RDK Documentation
Release 1.0

Michael Borchert

Nov 06, 2019

Contents:

1 Introduction 1
2 Getting Started 3
2.1 PrerequiSites v v v i e 3
2.2 Installation L e e e e e e e e e e e e e e e e e 3

2.3 USAZE .« v v e e e e e e e e e e e 4
23.1 Configure your €nv L. e e e e e e e e e e 4

232 CreateRules. o e e e e 4

233 EditRulesLocally e 4

234 Writtand Run Unit Tests 0 0 e e e e e e 5

235 ModifyRule.o e 5

23.6 DeployRule. e e e 6

237 View Logs For DeployedRule 6

2.4 Advanced Features L e 7
2.4.1 Cross-Account Deployments i i i e e e e e e e e 7

242 RuleSets e 7

3 Command Reference 9
3.1 Positional ArgUMENES v v e 9
3.2 Named ArgUMENtS v v v vt e 9

3.3 Sub-Commands e e e e e e e e e 10
33,1 Clean e e e e e e e e e e e e e e e e e 10

332 Create . . . v v i e e e e e e e e e e e e e e e e e 10

3.3.3 Create-Rule-Template e e e e e e e e e 11

334 Deploy ..o e e e e e e e 12

335 Inmit. . . e e 13

33.6 LOgs . . . e 13

337 Modify . .o e e 14

33.8 Rulesets e e e e e e e e e e e 15

3.3.9 Sample-CL. e e e e e e e 16

33.10 Test-Local o o e 17

3301 Undeploy o o e e e e e e e e e 17

4 Indices and tables 19

CHAPTER 1

Introduction

Rule Development Kit - Version 2 This tool should be considered in “Open Beta”. We would greatly appreciate
feedback and bug reports either as github issues or emails to rdk-maintainers @amazon.com!

The RDK is designed to support a “Compliance-as-Code” workflow that is intuitive and productive. It abstracts away
much of the undifferentiated heavy lifting associated with deploying AWS Config rules backed by custom lambda
functions, and provides a streamlined develop-deploy-monitor iterative process.

mailto:rdk-maintainers@amazon.com

RDK Documentation, Release 1.0

2 Chapter 1. Introduction

CHAPTER 2

Getting Started

Let’s get started using the RDK!

2.1 Prerequisites

RDK uses python 2.7/3.6+. You will need to have an AWS account and sufficient permissions to manage the Config
service, and to create and manage S3 Buckets, Roles, and Lambda Functions. An AWS IAM Policy Document that
describes the minimum necessary permissions can be found here on github.

Under the hood, rdk uses boto3 to make API calls to AWS, so you can set your credentials any way that boto3
recognizes (options 3 through 8 in the boto docs here) or pass them in with the command-line parameters —profile,
—region, —access-key-id, or —secret-access-key

2.2 Installation

If you just want to use the RDK, go ahead and install it using pip:

’$ pip install rdk

Alternately, if you want to see the code and/or contribute you can clone the git repo , and then from the repo directory
use pip to install the package. Use the ‘-e’ flag to generate symlinks so that any edits you make will be reflected when
you run the installed package.

If you are going to author your Lambda functions using Java you will need to have Java 8 and gradle installed. If you
are going to author your Lambda functions in C# you will need to have the dotnet CLI and the .NET Core Runtime
1.08 installed.

$ pip install -e .

To make sure the rdk is installed correctly, running the package from the command line without any arguments should
display help information.

https://github.com/awslabs/aws-config-rdk/blob/master/policy/rdk-minimum-permissions.json
https://boto3.readthedocs.io/en/latest/guide/configuration.html
https://github.com/awslabs/aws-config-rdk/

RDK Documentation, Release 1.0

$ rdk

usage: rdk [-h] [-p PROFILE] [-k ACCESS_KEY] [-s SECRET_ACCESS_KEY]
[-r REGION]
<command>

rdk: error: the following arguments are required: <command>, <command arguments>

2.3 Usage

2.3.1 Configure your env

To use the RDK, it’s recommended to create a directory that will be your working directory. This should be committed
to a source code repo, and ideally created as a python virtualenv. In that directory, run the init command to set up
your AWS Config environment.

