
RDMO Documentation Documentation
Release 0.9.2

RDMO project

Dec 07, 2017

Documentation

1 Installation 3
1.1 Install prerequisites . 3
1.2 Obtaining the app directory . 5
1.3 Install python packages . 5
1.4 Setup the application . 6

2 Deployment 7
2.1 Development server . 7
2.2 Apache and mod_wsgi . 7
2.3 nginx and gunicorn . 9

3 Configuration 11
3.1 General settings . 11
3.2 Databases . 12
3.3 E-Mail . 14
3.4 Authentication . 15
3.5 Themes . 19
3.6 Export formats . 19
3.7 Cache . 20
3.8 Logging . 20

4 Administration 23
4.1 Site configuration . 23
4.2 Users and Groups . 24
4.3 Social accounts . 25
4.4 Auth Tokens . 25

5 Management 27
5.1 Questions . 28
5.2 Domain . 32
5.3 Options . 34
5.4 Conditions . 36
5.5 Views . 38
5.6 Tasks . 42
5.7 Export and Import . 43

6 Upgrade 45

i

6.1 Upgrade to version 0.9.0 . 45

7 Development 47
7.1 Testing . 47
7.2 Internationalisation . 47
7.3 Figures . 48
7.4 Documentation . 48

ii

RDMO Documentation Documentation, Release 0.9.2

RDMO is a tool to support the systematic planning, organisation and implementation of the data management through-
out the course of a research project. RDMO is funded by the Deutsche Forschungsgemeinschaft (DFG).

Home Page https://rdmorganiser.github.io

Source code https://github.com/rdmorganiser/rdmo

Documentation http://rdmo.readthedocs.io

Demo https://rdmo.aip.de

Warning: This software is currently under development and not production ready.

Documentation 1

https://rdmorganiser.github.io
https://github.com/rdmorganiser/rdmo
http://rdmo.readthedocs.io
https://rdmo.aip.de

RDMO Documentation Documentation, Release 0.9.2

2 Documentation

CHAPTER 1

Installation

For demonstration, development or testing purposes, RDMO can be installed on Linux, Windows and macOS. If you,
however, to set up a production enviroment, serving RDMO over a Network or the Internet, we strongly suggest that
you use a recent Linux distribution, namely CentOS7, Debian 8 or 9, or Ubuntu 16.04.3 LTS (Xenial Xerus).

The code is mainly written in Python and should work with a Python higher than 3.4. RDMO works also on Python
2.7. Please note that for a CentOS7/Apache setup, only Python 2.7 is possible.

An installation of RDMO contains of three parts:

1. A directory which holds all the settings and customisations, custom to your installation of RDMO. We will call
this directory rdmo-app, but you can use any name you see fit.

2. The actual rdmo package, which centrally maintained by the RDMO team, and is installed as a dependency in
a virtual environement.

3. A database to store the content generated by the users of your RDMO installation. Currently, we support
Postgres, MySQL, and SQLite.

This chapter shows how these components are set up. Optional components can be installed afterwards and are covered
under Configuration.

For testing and development, you can run RDMO using your regular user account. On a production system, a dedicated
user account should be used. We suggest to create a user called rdmo with the group rdmo and the home directory
/srv/rdmo. We will use this user throughout this documantation.

Do not use the root user to run RDMO! It is a bad idea anyway and several steps of the installation will not work.
sudo is used in the installation when needing root-privileges to install packages.

1.1 Install prerequisites

Installing the prerequisites for RDMO differs on the different operating systems and is therefore covered in different
sections.

3

RDMO Documentation Documentation, Release 0.9.2

1.1.1 Linux

We recommend to install the prerequisites using the packaging system of your distribution. On Debian/Ubuntu use:

sudo apt install build-essential libxml2-dev libxslt-dev zlib1g-dev \
python3-dev python3-pip python3-venv \
git pandoc

optional, for pdf output
sudo apt install texlive texlive-xetex

on RHEL/CentOS use:

sudo yum install gcc gcc-c++ libxml2-devel libxslt-devel \
python34-devel python34-pip python34-virtualenv \
git pandoc

optional, for pdf output
sudo yum install texlive texlive-xetex texlive-mathspec texlive-euenc \

texlive-xetex-def texlive-xltxtra

On Ubuntu 14.04, python3-venv is not available. Please use python3.5-venv instead.

On RHEL/CentOS selinux is enabled by default. This can result in unexpected errors, depending on where you
store the RDMO source code on the system. While the prefereble way is to configure it correctly (which is beyond
the scope of this documentation), you can also set selinux to permissive or disabled in /etc/selinux/
config (and reboot afterwards).

If you want to use Python 2.7 instead of Python 3, please use the corresponding packages:

apt install python-dev python-pip python-virtualenv # Debian/Ubuntu
yum install python-devel python-pip python-virtualenv # RHEL/CentOS

1.1.2 macOS

We recommend to install the prerequisites using brew:

brew install python3 # for python 3
brew install python # for python 2
brew install git
brew install pandoc

optional, for pdf export
brew install texlive

1.1.3 Windows

On Windows, the software prerequisites need to be downloaded and installed from their particular web sites.

For python:

• download from https://www.python.org/downloads/windows/

• we recommend a version >= 3.4

• don’t forget to check ‘Add Python to environment variables’ during setup

4 Chapter 1. Installation

http://brew.sh
https://www.python.org/downloads/windows/

RDMO Documentation Documentation, Release 0.9.2

For git:

• download from https://git-for-windows.github.io/

For the Microsoft C++ Build Tools:

• download from http://landinghub.visualstudio.com/visual-cpp-build-tools

For pdflatex (optional, for pdf export):

• download from http://miktex.org/

All further steps need to be performed using the windows shell cmd.exe. You can open it from the Start-Menu.

1.2 Obtaining the app directory

The next step is to create the rdmo-app directory by clone the corresponding repository:

git clone https://github.com/rdmorganiser/rdmo-app

Note that this is not the main rdmo, repository, only the configuration files. Inside this directory, you will find:

• a config directory, containing the main settings of your RDMO installation,

• a requirements directory, containing shortcuts to install the diffrent mandatory and optional dependencies,
and

• a manage.py script, which is the main way to interact with your RDMO installation on the command line.
Most of the following steps will use this script.

The rdmo-app directory corresponds to a project in Django terms.

1.3 Install python packages

After you have obtained the rdmo-app, you need to install the rdmo package and the other python dependencies.

Change to the rdmo-app directory and create a virtualenv (this is done as your user or the created rdmo user, not as
root):

cd rdmo-app

python3 -m venv env # for python3
virtualenv env # for python2.7

source env/bin/activate # on Linux or macOS
call env\Scripts\activate.bat # on Windows

pip install --upgrade pip setuptools # update pip and setuptools

After the virtual environment is activated, the rdmo package can be installed using pip:

pip install rdmo

On windows, pandoc needs to be installed in an additional step:

only on Windows
python -c "import pypandoc; pypandoc.download_pandoc()"

1.2. Obtaining the app directory 5

https://git-for-windows.github.io/
http://landinghub.visualstudio.com/visual-cpp-build-tools
http://miktex.org/
https://docs.djangoproject.com/en/1.11/intro/tutorial01
https://virtualenv.readthedocs.org

RDMO Documentation Documentation, Release 0.9.2

The virtual environment encapsulates your RDMO installation from the rest of the system. This makes it possible to
run several applications with different python dependencies on one machine and to install the dependencies without
root permissions.

Important: The virtual enviroment needs to be activated, using source env/bin/activate or call
env\Scripts\activate.bat, everytime a new terminal is used.

1.4 Setup the application

To set up the application, create a new file config/settings/local.py in your cloned rdmo-app direc-
tory. For the example user with the home /srv/rdmo, this would now be /srv/rdmo/rdmo-app/config/
settings/local.py.

You can use config/settings/sample.local.py as template, i.e.:

cp config/settings/sample.local.py config/settings/local.py # on Linux or macOS
copy config\settings\sample.local.py config\settings\local.py # on Windows

Most of the settings of your RDMO instance are specified in this file. The different settings are explained in detail later
in the documentation. For a minimal configuration, you need to set DEBUG = True to see verbose error messages
and serve static files, and SECRET_KEY to a long random string, which you will keep secret. Your database connection
is configured using the DATABASES variable. Database configuration is covered later in the documentation. If no
DATABASE setting is given sqlite3 will be used as database backend.

Then, initialize the database of the application, using:

python manage.py migrate # initializes the database
python manage.py create_groups # creates groups with different permissions
python manage.py createsuperuser # creates the admin user
python manage.py download_vendor_files # dowloads front-end files from the CDN

After these steps, RDMO can be run using Djangos intergrated development server:

python manage.py runserver

Then, RDMO is available on http://127.0.0.1:8000 in your (local) browser. The different ways RDMO can be deployed
are covered in the next chapter.

