copy to the branch that you have specified in your projects configuration.

Then we build the proper backend code for the type of documentation you’ve selected.

If you have the Use Virtualenv option enabled, we will run setup.py install on your package, installing it into a virtual environment. You can also define additional packages to install with the Requirements File option.

When we build your documentation, we run sphinx-build -b html . _build/html, where html [http://python.readthedocs.org/en/latest/library/html.html#module-html] would be replaced with the correct backend. We also create man pages and pdf’s automatically based on your project.

Then these files are copied across to our application servers from the build server. Once on the application servers, they are served from nginx.

An example in code:

update_imported_docs(version)
if exists('setup.py'):
 run('python setup.py install')
if project.requirements_file:
 run('pip install -r %s' % project.requirements_file)
build_docs(version=version)
copy_files(artifact_dir)

Builder Responsibility

Builders have a very specific job.
They take the updated source code and generate the correct artifacts.
The code lives in self.version.project.checkout_path(self.version.slug).
The artifacts should end up in self.version.project.artifact_path(version=self.version.slug, type=self.type)
Where type is the name of your builder.
All files that end up in the artifact directory should be in their final form.

Packages installed in the build environment

The build server does have a select number of C libraries installed, because they are used across a wide array of python projects. We can’t install every C library out there, but we try and support the major ones. We currently have the following libraries installed:

	Latex (texlive-full)

	libevent (libevent-dev)

	dvipng

	graphviz

	libxslt1.1

	libxml2-dev

Writing your own builder

Note

Builds happen on a server using only the RTD Public API. There is no reason that you couldn’t build your own independent builder that wrote into the RTD namespace. The only thing that is currently unsupported there is a saner way than uploading the processed files as a zip.

The documentation build system in RTD is made pluggable, so that you can build out your own backend. If you have a documentation format that isn’t currently supported, you can add support by contributing a backend.

The doc_builder API explains the higher level parts of the API that you need to implement. A basic run goes something like this:

backend = get_backend(project.documentation_type)
if force:
 backend.force(version)
backend.clean(version)
backend.build(version)
if success:
 backend.move(version)

Deleting a stale or broken build environment

RTD doesn’t expose this in the UI, but it is possible to remove the build directory of your project. If you want to remove a build environment for your project, hit http://readthedocs.org/wipe/<project_slug>/<version_slug>/. You must be logged in to do this.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Read the Docs features

This will serve as a list of all of the features that Read the Docs currently has. Some features are important enough to have their own page in the docs, others will simply be listed here.

Github and Bitbucket Integration

We now support linking by default in the sidebar. It links to the page on your host, which should help people quickly update typos and send pull requests to contribute to project documentation.

More information can be found in the VCS Integration page.

Auto-updating

The Webhooks page talks about the different ways you can ping RTD to let us know your project has been updated. We have official support for Github, and anywhere else we have a generic post-commit hook that allows you to POST to a URL to get your documentation built.

Internationalization

Read the Docs itself is localized, and we support documentation translated into multiple languages. Read more on the Localization of Documentation and Internationalization pages.

Canonical URLs

Canonical URLs give your docs better search performance, by pointing all URLs to one version. This also helps to solve the issues around users landing on outdated versions of documentation.

More information can be found in the Canonical URLs page.

Versions

We can build multiple versions of your documentation. Look on the “Versions” page
of your project’s admin (using the nav on the left) to find a list of available versions
that we’ve inferred from the tags and branches in your source control system (according to
the support matrix below). On the Versions page you can tell us which versions you’d like us
to build docs for, whether each should be public, protected, or private, and what the default
version should be (we’ll redirect there when someone hits your main project page, e.g.,
http://my-project.rtfd.org/).

Version Control Support Matrix

	
	Git
	hg
	bzr
	svn

	Tags
	Yes
	Yes
	No
	No

	Branches
	Yes
	Yes
	Yes
	No

	Default
	master
	default
	
	trunk

PDF Generation

When you build your project on RTD, we automatically build a PDF of your project’s documentation. We also build them for every version that you upload, so we can host the PDFs of your latest documentation, as well as your latest stable releases as well.

Search

We provide full-text search across all of the pages of documentation hosted on our site. This uses the excellent Haystack project and Solr as the search backend. We hope to be integrating this into the site more fully in the future.

Alternate Domains

We provide support for CNAMEs, subdomains, and a shorturl for your project as well. This is outlined in the Alternate Domains section.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Support

Getting Help

The easiest way to get help with the project is to join the #readthedocs
channel on Freenode. We hang out there and you can get real-time help with
your projects. The other good way is to open an issue on Github [http://github.com/rtfd/readthedocs.org/issues].

The mailing list at https://groups.google.com/forum/#!forum/read-the-docs is also available for support.

Backwards Incompatible Changes

Backwards Incompatible Changes will be emailed to the mailing list [https://groups.google.com/forum/#!forum/read-the-docs]. They will be prefixed with “Backwards
Incompatible Changes”. We are thinking about having some kind of Backwards
Incompatible Changes policy, much like the 1.0 of a code base, once we define
the redirects and interfaces that we wish to expose permanently.

Commercial Support

We offer commerical support for Read the Docs,
commerical hosting,
as well as consulting around all documentation systems.
You can contact us at hello@readthedocs.com to learn more,
or visit us at https://readthedocs.com.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Frequently Asked Questions

My project isn’t building with autodoc

First, you should check out the Builds tab of your project. That records all of the build attempts that RTD has made to build your project. If you see ImportError messages for custom Python modules, you should enable the virtualenv feature in the Admin page of your project, which will install your project into a virtualenv, and allow you to specify a requirements.txt file for your project.

If you are still seeing errors because of C library dependencies, please see the below section about that.

How do I change behavior for Read the Docs?

When RTD builds your project, it sets the READTHEDOCS environment variable to the string True [http://python.readthedocs.org/en/latest/library/constants.html#True]. So within your Sphinx’s conf.py file, you can vary the behavior based on this. For example:

import os
on_rtd = os.environ.get('READTHEDOCS', None) == 'True'
if on_rtd:
 html_theme = 'default'
else:
 html_theme = 'nature'

The READTHEDOCS variable is also available in the Sphinx build environment, and will be set to True when building on RTD:

{% if READTHEDOCS %}
Woo
{% endif %}

I get import errors on libraries that depend on C modules

Note

Another use case for this is when you have a module with a C extension.

This happens because our build system doesn’t have the dependencies for building your project. This happens with things like libevent and mysql, and other python things that depend on C libraries. We can’t support installing random C binaries on our system, so there is another way to fix these imports.

You can mock out the imports for these modules in your conf.py with the following snippet:

import sys
from unittest.mock import MagicMock

class Mock(MagicMock):
 @classmethod
 def __getattr__(cls, name):
 return Mock()

MOCK_MODULES = ['pygtk', 'gtk', 'gobject', 'argparse', 'numpy', 'pandas']
sys.modules.update((mod_name, Mock()) for mod_name in MOCK_MODULES)

Of course, replacing MOCK_MODULES with the modules that you want to mock out.

Tip

The library unittest.mock was introduced on python 3.3. On earlier versions install the mock library
from PyPI with (ie pip install mock) and replace the above import:

from mock import Mock as MagicMock

Client Error 401 when building documentation

If you did not install the test_data fixture during the installation
instructions, you will get the following error:

slumber.exceptions.HttpClientError: Client Error 401: http://localhost:8000/api/v1/version/

This is because the API admin user does not exist, and so cannot authenticate.
You can fix this by loading the test_data:

./manage.py loaddata test_data

If you’d prefer not to install the test data, you’ll need to provide a database
account for the builder to use. You can provide these credentials by editing the
following settings:

SLUMBER_USERNAME = 'test'
SLUMBER_PASSWORD = 'test'

Can I make search engines only see one version of my docs?

You can do this for Google at least with a canonical link tag.
It should look like:

<link rel="canonical" href="http://ericholscher.com/
{%- for word in pagename.split('/') -%}
 {%- if word != 'index' -%}
 {%- if word != '' -%}
 {{ word }}/
 {%- endif -%}
 {%- endif -%}
{%- endfor -%}
{% if builder == "dirhtml" %}/{% else %}.html{% endif %}
">

Deleting a stale or broken build environment

RTD doesn’t expose this in the UI, but it is possible to remove the build directory of your project. If you want to remove a build environment for your project, hit http://readthedocs.org/wipe/<project_slug>/<version_slug>/. You must be logged in to do this.

How do I host multiple projects on one CNAME?

We support the concept of Subprojects.
If you add a subproject to a project,
that documentation will also be served under the parent project’s subdomain.

For example,
Kombu is a subproject of celery,
so you can access it on the celery.readthedocs.org domain:

http://celery.readthedocs.org/projects/kombu/en/latest/

This also works the same for CNAME’s:

http://docs.celeryproject.org/projects/kombu/en/latest/

You can add subprojects in the Admin section for your project.

Where do I need to put my docs for RTD to find it?

Read the Docs will crawl your project looking for a conf.py. Where it finds the conf.py, it will run sphinx-build in that directory. So as long as you only have one set of sphinx documentation in your project, it should Just Work.

I want to use the Blue/Default Sphinx theme

We think that our theme is badass, and better than the default for many reasons. Some people don’t like change though :), so there is a hack that will let you keep using the default theme. If you set the html_style variable in your conf.py, it should default to using the default theme. The value of this doesn’t matter, and can be set to /default.css for default behavior.

I want to use the Read the Docs theme locally

There is a repository for that: https://github.com/snide/sphinx_rtd_theme.
Simply follow the instructions in the README.

Image scaling doesn’t work in my documentation

Image scaling in docutils depends on PIL. PIL is installed in the system that RTD runs on. However, if you are using the virtualenv building option, you will likely need to include PIL in your requirements for your project.

I want comments in my docs

RTD doesn’t have explicit support for this. That said, a tool like Disqus [http://disqus.com/] can be used for this purpose on RTD.

How do I support multiple languages of documentation?

See the section on Localization of Documentation.

Do I need to be whitelisted?

No. Whitelisting has been removed as a concept in Read the Docs. You should have access to all of the features already.

Does Read The Docs work well with “legible” docstrings?

Yes. One criticism of Sphinx is that its annotated docstrings are too
dense and difficult for humans to read. In response, many projects
have adopted customized docstring styles that are simultaneously
informative and legible. The
NumPy [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt]
and
Google [http://google-styleguide.googlecode.com/svn/trunk/pyguide.html?showone=Comments#Comments]
styles are two popular docstring formats. Fortunately, the default
Read The Docs theme handles both formats just fine, provided
your conf.py specifies an appropriate Sphinx extension that
knows how to convert your customized docstrings. Two such extensions
are numpydoc [https://github.com/numpy/numpydoc] and
napoleon [http://sphinxcontrib-napoleon.readthedocs.org]. Only
napoleon is able to handle both docstring formats. Its default
output more closely matches the format of standard Sphinx annotations,
and as a result, it tends to look a bit better with the default theme.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Webhooks

Webhooks are pretty amazing, and help to turn the web into a push instead of
pull platform. We have support for hitting a URL whenever you commit to your
project and we will try and rebuild your docs. This only rebuilds them if
something has changed, so it is cheap on the server side. As anyone who has
worked with push knows, pushing a doc update to your repo and watching it get
updated within seconds is an awesome feeling.

Github

If your project is hosted on Github, you can easily add a hook that will rebuild
your docs whenever you push updates:

	Go to the “Settings” page for your project

	Click “Webhooks & Services”

	In the “Services” section, click “Add service”

	In the list of available services, click “ReadTheDocs”

	Check “Active”

	Click “Add service”

Bitbucket

If your project is hosted on Bitbucket, you can easily add a hook that will rebuild
your docs whenever you push updates:

	Go to the “admin” page for your project

	Click “Hooks”

	In the available service hooks, select “Read the Docs”

	Click “Add hook”

Others

Your ReadTheDocs project detail page has your post-commit hook on it; it will
look something along the lines of http://readthedocs.org/build/<project_name>.
Regardless of which revision control system you use, you can just hit this URL
to kick off a rebuild.

You could make this part of a hook using Git [http://www.kernel.org/pub/software/scm/git/docs/githooks.html], Subversion [http://mikewest.org/2006/06/subversion-post-commit-hooks-101], Mercurial [http://hgbook.red-bean.com/read/handling-repository-events-with-hooks.html], or
Bazaar [http://wiki.bazaar.canonical.com/BzrHooks], perhaps through a simple script that accesses the build URL using
wget or curl.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Badges

Badges let you show the state of your documentation to your users.
They are great for embedding in your README,
or putting inside your actual doc pages.

Status Badges

They will display in green for passing,
red for failing,
and yellow for unknown states.

Here are a few examples:

[image: green][image: red][image: yellow]

You can see it in action in the Read the Docs README [https://github.com/rtfd/readthedocs.org/blob/master/README.rst].
They will link back to your project’s documentation page on Read the Docs.

Project Pages

You will now see badges embedded in your project page [https://readthedocs.org/projects/pip/].
The default badge will be pointed at the default version you have specified for your project.
The badge URLs look like this:

https://readthedocs.org/projects/pip/badge/?version=latest

You can replace the version argument with any version that you want to show a badge for.
If you click on the badge icon,
you will be given snippets for RST, Markdown, and HTML;
to make embedding it easier.

If you leave the version argument off,
it will default to your latest version.
This is probably best to include in your README,
since it will stay up to date with your Read the Docs project:

https://readthedocs.org/projects/pip/badge/

Style

If you pass the style GET argument,
we will pass it along to shields.io as is.
This will allow you to have custom style badges.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Alternate Domains

Read the Docs supports a number of custom domains for your convenience. Shorter urls make everyone happy, and we like making people happy!