$ rdk init

Running init!

Creating Config bucket config-bucket-780784666283

Creating IAM role config-role

Waiting for IAM role to propagate

Config Service is ON

Config setup complete.

Creating Code bucket config-rule-code-bucket-780784666283ap-southeast-1

Running init subsequent times will validate your AWS Config setup and re-create any S3 buckets or IAM resources
that are needed.

2.3.2 Create Rules

In your working directory, use the create command to start creating a new custom rule. You must specify the
runtime for the lambda function that will back the Rule, and you can also specify a resource type (or comma-separated
list of types) that the Rule will evaluate or a maximum frequency for a periodic rule. This will add a new directory for
the rule and populate it with several files, including a skeleton of your Lambda code.

$ rdk create MyRule —--runtime python3.7 --resource-types AWS::EC2::Instance -—-input-
—parameters '{"desiredInstanceType":"t2.micro"}"'

Running create!

Local Rule files created.

On Windows it is necessary to escape the double-quotes when specifying input parameters, so the —input-parameters
argument would instead look something like this:

"{\"desiredInstanceType\":\"t2.micro\"}"

Note that you can create rules that use EITHER resource-types OR maximum-frequency, but not both. We have found
that rules that try to be both event-triggered as well as periodic wind up being very complicated and so we do not
recommend it as a best practice.

2.3.3 Edit Rules Locally

Once you have created the rule, edit the python file in your rule directory (in the above example it would be MyRule/
MyRule.py, but may be deeper into the rule directory tree depending on your chosen Lambda runtime) to add

4 Chapter 2. Getting Started

RDK Documentation, Release 1.0

whatever logic your Rule requires in the evaluate_compliance function. You will have access to the CI that
was sent by Config, as well as any parameters configured for the Config Rule. Your function should return either
a simple compliance status (one of COMPLIANT, NONCOMPLIANT, or NOT_APPLICABLE), or if you’re using the
python or node runtimes you can return a JSON object with multiple evaluation responses that the RDK will send back
to AWS Config. An example would look like:

for sg in response['SecurityGroups']:

evaluations.append (

{
'ComplianceResourceType': 'AWS::EC2::SecurityGroup',
'ComplianceResourcelId': sg['GroupId'],
'ComplianceType': 'COMPLIANT',
'Annotation': 'This is an important note.',
'OrderingTimestamp': str (datetime.datetime.now())

b

return evaluations

This is necessary for periodic rules that are not triggered by any CI change (which means the CI that is passed in will
be null), and also for attaching annotations to your evaluation results.

If you want to see what the JSON structure of a CI looks like for creating your logic, you can use

$ rdk sample-ci <Resource Type>

to output a formatted JSON document.

2.3.4 Write and Run Unit Tests

If you are writing Config Rules using either of the Python runtimes there will be a <rule name>_test.py file deployed
along with your Lambda function skeleton. This can be used to write unit tests according to the standard Python unittest
framework (documented here: https://docs.python.org/3/library/unittest.html), which can be run using the fest-local
rdk command:

$ rdk test-local MyTestRule

Running local test!

Testing MyTestRule

Looking for tests in /Users/mborch/Code/rdk-dev/MyTestRule

Ran 0 tests in 0.000s

OK
<unittest.runner.TextTestResult run=0 errors=0 failures=0>

The test file includes setup for the MagicMock library that can be used to stub boto3 API calls if your rule logic will
involve making API calls to gather additional information about your AWS environment. For some tips on how to do
this, check out this blog post: https://sgillies.net/2017/10/19/mock-is-magic.html

2.3.5 Modify Rule

If you need to change the parameters of a Config rule in your working directory you can use the modi fy command.
Any parameters you specify will overwrite existing values, any that you do not specify will not be changed.

2.3. Usage 5

https://docs.python.org/3/library/unittest.html
https://sgillies.net/2017/10/19/mock-is-magic.html

RDK Documentation, Release 1.0

$ rdk modify MyRule —--runtime python2.7 —--maximum-frequency TwentyFour_Hours —--input-—
—parameters '{"desiredInstanceType":"t2.micro"}"'

Running modify!