6 Chapter 1. Installation

http://127.0.0.1:8000

CHAPTER 2

Deployment

As already mentioned, RDMO can be run in two different setups:

• for development or testing, using the build-in Django development server.

• in production, using a web server and the wsgi protocoll. We suggest to use one of the two following setups:

– Apache2 and mod_wsgi

– nginx, gunicorn and systemd

2.1 Development server

Django comes with an integrated development server. It can be started using:

python manage.py runserver

Then, RDMO is available on http://localhost:8000 in your (local) browser. The development server is not suited to
serve the application to the internet.

If you want the development server to be accessible from other machines you need to use:

python manage.py runserver 0.0.0.0:8000

where 8000 is the port and can be changed according to your needs. Please do not use this setup for more than testing
and development, it is not secure.

More information about the development server can be found in the Django documentation.

2.2 Apache and mod_wsgi

In production, you should create a dedicated user for RDMO. All steps for the installation, which do not need root
access, should be done using this user. As before, we assume this user is called rdmo and it’s home is /srv/rdmo
and therefore your rdmo-app is located in /srv/rdmo/rdmo-app.

7

https://docs.djangoproject.com/en/1.10/howto/deployment/wsgi/
http://localhost:8000
https://docs.djangoproject.com/en/1.10/intro/tutorial01/#the-development-server

RDMO Documentation Documentation, Release 0.9.2

Install the Apache server and mod_wsgi using:

Debian/Ubuntu
sudo apt install apache2 libapache2-mod-wsgi-py3 # for python3
sudo apt install apache2 libapache2-mod-wsgi # for python2.7

CentOS
sudo yum install httpd mod_wsgi # only for python2.7

Next create a virtual host configuration. Sadly, the different distributions use different versions of Apache and
mod_wsgi and therefore require a slightly different setup:

For Debian/Ubuntu use:

in /etc/apache2/sites-available/000-default.conf
<VirtualHost *:80>

ServerAdmin webmaster@localhost
DocumentRoot /var/www/html

ErrorLog ${APACHE_LOG_DIR}/error.log
CustomLog ${APACHE_LOG_DIR}/access.log combined

Alias /static /srv/rdmo/rdmo-app/static_root/
<Directory /srv/rdmo/rdmo-app/static_root/>

Require all granted
</Directory>

WSGIDaemonProcess rdmo user=rdmo group=rdmo \
home=/srv/rdmo/rdmo-app python-home=/srv/rdmo/rdmo-app/env

WSGIProcessGroup rdmo
WSGIScriptAlias / /srv/rdmo/rdmo-app/config/wsgi.py process-group=rdmo

<Directory /srv/rdmo/rdmo-app/config/>
<Files wsgi.py>

Require all granted
</Files>

</Directory>
</VirtualHost>

for CentOS 7:

in /etc/httpd/conf.d/vhosts.conf on RHEL/CentOS
<VirtualHost *:80>

ServerAdmin webmaster@localhost

DocumentRoot /var/www/html/

Alias /static /srv/rdmo/rdmo-app/static_root/
<Directory /srv/rdmo/rdmo-app/static_root/>

Require all granted
</Directory>

WSGIDaemonProcess rdmo user=rdmo group=rdmo home=/srv/rdmo/rdmo-app \
python-path=/srv/rdmo/rdmo-app:/srv/rdmo/rdmo-app/env/lib/python2.7/site-

→˓packages
WSGIProcessGroup rdmo
WSGIScriptAlias / /srv/rdmo/rdmo-app/config/wsgi.py process-group=rdmo

<Directory /srv/rdmo/rdmo-app/config/>

8 Chapter 2. Deployment

RDMO Documentation Documentation, Release 0.9.2

<Files wsgi.py>
Require all granted

</Files>
</Directory>

</VirtualHost>

Restart the Apache server. RDMO should now be available on YOURDOMAIN. Note that the Apache user needs to
have access to /srv/rdmo/rdmo-app/static_root/.

As you can see from the virtual host configurations, the static assets, like CSS and JavaScript files are served indepen-
dent from the WSGI-python script. In order to do so they need to be gathered in the static_root directory. This
can be archived by running:

python manage.py collectstatic

in your virtual environment.

In order to apply changes to the RDMO code (e.g. after an upgrade) the webserver needs to be reloaded or the
config/wsgi.py file needs to apear modified. This can be done using the touch command:

touch config/wsgi.py

Also, the collectstatic command has to be executed again. Both can be achived using:

python manage.py deploy

in your virtual environment.

2.3 nginx and gunicorn

As mentioned several times, you should create a dedicated user for RDMO. All steps for the installation, which do
not need root access, should be done using this user. Here we assume this user is called rdmo and it’s home is
/srv/rdmo and therefore your rdmo-app is located in /srv/rdmo/rdmo-app.

First install gunicorn inside your virtual environment:

pip install -r requirements/gunicorn.txt

Then, test gunicorn using:

gunicorn --bind 0.0.0.0:8000 config.wsgi:application

This should serve the application like runserver, but without the static assets, like CSS files and images. After the
test kill the gunicorn process again.

Now, create a systemd service file for RDMO. Systemd will launch the gunicorn process on startup and keep running.
Create a new file in /etc/systemd/system/rdmo.service and enter (you will need root/sudo permissions for that):

[Unit]
Description=RDMO gunicorn daemon
After=network.target

[Service]
User=rdmo
Group=rdmo
WorkingDirectory=/srv/rdmo/rdmo-app

2.3. nginx and gunicorn 9

RDMO Documentation Documentation, Release 0.9.2

ExecStart=/srv/rdmo/rdmo-app/env/bin/gunicorn --bind unix:/srv/rdmo/rdmo.sock config.
→˓wsgi:application

[Install]
WantedBy=multi-user.target

This service needs to be started and enables like any other service:

sudo systemctl start rdmo
sudo systemctl enable rdmo

Next, install nginx

sudo apt install nginx # on Debian/Ubuntu
sudo yum install nginx # on RHEL/CentOS

Edit the nginx configuration as follows (again with root/sudo permissions):

in /etc/nginx/sites-available/default on Debian/Ubuntu
in /etc/nginx/conf.d/vhost.conf on RHEL/CentOS
server {

listen 80;
server_name YOURDOMAIN;

location / {
proxy_pass http://unix:/srv/rdmo/rdmo.sock;

}
location /static/ {

alias /srv/rdmo/rdmo-app/static_root/;
}

}

Restart nginx. RDMO should now be available on YOURDOMAIN. Note that the unix socket /srv/rdmo/rdmo.
sock needs to be accessible by nginx.

As you can see from the virtual host configurations, the static assets, like CSS and JavaScript files are served indepen-
dent from the reverse proxy to the gunicorn process. In order to do so they need to be gathered in the static_root
directory. This can be archived by running:

python manage.py collectstatic

in your virtual environment.

In order to apply changes to the RDMO code (e.g. after an upgrade) the gunicorn process need to be restarted:

sudo systemctl restart rdmo

10 Chapter 2. Deployment

CHAPTER 3

Configuration

The RDMO application uses the Django settings module for it’s configuration. To seperate the base configuration and
your local adjustments and secret information (e.g. database connections), RDMO splits the settings into two files:

• config/settings/base.py, which is part of the git repository and maintained by the RDMO develop-
ment team.

• config/settings/local.py, which is ignored by git and should be edited by you.

As part of the installation config/settings/local.py should be created from the template config/
settings/sample.local.py.

While technically the local settings file config/settings/local.py can be used to override all of the set-
tings in config/settings/sample.local.py, it should be used to customize the settings already available in
config/settings/sample.local.py.

This comprises general settings, database connections, how to send emails, the different authentication methods, the
usage of themes, and caches.

3.1 General settings

A few general setting should be included in your config/settings/local.py. The first, and probably most
important one is if you run RDMO in debug mode or not:

DEBUG = True

In debug mode, verbose error pages are shown in the case something goes wrong and static assets like CSS and
JavaScript files are found by the development server automatically. The debug mode must not be enabled when
running RDMO in production connected to the internet.

Django needs a secret key, which “should be set to a unique, unpredictable value”:

SECRET_KEY = 'this is not a very secret key'

11

https://docs.djangoproject.com/en/1.10/topics/settings
https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-DEBUG
https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-SECRET_KEY

RDMO Documentation Documentation, Release 0.9.2

This key must be kept secret since otherwise many of Django’s security protections fail.

In production, Django only allows requests to certain urls, which you need to specify:

ALLOWED_HOSTS = ['localhost', 'rdmo.example.com']

If you want to run RDMO under an alias like http://example.com/rdmo you need to set the base URL:

BASE_URL = '/rdmo'

Furthermore, you might want to choose the main language for RDMO and the timezone:

LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'Europe/Berlin'

3.2 Databases

RDMO can be used with all database supported by the Django framework. The particular database connection is
defined using the setting DATABASE. An overview about the Django database settings is given here. In the following,
we show the settings for PostgreSQL, MySQL, and SQLite.