Subdomain Support

Every project has a subdomain that is available to serve it’s documentation. If you go to <slug>.readthedocs.org, it should show you the latest version of documentation. A good example is http://pip.readthedocs.org

Note

If you have an old project that has an underscore (_) in the name, it will use a subdomain with a hypen (-).
RFC 1035 [http://tools.ietf.org/html/rfc1035] has more information on valid subdomains.

CNAME Support

If you have your own domain, you can still host with us. If you point a CNAME record in your DNS to the subdomain for your project, it should magically serve your latest documentation on the custom domain. Using pip as another example, http://www.pip-installer.org resolves, but is hosted on our infrastructure.

As an example, fabric’s dig record looks like this:

-> dig docs.fabfile.org
...
;; ANSWER SECTION:
docs.fabfile.org. 7200 IN CNAME fabric-docs.readthedocs.org.

CNAME SSL

We don’t support SSL for CNAMEs on our side,
but you can enable support if you have your own server.
SSL requires having a secret key,
and if we hosted the key for you,
it would no longer be secret.

To enable SSL:

	Have a server listening on 443 that you control

	Add a domain that you wish to point at Read the Docs

	Enable proxying to us, with a custom X-RTD-SLUG header

An example nginx configuration for pip would look like:

 server {
 server_name docs.pip-installer.org;
 location / {
 proxy_pass http://pip.readthedocs.org:80;
 proxy_set_header Host $http_host;
 proxy_set_header X-Forwarded-Proto http;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Scheme $scheme;
 proxy_set_header X-RTD-SLUG pip;
 proxy_connect_timeout 10s;
 proxy_read_timeout 20s;
 }
 }

rtfd.org

You can also use rtfd.org as a short URL for Read the Docs. For example, http://pip.rtfd.org redirects to its documentation page. Any use of rtfd.org will simply be redirected to readthedocs.org.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Localization of Documentation

Note

This feature only applies to Sphinx documentation. We are working to bring it to our other documentation backends.

Read the Docs supports hosting your docs in multiple languages.
There are two different things that we support:

	A single project written in another language

	A project with translations into multiple languages

Single project in another language

It is easy to set the Language of your project.
On the project Admin page (or Import page),
simply select your desired Language from the dropdown.
This will tell Read the Docs that your project is in the language.
The language will be represented in the URL for you project.

For example,
a project that is in spanish will have a default URL of /es/latest/ instead of /en/latest/.

Note

You must commit the .mo files for Read the Docs to translate your documentation.

Project with multiple translations

This situation is a bit more complicated.
To support this,
you will have one parent project and a number of projects marked as translations of that parent.
Let’s use phpmyadmin as an example.

The main phpmyadmin project is the parent for all translations.
Then you must create a project for each translation,
for example phpmyadmin-spanish.
You will set the Language for phpmyadmin-spanish to Spanish.
In the parent projects Translations page,
you will say that phpmyadmin-spanish is a translation for your project.

This has the results of serving:

	phpmyadmin at http://phpmyadmin.readthedocs.org/en/latest/

	phpmyadmin-spanish at http://phpmyadmin.readthedocs.org/es/latest/

It also gets included in the Read the Docs flyout:

[image: _images/translation_bar.png]

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

VCS Integration

GitHub

If you want to integrate GitHub editing into your own theme, the following variables are available in your custom templates:

	github_user - GitHub username

	github_repo - GitHub repo name

	github_version - Github blob

	conf_py_path - Path in the checkout to the docs root

	pagename - Sphinx variable representing the name of the page you’re on.

	display_github

It can be used like this:

{% if display_github %}

 Show on GitHub
{% endif %}

Bitbucket

If you want to integrate Bitbucket editing into your own theme, the following variables are available in your custom templates:

	bitbucket_user - Bitbucket username

	bitbucket_repo - Bitbucket repo name

	bitbucket_version - BitBucket version

	conf_py_path - Path in the checkout to the docs root

	pagename - Sphinx variable representing the name of the page you’re on.

	display_bitbucket

It can be used like this:

{% if display_bitbucket %}
 Edit on Bitbucket
{% endif %}

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Canonical URLs

Canonical URLs allow people to have consistent page URLs for domains.
This is mainly useful for search engines,
so that they can send people to the correct page.

Read the Docs uses these in two ways:

	We point all versions of your docs at the “latest” version as canonical

	We point at the user specified canonical URL, generally a custom domain for your docs.

Example

Fabric hosts their docs on Read the Docs.
They mostly use their own domain for them http://docs.fabfile.org.
This means that Google will index both http://fabric-docs.readthedocs.org and http://docs.fabfile.org for their documentation.

Fabric will want to set http://docs.fabfile.org as their canonical URL.
This means that when Google indexes http://fabric-docs.readthedocs.org, it will know that it should really point at http://docs.fabfile.org.

Enabling

You can set the canonical URL for your project in the Project Admin page. Check your dashboard [https://readthedocs.org/dashboard/] for a list of your projects.

Implementation

If you look at the source code for documentation built after you set your canonical URL,
you should see a bit of HTML like this:

<link rel="canonical" href="http://pip.readthedocs.org/en/latest/installing.html">

Links

This is a good explanation of the usage of canonical URLs in search engines:

http://www.mattcutts.com/blog/seo-advice-url-canonicalization/

This is a good explanation for why canonical pages are good for SEO:

http://moz.com/blog/canonical-url-tag-the-most-important-advancement-in-seo-practices-since-sitemaps

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Single Version Documentation

Single Version Documentation lets you serve your docs at a root domain.
By default, all documentation served by Read the Docs has a root of /<language>/<version>/.
But, if you enable the “Single Version” option for a project, its documentation will instead be served at /.

Warning

This means you can’t have translations or multiple versions for your documentation.

You can see a live example of this at http://www.contribution-guide.org

Enabling

You can toggle the “Single Version” option on or off for your project in the Project Admin page. Check your dashboard [https://readthedocs.org/dashboard/] for a list of your projects.

Effects

Links generated on Read the Docs will now point to the proper URL. For example, if pip was set as a “Single Version” project, then links to its documentation would point to http://pip.readthedocs.org/ rather than the default http://pip.readthedocs.org/en/latest/.

Documentation at /<language>/<default_version>/ will still be served for backwards compatability reasons. However, our usage of Canonical URLs should stop these from being indexed by Google.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Privacy Levels

Read the Docs supports 3 different privacy levels on 2 different objects;
Public, Protected, Private on Projects and Versions.

Understanding the Privacy Levels

	Level
	Detail
	Listing
	Search
	Viewing

	Private
	No
	No
	No
	Yes

	Protected
	Yes
	No
	No
	Yes

	Public
	Yes
	Yes
	Yes
	Yes

Note

With a URL to view the actual documentation, even private docs are viewable.
This is because our architecture doesn’t do any logic on documentation display,
to increase availability.

Public

This is the easiest and most obvious. It is also the default.
It means that everything is available to be seen by everyone.

Protected

Protected means that your object won’t show up in Listing Pages,
but Detail pages still work. For example, a Project that is Protected will
not show on the homepage Recently Updated list, however,
if you link directly to the project, you will get a 200 and the page will display.

Protected Versions are similar, they won’t show up in your version listings,
but will be available once linked to.

Private

Private objects are available only to people who have permissions so see them.
They will not display on any list view, and will 404 when you link them to others.

Project Objects

Detail Views

	Project Detail (/projects/<slug>)

	API Detail (/api/v1/project/<slug>/)

List Views

	Home Page

	All Projects Page

	User Profile Page (/profiles/<user>/)

	Search

Version Objects

List Views

	Project Detail (/projects/<slug>)

	Version Selector on Home page

	Version Selector on Documentation page

	Search

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Read the Docs Business Features

Note

These features are for our new business offering, readthedocs.com [https://readthedocs.com/].
We are currently in an invite-only beta,
but will be opening up for more users soon.

All of the other features outlined in these docs work on both sites.
Things inside this section are specific to our business offering.

The largest feature that is different is that documentation on readthedocs.com is private.
If you have private code that you want documentation for,
this is our solution.

	Organizations
	Member Types

	Example

	Sharing
	Enabling

	Effects

	Analytics
	Viewing

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

 	Read the Docs Business Features

Organizations

Organizations allow you to segment who has access to what projects in your company.
Your company will be represented as an Organization,
let’s use ACME Corporation as our example.

ACME has a few people inside their organization,
some who need full access and some who just need access to one project.

Member Types

	Owners – Get full access to both view and edit the Organization and all Projects

	Members – Get access to a subset of the Organization projects

	Teams – Where you give members access to a set of projects.

The best way to think about this relationship is:

Owners will create Teams to assign permissions to all Members.

Example

ACME would set up Owners of their organization,
for example Frank Roadrunner would be an owner.
He has full access to the organization and all projects.

Wile E. Coyote is a contractor,
and will just have access to the new project Road Builder.

Roadrunner would set up a Team called Contractors.
That team would have Read Only access to the Road Builder project.
Then he would add Wile E. Coyote to the team.
This would give him access to just this one project inside the organization.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

 	Read the Docs Business Features

Sharing

Note

This feature only exists on our Business offering at readthedocs.com [https://readthedocs.com/].

You can share your project with users outside of your company.
This works by sending them a link,
which will allow them to view a specific project inside your company.

Enabling

	Go into your Project Admin page and to the Sharing link.

	Under the Add Token heading, add a Description so you remember who you’re sharing it with.

	Click Share to create.

	Copy the link that is generated, and give that to the person who you want to give access.

Note

You can always revoke access in the same panel.

Effects

Once the person you send the link to clicks the link,
they will have access to view your project.
It will only work for the specific browser that they click the link from.

Warning

They will be able to share this token with other people,
so only share with people you trust.
We only let sharing links be activated five times to prevent abuse.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

 	Read the Docs Business Features

Analytics

Note

These features are still being developed, and aren’t deployed yet.

Analytics lets you see who is viewing which documents.
This allows you to understand how your documentation is being used,
so you can focus on expanding and updating parts people are reading most.

Viewing

Each project page has a listing of the number of views that it has seen.
You can click through here to inspect more information about who is viewing,
and when they are looking at things.

You can also view your Analytics data in your documentation pages.
There is a button in the Read the Docs flyout what will overlay analytics information.
This will let you understand how users are using docs,
in context of the actual documentation.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Installation

Here is a step by step plan on how to install Read the Docs.
It will get you to a point of having a local running instance.

First, obtain Python [http://www.python.org/] and virtualenv [http://pypi.python.org/pypi/virtualenv] if you do not already have them. Using a
virtual environment will make the installation easier, and will help to avoid
clutter in your system-wide libraries. You will also need Git [http://git-scm.com/] in order to
clone the repository.

Once you have these, create a virtual environment somewhere on your disk, then
activate it:

virtualenv rtd
cd rtd
source bin/activate

You will need to verify that your pip version is higher than 1.5 you can do this as such:

pip --version

If this is not the case please update your pip version before continuing:

pip install --upgrade pip

Create a folder in here, and clone the repository:

mkdir checkouts
cd checkouts
git clone https://github.com/rtfd/readthedocs.org.git

Next, install the dependencies using pip (included with virtualenv [http://pypi.python.org/pypi/virtualenv]):

cd readthedocs.org
pip install -r pip_requirements.txt

Note

If you are having trouble on OS X Mavericks (or possibly other versions of
OS X) with building lxml, you probably might need to use Homebrew [http://brew.sh/]
to brew install libxml2, and invoke the install with:

CFLAGS=-I/usr/local/opt/libxml2/include/libxml2 \
LDFLAGS=-L/usr/local/opt/libxml2/lib \
pip install -r pip_requirements.txt

Note

Linux users may find they need to install a few additional packages
in order to successfully execute pip-install -r pip_requirements.txt.
For example, a clean install of Ubuntu 14.04 LTS will require the
following packages:

sudo apt-get install build-essential
sudo apt-get install python-dev
sudo apt-get install libxml2-dev libxslt1-dev zlib1g-dev

Users of other Linux distributions may need to install the equivalent
packages, depending on their system configuration.

This may take a while, so go grab a beverage. When it’s done, build your
database:

cd readthedocs
./manage.py syncdb

This will prompt you to create a superuser account for Django. Do that. Then:

./manage.py migrate

Go ahead and load in a couple users and a test projects:

./manage.py loaddata test_data

Note

If you do not opt to install test data, you’ll need to create an account for
API use and set SLUMBER_USERNAME and SLUMBER_PASSWORD in order for
everything to work properly.

Finally, you’re ready to start the webserver:

./manage.py runserver

Visit http://127.0.0.1:8000/ in your browser to see how it looks; you can use
the admin interface via http://127.0.0.1:8000/admin (logging in with the
superuser account you just created).

While the webserver is running, you can build documentation for the latest version of
a project called ‘pip’ with the update_repos command. You can replace ‘pip’
with the name of any added project:

./manage.py update_repos pip

What’s available

After registering with the site (or creating yourself a superuser account),
you will be able to log in and view the dashboard [http://readthedocs.org/dashboard/].

From the dashboard you can import your existing
docs provided that they are in a git or mercurial repo.

Creating new Docs

One of the goals of readthedocs.org [http://readthedocs.org] is to make it
easy for any open source developer to get high quality hosted docs with great
visibility! We provide a simple editor and two sample pages whenever
a new project is created. From there its up to you to fill in the gaps - we’ll
build the docs, give you access to history on every revision of your files,
and we plan on adding more features in the weeks and months to come.

Importing existing docs

The other side of readthedocs.org [http://readthedocs.org] is hosting the
docs you’ve already built. Simply provide us with the clone url to your repo,
we’ll pull your code, extract your docs, and build them! We make available
a post-commit webhook that can be configured to update the docs on our site
whenever you commit to your repo, effectively letting you ‘set it and forget it’.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Contributing to Read the Docs

Read the Docs follows the standard Contribution Guidelines set forth at contribution-guide.org [http://www.contribution-guide.org/#submitting-bugs].
Please read that site and follow the instructions to make sure your patches will be accepted.