3.2.1 PostgreSQL

PostgreSQL can be installed using:

Debian/Ubuntu
sudo apt install postgresql

CentOS
sudo yum install postgresql-server postgresql-contrib
sudo postgresql-setup initdb
sudo systemctl start postgresql
sudo systemctl enable postgresql

To use PostgreSQL as your database backend install psycopg2 in your virtual environment:

pip install -r requirements/postgres.txt

Then, add the following to your config/settings/local.py:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'NAME': 'rdmo',
'USER': 'rdmo',
'PASSWORD': '',
'HOST': '',
'PORT': '',

}
}

where Name is the name of the database, USER the PostgreSQL user, PASSWORD her password, HOST the database
host, and PORT the port PostgreSQL is listening on. Note that, depending on your setup, not all settings are needed.
If you are using the peer authentication methods you only need the NAME and ENGINE settings. The user and the
database can be created using:

12 Chapter 3. Configuration

https://docs.djangoproject.com/en/1.10/ref/settings/#allowed-hosts
http://example.com/rdmo
https://docs.djangoproject.com/en/1.10/ref/settings/#databases

RDMO Documentation Documentation, Release 0.9.2

sudo su - postgres
createuser rdmo
createdb rdmo -O rdmo

This assumes peer authentication for the rdmo user.

The command

python manage.py migrate

should now create the RDMO database tables on PostgreSQL.

3.2.2 MySQL

MySQL (or community-developed fork MariaDB) can be installed using:

Debian/Ubuntu
sudo apt install mysql-client mysql-server libmysqlclient-dev # for MySQL
sudo apt install mariadb-client mariadb-server libmariadbclient-dev # for MariaDB

CentOS
sudo yum install -y mysql mysql-server mysql-devel # for
→˓MySQL
sudo yum install -y mariadb mariadb-server mariadb-devel # for
→˓MariaDB
sudo systemctl enable mariadb
sudo systemctl start mariadb
sudo mysql_secure_installation

To use MySQL as your database backend install mysqlclient in your virtual environment:

pip install -r requirements/mysql.txt

Then, add the following to your config/settings/local.py:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.mysql',
'NAME': 'rdmo',
'USER': 'rdmo',
'PASSWORD': 'not a good password',
'HOST': '',
'PORT': '',
'OPTIONS': {

'unix_socket': '',
}

}
}

to your config/settings/local.py. Here, Name is the name of the database, USER the MySQL user,
PASSWORD her password, HOST the database host, and PORT the port MySQL is listening on. If you don’t use
/tmp/mysql.sock, you can use unix_socket to specify its path. The user and the database can be created
using:

CREATE USER 'rdmo'@'localhost' identified by 'not a good password';
GRANT ALL ON `rdmo`.* to 'rdmo'@'localhost';
CREATE DATABASE `rdmo`;

3.2. Databases 13

RDMO Documentation Documentation, Release 0.9.2

on the MySQL-shell.

The command

python manage.py migrate

should now create the RDMO database tables on MySQL.

3.2.3 SQLite

SQLite ist the default option in RDMO and configured in config/settings/base.py. We recommend it only
for a development/testing setup. It can be configured in config/settings/local.py by adding:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.sqlite3',
'NAME': '',

}
}

where Name is the name of database file.

The command

python manage.py migrate

should now create RDMO database tables in the specified database file.

3.3 E-Mail

RDMO needs to send E-Mails to its users. The connection to the SMPT server is configured several settings in your
config/settings/local.py:

EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
EMAIL_HOST = 'localhost'
EMAIL_PORT = '25'
EMAIL_HOST_USER = ''
EMAIL_HOST_PASSWORD = ''
EMAIL_USE_TLS = False
EMAIL_USE_SSL = False

DEFAULT_FROM_EMAIL = ''

Here, EMAIL_HOST is the URL or IP of the SMTP server, EMAIL_PORT is the port it is listening on (usually 25,
465, or 587), and EMAIL_HOST_USER and EMAIL_HOST_PASSWORD are credentials if the SMTP server needs
authentication.

For a STARTTLS connection (usually on port 587) EMAIL_USE_TLS needs to be set to True, while
EMAIL_USE_SSL needs to be set to True for an implicit TLS/SSL connection (usually on port 465).

DEFAULT_FROM_EMAIL sets the FROM field for the emails send to the users.

For a development/testing setup a simple e-mail backend, which only displays the mail on the terminal can be used:

14 Chapter 3. Configuration

RDMO Documentation Documentation, Release 0.9.2

EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'
EMAIL_FROM = 'info@example.com'

This is also the default backend, if no email settings are added to config/settings/local.py.

3.4 Authentication

RDMO has three main modes for Authentication:

• Regular user accounts with registration using the django-allauth library.

• Using a (read-only) connection to a LDAP server

• Installing a Shibboleth service provider next to RDMO and connect to an identity provider or even a whole
Shibboleth federation.

Important: These modes are only tested individually and may be treated mutually exclusive (unless proven other-
wise).

If none of the modes is enabled, only a very basic login will be available and users need to be created using the Django
Admin Interface.

3.4.1 django-allauth

RDMO uses the excellent django-allauth as its main authorization library. It enables workflows for user registration
and password retrieval, as well as authentication from 3rd party sites using OAUTH2.

Accounts

To enable regular accounts in RDMO add:

from rdmo.core.settings import INSTALLED_APPS, AUTHENTICATION_BACKENDS

ACCOUNT = True
ACCOUNT_SIGNUP = True

INSTALLED_APPS += [
'allauth',
'allauth.account',

]

AUTHENTICATION_BACKENDS.append('allauth.account.auth_backends.AuthenticationBackend')

to your config/settings/local.py. The setting ACCOUNT = True enables the general django-allauth fea-
tures in RDMO, while ACCOUNT_SIGNUP = True enables new users to register with your RDMO instance. The
last lines enable django-allauth to be used by RDMO.

The behavior of django-allauth can be further configured by the settings documented in the django-allauth
documentation. RDMO sets a few default which can be found in config/settings/base.py.

Social accounts

In order to use 3rd party accounts (facebook, github, etc.) with RDMO add:

3.4. Authentication 15

http://www.intenct.nl/projects/django-allauth
http://django-allauth.readthedocs.io/en/latest/configuration.html
http://django-allauth.readthedocs.io/en/latest/configuration.html

RDMO Documentation Documentation, Release 0.9.2

from rdmo.core.settings import INSTALLED_APPS, AUTHENTICATION_BACKENDS

ACCOUNT = True
ACCOUNT_SIGNUP = True
SOCIALACCOUNT = True

INSTALLED_APPS += [
'allauth',
'allauth.account',
'allauth.socialaccount'
'allauth.socialaccount.providers.facebook',
'allauth.socialaccount.providers.github',
'allauth.socialaccount.providers.google',
'allauth.socialaccount.providers.orcid',
'allauth.socialaccount.providers.twitter',
...

]

AUTHENTICATION_BACKENDS.append('allauth.account.auth_backends.AuthenticationBackend')

to your config/settings/local.py. The setting SOCIALACCOUNT = True is used by RDMO to show
certain parts of the user interface connected to 3rd party accounts, while as before, the lines after INSTALLED_APPS
enable the feature to be used by RDMO. Each provider has a seperate app you need to add to INSTALLED_APPS. A
list of all providers supported by django-allauth can be found here.

Once the installation is complete, the credentials of your OAUTH provider need to be entered in the admin interface.
This is covered in the administration chapter of this documentation.

3.4.2 LDAP

In order to use a LDAP backend with RDMO you need to install some prerequistes. On Debian/Ubuntu you can install
them using:

sudo apt-get install libsasl2-dev python-dev libldap2-dev libssl-dev

On the python side, we use django-auth-ldap to connect to the LDAP server. As before, it should be installed inside
the virtual environment created for RDMO using:

pip install -r requirements/ldap.txt

LDAP installations can be very different and we only discuss one particular example. We assume that the LDAP
service is running on ldap.example.com. RDMO needs a System Account. In order to create it, run:

ldapmodify -x -D 'cn=Directory Manager' -W

on the machine running the LDAP servere and type in:

dn: uid=system,cn=sysaccounts,cn=etc,dc=example,dc=com
changetype: add
objectclass: account
objectclass: simplesecurityobject
uid: rdmo
userPassword: YOURPASSWORD
passwordExpirationTime: 20380119031407Z
nsIdleTimeout: 0

16 Chapter 3. Configuration

http://django-allauth.readthedocs.io/en/latest/providers.html
http://pythonhosted.org/django-auth-ldap

RDMO Documentation Documentation, Release 0.9.2

and end with a blank line followed by ctrl-d.

Then, in your config/settings/local.py add or uncomment:

import ldap
from django_auth_ldap.config import LDAPSearch
from rdmo.core.settings import AUTHENTICATION_BACKENDS

PROFILE_UPDATE = False

AUTH_LDAP_SERVER_URI = "ldap://ldap.example.com"
AUTH_LDAP_BIND_DN = "cn=rdmo,dc=ldap,dc=example,dc=com"
AUTH_LDAP_BIND_PASSWORD = "YOURPASSWORD"
AUTH_LDAP_USER_SEARCH = LDAPSearch("dc=ldap,dc=example,dc=com", ldap.SCOPE_SUBTREE,
→˓"(uid=%(user)s)")

AUTH_LDAP_USER_ATTR_MAP = {
"first_name": "givenName",
"last_name": "sn",
'email': 'mail'

}

AUTHENTICATION_BACKENDS.insert(
AUTHENTICATION_BACKENDS.index('django.contrib.auth.backends.ModelBackend'),
'django_auth_ldap.backend.LDAPBackend'

)

The setting PROFILE_UPDATE = False tells RDMO to disable the update form for the user profile so that users
cannot update their credentials anymore. The other settings are needed by django-auth-ldap and are described
in the django-auth-ldap documentation.

3.4.3 Shibboleth

In order to use Shibboleth with RDMO it needs to be deployed in a production environment using Apache2. The Setup
is documented here.

Next, install the Shibboleth Apache module for service providers from your distribution repository, e.g. for De-
bian/Ubuntu:

sudo apt-get install libapache2-mod-shib2

In addition, django-shibboleth-remoteuser needs to be installed in your RDMO virtual environment:

pip install -r requirements/shibboleth.txt

Configure your Shibboleth service provider using the files in /etc/shibboleth/. This may vary depending on
your Identity Provider. RDMO needs the REMOTE_SERVER to be set and 4 attributes from your identity provider:

• a username (usually eppn)

• an email address (usually mail or email)

• a first name (usually givenName)

• a last name (usually sn)

In our test environent this is accomplished by editing /etc/shibboleth/shibboleth2.xml:

3.4. Authentication 17

http://pythonhosted.org/django-auth-ldap
https://github.com/Brown-University-Library/django-shibboleth-remoteuser

RDMO Documentation Documentation, Release 0.9.2

<ApplicationDefaults entityID="https://sp.vbox/shibboleth"
REMOTE_USER="uid eppn persistent-id targeted-id">

and ‘/etc/shibboleth/attribute-map.xml’:

<Attribute name="urn:oid:0.9.2342.19200300.100.1.1" id="uid"/>
<Attribute name="urn:oid:2.5.4.4" id="sn"/>
<Attribute name="urn:oid:2.5.4.42" id="givenName"/>
<Attribute name="urn:oid:0.9.2342.19200300.100.1.3" id="mail"/>

Restart the Shibboleth service provider demon.

service shibd restart

In your Apache2 virtual host configuration, add:

<Location /Shibboleth.sso>
SetHandler shib

</Location>
<LocationMatch /(account|domain|options|projects|questions|tasks|conditions|views)>

AuthType shibboleth
require shibboleth
ShibRequireSession On
ShibUseHeaders On

</LocationMatch>

In your config/settings/local.py add or uncomment:

from rdmo.core.settings import INSTALLED_APPS, AUTHENTICATION_BACKENDS, MIDDLEWARE_
→˓CLASSES

SHIBBOLETH = True
PROFILE_UPDATE = False

INSTALLED_APPS += ['shibboleth']

AUTHENTICATION_BACKENDS.append('shibboleth.backends.ShibbolethRemoteUserBackend')
MIDDLEWARE_CLASSES.insert(

MIDDLEWARE_CLASSES.index('django.contrib.auth.middleware.AuthenticationMiddleware
→˓') + 1,

'shibboleth.middleware.ShibbolethRemoteUserMiddleware'
)

SHIBBOLETH_ATTRIBUTE_MAP = {
'uid': (True, 'username'),
'givenName': (True, 'first_name'),
'sn': (True, 'last_name'),
'mail': (True, 'email'),

}

LOGIN_URL = '/Shibboleth.sso/Login?target=/projects'
LOGOUT_URL = '/Shibboleth.sso/Logout'

where the keys of SHIBBOLETH_ATTRIBUTE_MAP, LOGIN_URL, and LOGOUT_URL need to be modified ac-
cording to your setup. The setting SHIBBOLETH = True disables the regular login form in RDMO, and tells
RDMO to disable the update form for the user profile so that users cannot update their credentials anymore.
The INSTALLED_APPS, AUTHENTICATION_BACKENDS, and MIDDLEWARE_CLASSES settings enable django-
shibboleth-remoteuser to be used with RDMO.

18 Chapter 3. Configuration

RDMO Documentation Documentation, Release 0.9.2

Restart the webserver.

service apache2 restart

3.5 Themes

RDMO allows for a high level of customization by modifiing the Django templates as well as the static assets (CSS file,
images, etc.). Django which RDMO is base on offers a powerful method for this. Inside your rdmo-app directory
you can create a theme folder with a static and a templates directory inside:

mkdir theme
mkdir theme/static
mkdir theme/templates

Then add:

THEME_DIR = os.path.join(BASE_DIR, 'theme')

to your config/settings/local.py.

Templates and static files in the theme directory override files from RDMO as long as they have the same relative path,
e.g. the file theme/templates/core/base_navigation.html overrides rdmo/core/templates/
core/base_navigation.html.

Some files you might want to override are:

SASS variables rdmo/core/static/core/css/variables.scss can be copied to theme/static/
css/variables.scss and be used to customize colors.

Navigation bar rdmo/core/templates/core/base_navigation.html can be copied to theme/
templates/core/base_navigation.html and be used to customize the navbar.

Home page text rdmo/core/templates/core/home_text_en.html and rdmo/core/templates/
core/home_text_de.html can be copied to theme/templates/core/home_text_en.html and
theme/templates/core/home_text_de.html and be used to customize text on the home page.

Note that updates to the RDMO package might render your theme incompatible to the RDMO code and cause errors.
In this case the files in theme need to be adjusted to match their RDMO counterparts in functionality.

3.6 Export formats

RDMO supports exports to certain formats using the excellent pandoc converter. The list of formats to select can be
customized by changinng the EXPORT_FORMATS setting in your config/settings/local.py.

EXPORT_FORMATS = (
('pdf', _('PDF')),
('rtf', _('Rich Text Format')),
('odt', _('Open Office')),
('docx', _('Microsoft Office')),
('html', _('HTML')),
('markdown', _('Markdown')),
('mediawiki', _('mediawiki')),
('tex', _('LaTeX'))

)

3.5. Themes 19

https://pandoc.org/

RDMO Documentation Documentation, Release 0.9.2

The different formats supported by pando can be found on the pandoc homepage.

3.7 Cache

RDMO uses a cache for some of it’s pages. In the development setup, this is done using local-memory caching. In
production, we suggest using memcached. Memcached can be installed on Debian/Ubuntu using:

sudo apt install memcached

On RHEL/CentOS a few more steps are needed. First install the package using:

sudo yum install memcached

Then edit the settings file to prevent external connections:

in /etc/sysconfig/memcached
PORT="11211"
USER="memcached"
MAXCONN="1024"
CACHESIZE="64"
OPTIONS="-l 127.0.0.1"

Then start the service:

systemctl start memcached
systemctl enable memcached

Back in your virtual enviroment, you need to install python-memcached:

pip install -r requirements/memcached.txt

and add the following to your config/settings/local.py:

CACHES = {
{

'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
'LOCATION': '127.0.0.1:11211',
'KEY_PREFIX': 'rdmo_default'

},
'api': {

'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
'LOCATION': '127.0.0.1:11211',
'KEY_PREFIX': 'rdmo_api'

}
}

3.8 Logging

Logging in Django can be very complex and is covered extensively in the Django documentation. For a suitable
logging of RDMO you can add the following to your config/settings/local.py:

import os
from . import BASE_DIR

20 Chapter 3. Configuration

https://pandoc.org/
https://memcached.org
https://docs.djangoproject.com/en/1.11/topics/logging/

RDMO Documentation Documentation, Release 0.9.2

LOGGING_DIR = '/var/log/rdmo/'
LOGGING = {

'version': 1,
'disable_existing_loggers': True,
'filters': {

'require_debug_false': {
'()': 'django.utils.log.RequireDebugFalse'

},
'require_debug_true': {

'()': 'django.utils.log.RequireDebugTrue'
}

},
'formatters': {

'default': {
'format': '[%(asctime)s] %(levelname)s: %(message)s'