Tickets

If you are just getting started with the project,
we have tickets labeled Good First Bug [https://github.com/rtfd/readthedocs.org/issues?q=is%3Aopen+is%3Aissue+label%3A%22Good+First+Bug%22].
This is a great way to get started.

If you want to help with a bigger feature,
there are a set of tickets with a Feature Overview [https://github.com/rtfd/readthedocs.org/issues?direction=desc&labels=Feature+Overview&page=1&sort=updated&state=open] tag.
These tickets have a general overview and description of the work required to finish.
If you want to start somewhere,
this would be a good place to start.
That said,
these aren’t necessarily the easiest tickets.
They are simply things that are explained.

Translations

If you wish to contribute translations, please do so on Transifex [https://www.transifex.com/projects/p/readthedocs/].

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Running tests

Read the Docs ships with a test suite that tests the application. You should run these tests when you are doing development before committing code.

They can be run easily:

pip install coverage
./runtests.sh

This should print out a bunch of information and pass with 0 errors.

Continuous Integration

The RTD test suite is exercised by Travis CI on every push to our repo at
GitHub. You can check out the current build status:
https://travis-ci.org/rtfd/readthedocs.org

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Architecture

Read the Docs is architected to be highly available. A lot of projects host their documentation with us, so we have built the site so that it shouldn’t go down. The load balancer is the only real single point of failure currently. This means mainly that if the network to the load balancer goes down, we have issues.

Diagram

 +-----------+
 | Rackspace |
 +-----| Load Bal |------+
 | +-----------+ |
 | |
 +---------+ +---------+
+-------------+ | | | | +--------------+
	-----	Nginx		Nginx	----	
File	+---------+ +---------+	File				
System				System		
+-------------+ +---------+ +--------+ +---------+ +--------------+
 | | |Gunicorn | | | |Gunicorn | | |
 | +---------|(Django) |--|Postgres|--|(Django) |--------+ |
 | +---------+ +--------+ +---------+ |
 | | | |
 | | | |
 | -----------API------------ |
 | | |
 | | |
 | +------------------+ |
 | | | |
 +---------------------| Build Server |-------------------+
 | |
 +------------------+

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

How we use symlinks

Read the Docs stays highly available by serving all documentation pages out of nginx.
This means that they never hit our Python layer,
meaning that they never hit our database.
This reduces the total number of servers to serve a request to 1,
each of which is redundant.

Nginx

We handle a couple of different types of requests in nginx:

	Requests to a readthedocs.org subdomain

	Requests to a CNAME

Subdomains

For subdomains this is a simple lookup.
This doesn’t require symlinks,
but it shows the basic logic that we need to replicate.

When a user navigates to http://pip.readthedocs.org/en/latest/,
we know that they want the pip documentation.
So we simply serve them the documentation:

location ~ ^/en/(.+)/(.*) {
 alias /home/docs/checkouts/readthedocs.org/user_builds/$domain/rtd-builds/$1/$2;
 error_page 404 = @fallback;
 error_page 500 = @fallback;
}

location @fallback {
 proxy_pass http://127.0.0.1:8888;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 add_header X-Deity Asgard;
}

Note

The @fallback directive is hit when we don’t find the proper file.
This will cause things to hit the Python backend,
so that proper action can be taken.

CNAMEs

CNAMEs add a bit of difficulty,
because at the nginx layer we don’t know what documentation to serve.
When someone requests http://docs.fabfile.org/en/latest/,
we can’t look at the URL to know to serve the fabric docs.

This is where symlinks come in.
When someone requests http://docs.fabfile.org/en/latest/ the first time,
it hits the Python layer.
In that Python layer we record that docs.fabfile.org points at fabric.
When we build the fabric docs,
we create a symlink for all domains that have pointed at fabric before.

So,
when we get a request for docs.fabfile.org in the future,
we will be able to serve it directly from nginx.
In this example,
$host would be docs.fabfile.org:

location ~ ^/en/(?P<doc_version>.+)/(?P<path>.*) {
 alias /home/docs/checkouts/readthedocs.org/cnames/$host/$doc_version/$path;
 error_page 404 = @fallback;
 error_page 500 = @fallback;
}

Notice that nowhere in the above path is the project’s slug mentioned.
It is simply there in the symlink in the cnames directory,
and the docs are served from there.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Interesting Settings

SLUMBER_USERNAME

Default: test [http://python.readthedocs.org/en/latest/library/test.html#module-test]

The username to use when connecting to the Read the Docs API. Used for hitting the API while building the docs.

SLUMBER_PASSWORD

Default: test [http://python.readthedocs.org/en/latest/library/test.html#module-test]

The password to use when connecting to the Read the Docs API. Used for hitting the API while building the docs.

USE_SUBDOMAIN

Default: False [http://python.readthedocs.org/en/latest/library/constants.html#False]

Whether to use subdomains in URLs on the site, or the Django-served content.
When used in production, this should be True, as Nginx will serve this content.
During development and other possible deployments, this might be False.

PRODUCTION_DOMAIN

Default: readthedocs.org

This is the domain that gets linked to throughout the site when used in production.
It depends on USE_SUBDOMAIN, otherwise it isn’t used.

MULTIPLE_APP_SERVERS

Default: undefined

This is a list of application servers that built documentation is copied to. This allows you to run an independent build server, and then have it rsync your built documentation across multiple front end documentation/app servers.

DEFAULT_PRIVACY_LEVEL

Default: public

What privacy projects default to having. Generally set to public. Also acts as a proxy setting for blocking certain historically insecure options, like serving generated artifacts directly from the media server.

INDEX_ONLY_LATEST

Default: False [http://python.readthedocs.org/en/latest/library/constants.html#False]

In search, only index the latest version of a Project.

DOCUMENT_PYQUERY_PATH

Default: div.document

The Pyquery path to an HTML element that is the root of your document.
This is used for making sure we are only searching the main content of a document.

USE_PIP_INSTALL

Default: False [http://python.readthedocs.org/en/latest/library/constants.html#False]

Whether to use pip install . or python setup.py install when installing packages into the Virtualenv. Default is to use python setup.py install.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Internationalization

This document covers the details regarding internationalization and
localization that are applied in Read the Docs. The guidelines described are
mostly based on Kitsune’s localization documentation [http://kitsune.readthedocs.org/en/latest/localization.html].

As with most of the Django applications out there, Read the Docs’ i18n/l10n
framework is based on GNU gettext [http://www.gnu.org/software/gettext/].
Crowd-sourced localization is optionally available at Transifex [https://www.transifex.com/projects/p/readthedocs/].

For more information about the general ideas,
look at this document: http://www.gnu.org/software/gettext/manual/html_node/Concepts.html

Making Strings Localizable

Making strings in templates localizable is exceptionally easy. Making strings
in Python localizable is a little more complicated. The short answer, though,
is to just wrap the string in _().

Interpolation

A string is often a combination of a fixed string and something changing, for
example, Welcome, James is a combination of the fixed part Welcome,,
and the changing part James. The naive solution is to localize the first
part and then follow it with the name:

_('Welcome, ') + username

This is wrong!

In some locales, the word order may be different. Use Python string formatting
to interpolate the changing part into the string:

_('Welcome, {name}').format(name=username)

Python gives you a lot of ways to interpolate strings. The best way is to use
Py3k formatting and kwargs. That’s the clearest for localizers.

Localization Comments

Sometimes, it can help localizers to describe where a string comes from,
particularly if it can be difficult to find in the interface, or is not very
self-descriptive (e.g. very short strings). If you immediately precede the
string with a comment that starts with Translators:, the comment will be
added to the PO file, and visible to localizers.

Example:

DEFAULT_THEME_CHOICES = (
 # Translators: This is a name of a Sphinx theme.
 (THEME_DEFAULT, _('Default')),
 # Translators: This is a name of a Sphinx theme.
 (THEME_SPHINX, _('Sphinx Docs')),
 # Translators: This is a name of a Sphinx theme.
 (THEME_TRADITIONAL, _('Traditional')),
 # Translators: This is a name of a Sphinx theme.
 (THEME_NATURE, _('Nature')),
 # Translators: This is a name of a Sphinx theme.
 (THEME_HAIKU, _('Haiku')),
)

Adding Context with msgctxt

Strings may be the same in English, but different in other languages. English,
for example, has no grammatical gender, and sometimes the noun and verb forms
of a word are identical.

To make it possible to localize these correctly, we can add “context” (known in
gettext as msgctxt) to differentiate two otherwise identical strings. Django
provides a pgettext() [http://django.readthedocs.org/en/latest/ref/utils.html#django.utils.translation.pgettext] function for this.

For example, the string Search may be a noun or a verb in English. In a
heading, it may be considered a noun, but on a button, it may be a verb. It’s
appropriate to add a context (like button) to one of them.

Generally, we should only add context if we are sure the strings aren’t used in
the same way, or if localizers ask us to.

Example:

from django.utils.translation import pgettext

month = pgettext("text for the search button on the form", "Search")

Plurals

You have 1 new messages grates on discerning ears. Fortunately, gettext gives
us a way to fix that in English and other locales, the
ngettext() [http://django.readthedocs.org/en/latest/ref/utils.html#django.utils.translation.ngettext] function:

ngettext('singular sentence', 'plural sentence', count)

A more realistic example might be:

ngettext('Found {count} result.',
 'Found {count} results',
 len(results)).format(count=len(results))

This method takes three arguments because English only needs three, i.e., zero
is considered “plural” for English. Other languages may have different plural
rules [http://translate.sourceforge.net/wiki/l10n/pluralforms], and require
different phrases for, say 0, 1, 2-3, 4-10, >10. That’s absolutely fine, and
gettext makes it possible.

Strings in Templates

When putting new text into a template, all you need to do is wrap it in a
{% trans %} template tag:

<h1>{% trans "Heading" %}</h1>

Context can be added, too:

<h1>{% trans "Heading" context "section name" %}</h1>

Comments for translators need to precede the internationalized text and must
start with the Translators: keyword.:

{# Translators: This heading is displayed in the user's profile page #}
<h1>{% trans "Heading" %}</h1>

To interpolate, you need to use the alternative and more verbose {%
blocktrans %} template tag — it’s actually a block:

{% blocktrans %}Welcome, {{ name }}!{% endblocktrans %}

Note that the {{ name }} variable needs to exist in the template context.

In some situations, it’s desirable to evaluate template expressions such as
filters or accessing object attributes. You can’t do that within the {%
blocktrans %} block, so you need to bind the expression to a local variable
first:

{% blocktrans with revision.created_date|timesince as timesince %}
{{ revision }} {{ timesince }} ago
{% endblocktrans %}

{% blocktrans with project.name as name %}Delete {{ name }}?{% endblocktrans %}

{% blocktrans %} also provides pluralization. For that you need to bind a
counter with the name count and provide a plural translation after the {%
plural %} tag:

{% blocktrans with amount=article.price count years=i.length %}
That will cost $ {{ amount }} per year.
{% plural %}
That will cost $ {{ amount }} per {{ years }} years.
{% endblocktrans %}

Strings in Python

Note

Whenever you are adding a string in Python, ask yourself if it
really needs to be there, or if it should be in the template. Keep
logic and presentation separate!

Strings in Python are more complex for two reasons:

	We need to make sure we’re always using Unicode strings and the
Unicode-friendly versions of the functions.

	If you use the ugettext() [http://django.readthedocs.org/en/latest/ref/utils.html#django.utils.translation.ugettext] function in the
wrong place, the string may end up in the wrong locale!

Here’s how you might localize a string in a view:

from django.utils.translation import ugettext as _

def my_view(request):
 if request.user.is_superuser:
 msg = _(u'Oh hi, staff!')
 else:
 msg = _(u'You are not staff!')

Interpolation is done through normal Python string formatting:

msg = _(u'Oh, hi, {user}').format(user=request.user.username)

Context information can be supplied by using the
pgettext() [http://django.readthedocs.org/en/latest/ref/utils.html#django.utils.translation.pgettext] function:

msg = pgettext('the context', 'Search')

Translator comments are normal one-line Python comments:

Translators: A message to users.
msg = _(u'Oh, hi there!')

If you need to use plurals, import the
ungettext() [http://django.readthedocs.org/en/latest/ref/utils.html#django.utils.translation.ungettext] function:

from django.utils.translation import ungettext

n = len(results)
msg = ungettext('Found {0} result', 'Found {0} results', n).format(n)

Lazily Translated Strings

You can use ugettext() [http://django.readthedocs.org/en/latest/ref/utils.html#django.utils.translation.ugettext] or
ungettext() [http://django.readthedocs.org/en/latest/ref/utils.html#django.utils.translation.ungettext] only in views or functions called
from views. If the function will be evaluated when the module is loaded, then
the string may end up in English or the locale of the last request!

Examples include strings in module-level code, arguments to functions in class
definitions, strings in functions called from outside the context of a view. To
internationalize these strings, you need to use the _lazy versions of the
above methods, ugettext_lazy() [http://django.readthedocs.org/en/latest/ref/utils.html#django.utils.translation.ugettext_lazy] and
ungettext_lazy() [http://django.readthedocs.org/en/latest/ref/utils.html#django.utils.translation.ungettext_lazy]. The result doesn’t get
translated until it is evaluated as a string, for example by being output or
passed to unicode():

from django.utils.translation import ugettext_lazy as _

class UserProfileForm(forms.ModelForm):
 first_name = CharField(label=_('First name'), required=False)
 last_name = CharField(label=_('Last name'), required=False)

In case you want to provide context to a lazily-evaluated gettext string, you
will need to use pgettext_lazy() [http://django.readthedocs.org/en/latest/ref/utils.html#django.utils.translation.pgettext_lazy].

Administrative Tasks

Updating Localization Files

To update the translation source files (eg if you changed or added translatable
strings in the templates or Python code) you should run python manage.py
makemessages -l <language> in the readthedocs/ directory (substitute
<language> with a valid language code).