},
'name': {

'format': '[%(asctime)s] %(levelname)s %(name)s: %(message)s'
},
'console': {

'format': '[%(asctime)s] %(message)s'
}

},
'handlers': {

'mail_admins': {
'level': 'ERROR',
'filters': ['require_debug_false'],
'class': 'django.utils.log.AdminEmailHandler'

},
'error_log': {

'level': 'ERROR',
'class':'logging.FileHandler',
'filename': os.path.join(LOGGING_DIR, 'error.log'),
'formatter': 'default'

},
'rdmo_log': {

'level': 'DEBUG',
'class':'logging.FileHandler',
'filename': os.path.join(LOGGING_DIR, 'rdmo.log'),
'formatter': 'name'

},
'console': {

'level': 'DEBUG',
'filters': ['require_debug_true'],
'class': 'logging.StreamHandler',
'formatter': 'console'

}
},
'loggers': {

'django': {
'handlers': ['console'],
'level': 'INFO',

},
'django.request': {

'handlers': ['mail_admins', 'error_log'],
'level': 'ERROR',
'propagate': True

3.8. Logging 21

RDMO Documentation Documentation, Release 0.9.2

},
'rdmo': {

'handlers': ['rdmo_log'],
'level': 'DEBUG',
'propagate': False

}
}

}

This produces two logs:

• /var/log/rdmo/error.log will contain exception messages from application errors (status code: 500).
The messages is the same that ist shown when DEBUG = True, which should not be the case in a production
environment. In addition to the log entry, an email is send to all admins specified in the ADMINS setting.

• /var/log/rdmo/rdmo.log will contain additional logging information from the RDMO code.

22 Chapter 3. Configuration

CHAPTER 4

Administration

The Django framework offers a rich administration (or short admin) interface, which allows you to directly manipulate
most of the entries in the database directly. Obviously, only users with the correct permissions are allowed to use this
interface. The user created during the installation process using ./manage.py createsuperuser has this
superuser status.

The admin interface is avalable under the link Admin in the navigation bar. It will only be needed on rare ocasion, since
most the configuration of the questionaire and the other functions of RDMO can be done using the more user-friendly
Management interface described in the following chapter of this documantation.

That being said, the admin interface is needed, especially after installation, to set the title and URL of the site, to
configure users and groups, to configure the connection to OAUTH providers, and to create tokens to be used with the
API.

4.1 Site configuration

Fig. 4.1: Screenshot of the site admin interface.

23

../_static/img/screens/site.png

RDMO Documentation Documentation, Release 0.9.2

RDMO used Django’s sites framework. It is therefore nessesarry to configure the Domain name and the Display
name of your RDMO installation. This can be done in the admin interface under SITE. To configure your site:

1. Click on the already configured domain name example.com.

2. Enter the URL of your RDMO installation as Domain name (e.g. rdmo.aip.de).

3. Enter title of your RDMO installation as Display name (e.g. RDMO Demo).

4. Click Save to save the site.

4.2 Users and Groups

The users and groups of your RDMO instance can be managed under AUTHENTICATION AND AUTHORIZA-
TION. You can create and update users and set their password directly, but most of the time this will be done by the
users themselves using the account menu.

The user created in the installation process can access all features of RDMO. In order to allow other users to access
the management or the admin interface, they need to have the needed permissions assigned to them. This can be done
in two ways: through groups or using the superuser flag.

4.2.1 Groups

During the installation, the ./manage create-groups command created 3 groups:

editor Users of the group editor can access the management interface and can edit all elements of the data model,
except the user data entered through the structured inteview.

reviewer Users of the group reviewer can access the management interface, like editors, but are not allowed to change
them (Save will not work). This group can be used to demonstrate the management backend of RDMO to certain
users.

api Users of the group api can use the programmable API to access all elements of the data model. They will need a
token to use an api client.

Existing users can be assigned to these groups to gain access to these functions:

1. Click Users under AUTHENTICATION AND AUTHORIZATION in the admin interface.

2. Click on the user to be changed.

3. Click on the group to be added to the user in the Available groups field.

4. Click on the little arrow to move the group to the Chosen groups field.

5. Save the user.

4.2.2 Superuser

Superusers have all permissions available and all permission checks will return positive fo them. This does not only
allow them to access the management and admin interfaces, but also access all data from other user (including the
project pages).

To make a user superuser:

1. Click Users under AUTHENTICATION AND AUTHORIZATION in the admin interface.

2. Click on the user to be changed.

3. Tick the box Superuser status.

24 Chapter 4. Administration

https://docs.djangoproject.com/en/1.11/ref/contrib/sites

RDMO Documentation Documentation, Release 0.9.2

4. Save the user.

4.3 Social accounts

If you use allauth as you mode of authentication and configured RDMO to use one or more OAUTH provider (as
described in the Configuration chapter), you need to register your RDMO site with theses services. This process is
different from provider to provider. Usually, you need to provide a set of information about your site. Always included
is a redirect or callback url. In the following we will use http://127.0.0.1:8000 as an example (which will work on the
development server) and you will need to replace that with the correct url of your RDMO application in production.

ORCID Login into https://orcid.org and go to the developer tools page at https://orcid.org/developer-tools. Create an
app with the Redirect URI

http://127.0.0.1:8000/account/orcid/login/callback/

github Login into github and go to https://github.com/settings/applications/new and create a new app. Use

http://127.0.0.1:8000/account/github/login/callback/

facebook Login into facebook and go to https://developers.facebook.com/. Click on the top right menu My Apps and
choose Add a new app. Create a new app. In the following screen choose Facebook login -> Getting started and
choose Web as the platform. Put in a URL under which your application is accessible (Note: 127.0.0.1 will not
work here.). Back on the dashboard, go to Settings -> Basic and copy the App ID and the App Secret.

twitter Login into twitter and go to https://apps.twitter.com/app/new and create a new app. Use

http://127.0.0.1:8000/account/facebook/login/callback/

as the Authorized redirect URI. Copy the Client-ID and the Client key.

Google Login into google and go to https://console.developers.google.com. Create a new project. After the project
is created go to Credentials on the left side and configure the OAuth Authorization screen (second tab). Then
create the credentials (first tab), more precisely a OAuth Client-ID. Use

http://127.0.0.1:8000/account/google/login/callback/

as the Authorized redirect URI. Copy the Client-ID and the Client key.

Once the credentials are obtained you need to enter them in the admin interface. To this purpose, go to Social appli-
cations under SOCIAL ACCOUNTS and click on Add social application. Then:

1. Select the corresponding provider

2. Enter a Name of your choice

3. Enter the Client id (or App ID) and the Secret key (or Client secret, Client key, App Secret)

4. Add your site to the chosen sites.

5. Click save.

4.4 Auth Tokens

In order to access the data entered into RDMO through the programmable API, a user needs to have a token associated
with it. This is done under AUTH TOKEN / Tokens. To create a token, click Add token on the button at the right
and:

4.3. Social accounts 25

http://127.0.0.1:8000
https://orcid.org
https://orcid.org/developer-tools
https://github.com/settings/applications/new
https://developers.facebook.com/
https://apps.twitter.com/app/new
https://console.developers.google.com

RDMO Documentation Documentation, Release 0.9.2

1. Select the user for the new token.

2. Save the token.

This token can now be used instead of the username and the password when making HTTP requests from a non-
browser client. To this purpose, a HTTP-Header of the form

Authorization: Token 9944b09199c62bcf9418ad846dd0e4bbdfc6ee4b

needs to be provided.

26 Chapter 4. Administration

CHAPTER 5

Management

A freshly installed instance of RDMO is not very useful without a questionaire to fill out by the user and a set of DMP
templetes later to be populated by the given answers. The main idea of RDMO is that every question and every output
can be customized by you. This, however, introduces a certain level of complexity. RDMO employs a datamodel
organized along different Django apps and models (representing database tables). A graphical overview is given in the
figure below:

Fig. 5.1: Overview of the RDMO data model.

A full representation is shown on a different page. Here, we explain the different parts of the data model. Each section
has a link to a more detailed explanation how to create and edit the relevant elements.

For most users, the structured interview will be the most visible part of RDMO. It is configured using catalogs,
sections, subsections, questionsets, and questions. A single installation of RDMO can have several catalogs. When
creating a new project, a user can select one of these catalogs to be used with this project. A catalog has a number
of sections, which themselves have subsections. Questions can be directly added to subsections, which will result
in a single question on a single page of the interview. Alternatively, they can be organized into question sets. A
question has a text, which will be shown in bold to the user and an optional help text. It also has a widget type,
which determines which interface widget is presented to the user (e.g. text field, select field, radio buttons). The
questionnaire is configured under /questions available in the management menu. More documentation about the
questions management can be found here.