The updated files can now be localized in a PO editor [https://en.wikipedia.org/wiki/Category:Software-localization_tools] or
crowd-sourced online translation tool.

Compiling to MO

Gettext doesn’t parse any text files, it reads a binary format for faster
performance. To compile the latest PO files in the repository, Django provides
the compilemessages management command. For example, to compile all the
available localizations, just run:

$ python manage.py compilemessages -a

You will need to do this every time you want to push updated translations to
the live site.

Also, note that it’s not a good idea to track MO files in version control,
since they would need to be updated at the same pace PO files are updated, so
it’s silly and not worth it. They are ignored by .gitignore, but please
make sure you don’t forcibly add them to the repository.

Transifex Integration

To push updated translation source files to Transifex, run tx
push -s (for English) or tx push -t <language> (for non-English).

To pull changes from Transifex, run tx pull -a. Note that Transifex does
not compile the translation files, so you have to do this after the pull (see
the Compiling to MO section).

For more information about the tx command, read the Transifex client’s
help pages [http://help.transifex.com/features/client/].

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Read the Docs Public API

We have a limited public API that is available for you to get data out of the site. This page will only show a few of the basic parts, please file a ticket or ping us on IRC (#readthedocs on Freenode (chat.freenode.net) [http://webchat.freenode.net]) if you have feature requests.

This document covers the read-only API provided. We have plans to create a read/write API, so that you can easily automate interactions with your project.

The API is written in Tastypie, which provides a nice ability to browse the API from your browser. If you go to http://readthedocs.org/api/v1/?format=json and just poke around, you should be able to figure out what is going on.

A basic API client using slumber

You can use Slumber [http://slumber.in/] to build basic API wrappers in python. Here is a simple example of using slumber to interact with the RTD API:

import slumber
import json

show_objs = True
api = slumber.API(base_url='http://readthedocs.org/api/v1/')

val = api.project.get(slug='pip')
#val = api.project('pip').get()

#val = api.build(49252).get()
#val = api.build.get(project__slug='read-the-docs')

#val = api.user.get(username='eric')

#val = api.version('pip').get()
#val = api.version('pip').get(slug='1.0.1')

#val = api.version('pip').highest.get()
#val = api.version('pip').highest('0.8').get()

if show_objs:
 for obj in val['objects']:
 print json.dumps(obj, indent=4)
else:
 print json.dumps(val, indent=4)

Example of adding a user to a project

import slumber

USERNAME = 'eric'
PASSWORD = 'test'

user_to_add = 'coleifer'
project_slug = 'read-the-docs'

api = slumber.API(base_url='http://readthedocs.org/api/v1/', authentication={'name': USERNAME, 'password': PASSWORD})

project = api.project.get(slug=project_slug)
user = api.user.get(username=user_to_add)
project_objects = project['objects'][0]
user_objects = user['objects'][0]

data = {'users': project_objects['users'][:]}
data['users'].append(user_objects['resource_uri'])

print "Adding %s to %s" % (user_objects['username'], project_objects['slug'])
api.project(project_objects['id']).put(data)

project2 = api.project.get(slug=project_slug)
project2_objects = project2['objects'][0]
print "Before users: %s" % project_objects['users']
print "After users: %s" % project2_objects['users']

API Endpoints

Feel free to use cURL and python to look at formatted json examples. You can also look at them in your browser, if it handles returned json.

curl http://readthedocs.org/api/v1/project/pip/?format=json | python -m json.tool

Root

	
GET /api/v1/

	

	
Retrieve a list of resources.

	{
 "build": {
 "list_endpoint": "/api/v1/build/",
 "schema": "/api/v1/build/schema/"
 },
 "file": {
 "list_endpoint": "/api/v1/file/",
 "schema": "/api/v1/file/schema/"
 },
 "project": {
 "list_endpoint": "/api/v1/project/",
 "schema": "/api/v1/project/schema/"
 },
 "user": {
 "list_endpoint": "/api/v1/user/",
 "schema": "/api/v1/user/schema/"
 },
 "version": {
 "list_endpoint": "/api/v1/version/",
 "schema": "/api/v1/version/schema/"
 }
}

	Data:	
	list_endpoint (string) – API endpoint for resource.

	schema (string) – API endpoint for schema of resource.

Builds

	
GET /api/v1/build/

	

	
Retrieve a list of Builds.

	{
 "meta": {
 "limit": 20,
 "next": "/api/v1/build/?limit=20&offset=20",
 "offset": 0,
 "previous": null,
 "total_count": 86684
 },
 "objects": [BUILDS]
}

	Data:	
	limit (integer) – Number of Builds returned.

	next (string) – URI for next set of Builds.

	offset (integer) – Current offset used for pagination.

	previous (string) – URI for previous set of Builds.

	total_count (integer) – Total number of Builds.

	objects (array) – Array of Build objects.

Build

	
GET /api/v1/build/{id}/

	

	Path arguments:	id – A Build id.

	
Retrieve a single Build.

	{
 "date": "2012-03-12T19:58:29.307403",
 "error": "SPHINX ERROR",
 "id": "91207",
 "output": "SPHINX OUTPUT",
 "project": "/api/v1/project/2599/",
 "resource_uri": "/api/v1/build/91207/",
 "setup": "HEAD is now at cd00d00 Merge pull request #181 from Nagyman/solr_setup\n",
 "setup_error": "",
 "state": "finished",
 "success": true,
 "type": "html",
 "version": "/api/v1/version/37405/"
}

	Data:	
	date (string) – Date of Build.

	error (string) – Error from Sphinx build process.

	id (string) – Build id.

	output (string) – Output from Sphinx build process.

	project (string) – URI for Project of Build.

	resource_uri (string) – URI for Build.

	setup (string) – Setup output from Sphinx build process.

	setup_error (string) – Setup error from Sphinx build process.

	state (string) – “triggered”, “building”, or “finished”

	success (boolean) – Was build successful?

	type (string) – Build type (“html”, “pdf”, “man”, or “epub”)

	version (string) – URI for Version of Build.

Files

	
GET /api/v1/file/

	

	
Retrieve a list of Files.

	{
 "meta": {
 "limit": 20,
 "next": "/api/v1/file/?limit=20&offset=20",
 "offset": 0,
 "previous": null,
 "total_count": 32084
 },
 "objects": [FILES]
}

	Data:	
	limit (integer) – Number of Files returned.

	next (string) – URI for next set of Files.

	offset (integer) – Current offset used for pagination.

	previous (string) – URI for previous set of Files.

	total_count (integer) – Total number of Files.

	objects (array) – Array of File objects.

File

	
GET /api/v1/file/{id}/

	

	Path arguments:	id – A File id.

	
Retrieve a single File.

	{
 "absolute_url": "/docs/keystone/en/latest/search.html",
 "id": "332692",
 "name": "search.html",
 "path": "search.html",
 "project": {PROJECT},
 "resource_uri": "/api/v1/file/332692/"
 }

	Data:	
	absolute_url (string) – URI for actual file (not the File object from the API.)

	id (string) – File id.

	name (string) – Name of File.

	path (string) – Name of Path.

	project (object) – A Project object for the file’s project.

	resource_uri (string) – URI for File object.

Projects

	
GET /api/v1/project/

	

	
Retrieve a list of Projects.

	{
 "meta": {
 "limit": 20,
 "next": "/api/v1/project/?limit=20&offset=20",
 "offset": 0,
 "previous": null,
 "total_count": 2067
 },
 "objects": [PROJECTS]
}

	Data:	
	limit (integer) – Number of Projects returned.

	next (string) – URI for next set of Projects.

	offset (integer) – Current offset used for pagination.

	previous (string) – URI for previous set of Projects.

	total_count (integer) – Total number of Projects.

	objects (array) – Array of Project objects.

Project

	
GET /api/v1/project/{id}

	

	Path arguments:	id – A Project id.

	
Retrieve a single Project.

	{
 "absolute_url": "/projects/docs/",
 "analytics_code": "",
 "copyright": "",
 "crate_url": "",
 "default_branch": "",
 "default_version": "latest",
 "description": "Make docs.readthedocs.org work :D",
 "django_packages_url": "",
 "documentation_type": "sphinx",
 "id": "2599",
 "modified_date": "2012-03-12T19:59:09.130773",
 "name": "docs",
 "project_url": "",
 "pub_date": "2012-02-19T18:10:56.582780",
 "repo": "git://github.com/rtfd/readthedocs.org",
 "repo_type": "git",
 "requirements_file": "",
 "resource_uri": "/api/v1/project/2599/",
 "slug": "docs",
 "subdomain": "http://docs.readthedocs.org/",
 "suffix": ".rst",
 "theme": "default",
 "use_virtualenv": false,
 "users": [
 "/api/v1/user/1/"
],
 "version": ""
}

	Data:	
	absolute_url (string) – URI for project (not the Project object from the API.)

	analytics_code (string) – Analytics tracking code.

	copyright (string) – Copyright

	crate_url (string) – Crate.io URI.

	default_branch (string) – Default branch.

	default_version (string) – Default version.

	description (string) – Description of project.

	django_packages_url (string) – Djangopackages.com URI.

	documentation_type (string) – Either “sphinx” or “sphinx_html”.

	id (string) – Project id.

	modified_date (string) – Last modified date.

	name (string) – Project name.

	project_url (string) – Project homepage.

	pub_date (string) – Last published date.

	repo (string) – URI for VCS repository.

	repo_type (string) – Type of VCS repository.

	requirements_file (string) – Pip requirements file for packages needed for building docs.

	resource_uri (string) – URI for Project.

	slug (string) – Slug.

	subdomain (string) – Subdomain.

	suffix (string) – File suffix of docfiles. (Usually ”.rst”.)

	theme (string) – Sphinx theme.

	use_virtualenv (boolean) – Build project in a virtualenv? (True or False)

	users (array) – Array of readthedocs.org user URIs for administrators of Project.

	version (string) – DEPRECATED.

Users

	
GET /api/v1/user/

	

	
Retrieve List of Users

	{
 "meta": {
 "limit": 20,
 "next": "/api/v1/user/?limit=20&offset=20",
 "offset": 0,
 "previous": null,
 "total_count": 3200
 },
 "objects": [USERS]
}

	Data:	
	limit (integer) – Number of Users returned.

	next (string) – URI for next set of Users.

	offset (integer) – Current offset used for pagination.

	previous (string) – URI for previous set of Users.

	total_count (integer) – Total number of Users.

	USERS (array) – Array of User objects.

User

	
GET /api/v1/user/{id}/

	

	Path arguments:	id – A User id.

	
Retrieve a single User

	{
 "first_name": "",
 "id": "1",
 "last_login": "2010-10-28T13:38:13.022687",
 "last_name": "",
 "resource_uri": "/api/v1/user/1/",
 "username": "testuser"
}

	Data:	
	first_name (string) – First name.

	id (string) – User id.

	last_login (string) – Timestamp of last login.

	last_name (string) – Last name.

	resource_uri (string) – URI for this user.

	username (string) – User name.

Versions

	
GET /api/v1/version/

	

	
Retrieve a list of Versions.

	{
 "meta": {
 "limit": 20,
 "next": "/api/v1/version/?limit=20&offset=20",
 "offset": 0,
 "previous": null,
 "total_count": 16437
 },
 "objects": [VERSIONS]
}

	Data:	
	limit (integer) – Number of Versions returned.

	next (string) – URI for next set of Versions.

	offset (integer) – Current offset used for pagination.

	previous (string) – URI for previous set of Versions.

	total_count (integer) – Total number of Versions.

	objects (array) – Array of Version objects.

Version

	
GET /api/v1/version/{id}

	

	Path arguments:	id – A Version id.

	
Retrieve a single Version.

	{
 "active": false,
 "built": false,
 "id": "12095",
 "identifier": "remotes/origin/zip_importing",
 "project": {PROJECT},
 "resource_uri": "/api/v1/version/12095/",
 "slug": "zip_importing",
 "uploaded": false,
 "verbose_name": "zip_importing"
}

	Data:	
	active (boolean) – Are we continuing to build docs for this version?

	built (boolean) – Have docs been built for this version?

	id (string) – Version id.

	identifier (string) – Identifier of Version.

	project (object) – A Project object for the version’s project.

	resource_uri (string) – URI for Version object.

	slug (string) – String that uniquely identifies a project

	uploaded (boolean) – Were docs uploaded? (As opposed to being build by Read the Docs.)

	verbose_name (string) – Usually the same as Slug.

Filtering Examples

Find Highest Version

http://readthedocs.org/api/v1/version/pip/highest/?format=json

	
GET /api/v1/version/{id}/highest/

	

	Path arguments:	id – A Version id.

	
Retrieve highest version.

	{
 "is_highest": true,
 "project": "Version 1.0.1 of pip (5476)",
 "slug": [
 "1.0.1"
],
 "url": "/docs/pip/en/1.0.1/",
 "version": "1.0.1"
}

Compare Highest Version

This will allow you to compare whether a certain version is the highest version of a specific project. The below query should return a 'is_highest': false in the returned dictionary.

http://readthedocs.org/api/v1/version/pip/highest/0.8/?format=json

	
GET /api/v1/version/{id}/highest/{version}

	

	Path arguments:	
	id – A Version id.

	version – A Version number or string.

	
Retrieve highest version.

	{
 "is_highest": false,
 "project": "Version 1.0.1 of pip (5476)",
 "slug": [
 "1.0.1"
],
 "url": "/docs/pip/en/1.0.1/",
 "version": "1.0.1"
}

File Search

http://readthedocs.org/api/v1/file/search/?format=json&q=virtualenvwrapper

	
GET /api/v1/file/search/?q={search_term}

	

	Path arguments:	search_term – Perform search with this term.

	
Retrieve a list of File objects that contain the search term.