The domain model is the central part of the data model and connects the questions from the questionnaire with the
user input. It is organized as a tree-like structure. Every piece of information about a user’s project is represented by
an attribute. In this sense these attributes can be compared to a variable in source code. Attributes are the leaves of the
domain model tree and can be organized into entities, much like files are organized along directories on a disk. Every
question must have an attribute and every question set must have an entity connected to it. An example would be the
attribute with the path project/schedule/project_start for the start date of the project. The attribute itself
has the key project_start and resides in the entity schedule, which itself is located in the entity project.

Attributes can be marked as a collection to allow users to give several answers for the question connected to it. A
question connected to this Attribute will show a button to add a new item in a new line. An example would be several
keywords for a project. Questions with check box widgets also need collection attributes. Entities can also be marked

27

../_static/img/datamodel.svg

RDMO Documentation Documentation, Release 0.9.2

as collections. In this case users can enter sets of answers for all attributes below the entity in the tree. A question
set connected to this entity will show interface elements to create new sets of answers. This can be used to ask the
same set questions for different datasets or partner institutions. All entities in the tree below a collection entity adopt
this behavior, so that questions about the same set can be spread over several question sets on separate pages of the
interview.

Attributes have a value type which describes if the information is a piece of text, a number, or a date and can have
a unit. Attributes can also have a range, which is used for slider widgets. Both attributes and entities can have a
verbose name. In case of a collection this verbose name will be show to user in interface elements instead of “Add
item” or “Add set”. Attributes and Entities are configured under /domain available in the management menu. More
documentation about the options management can be found here.

Attributes can further be connected to option sets consisting of options. This allows for the use of a controlled
vocabulary for the user’s answers. If an attribute has one or more option sets (and the value type “Options”), the
user can choose his/her answer from the different options of these option sets. Select, radio or check box widgets
are used in the interview for this feature. Option sets and Options are configured under /options available in the
management menu. More documentation about the options management can be found here.

Conditions can be connected to attributes and entities and control if they are valid in the current context. If an attribute
is not valid, a question connected to this attribute will not be shown to the user. Similarly, if an entity is not valid, the
connected question set is not shown. Conditions are also needed to disable/enable option sets, tasks and can be used
in views. Conditions are configured with a source attribute which will be evaluated, a relation like “equal” or “greater
than” and a target. The target is a text string or an option. As an example, if the source is the attribute project/
legal_aspects/ipr/yesno, the relations is “equal to”, and the target text is “1”, the condition will be true for
a project where the answer to the question connected to the attribute project/legal_aspects/ipr/yesno is
“1” (or “yes” for a yesno widget). Conditions configured under /conditions available in the management menu.
More documentation about the conditions management can be found here.

Views allow for custom DMP templates in RDMO. To this purpose every view has a template which can be edited
using the Django template sytax, which is based on HTML. Views have also a title and a help text to be shown in
the project overview. Views are configured under /views available in the management menu. More documentation
about editing views can be found here.

After filling out the interview the user will be presented with follow up tasks based on his/her answers. A task has
a title and a text. Time frames can be added to tasks, which themselves are evaluating attributes of the value type
“datetime”, to use answers like the beginning or the end of a project to compute meaningful tasks. Most of the time
tasks will have a condition connected to them, to determine if this task is needed for a particular project or not. Tasks
configured under /tasks are available in the management menu. More documentation about editing views can be
found here.

The different elements of the RDMO datamodel have various parameters, which control their behavior in RDMO and
can be configured using the different management pages, which are decribed on the following pages. In addition, all
elements contain a set of common parameters:

• An URI Prefix to identify the entity who created this element.

• A key which is the internal identifier for this element.

• An internal comment to share information to be seen by users with access to the management backend.

The key is used as an internal identifier and determines, together with the URI Prefix, the URI of the element. This
URI is used as a global identifier for the export/import functionality.

5.1 Questions

The questions management is available under Questions in the management menu in the navigation bar. The link in
the navbar opens the first catalog. Other catalogs can be selected in the sidebar afterwards.

28 Chapter 5. Management

RDMO Documentation Documentation, Release 0.9.2

Fig. 5.2: Screenshot of the questions management interface.

5.1. Questions 29

../_static/img/screens/questions.png

RDMO Documentation Documentation, Release 0.9.2

On the left is the main display of sections, subsections, and questions for the current catalog. For sections and
subsections the title and the key is shown. For questions and question set the key and the key of the attribute or
entity they are connected with is shown. The order of the diffrerent elements is the same as in the structured interview
shown to the user. On the left side of each elements panel, icons indicate ways to interact the element. The following
options are available:

• Add () a new subsection to a section, a new question or question set to a subsection or a new question to a
questionset.

• Update () an element to change its properties.

• Copy () a question or questionset. This will open the same modal as update. You can the change some of
the properties and save the elememt as a new one. This can save time when creating several similar questions.

• Delete () an element and all of it’s decendents (e.g. a subsection and all the questions and question sets it
contains). This action cannot be undone!

The sidebar on the right shows additional interface items:

• Catalog switches the view to a different Catalog.

• Filter filters the view according to a user given string. Only elements containg this string in their path will be
shown.

• Options offers additional operations:

– Update the details of the current catalog

– Delete the current catalog

– Create a new (empty) catalog

– Create a new (empty) section

– Create a new (empty) subsection

– Create a new (empty) question set

– Create a new (empty) question

• Export exports the current catalog to one of the displayed formats. While the text based formats are mainly
for showing the full catalog, the XML export can be used to transfer this catalog to a different installation of
RDMO.

The different elements of the questionaire have different properties to control their behavior. As descibed in the
introduction, all elements have an URI Prefix, a key, and an internal comment only to be seen by other managers of
the RDMO installation. In addition, you can edit the parameters below:

5.1.1 Catalog

Order Controls the position of the catalog in lists or in the interview.

Title (en) The English title for the catalog to be displayed to the user.

Title (de) The German title for the catalog to be displayed to the user.

30 Chapter 5. Management

RDMO Documentation Documentation, Release 0.9.2

5.1.2 Section

Catalog The catalog this section belongs to. Changing the catalog will move the section to a different catalog.
Therefore it will not be visible in the current view anymore.

Order Controls the position of the section in lists or in the interview.

Title (en) The English title for the section to be displayed to the user.

Title (de) The German title for the section to be displayed to the user.

5.1.3 Subsection

Section The section this subsection belongs to. Changing the section will move the subsection into another section.

Order Controls the position of the subsection in lists or in the interview.

Title (en) The English title for the subsection to be displayed to the user.

Title (de) The German title for the subsection to be displayed to the user.

5.1.4 Question sets

Subsection The subsection this question set belongs to. Changing the subsection will move the question set into
another section.

Order Controls the position of the subsection in lists or in the interview.

Entity The entity from the domain model this question set is connected to. Note that the way the question set is
presented to the user is partly determined by the entity. A question connected to a collection entity will allow
for answers for different sets.

Title (en) The English title for the subsection to be displayed to the user.

Title (de) The German title for the subsection to be displayed to the user.

5.1.5 Questions

Subsection The subsection this question belongs to. Changing the subsection will move the question set into another
section.

Parent The question set this question belongs to. This should be “- - -” for a question added directly to a subsection
and not to a question set.

Order Controls the position of the subsection in lists or in the interview.

Attribute The attribute from the domain model this question is connected to. Note that the way the question is
presented to the user is partly determined by the entity. A question connected to an collection entity will allow
for more than one answer and shows an “Add item” button.

Widget type The type of widget for the question. The following widgets can be selected:

• Text (a one line text field)

• Textarea (a multy line text field)

• Yes/No (a set of radio buttons for “Yes” and “No”)

• Checkboxes (a set of check boxes, the connected attribute needs to be a collection)

• Radio Buttons (a set of radio buttons, the connected attribute needs to have and option set)

5.1. Questions 31

RDMO Documentation Documentation, Release 0.9.2

• Select drop down (a drop down menu, the connected attribute needs to have an option set)

• Range slider (a horizontal slider, the connected attribute needs to have a range)

• Date picker (a drop down element with a calender to select a date, the connected attribute needs to have
the value type datetime)

Text (en) The English text for the question. The text will be shown in bold face to the user.

Title (de) The German text for the question. The text will be shown in bold face to the user.

Help (en) The English help text for the question. The help text will be shown in grey to the user.

Help (de) The German help text for the question. The help text will be shown in grey to the user.

5.2 Domain

The domain model can be managed under Domain in the management menu in the navigation bar.

Fig. 5.3: Screenshot of the domain management interface.

On the left is the main display of all the entities and attributes available in this installation of RDMO. The entities and
entities show their path and if they are configured to be a collection. On the left side of each elements panel, icons
indicate ways to interact the element. The following options are available:

32 Chapter 5. Management

../_static/img/screens/domain.png

RDMO Documentation Documentation, Release 0.9.2

• Add () a new attribute or entity to an entity.

• Update () an entity or attribute to change its properties.

• Update range () of an attribute. The range is only needed if the attribute is connected to a question using
the slider widget.

• Update option sets () of an attribute. Option sets determine the choices when the attribute is connected to a
question using a select, radio button oder check boxes widget. The option sets themselved are configured in the
the options management.

• Update verbose name () of an entity or attribute. For an entity, the verbose name is displayed to the user
when adding sets to a question (instead of “Add set”, e.g. “Add dataset”), while for an attributethe verbose name
is displayed when adding items to a question with multiple answers instead (instead of “Add item”, e.g. “Add
keyword”).

• Update conditions () of an entity or attribute. A question connected to an attribute with one or more
conditions will be skipped automatically in the questionaire, when the condition is evaluated to be false. The
same holds for question sets connected to an entity with a condition. The conditions themselved are configured
in the the conditions management.

• Delete () an entity or attribute and all of it’s decendents (e.g. an entity and all the entities and attibutes below
in the domain model tree). This action cannot be undone!

The sidebar on the left shows additional interface items:

• Filter filters the view according to a user given string. Only elements containg this string in their path will be
shown.

• Options offers additional operations:

– Create a new (empty) entity

– Create a new (empty) attribute

• Export exports the current catalog to one of the displayed formats. While the textual formats are mainly for
presentation purposes, the XML export can be used to transfer the domain model to a different installation of
RDMO.

The different elements of the domain model have different properties to control their behavior. As descibed in the
introduction, all elements have an URI Prefix, a key, and an internal comment only to be seen by other managers of
the RDMO installation. In addition, you can edit the parameters below:

5.2.1 Entity

Parent entity Parent entity in the domain model. Changing the parent entity will move the entity and all of it’s
decendents to a differen branch of the domain model tree.

is collection Designates whether this entity can have several sets of values. A question set connected to this entity
will show interface elements to create new sets of answers. All entities in the tree below a collection entity adopt
this behavior, so that questions about the same set can be spread over several question sets on separate pages of
the interview.

If an attribute id with a value type Text is added to the entity, users will be able to give a title to individual sets
(like “Dataset A” or “Funder X”), otherwise the sets will be named #1, #2, etc.

5.2. Domain 33

RDMO Documentation Documentation, Release 0.9.2

5.2.2 Attribute

Value type Type of value for this attribute. The following types can be selected:

• Text

• URL

• Integer

• Float

• Boolean

• Datetime

• Options

As of now only datetime and options offer a different behavior. This will change when validation in the interview
will be implemented into RDMO.

Unit Unit for this attribute. The unit will be displayed in the different output features.

Parent entity Parent entity in the domain model. Changing the parent entity will move the attribute to a different
branch of the domain model tree.

is collection Designates whether this attribute can have several sets of values. A question connected to this attribute
will allow the user to give several answers for a question connected to it. The question will show a button to
add a new item in a new line. An example would be several keywords for a project. Questions with check box
widgets also need collection attributes.

5.2.3 Range

The range is used if an attribute is connected to a question using the slider widget.

Minimum Minimal value for this attribute.

Maximum Maximum value for this attribute.

Step Step in which this attribute can be incremented/decremented.

5.2.4 Verbose name

The verbose name is configured in singular and plural in German and English and is shown on buttons and in the
automatically generated help text.

Name (en) The English name displayed for this attribute/entity (e.g. project).

Plural name (en) The English plural name displayed for this attribute/entity (e.g. projects).

Name (de) The German name displayed for this attribute/entity (e.g. Projekt).

Plural name (de) The German plural name displayed for this attribute/entity (e.g. Projekte).

5.3 Options

Options and option sets can be managed under Options in the management menu in the navigation bar.

34 Chapter 5. Management

RDMO Documentation Documentation, Release 0.9.2

Fig. 5.4: Screenshot of the options management interface.

5.3. Options 35

../_static/img/screens/options.png

RDMO Documentation Documentation, Release 0.9.2

On the left is the main display of all the option sets and options available in this installation of RDMO. Option sets
show their key while options show their path and their text. On the left side of each elements panel, icons indicate
ways to interact the element. The following options are available:

• Add () a new option to an option set.

• Update () an option set or option to change its properties.

• Update conditions () of an option set. An question connected to an attribute which is itself connected to
an option set with one or more conditions will not show the options of the set in the questionaire, when the
condition is evaluated to be false. The conditions themselved are configured in the the conditions management.

• Delete () an option set or option and, in the case of an option set all of it’s options. This action cannot be
undone!

The sidebar on the left shows additional interface items:

• Filter filters the view according to a user given string. Only elements containg this string in their path will be
shown.

• Options offers additional operations:

– Create a new (empty) option set

– Create a new (empty) option

• Export exports the options sets to one of the displayed formats. While the textual formats are mainly for
presentation purposes, the XML export can be used to transfer the options sets to a different installation of
RDMO.

Option sets and options model have different properties to control their behavior. As descibed in the introduction,
all elements have an URI Prefix, a key, and an internal comment only to be seen by other managers of the RDMO
installation. In addition, you can edit the parameters below:

5.3.1 Option set

Order Controls the position of the option set in lists or in the interview (if an attribute has more than one option set).

5.3.2 Option

Option set The option set this option belongs to. Changing the option set will move the option to a different option
set.

Order Controls the position of the option in lists or in the interview.

Text (en) The English text for the option to be displayed to the user.

Text (de) The German text for the option to be displayed to the user.

Additional input Designates whether an additional input is possible for this option. In this case a text box is displayed
to the radio button or check box. Usually this is used for an option “Other”.

5.4 Conditions

Conditions can be created and managed under Conditions in the management menu in the navigation bar. They are
later connected to Entities, Attributes, Option sets, or Tasks.

36 Chapter 5. Management

RDMO Documentation Documentation, Release 0.9.2

Fig. 5.5: Screenshot of the conditions management interface.

5.4. Conditions 37

../_static/img/screens/conditions.png

RDMO Documentation Documentation, Release 0.9.2

On the left is the main display of all the conditions available in this installation of RDMO. Conditions show their key
and a textual representation of what they evaluate. On the left side of each conditions panel, icons indicate ways to
interact the element. The following options are available:

• Update () a condition to change its properties.

• Delete () a condition. This action cannot be undone!

The sidebar on the left shows additional interface items:

• Filter filters the view according to a user given string. Only conditions containg this string in their path will be
shown.

• Options offers additional operations:

– Create a new condition

• Export exports the conditions to one of the displayed formats. While the textual formats are mainly for presen-
tation purposes, the XML export can be used to transfer the conditions to a different installation of RDMO.

Conditions have different properties to control their behavior. As descibed in the introduction, all elements have an
URI Prefix, a key, and an internal comment only to be seen by other managers of the RDMO installation. In addition,
you can edit the parameters below:

5.4.1 Condition

Conditions are configured with a source attribute which will be evaluated, a relation like “equal” or “greater than”
and a target. The target is a text string or an option. As an example, if the source is the attribute project/
legal_aspects/ipr/yesno, the relations is “equal to”, and the target text is “1”, the condition will be true for
a project where the answer to the question connected to the attribute project/legal_aspects/ipr/yesno is
“1” (or “yes” for a yesno widget).

Source The Attribute this condition is evaluating.

Relation The Relation this condition is using.

Target (Text) If using a regular attibute, the text value this condition is checking against.

Target (Option) If using an options attribute, the option this condition is checking against.

5.5 Views

Views can be configured under Views in the management menu in the navigation bar.

On the left is the main display of all the views available in this installation of RDMO. Views show their key, title and
description. On the left side of each views panel, icons indicate ways to interact the element. The following options
are available:

• Update () a view to change its properties.

• Edit the template () of a view.

• Delete () a view. This action cannot be undone!

The sidebar on the right shows additional interface items:

• Filter filters the view according to a user given string. Only views containg this string in their path will be
shown.

38 Chapter 5. Management

RDMO Documentation Documentation, Release 0.9.2

Fig. 5.6: Screenshot of the views management interface.

5.5. Views 39

../_static/img/screens/views.png

RDMO Documentation Documentation, Release 0.9.2

• Options offers additional operations:

– Create a new view

• Export exports the conditions to one of the displayed formats. While the textual formats are mainly for presen-
tation purposes, the XML export can be used to transfer the views to a different installation of RDMO.

Views have different properties to control their behavior. As descibed in the introduction, all elements have an URI
Prefix, a key, and an internal comment only to be seen by other managers of the RDMO installation. In addition, you
can edit the parameters below:

5.5.1 View

Title (en) The English title for the view. The title will be shown in the projects overview.

Title (de) The German title for the view. The title will be shown in the projects overview.

Help (en) The English help text for the view. The help text will be shown in the projects overview.