	{
 "objects": [
 {
 "absolute_url": "/docs/python-guide/en/latest/scenarios/virtualenvs/index.html",
 "id": "375539",
 "name": "index.html",
 "path": "scenarios/virtualenvs/index.html",
 "project": {
 "absolute_url": "/projects/python-guide/",
 "analytics_code": null,
 "copyright": "Unknown",
 "crate_url": "",
 "default_branch": "",
 "default_version": "latest",
 "description": "[WIP] Python best practices...",
 "django_packages_url": "",
 "documentation_type": "sphinx_htmldir",
 "id": "530",
 "modified_date": "2012-03-13T01:05:30.191496",
 "name": "python-guide",
 "project_url": "",
 "pub_date": "2011-03-20T19:40:03.599987",
 "repo": "git://github.com/kennethreitz/python-guide.git",
 "repo_type": "git",
 "requirements_file": "",
 "resource_uri": "/api/v1/project/530/",
 "slug": "python-guide",
 "subdomain": "http://python-guide.readthedocs.org/",
 "suffix": ".rst",
 "theme": "kr",
 "use_virtualenv": false,
 "users": [
 "/api/v1/user/130/"
],
 "version": ""
 },
 "resource_uri": "/api/v1/file/375539/",
 "text": "...virtualenvwrapper\n..."
 },
 ...
]
}

Anchor Search

http://readthedocs.org/api/v1/file/anchor/?format=json&q=virtualenv

	
GET /api/v1/file/anchor/?q={search_term}

	

	Path arguments:	search_term – Perform search of files containing anchor text with this term.

	
Retrieve a list of absolute URIs for files that contain the search term.

	{
 "objects": [
 "http//django-fab-deploy.readthedocs.org/en/latest/...",
 "http//dimagi-deployment-tools.readthedocs.org/en/...",
 "http//openblock.readthedocs.org/en/latest/install/base_install.html#virtualenv",
 ...
]
}

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

API

This is the Read The Docs API documentation, autogenerated from the source
code.

	bookmarks
	bookmarks.admin

	bookmarks.models

	bookmarks.urls

	bookmarks.views

	builds
	builds.admin

	builds.models

	builds.urls

	builds.views

	doc_builder
	doc_builder.base

	doc_builder.envrionments

	doc_builder.backends
	doc_builder.backends.sphinx

	core
	core.admin

	core.forms

	core.middleware

	core.models

	core.search_sites

	core.views

	core.management.commands

	projects
	projects.admin

	projects.constants

	projects.forms

	projects.models

	projects.search_indexes

	projects.tasks

	projects.utils

	projects.views
	projects.views.public

	projects.views.private

	vcs_support
	vcs_support.base

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

 	API

bookmarks

bookmarks.admin

Django admin interface for Bookmark.

bookmarks.models

	
class bookmarks.models.Bookmark(*args, **kwargs)

	Bookmark(id, user_id, project_id, version_id, page, date, url)

bookmarks.urls

bookmarks.views

	
class bookmarks.views.BookmarkAddView(**kwargs)

	Adds bookmarks in response to POST requests

	
post(request, *args, **kwargs)

	Add a new bookmark for the current user to point at
project, version, page, and url.

	
class bookmarks.views.BookmarkListView(**kwargs)

	Displays all of a logged-in user’s bookmarks

	
model

	alias of Bookmark

	
class bookmarks.views.BookmarkRemoveView(**kwargs)

	Deletes a user’s bookmark in response to a POST request.
Renders a delete? confirmaton page in response to a GET request.

	
post(request, *args, **kwargs)

	Will delete bookmark with a primary key from the url
or using json data in request.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

 	API

builds

builds.admin

Django admin interface for Build and related models.

builds.models

	
class builds.models.Build(*args, **kwargs)

	Build(id, project_id, version_id, type, state, date, success, setup, setup_error, output, error, exit_code, commit, length)

	
finished

	Return if build has a finished state

	
class builds.models.Version(*args, **kwargs)

	Version(id, project_id, type, identifier, verbose_name, slug, supported, active, built, uploaded, privacy_level, machine)

	
get_build_path()

	Return version build path if path exists, otherwise None [http://python.readthedocs.org/en/latest/library/constants.html#None]

	
identifier_friendly

	Return display friendly identifier

	
save(*args, **kwargs)

	Add permissions to the Version for all owners on save.

	
class builds.models.VersionAlias(*args, **kwargs)

	VersionAlias(id, project_id, from_slug, to_slug, largest)

builds.urls

builds.views

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

 	API

doc_builder

doc_builder.base

	
class doc_builder.base.BaseBuilder(version, force=False)

	The Base for all Builders. Defines the API for subclasses.

Expects subclasses to define old_artifact_path,
which points at the directory where artifacts should be copied from.

	
build(id=None, **kwargs)

	Do the actual building of the documentation.

	
clean(**kwargs)

	Clean the path where documentation will be built

	
create_index(extension='md', **kwargs)

	Create an index file if it needs it.

	
docs_dir(docs_dir=None, **kwargs)

	Handle creating a custom docs_dir if it doesn’t exist.

	
force(**kwargs)

	An optional step to force a build even when nothing has changed.

	
move(**kwargs)

	Move the documentation from it’s generated place to its artifact directory.

doc_builder.envrionments

Documentation Builder Environments

	
class doc_builder.environments.BuildCommand(command, cwd=None, shell=True, environment=None)

	Wrap command execution for execution in build environments

This wraps subprocess commands with some logic to handle exceptions,
logging, and setting up the env for the build command.

	Parameters:	
	command – string or array of command parameters

	cwd – current working path

	shell – execute command in shell, default=True

	environment – environment variables to add to environment

	
get_command()

	Flatten command

	
run(cmd_input=None, combine_output=False)

	Set up subprocess and execute command

	Parameters:	
	cmd_input (str [http://python.readthedocs.org/en/latest/library/stdtypes.html#str]) – input to pass to command in STDIN

	combine_output – combine STDERR into STDOUT

	
class doc_builder.environments.DockerBuildCommand(command, image=None, mounts=None, name=None, remove=True, user=None, environment=None, **kwargs)

	Create a docker container and run a command inside the container

Build command to execute in docker container

	Parameters:	
	command – Command to run as a string or a lists of strings to be joined as
space-separated.

	image – Docker image to run a container from. This is set in settings as well

	mounts – List of tuples defining pairs of paths to be mounted, the first
element should be the host path, the second should be the
container’s path.

	user – User to run command as

	name – Container name

	remove – Automatically remove container after container command exits

	
class doc_builder.environments.DockerEnvironment(version)

	Docker build environment, uses docker to contain builds

If settings.DOCKER_ENABLE is true, build documentation inside a
docker container, instead of the host system, using this build environment
class. The build command creates a docker container from a pre-built image,
defined by settings.DOCKER_IMAGE. This container is started with
a mount to the project’s build path under user_builds on the host
machine, walling off project builds from reading/writing other projects’
data.

	Parameters:	version – Project version to be building

	
build()

	Run build command in container

This serializes the version object into JSON, which is passed through
Docker, into readthedocs.core.management.commands.run_docker.
This management command reads the JSON on STDIN, and builds a mocked up
version object to pass around the build process. After the build
process, JSON is output on STDOUT and read by this command, converting
it back into a results dictionary.

We also set environment settings to pass into the docker command, for
overriding settings in the subprocess django instance inside the
container.

Note

This is a temporary hack.
We shouldn’t need to pass JSON back and forth, but cutting off all
access to API and Celery is a necessary part of containing builds.
In the future, builds should happen in a contained environment like
LXC or Docker containers, but this code should managed build state
outside the process, eliminating the need for IPC of any kind.

	
container_id()

	Container ID used in creating and destroying docker images

	
env_settings()

	Return local django settings as environment variables

This is used when passing in env variables to the subprocess management
command, instead of requiring docker containers have a settings file
installed with each build of the docker image.

Warning

Never, ever, pass secure data as an evironment variable.

	
class doc_builder.environments.EnvironmentBase(version)

	Base build environment

Placeholder for reorganizing command execution.

	Parameters:	version – Project version that is being built

	
response(cmd, step='doc_builder')

	Render a response for reporting to the build command page

	Parameters:	
	cmd – BuildCommand instance after executing run, or dict
containing the same keys to mock a cmd response.

	step – Result step for output page

Note

In the future, this should return an actual object, or handle
organizing command return to the API on a per-command basis.

doc_builder.backends

doc_builder.backends.sphinx

	
class doc_builder.backends.sphinx.BaseSphinx(*args, **kwargs)

	The parent for most sphinx builders.

	
append_conf(**kwargs)

	Modify the given conf.py file from a whitelisted user’s project.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

 	API

core

core.admin

Django admin interface for core models.

core.forms

	
class core.forms.FacetField(choices=(), required=True, widget=None, label=None, initial=None, help_text=u'', *args, **kwargs)

	For filtering searches on a facet, with validation for the format
of facet values.

	
valid_value(value)

	Although this is a choice field, no choices need to be supplied.
Instead, we just validate that the value is in the correct format
for facet filtering (facet_name:value)

	
class core.forms.FacetedSearchForm(*args, **kwargs)

	Supports fetching faceted results with a corresponding query.

	facets

	A list of facet names for which to get facet counts

	models

	Limit the search to one or more models

core.middleware

	
class core.middleware.SingleVersionMiddleware

	Reset urlconf for requests for ‘single_version’ docs.

In settings.MIDDLEWARE_CLASSES, SingleVersionMiddleware must follow
after SubdomainMiddleware.

core.models

	
class core.models.UserProfile(*args, **kwargs)

	Additional information about a User.

	
get_contribution_details()

	Gets the line to put into commits to attribute the author.

Returns a tuple (name, email)

core.search_sites

core.views

Core views, including the main homepage, post-commit build hook,
documentation and header rendering, and server errors.

	
core.views.default_docs_kwargs(request, project_slug=None)

	Return kwargs used to reverse lookup a project’s default docs URL.

Determining which URL to redirect to is done based on the kwargs
passed to reverse(serve_docs, kwargs). This function populates
kwargs for the default docs for a project, and sets appropriate keys
depending on whether request is for a subdomain URL, or a non-subdomain
URL.

	
core.views.get_suggestion(project_slug, lang_slug, version_slug, pagename, user)

	
| project | version | language | What to show |

1 | 0 | 0 | 0 | Error message |

2 | 0 | 0 | 1 | Error message (Can’t happen) |

3 | 0 | 1 | 0 | Error message (Can’t happen) |

4 | 0 | 1 | 1 | Error message (Can’t happen) |

5 | 1 | 0 | 0 | A link to top-level page of default version |

6 | 1 | 0 | 1 | Available versions on the translation project |

7 | 1 | 1 | 0 | Available translations of requested version |

8 | 1 | 1 | 1 | A link to top-level page of requested version |

	
core.views.github_build(*args, **kwargs)

	A post-commit hook for github.

	
core.views.redirect_lang_slug(request, lang_slug, project_slug=None)

	Redirect /en/ to /en/latest/.

	
core.views.redirect_page_with_filename(request, filename, project_slug=None)

	Redirect /page/file.html to /en/latest/file.html.

	
core.views.redirect_project_slug(request, project_slug=None)

	Redirect / to /en/latest/.

	
core.views.redirect_version_slug(request, version_slug, project_slug=None)

	Redirect /latest/ to /en/latest/.

	
core.views.server_error(request, template_name='500.html')

	A simple 500 handler so we get media

	
core.views.server_error_404(request, template_name='404.html')

	A simple 404 handler so we get media

core.management.commands

This is where custom manage.py commands are defined.

	
class core.management.commands.update_repos.Command

	Custom management command to rebuild documentation for all projects on
the site. Invoked via ./manage.py update_repos.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

 	API

projects

projects.admin

Django administration interface for Project
and related models.

projects.constants

Default values and other various configuration for projects,
including available theme names and repository types.

projects.forms

	
class projects.forms.ProjectBackendForm(data=None, files=None, auto_id=u'id_%s', prefix=None, initial=None, error_class=<class 'django.forms.util.ErrorList'>, label_suffix=None, empty_permitted=False)

	Get the import backend

	
class projects.forms.ProjectBasicsForm(*args, **kwargs)

	Form for basic project fields

	
class projects.forms.ProjectTriggerBuildMixin

	Mixin to trigger build on form save

This should be replaced with signals instead of calling trigger_build
explicitly.

	
save(commit=True)

	Trigger build on commit save

projects.models

	
class projects.models.EmailHook(*args, **kwargs)

	EmailHook(id, project_id, email)

	
class projects.models.ImportedFile(*args, **kwargs)

	ImportedFile(id, project_id, version_id, name, slug, path, md5, commit)

	
class projects.models.Project(*args, **kwargs)

	Project(id, pub_date, modified_date, name, slug, description, repo, repo_type, project_url, canonical_url, version, copyright, theme, suffix, single_version, default_version, default_branch, requirements_file, documentation_type, allow_comments, comment_moderation, analytics_code, path, conf_py_file, featured, skip, mirror, use_virtualenv, python_interpreter, use_system_packages, django_packages_url, privacy_level, version_privacy_level, language, programming_language, main_language_project_id, num_major, num_minor, num_point)

	
all_active_versions()

	A temporary workaround for active_versions filtering out things
that were active, but failed to build

	
artifact_path(type, version='latest')

	The path to the build html docs in the project.

	
cnames_symlink_path(domain)

	Path in the doc_path that we symlink cnames

This has to be at the top-level because Nginx doesn’t know the projects slug.

	
find(file, version)

	A balla API to find files inside of a projects dir.

	
full_build_path(version='latest')

	The path to the build html docs in the project.

	
full_dash_path(version='latest')

	The path to the build dash docs in the project.

	
full_doc_path(version='latest')

	The path to the documentation root in the project.

	
full_epub_path(version='latest')

	The path to the build epub docs in the project.

	
full_find(file, version)

	A balla API to find files inside of a projects dir.

	
full_json_path(version='latest')

	The path to the build json docs in the project.

	
full_latex_path(version='latest')

	The path to the build latex docs in the project.

	
full_man_path(version='latest')

	The path to the build man docs in the project.

	
full_singlehtml_path(version='latest')

	The path to the build singlehtml docs in the project.

	
get_default_branch()

	Get the version representing “latest”

	
get_default_version()

	Get the default version (slug).

Returns self.default_version if the version with that slug actually
exists (is built and published). Otherwise returns ‘latest’.

	
get_docs_url(version_slug=None, lang_slug=None)

	Return a url for the docs. Always use http for now,
to avoid content warnings.

	
get_latest_build(finished=True)

	Get latest build for project

	finished

	Return only builds that are in a finished state

	
get_production_media_path(type, version_slug, include_file=True)

	Get file path for media files in production.
This is used to see if these files exist so we can offer them for download.

	
get_production_media_url(type, version_slug, full_path=True)

	Get the URL for downloading a specific media file.

	
rtd_build_path(version='latest')

	The destination path where the built docs are copied.

	
single_version_symlink_path()

	Path in the doc_path for the single_version symlink.

	
static_metadata_path()

	The path to the static metadata JSON settings file

	
subprojects_symlink_path(project)

	Path in the doc_path that we symlink subprojects

	
supported_versions(flat=True)

	Get the list of supported versions.
Returns a list of version strings.

	
translations_symlink_path(language=None)

	Path in the doc_path that we symlink translations

	
class projects.models.ProjectRelationship(*args, **kwargs)

	ProjectRelationship(id, parent_id, child_id)

	
class projects.models.WebHook(*args, **kwargs)

	WebHook(id, project_id, url)

projects.search_indexes

projects.tasks

Tasks related to projects, including fetching repository code, cleaning
conf.py files, and rebuilding documentation.

	
projects.tasks.create_build(build_pk)

	Old placeholder for build creation. Now it just gets it from the database.

	
projects.tasks.docker_build(version, pdf=True, man=True, epub=True, dash=True, search=True, force=False, intersphinx=True, localmedia=True)

	The code that executes inside of docker

	
projects.tasks.ensure_version(api, project, version_pk)

	Ensure we’re using a sane version.

	
projects.tasks.record_build(api, record, build, results, state, start_time=None)

	Record a build by hitting the API.

Returns nothing

	
projects.tasks.setup_environment(version)

	Build the virtualenv and install the project into it.

Always build projects with a virtualenv.

	
projects.tasks.setup_vcs(version, build, api)

	Update the checkout of the repo to make sure it’s the latest.
This also syncs versions in the DB.

	
projects.tasks.update_docs_pull(record=False, pdf=False, man=False, force=False)

	A high-level interface that will update all of the projects.

This is mainly used from a cronjob or management command.

	
projects.tasks.update_documentation_type(version, api)

	Automatically determine the doc type for a user.

projects.utils

Utility functions used by projects.

	
projects.utils.find_file(file)

	Find matching filenames in the current directory and its subdirectories,
and return a list of matching filenames.

	
projects.utils.github_paginate(client, url)

	Scans trough all github paginates results and returns the concatenated
list of results.

	Parameters:	
	client – requests client instance

	url – start url to get the data from.

See https://developer.github.com/v3/#pagination

	
projects.utils.run(*commands, **kwargs)

	Run one or more commands, and return (status, out, err).
If more than one command is given, then this is equivalent to
chaining them together with &&; if all commands succeed, then
(status, out, err) will represent the last successful command.
If one command failed, then (status, out, err) will represent
the failed command.

	
projects.utils.safe_write(filename, contents)

	Write contents to the given filename. If the filename’s
directory does not exist, it is created. Contents are written as UTF-8,
ignoring any characters that cannot be encoded as UTF-8.

	
projects.utils.update_static_metadata(project_pk)

	This is here to avoid circular imports in models.py

projects.views

projects.views.public

	
class projects.views.public.ProjectDetailView(**kwargs)

	Display project onboard steps

	
model

	alias of Project

	
projects.views.public.elastic_project_search(request, project_slug)

	Use elastic search to search in a project.

	
projects.views.public.file_autocomplete(request, project_slug)

	return a json list of version names

	
projects.views.public.project_badge(request, project_slug, redirect=False)

	Return a sweet badge for the project

	
projects.views.public.project_download_media(request, project_slug, type, version_slug)

	Download a specific piece of media.
Perform an auth check if serving in private mode.

	
projects.views.public.project_downloads(request, project_slug)

	A detail view for a project with various dataz

	
projects.views.public.project_versions(request, project_slug)

	Shows the available versions and lets the user choose which ones he would
like to have built.

	
projects.views.public.search_autocomplete(request)

	return a json list of project names

	
projects.views.public.version_autocomplete(request, project_slug)

	return a json list of version names

projects.views.private

	
class projects.views.private.ImportDemoView(**kwargs)

	View to pass request on to import form to import demo project

	
form_class

	alias of ProjectBasicsForm

	
get(request, *args, **kwargs)

	Process link request as a form post to the project import form

	
get_form_data()

	Get form data to post to import form

	
get_form_kwargs()

	Form kwargs passed in during instantiation

	
class projects.views.private.ImportView(**kwargs)

	On GET, show the source select template, on POST, mock out a wizard

If we are accepting POST data, use the fields to seed the initial data in
:py:cls:`ImportWizardView`. The import templates will redirect the form to
/dashboard/import

	
wizard_class

	alias of ImportWizardView

	
class projects.views.private.ImportWizardView(**kwargs)

	Project import wizard

	
done(form_list, **kwargs)

	Save form data as object instance

Don’t save form data directly, instead bypass documentation building and
other side effects for now, by signalling a save without commit. Then,
finish by added the members to the project and saving.

	
get_form_kwargs(step)

	Get args to pass into form instantiation

	
get_template_names()

	Return template names based on step name

	
is_advanced()

	Determine if the user selected the show advanced field

	
class projects.views.private.ProjectDashboard(**kwargs)

	A dashboard! If you aint know what that means you aint need to.
Essentially we show you an overview of your content.

	
model

	alias of Project

	
projects.views.private.project_advanced(request, *args, **kwargs)

	Edit an existing project - depending on what type of project is being
edited (created or imported) a different form will be displayed

	
projects.views.private.project_delete(request, *args, **kwargs)

	Make a project as deleted on POST, otherwise show a form asking for
confirmation of delete.

	
projects.views.private.project_edit(request, *args, **kwargs)

	Edit an existing project - depending on what type of project is being
edited (created or imported) a different form will be displayed

	
projects.views.private.project_import_bitbucket(request, *args, **kwargs)

	Show form that prefills import form with data from BitBucket

	
projects.views.private.project_import_github(request, *args, **kwargs)

	Show form that prefills import form with data from GitHub

	
projects.views.private.project_manage(request, *args, **kwargs)

	The management view for a project, where you will have links to edit
the projects’ configuration, edit the files associated with that
project, etc.

Now redirects to the normal /projects/<slug> view.

	
projects.views.private.project_versions(request, *args, **kwargs)

	Shows the available versions and lets the user choose which ones he would
like to have built.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

 	API

vcs_support

vcs_support.base

	
class vcs_support.base.BaseCLI

	Helper class for CLI-heavy classes.

	
run(*args)

	

	Parameters:	bits – list of command and args. See subprocess [http://python.readthedocs.org/en/latest/library/subprocess.html#module-subprocess] docs

	
class vcs_support.base.BaseContributionBackend(repo)

	Base class for contribution backends.

The main purpose of this base class is to define the API.

	
classmethod accepts(url)

	Classmethod that checks if a given repository URL is supported by this
backend.

	
get_branch_file(branch, filename)

	Returns the contents of a file as it is in the specified branch.

	
push_branch(branch, title='', comment='')

	Pushes a branch upstream.

	
set_branch_file(branch, filename, contents, comment='')

	Saves the file in the specified branch.

	
class vcs_support.base.BaseVCS(project, version, **kwargs)

	Base for VCS Classes.
Built on top of the BaseCLI.

	
branches

	Returns a list of VCSVersion objects. See VCSVersion for more
information.

	
checkout(identifier=None)

	Set the state to the given identifier.

If identifier is None, checkout to the latest revision.

The type and format of identifier may change from VCS to VCS, so each
backend is responsible to understand it’s identifiers.

	
commit

	Returns a string representing the current commit.

	
get_contribution_backend()

	Returns a contribution backend or None for this repository. The backend
is detected via the repository URL.

	
make_clean_working_dir()

	Ensures that the working dir exists and is empty

	
tags

	Returns a list of VCSVersion objects. See VCSVersion for more
information.

	
update()

	If self.working_dir is already a valid local copy of the repository,
update the repository, else create a new local copy of the repository.

	
class vcs_support.base.VCSProject

	Transient object to encapsulate a projects stuff

	
class vcs_support.base.VCSVersion(repository, identifier, verbose_name)

	Represents a Version (tag or branch) in a VCS.

This class should only be instantiated in BaseVCS subclasses.

It can act as a context manager to temporarily switch to this tag (eg to
build docs for this tag).

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Designing Read the Docs

So you’re thinking of contributing some of your
time and design skills to Read the Docs? That’s
awesome. This document will lead you through
a few features available to ease the process of
working with Read the Doc’s CSS and static assets.

To start, you should follow the Installation instructions
to get a working copy of the Read the Docs repository locally.

Style Catalog

Once you have RTD running locally, you can open http://localhost:8000/style-catalog/
for a quick overview of the currently available styles.

[image: _images/headers.png]
This way you can quickly get started writing HTML – or if you’re
modifying existing styles you can get a quick idea of how things
will change site-wide.

Typekit Fonts

RTD uses FF Meta [https://typekit.com/fonts/ff-meta-web-pro] via TypeKit to render most display and body text.

To make this work locally, you can register a free TypeKit account and
create a site profile for localhost:8000 that includes the linked font.

Readthedocs.org Changes

Styles for the primary RTD site are located in media/css directory.

These styles only affect the primary site – not any of the generated
documentation using the default RTD style.

Sphinx Template Changes

Styles for generated documentation are located in readthedocs/templates/sphinx/_static/rtd.css

Of note, projects will retain the version of that file they were last built with – so if you’re
editing that file and not seeing any changes to your local built documentation, you need to rebuild
your example project.

Contributing

Contributions should follow the Contributing to Read the Docs guidelines where applicable – ideally you’ll
create a pull request against the Read the Docs Github project [https://github.com/rtfd/readthedocs.org/pulls] from your forked repo and include
a brief description of what you added / removed / changed, as well as an attached image (you can just
take a screenshot and drop it into the PR creation form) of the effects of your changes.

There’s not a hard browser range, but your design changes should work reasonably well across all major
browsers, IE8+ – that’s not to say it needs to be pixel-perfect in older browsers! Just avoid
making changes that render older browsers utterly unusable (or provide a sane fallback).

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Read the Docs Theme

Note

This feature only applies to Sphinx documentation. We are working to bring it to our other documentation backends.

[image: _images/screen_mobile.png]
By default, Read the Docs will use its own custom sphinx theme unless you set one yourself
in your conf.py file. Likewise, setting the theme to default will accomplish the
same behavior. The theme can be found on github here [https://www.github.com/snide/sphinx_rtd_theme] and is meant to work
independently of Read the Docs itself if you want to just use the theme locally.

This blog post [http://ericholscher.com/blog/2013/nov/4/new-theme-read-the-docs/] provides some info about the design, but
in short, the theme aims to solve the limitations of Sphinx’s default navigation setup,
where only a small portion of your docs were accessible in the sidebar. Our theme is also
meant to work well on mobile and tablet devices.

Contributing to the theme

If you have issues or feedback, please open an issue [https://github.com/snide/sphinx_rtd_theme/issues] on the theme’s GitHub repository
which itself is a submodule within the larger RTD codebase. That means any changes to the
theme or the Read the Docs badge styling should be made there. The code is separate so that
it can be used independent of Read the Docs as a regular Sphinx theme.

How the Table of Contents builds

Currently the left menu will build based upon any toctree(s) defined in your index.rst file.
It outputs 2 levels of depth, which should give your visitors a high level of access to your
docs. If no toctrees are set in your index.rst file the theme reverts to sphinx’s usual
local toctree which is based upon the heading set on your current page.

It’s important to note that if you don’t follow the same styling for your rST headers across
your documents, the toctree will misbuild, and the resulting menu might not show the correct
depth when it renders.

Other style notes

	As a responsive style, you should not set a height and width to your images.

	Wide tables will add a horizontal scroll bar to maintain the responsive layout.

How do I use this locally, and on Read the Docs?

Unfortunately, at the moment Read the Docs can’t handle importing sphinx_rtd_theme, so if you try to use that theme for building on both Read the Docs and locally, it will fail. To build it locally, and on Read the Docs:

on_rtd is whether we are on readthedocs.org
import os
on_rtd = os.environ.get('READTHEDOCS', None) == 'True'

if not on_rtd: # only import and set the theme if we're building docs locally
 import sphinx_rtd_theme
 html_theme = 'sphinx_rtd_theme'
 html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]

otherwise, readthedocs.org uses their theme by default, so no need to specify it

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Read the Docs Open Source Philosophy

Read the Docs is Open Source software.
We have licensed [https://github.com/rtfd/readthedocs.org/blob/master/LICENSE.mit] the code base as MIT,
which provides almost no restrictions on the use of the code.

However,
as a project there are things that we care about more than others.
We built Read the Docs to support documentation in the Open Source community.
The code is open for people to contribute to,
so that they may build features into https://readthedocs.org that they want.
We also believe having the code be open is a valuable learning tool,
for people to see how a real large website is created.

Official Support

The time of the core developers of Read the Docs is limited.
We provide official support for the following things:

	Local development on the Python code base

	Usage of https://readthedocs.org for Open Source projects

	Bug fixes in the code base, as it applies to running it on https://readthedocs.org

Unsupported

There are use cases that we don’t support,
because it doesn’t further our goal of promoting documentation in the Open Source Community.