Help (de) The German help text for the view. The help text will be shown in the projects overview.

5.5.2 Template

Fig. 5.7: Screenshot of the template modal.

40 Chapter 5. Management

../_static/img/screens/template.png

RDMO Documentation Documentation, Release 0.9.2

Each view has a template, which determines how the answers given by the user are mapped to a textual document. The
template is composed using the Django template sytax, which is a combination of regular HTML, variables, which get
replaced with values when the template is evaluated ({{ a_variable }}), and tags, which control the logic of the
template ({% a_tag %}).

Two variables can be used when used in RDMO templates:

• values, which contains nested dictionary mapping the users answers to their attributes.

• conditions, which is a dictionary mapping the keys of the conditions to the evaluated conditions according
to the current project (i.e. True or False).

Consider an attribute project/research_question/title (more specific an attribute title in the entity
research_question in the entity project) and a user, who answered the question connected to this attribute
with “To boldly go where no man has gone before.”. The attribute would be available in the template as values.
project.research_question.title (note the . instead of /). Used in the template using the sytax for a
variable:

The main research question of the project is: {{ values.project.research_question.
→˓title }}

would, when evaluated in the context by a user in his/her project, render:

The main research question of the project is: To boldly go where no man has gone
→˓before.

Collections can be rendered using the for tag of the Django template syntax.

{% for keyword in project.research_question.keywords %}

{{ keyword }}
{% endfor %}

The usual filters of the Django sytax can also be used, e.g.

<p>
{{ values.project.research_question.keywords | join:', ' }}

</p>

For collection entities, you can use:

{% for dataset in values.project.dataset %}
<p>

<i>Dataset {{ dataset.id }}:</i> {{ dataset.usage_description }}
</p>
{% endfor %}

Conditions can be used using the if tag:

{% if conditions.personal_data %}
This will be only rendered if personal_data resolves to be true.
{% endif %}

Please consult the documentation of the Django template sytax for all the available tags and filters: https://docs.
djangoproject.com/en/1.11/ref/templates/language.

5.5. Views 41

https://docs.djangoproject.com/en/1.11/ref/templates/language/
https://docs.djangoproject.com/en/1.11/ref/templates/language
https://docs.djangoproject.com/en/1.11/ref/templates/language

RDMO Documentation Documentation, Release 0.9.2

5.6 Tasks

Tasks can be configured under Tasks in the management menu in the navigation bar.

Fig. 5.8: Screenshot of the tasks management interface.

On the left is the main display of all the tasks available in this installation of RDMO. Tasks show their key, title and the
text describing the task. On the left side of each tasks panel, icons indicate ways to interact the element. The following
options are available:

• Update () a task to change its properties.

• Update conditions () of a task. A task will only be shown the user it all of its conditions are evaluated
True. The conditions themselved are configured in the the conditions management.

• Update the time frame () of a task. The time frame is constructed from one or two dates from the user’s
answers. This allows for tasks about a specific deadline or special period.

• Delete () a task. This action cannot be undone!

The sidebar on the left shows additional interface items:

• Filter filters the view according to a user given string. Only tasks containg this string in their path will be shown.

42 Chapter 5. Management

../_static/img/screens/tasks.png

RDMO Documentation Documentation, Release 0.9.2

• Options offers additional operations:

– Create a new task

• Export exports the conditions to one of the displayed formats. While the textual formats are mainly for presen-
tation purposes, the XML export can be used to transfer the tasks to a different installation of RDMO.

Tasks have different properties to control their behavior. As descibed in the introduction, all elements have an URI
Prefix, a key, and an internal comment only to be seen by other managers of the RDMO installation. In addition, you
can edit the parameters below:

5.6.1 Task

Title (en) The English title for the view. The title will be shown in the projects overview.

Title (de) The German title for the view. The title will be shown in the projects overview.

Text (en) The English text for the view. The text will be shown in the projects overview.

Text (de) The German text for the view. The text will be shown in the projects overview.

5.6.2 Time frame

Start date attribute The attribute that is setting the start date for this task. The attribute needs to be of value type
datetime.

End date attribute The Attribute that is setting the end date for this task (optional, if no end date attribute is given,
the start date attribute sets also the end date). The attribute needs to be of value type datetime.

Days before Additional days before the start date.

Days after Additional days after the end date.

5.7 Export and Import

5.7. Export and Import 43

RDMO Documentation Documentation, Release 0.9.2

44 Chapter 5. Management

CHAPTER 6

Upgrade

The rdmo package can be conveniently upgraded using the pip command. However, before you perform any changes
to your installation, please backup the important components to a save location.

A PostgreSQL or MySQL database can be database can be dumped into a file using:

pg_dump [DBNAME] > rdmo.sql # PostgreSQL
mysqldump -uroot -p [DBNAME] > rdmo.sql

Your rdmo-app directory (including any sqlite3 database) can be copied using the usual commands. Note that your
virtual environment will not work after being moved to a different path.

In order to upgrade your RDMO installation go to your rdmo-app directory, activate your virtual environment, and
upgrade the rdmo package using pip:

pip install --upgrade rdmo

In order to install a specific version (e.g. 0.9.0) of RDMO use:

pip install --upgrade rdmo==0.9.0

After the upgrade a database migration might be necessary:

python manage.py migrate

Please check the release notes if this, or other, steps are necessary.

6.1 Upgrade to version 0.9.0

With version 0.9.0 we introduced the split into the rdmo-app and the centrally maintained rdmo package. Therefore
a few additional steps are needed to upgrade any earlier version to 0.9.0 or beyond:

1. In any case perform a backup of your rdmo directory and your database as described above.

45

RDMO Documentation Documentation, Release 0.9.2

2. Perform the steps Obtaining the app directory and Install python packages as if you would install a new instance
of RDMO.

3. Copy your old configuration from /path/to/old/rdmo/rdmo/settings/local.py to /path/to/
new/rdmo-app/config/settings/local.py. The new config directory replaces the old rdmo
directory.

4. If you already have a theme directory, copy it into the new rdmo-app folder.

5. Run a database migration (Unless you skipped several versions, the output should be No migrations to
apply.):

python manage.py migrate

6. Download the front-end files from the CDN. We don’t use bower and npm anymore.

python manage.py download_vendor_files

7. Update the path to the wsgi.py script in your Apache or nginx configuration. It is now under /path/to/
new/rdmo-app/config/wsgi.py.

8. Redeploy RDMO as described under /deployment/redeploy.

If you have trouble with the upgrade process, don’t hesitate to contact the RDMO team for support.

46 Chapter 6. Upgrade

CHAPTER 7

Development

7.1 Testing

For running the test suite use:

./manage.py test

For a coverage report use:

./manage.py coverage

./manage.py coverage --html # for an HTML coverage report

The HTML report can be viewed by opening htmlcov/index.html in a browser.

7.2 Internationalisation

To update the locale files automatiacally run:

python manage.py makemessages -a --ignore=env/* --ignore=htmlcov/*

Then, edit the .po files in the locale directory. Afterwards run

python manage.py compilemessages

47

RDMO Documentation Documentation, Release 0.9.2

7.3 Figures

Below is a graphical representation of the different models in rdmo, created with graphviz:

To create/update the figure, install graphviz:

sudo apt install graphviz-dev # Debian/Ubuntu
sudo yum install graphviz-devel # RHEL/CentOS

Then, in your virtual environment install pygraphviz:

pip install pygraphviz

Then create the image using:

./manage.py graph_models \
accounts conditions domain options questions projects tasks views \
-g > docs/_static/img/models.dot

dot -Tsvg -o docs/_static/img/models.svg docs/_static/img/models.dot
dot -Tpdf -o docs/_static/img/models.pdf docs/_static/img/models.dot
dot -Tpng -o docs/_static/img/models.png docs/_static/img/models.dot

7.4 Documentation

In order to build the documetation, additional dependencies must be installed in your virtual enviroment:

48 Chapter 7. Development

../_static/img/models.png

RDMO Documentation Documentation, Release 0.9.2

pip install sphinx sphinx-autobuild sphinx_rtd_theme

Then change to the docs directory and run make live to live-edit the documentation.

7.4. Documentation 49

	Installation
	Install prerequisites
	Obtaining the app directory
	Install python packages
	Setup the application

	Deployment
	Development server
	Apache and mod_wsgi
	nginx and gunicorn

	Configuration
	General settings
	Databases
	E-Mail
	Authentication
	Themes
	Export formats
	Cache
	Logging

	Administration
	Site configuration
	Users and Groups
	Social accounts
	Auth Tokens

	Management
	Questions
	Domain
	Options
	Conditions
	Views
	Tasks
	Export and Import

	Upgrade
	Upgrade to version 0.9.0

	Development
	Testing
	Internationalisation
	Figures
	Documentation