We do not support:

	Specific usage of Sphinx and Mkdocs, that don’t affect our hosting

	Custom installations of Read the Docs at your company

	Installation of Read the Docs on other platforms

	Any installation issues outside of the Read the Docs Python Code

Rationale

Read the Docs was founded to improve documentation in the Open Souce Community.
We fully recognize and allow the code to be used for internal installs at companies,
but we will not spend our time supporting it.
Our time is limited,
and we want to spend it on the mission that we set out to originally support.

If you feel strongly about installing Read the Docs internal to a company,
we will happily link to third party resources on this topic.
Please open an issue with a proposal if you want to take on this task.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Sponsors of Read the Docs

Running Read the Docs isn’t free, and the site wouldn’t be where it is today
without generous support of our sponsors. Below is a list of all the folks who
have helped the site financially, in order of the date they first started
supporting us.

Current sponsors

	Rackspace [http://www.rackspace.com/] - They cover all of our hosting expenses every month. This is a pretty large sum of money, and we are really grateful to have them as a sponsor.

	You? (Email us at hello@readthedocs.com for more info)

If you appreciate the service,
please consider helping support development on Gittip [https://www.gittip.com/readthedocs/].
It helps provide support for development,
as well as ongoing monetary stability in case of sponsorship changes.

Past sponsors

	Revsys [http://www.revsys.com/]

	Python Software Foundation [http://python.org/psf/]

	Mozilla Web Dev [http://blog.mozilla.com/webdev/]

	Django Software Foundation [https://www.djangoproject.com/foundation/]

	Lab305 [http://www.lab305.com/]

Sponsorship Information

We are currently testing out small text based promotions for in-house services and sponsors of Read the Docs.
The promotional space will show on the bottom of the navigation menu on all built documentation.
It will only show if the navigation menu is short,
or the reader has scrolled down on the page past the end of the menu.

Sponsor Us

Contact us at hello@readthedocs.com for more information on sponsoring Read the Docs.
We’ll be publishing more information on our sponsorship plans here soon,
but we’re happy to accommodate anyone that shares our vision of open information for everyone.

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Read The Docs 1.0 documentation

Talks about Read the Docs

Note

This page is mainly just for showing a demo of updating docs, during a talk.

	PDX Python, May 2011

	OS Bridge, June 2011

	OSCON, July 2011

	Djangocon, July 2011

	OS Bridge, June 2014

Random

A test commit

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Read The Docs 1.0 documentation

Configuration of the production servers

This document is to help people who are involved in the production instance of Read the Docs running on readthedocs.org. It contains implementation details and useful hints for the people handling operations of the servers.

Deploying Code

This uses the fabfile.py located in the root of project.

Pushing code to servers. This updates code & media:

fab push

Restart the webs:

fab restart

Restart the build servers celery:

fab celery

Deploying Nginx

This uses the fabfile located in deploy/fab/fabfile.py to deploy the nginx configs in deploy/nginx/.

To update the nginx configs:

fab nginx_configs

To reload nginx after the configs have been updated:

fab nginx_reload

Elastic Search Setup

You need to install the ICU plugin to make ES work:

Use the correct path to the plugin executable that ships with ES.
/usr/share/elasticsearch/bin/plugin -install elasticsearch/elasticsearch-analysis-icu/2.3.0

from search.indexes import Index, PageIndex, ProjectIndex, SectionIndex

Create the index.
index = Index()
index_name = index.timestamped_index()
index.create_index(index_name)
index.update_aliases(index_name)
Update mapping
proj = ProjectIndex()
proj.put_mapping()
page = PageIndex()
page.put_mapping()
sec = SectionIndex()
sec.put_mapping()

Servers

The servers are themed somewhere between Norse mythology and Final Fantasy Aeons. I tried to keep them topical, and have some sense of their historical meaning and their purpose in the infrastructure.

Domain

	readthedocs.com

Load Balancer (nginx)

	Asgard

Important Files

	/etc/nginx/sites-enabled/lb

Important Services

	nginx running from init

Restart

/etc/init.d/nginx restart

Web

	Chimera

	Asgard

Important Files

	/etc/nginx/sites-enabled/readthedocs

	/home/docs/sites/readthedocs.org/run/gunicorn.log

Important Services

	nginx running from init

	gunicorn (running from supervisord as docs user)

Restart

/etc/init.d/nginx restart

Build

	Build

	Bari

Important Files

	/home/docs/sites/readthedocs.org/run/celery.log

Important Services

	celery (running from supervisord as docs user)

Restart

supervisorctl restart celery

Database

	DB

Important Services

	Postgres running under init

Elastic Search

	DB

	Backup

Solr

	DB

Redis

	Build

Site Checkout

/home/docs/sites/readthedocs.org/checkouts/readthedocs

Bash Aliases

	chk - Will take you to the checkout directory

	run - Will take you to the run directory

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Read The Docs 1.0 documentation

 Python Module Index

 b |
 c |
 d |
 p |
 v

 			

 		
 b	

 	[image: -]
 	
 bookmarks	

 	
 	
 bookmarks.admin	

 	
 	
 bookmarks.models	

 	
 	
 bookmarks.urls	

 	
 	
 bookmarks.views	

 	[image: -]
 	
 builds	

 	
 	
 builds.admin	

 	
 	
 builds.models	

 	
 	
 builds.urls	

 	
 	
 builds.views	

 			

 		
 c	

 	[image: -]
 	
 core	

 	
 	
 core.admin	

 	
 	
 core.forms	

 	
 	
 core.management.commands.build_files	

 	
 	
 core.management.commands.update_repos	

 	
 	
 core.middleware	

 	
 	
 core.models	

 	
 	
 core.views	

 			

 		
 d	

 	[image: -]
 	
 doc_builder	

 	
 	
 doc_builder.backends.sphinx	

 	
 	
 doc_builder.base	

 	
 	
 doc_builder.environments	

 			

 		
 p	

 	[image: -]
 	
 projects	

 	
 	
 projects.admin	

 	
 	
 projects.constants	

 	
 	
 projects.forms	

 	
 	
 projects.models	

 	
 	
 projects.search_indexes	

 	
 	
 projects.tasks	

 	
 	
 projects.utils	

 	
 	
 projects.views.private	

 	
 	
 projects.views.public	

 			

 		
 v	

 	[image: -]
 	
 vcs_support	

 	
 	
 vcs_support.base	

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Read The Docs 1.0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	accepts() (vcs_support.base.BaseContributionBackend class method)

 	all_active_versions() (projects.models.Project method)

 	

 	append_conf() (doc_builder.backends.sphinx.BaseSphinx method)

 	artifact_path() (projects.models.Project method)

B

 	

 	BaseBuilder (class in doc_builder.base)

 	BaseCLI (class in vcs_support.base)

 	BaseContributionBackend (class in vcs_support.base)

 	BaseSphinx (class in doc_builder.backends.sphinx)

 	BaseVCS (class in vcs_support.base)

 	Bookmark (class in bookmarks.models)

 	BookmarkAddView (class in bookmarks.views)

 	BookmarkListView (class in bookmarks.views)

 	BookmarkRemoveView (class in bookmarks.views)

 	bookmarks.admin (module)

 	bookmarks.models (module)

 	

 	bookmarks.urls (module)

 	bookmarks.views (module)

 	branches (vcs_support.base.BaseVCS attribute)

 	Build (class in builds.models)

 	build() (doc_builder.base.BaseBuilder method)

 	

 	(doc_builder.environments.DockerEnvironment method)

 	BuildCommand (class in doc_builder.environments)

 	builds.admin (module)

 	builds.models (module)

 	builds.urls (module)

 	builds.views (module)

C

 	

 	checkout() (vcs_support.base.BaseVCS method)

 	clean() (doc_builder.base.BaseBuilder method)

 	cnames_symlink_path() (projects.models.Project method)

 	Command (class in core.management.commands.update_repos)

 	commit (vcs_support.base.BaseVCS attribute)

 	container_id() (doc_builder.environments.DockerEnvironment method)

 	core.admin (module)

 	core.forms (module)

 	

 	core.management.commands.build_files (module)

 	core.management.commands.update_repos (module)

 	core.middleware (module)

 	core.models (module)

 	core.views (module)

 	create_build() (in module projects.tasks)

 	create_index() (doc_builder.base.BaseBuilder method)

D

 	

 	default_docs_kwargs() (in module core.views)

 	doc_builder.backends.sphinx (module)

 	doc_builder.base (module)

 	doc_builder.environments (module)

 	docker_build() (in module projects.tasks)

 	

 	DockerBuildCommand (class in doc_builder.environments)

 	DockerEnvironment (class in doc_builder.environments)

 	docs_dir() (doc_builder.base.BaseBuilder method)

 	done() (projects.views.private.ImportWizardView method)

E

 	

 	elastic_project_search() (in module projects.views.public)

 	EmailHook (class in projects.models)

 	ensure_version() (in module projects.tasks)

 	

 	env_settings() (doc_builder.environments.DockerEnvironment method)

 	EnvironmentBase (class in doc_builder.environments)

F

 	

 	FacetedSearchForm (class in core.forms)

 	FacetField (class in core.forms)

 	file_autocomplete() (in module projects.views.public)

 	find() (projects.models.Project method)

 	find_file() (in module projects.utils)

 	finished (builds.models.Build attribute)

 	force() (doc_builder.base.BaseBuilder method)

 	form_class (projects.views.private.ImportDemoView attribute)

 	full_build_path() (projects.models.Project method)

 	

 	full_dash_path() (projects.models.Project method)

 	full_doc_path() (projects.models.Project method)

 	full_epub_path() (projects.models.Project method)

 	full_find() (projects.models.Project method)

 	full_json_path() (projects.models.Project method)

 	full_latex_path() (projects.models.Project method)

 	full_man_path() (projects.models.Project method)

 	full_singlehtml_path() (projects.models.Project method)

G

 	

 	
 GET (HTTP method)

 	

 	/api/v1/

 	/api/v1/build/

 	/api/v1/build/{id}/

 	/api/v1/file/

 	/api/v1/file/anchor/?q={search_term}

 	/api/v1/file/search/?q={search_term}

 	/api/v1/file/{id}/

 	/api/v1/project/

 	/api/v1/project/{id}

 	/api/v1/user/

 	/api/v1/user/{id}/

 	/api/v1/version/

 	/api/v1/version/{id}

 	/api/v1/version/{id}/highest/

 	/api/v1/version/{id}/highest/{version}

 	get() (projects.views.private.ImportDemoView method)

 	get_branch_file() (vcs_support.base.BaseContributionBackend method)

 	get_build_path() (builds.models.Version method)

 	get_command() (doc_builder.environments.BuildCommand method)

 	get_contribution_backend() (vcs_support.base.BaseVCS method)

 	get_contribution_details() (core.models.UserProfile method)

 	get_default_branch() (projects.models.Project method)

 	get_default_version() (projects.models.Project method)

 	get_docs_url() (projects.models.Project method)

 	

 	get_form_data() (projects.views.private.ImportDemoView method)

 	get_form_kwargs() (projects.views.private.ImportDemoView method)

 	

 	(projects.views.private.ImportWizardView method)

 	get_latest_build() (projects.models.Project method)

 	get_production_media_path() (projects.models.Project method)

 	get_production_media_url() (projects.models.Project method)

 	get_suggestion() (in module core.views)

 	get_template_names() (projects.views.private.ImportWizardView method)

 	github_build() (in module core.views)

 	github_paginate() (in module projects.utils)

H

 	

 	
 HTTP response

 	

 	Retrieve List of Users

 	Retrieve a list of Builds.

 	Retrieve a list of File objects that contain the search term.

 	Retrieve a list of Files.

 	Retrieve a list of Projects.

 	Retrieve a list of Versions.

 	Retrieve a list of absolute URIs for files that contain the search term.

 	Retrieve a list of resources.

 	Retrieve a single Build.

 	Retrieve a single File.

 	Retrieve a single Project.

 	Retrieve a single User

 	Retrieve a single Version.

 	Retrieve highest version., [1]

I

 	

 	identifier_friendly (builds.models.Version attribute)

 	ImportDemoView (class in projects.views.private)

 	ImportedFile (class in projects.models)

 	

 	ImportView (class in projects.views.private)

 	ImportWizardView (class in projects.views.private)

 	is_advanced() (projects.views.private.ImportWizardView method)

M

 	

 	make_clean_working_dir() (vcs_support.base.BaseVCS method)

 	model (bookmarks.views.BookmarkListView attribute)

 	

 	(projects.views.private.ProjectDashboard attribute)

 	(projects.views.public.ProjectDetailView attribute)

 	

 	move() (doc_builder.base.BaseBuilder method)

P

 	

 	post() (bookmarks.views.BookmarkAddView method)

 	

 	(bookmarks.views.BookmarkRemoveView method)

 	Project (class in projects.models)

 	project_advanced() (in module projects.views.private)

 	project_badge() (in module projects.views.public)

 	project_delete() (in module projects.views.private)

 	project_download_media() (in module projects.views.public)

 	project_downloads() (in module projects.views.public)

 	project_edit() (in module projects.views.private)

 	project_import_bitbucket() (in module projects.views.private)

 	project_import_github() (in module projects.views.private)

 	project_manage() (in module projects.views.private)

 	project_versions() (in module projects.views.private)

 	

 	(in module projects.views.public)

 	ProjectBackendForm (class in projects.forms)

 	ProjectBasicsForm (class in projects.forms)

 	

 	ProjectDashboard (class in projects.views.private)

 	ProjectDetailView (class in projects.views.public)

 	ProjectRelationship (class in projects.models)

 	projects.admin (module)

 	projects.constants (module)

 	projects.forms (module)

 	projects.models (module)

 	projects.search_indexes (module)

 	projects.tasks (module)

 	projects.utils (module)

 	projects.views.private (module)

 	projects.views.public (module)

 	ProjectTriggerBuildMixin (class in projects.forms)

 	push_branch() (vcs_support.base.BaseContributionBackend method)

R

 	

 	record_build() (in module projects.tasks)

 	redirect_lang_slug() (in module core.views)

 	redirect_page_with_filename() (in module core.views)

 	redirect_project_slug() (in module core.views)

 	redirect_version_slug() (in module core.views)

 	response() (doc_builder.environments.EnvironmentBase method)

 	Retrieve a list of absolute URIs for files that contain the search term. (HTTP response)

 	Retrieve a list of Builds. (HTTP response)

 	Retrieve a list of File objects that contain the search term. (HTTP response)

 	Retrieve a list of Files. (HTTP response)

 	Retrieve a list of Projects. (HTTP response)

 	

 	Retrieve a list of resources. (HTTP response)

 	Retrieve a list of Versions. (HTTP response)

 	Retrieve a single Build. (HTTP response)

 	Retrieve a single File. (HTTP response)

 	Retrieve a single Project. (HTTP response)

 	Retrieve a single User (HTTP response)

 	Retrieve a single Version. (HTTP response)

 	Retrieve highest version. (HTTP response), [1]

 	Retrieve List of Users (HTTP response)

 	rtd_build_path() (projects.models.Project method)

 	run() (doc_builder.environments.BuildCommand method)

 	

 	(in module projects.utils)

 	(vcs_support.base.BaseCLI method)

S

 	

 	safe_write() (in module projects.utils)

 	save() (builds.models.Version method)

 	

 	(projects.forms.ProjectTriggerBuildMixin method)

 	search_autocomplete() (in module projects.views.public)

 	server_error() (in module core.views)

 	server_error_404() (in module core.views)

 	set_branch_file() (vcs_support.base.BaseContributionBackend method)

 	setup_environment() (in module projects.tasks)

 	

 	setup_vcs() (in module projects.tasks)

 	single_version_symlink_path() (projects.models.Project method)

 	SingleVersionMiddleware (class in core.middleware)

 	static_metadata_path() (projects.models.Project method)

 	subprojects_symlink_path() (projects.models.Project method)

 	supported_versions() (projects.models.Project method)

T

 	

 	tags (vcs_support.base.BaseVCS attribute)

 	

 	translations_symlink_path() (projects.models.Project method)

U

 	

 	update() (vcs_support.base.BaseVCS method)

 	update_docs_pull() (in module projects.tasks)

 	update_documentation_type() (in module projects.tasks)

 	

 	update_static_metadata() (in module projects.utils)

 	UserProfile (class in core.models)

V

 	

 	valid_value() (core.forms.FacetField method)

 	vcs_support.base (module)

 	VCSProject (class in vcs_support.base)

 	VCSVersion (class in vcs_support.base)

 	

 	Version (class in builds.models)

 	version_autocomplete() (in module projects.views.public)

 	VersionAlias (class in builds.models)

W

 	

 	WebHook (class in projects.models)

 	

 	wizard_class (projects.views.private.ImportView attribute)

 Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

 _images/translation_bar.png
8 Read the Docs v:latestv

Languages
en s fr ja es tr

_images/headers.png
Read the Dashboard Log Out

Header 1.

Header 2.

Header 3.
Header 4.
Header 5.

Paragraph. Aside.
Paragraph with link.

Paragrgh wt ighlghied et

Long form text. Read the Docs hosts documentation, making it fully searchable and easy to find. You can import
your docs using any major version control system, including Mercurial, Git, Subversion, and Bazaar. We support
links so your docs get built when you commit code. There's also support for versioning so you can build docs from

tags and branches of your code in your repository. A website is available.

It's free and simple. Read the Getting Started guide to get going!

Table header Table
header

Table element. Table
element

Table element. Table
element

Form Paragraph.

_images/screen_mobile.png
Getting Started

Write Your Docs

custom_installs/index.html

 Navigation

 		
 index

 		
 modules |

 		Read The Docs 1.0 documentation »

Info about custom installs

Read the Docs is open source, which means you can run your own version of it. There are many reasons to do this, the main one being if you want a private instance. If you have to keep everything behind a firewall or VPN, this is for you.

		Customizing your install
		Have a local settings file

		Adding your own title to pages

 © Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

custom_installs/customization.html

 Navigation

 		
 index

 		
 modules |

 		Read The Docs 1.0 documentation »

Customizing your install

Read the Docs has a lot of Interesting Settings that help customize your install.
This document will outline some of the more useful ways that these can be combined.

Have a local settings file

If you put a file named local_settings.py in the readthedocs/settings directory, it will override settings available in the base install.

Adding your own title to pages

This requires 2 parts of setup. First, you need to add a custom TEMPLATE_DIRS [http://django.readthedocs.org/en/latest/ref/settings.html#std:setting-TEMPLATE_DIRS] setting that points at your template overrides. Then, in those template overrides you have to insert your logo where the normal RTD logo goes.

Note

This works for any setting you wish to change.

Example local_settings.py:

import os

Directory that the project lives in, aka ../..
SITE_ROOT = '/'.join(os.path.dirname(__file__).split('/')[0:-2])

TEMPLATE_DIRS = (
 "%s/var/custom_templates/" % SITE_ROOT, # Your custom template directory, before the RTD one to override it.
 '%s/readthedocs/templates/' % SITE_ROOT, # Default RTD template dir
)

Example base.html in your template overrides:

{% extends "/home/docs/checkouts/readthedocs.org/readthedocs/templates/base.html" %}
{% load i18n %}

{% block branding %}{% trans "My sweet site" %} {% endblock %}

You can of course override any block in the template. If there is something that you would like to be able to customize, but isn’t currently in a block, please submit an issue [https://github.com/rtfd/readthedocs.org/issues?sort=created&state=open].

 © Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		
 modules |

 		Read The Docs 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

gsoc.html

 Navigation

 		
 index

 		
 modules |

 		Read The Docs 1.0 documentation »

Google Summer of Code

Read the Docs is hoping to participate in the Google Summer of Code in 2014.
This page will contain all the information for students and anyone else interested in helping.

Note

We are currently not planning on working on GSOC this year.

Required Skills

Incoming students will need the following skills:

		Intermediate python programming

		Familiarity with Markdown, reStructuredText, or some other plain text markup language

		Familiarity with git, or some other source control

		Ability to set up your own development environment for Read the Docs

		An interest in documentation and improving open source documentation tools would be great too!

We’re happy to help you get up to speed, but the more you are able to demonstrate ability in advance, the more likely we are to choose your application!

Getting Started

The Installation doc is probably the best place to get going.
It will walk you through getting a basic environment for Read the Docs setup.

Then you can look through our Contributing to Read the Docs doc for information on how to get started contributing to RTD.
If you try and submit a patch,
or at least comment on a bug before applying,
you will be much more likely to be accepted.

Want to get involved?

If you’re interested in participating in GSoC 2014 as a student, mentor, or interested community member, you should join the mailing list [https://groups.google.com/forum/#!forum/readthedocs] and post any questions, comments, etc. you may have

In addition you may be able to find us on IRC at #readthedocs on irc.freenode.org. If no one is available to answer your question, please be patient and post it to the mailing list as well.

Project Ideas

We have some medium sized projects sketched out in our issue tracker with the tag Feature Overview.
Looking through these issues [https://github.com/rtfd/readthedocs.org/issues?direction=desc&labels=Feature+Overview&page=1&sort=updated&state=open] is a good place to start.

Possible Mentors

		Eric Holscher

		Wraithan McDonald

		Justin Abrahams

		Jannis Leidel

Thanks

This page was heavily inspired by Mailman’s similar GSOC page [http://wiki.list.org/display/DEV/Google+Summer+of+Code+2014].
Thanks for the inspiration.

 © Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

user-defined-redirects.html

 Navigation

 		
 index

 		
 modules |

 		Read The Docs 1.0 documentation »

User-defined Redirects

Prefix Redirects

The most useful and requested feature of redirects was when migrating to Read the Docs from an old host.
You would have your docs served at a previous URL,
but that URL would break once you moved them.
Read the Docs includes a language and version slug in your documentation,
but not all documentation is hosted this way.

Say that you previously had your docs hosted at http://docs.example.com/dev/,
you move docs.example.com to point at Read the Docs.
So users will have a bookmark saved to a page at http://docs.example.com/dev/install.html.

You can now set a Prefix Redirect that will redirect all 404’s with a prefix to a new place.
The example configuration would be:

Type: Prefix Redirect
From URL: /dev/

Your users query would now redirect in the following manner:

docs.example.com/dev/install.html ->
docs.example.com/en/latest/install.html

Where en and latest are the default language and version values for your project.

Page Redirects

A more specific case is when you move a page around in your docs.
The old page will start 404’ing,
and your users will be confused.
Page Redirects let you redirect a specific page.

Say you move the example.html page into a subdirectory of examples: examples/intro.html.
You would set the following configuration:

Type: Page Redirect
From URL: /example.html
To URL: /examples/intro.html

Note that the / at the start doesn’t count the /en/latest,
but just the user-controlled section of the URL.

Sphinx Redirects

We also support redirects for changing the type of documentation Sphinx is building.
If you switch between HTMLDir and HTML, your URL’s will change.
A page at /en/latest/install.html will be served at /en/latest/install/,
or vice versa.
The built in redirects for this will handle redirecting users appropriately.

Implementation

Since we serve documentation in a highly available way,
we do not run any logic when we’re serving documentation.
This means that redirects will only happen in the case of a 404 File Not Found.

In the future we might implement redirect logic in Javascript,
but this first version is only implemented in the 404 handlers.

Feature Requests

 © Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

story.html

 Navigation

 		
 index

 		
 modules |

 		Read The Docs 1.0 documentation »

The Story of Read the Docs

Documenting projects is hard, hosting them shouldn’t be. Read the Docs was created to make hosting documentation simple.

Read the Docs was started [http://ericholscher.com/blog/2010/aug/16/announcing-read-docs/] with a couple main goals in mind. The first goal was
to encourage people to write documentation, by removing the barrier of entry to
hosting. The other goal was to create a central platform for people to find
documentation. Having a shared platform for all documentation allows for
innovation at the platform level, allowing work to be done once and benefit
everyone.

Documentation matters [http://ericholscher.com/blog/2012/jan/22/why-read-docs-matters/], but its often overlooked. We think that we can help a
documentation culture flourish.
Great projects, such as Django [https://docs.djangoproject.com/] and SQLAlchemy [http://docs.sqlalchemy.org/], and projects from companies
like Mozilla [http://mozilla.org], are already using Read the Docs to serve their documentation to
the world.

The site has grown quite a bit over the past year.
Our look back at 2013 [http://ericholscher.com/blog/2013/dec/23/read-the-docs-2013-stats/] shows some numbers that show our progress.
The job isn’t anywhere near done yet,
but it’s a great honor to be able to have such an impact already.

We plan to keep building a great experience for people hosting their docs with us,
and for users of the documentation that we host.

 © Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

automatic-redirects.html

 Navigation

 		
 index

 		
 modules |

 		Read The Docs 1.0 documentation »

Automatic Redirects

Read the Docs supports redirecting certain URLs automatically.
This is an overview of the set of redirects that are fully supported and will work into the future.

Root URL

A link to the root of your documentation will redirect to the default version,
as set in your project settings.
For example:

pip.readthedocs.org -> pip.readthedocs.org/en/latest/
www.pip-installer.org -> www.pip-installer.org/en/latest

This only works for the root url, not for internal pages. It’s designed to redirect people from http://pip.readthedocs.org/ to the default version of your documentation, since serving up a 404 here would be a pretty terrible user experience. (If your “develop” branch was designated as your default version, then it would redirect to http://pip.readthedocs.org/en/develop.) But, it’s not a universal redirecting solution. So, for example, a link to an internal page like http://pip.readthedocs.org/usage.html doesn’t redirect to http://pip.readthedocs.org/en/latest/usage.html.

The reasoning behind this is that RTD organizes the URLs for docs so that multiple translations and multiple versions of your docs can be organized logically and consistently for all projects that RTD hosts. For the way that RTD views docs, http://pip.readthedocs.org/en/latest/ is the root directory for your default documentation in English, not http://pip.readthedocs.org/. Just like http://pip.readthedocs.org/en/develop/ is the root for your development documentation in English.

Among all the multiple versions of docs, you can choose which is the “default” version for RTD to display, which usually corresponds to the git branch of the most recent official release from your project.

rtfd.org

Links to rtfd.org are treated the same way as above.
They redirect the root URL to the default version of the project.
They are intended to be easy and short for people to type.

Supported Top-Level Redirects

Note

These “implicit” redirects are supported for legacy reasons.
We will not be adding support for any more magic redirects.
If you want additional redirects,
they should live at a prefix like Redirecting to a Page

The main challenge of URL routing in Read the Docs is handling redirects correctly. Both in the interest of redirecting older URLs that are now obsolete, and in the interest of handling “logical-looking” URLs (leaving out the lang_slug or version_slug shouldn’t result in a 404), the following redirects are supported:

/ -> /en/latest/
/en/ -> /en/latest/
/latest/ -> /en/latest/

The language redirect will work for any of the defined LANGUAGE_CODES we support.
The version redirect will work for supported versions.

Redirecting to a Page

You can link to a specific page and have it redirect to your default version.
This is done with the /page/ URL.
For example:

pip.readthedocs.org/page/quickstart.html -> pip.readthedocs.org/en/latest/quickstart.html
www.pip-installer.org/page/quickstart.html -> www.pip-installer.org/en/latest/quickstart.html

This allows you to create links that are always up to date.

Another way to handle this is the latest version.
You can set your latest version to a specific version and just always link to latest.

 © Copyright 2010, Eric Holscher, Charlie Leifer, Bobby Grace.
 Created using Sphinx 1.2.2.

_static/file.png

_static/minus.png

_static/comment-bright.png

_static/plus.png

_static/comment.png

_static/up.png

_static/down.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-close.png

_static/up-pressed.png