Modified Rule 'MyRule'. Use the “deploy’ command to push your changes to AWS.

Again, on Windows the input parameters would look like:

"{\"desiredInstanceType\":\"t2.micro\"}"

It is worth noting that until you actually call the deploy command your rule only exists in your working directory,
none of the Rule commands discussed thus far actually makes changes to your account.

2.3.6 Deploy Rule

Once you have completed your compliance validation code and set your Rule’s configuration, you can deploy the Rule
to your account using the deploy command. This will zip up your code (and the other associated code files, if any)
into a deployable package (or run a gradle build if you have selected the java8 runtime or run the lambda packaging
step from the dotnet CLI if you have selected the dotnetcorel.0 runtime), copy that zip file to S3, and then launch or
update a CloudFormation stack that defines your Config Rule, Lambda function, and the necessary permissions and
IAM Roles for it to function. Since CloudFormation does not deeply inspect Lambda code objects in S3 to construct
its changeset, the deploy command will also directly update the Lambda function for any subsequent deployments
to make sure code changes are propagated correctly.

$ rdk deploy MyRule

Running deploy!

Zipping MyRule

Uploading MyRule

Creating CloudFormation Stack for MyRule

Waiting for CloudFormation stack operation to complete...

Waiting for CloudFormation stack operation to complete...
Config deploy complete.

The exact output will vary depending on Lambda runtime. You can use the —all flag to deploy all of the rules in your
working directory.

2.3.7 View Logs For Deployed Rule

Once the Rule has been deployed to AWS you can get the CloudWatch logs associated with your lambda function
using the 1ogs command.

$ rdk logs MyRule -n 5
2017-11-15 22:59:33 - START RequestId: 96e7639%a-cal5-11e7-95a2-b1521890638d Version:
—SLATEST
2017-11-15 23:41:13 - REPORT RequestId: 68e0304f-calb-11e7-b735-81lebae95acda
—Duration: 0.50 ms Billed Duration: 100 ms Memory Size: 256 MB

Max Memory Used: 36 MB
2017-11-15 23:41:13 - END RequestId: 68e0304f-calb-1le7-b735-8lebae95acda
2017-11-15 23:41:13 - Default RDK utility class does not yet support Scheduled
—Notifications.
2017-11-15 23:41:13
—$LATEST

START RequestId: 68e0304f-calb-11e7-b735-8lebae95acda Version:

6 Chapter 2. Getting Started

RDK Documentation, Release 1.0

You can use the —n and —f command line flags just like the UNIX tail command to view a larger number of log
events and to continuously poll for new events. The latter option can be useful in conjunction with manually initiating
Config Evaluations for your deploy Config Rule to make sure it is behaving as expected.

2.4 Advanced Features

2.4.1 Cross-Account Deployments

Features have been added to the RDK to facilitate the cross-account deployment pattern that enterprise customers
have standardized on for custom Config Rules. A cross-account architecture is one in which the Lambda functions
are deployed to a single central “Compliance” account (which may be the same as a central “Security” account), and
the Config Rules are deployed to any number of “Satellite” accounts that are used by other teams or departments.
This gives the compliance team confidence that their Rule logic cannot be tampered with and makes it much easier
for them to modify rule logic without having to go through a complex deployment process to potentially hundreds
of AWS accounts. The cross-account pattern uses two advanced RDK features - functions-only deployments and the
create-rule-template command.

Function-Only Deployment

By using the -f or —functions-only flag on the deploy command the RDK will deploy only the necessary Lambda
Functions, Lambda Execution Role, and Lambda Permissions to the account specified by the execution credentials. It
accomplishes this by batching up all of the Lambda function CloudFormation snippets for the selected Rule(s) into
a single dynamically generated template and deploy that CloudFormation template. One consequence of this is that
subsequent deployments that specify a different set of Rules for the same stack name will update that CloudFormation
stack, and any Rules that were included in the first deployment but not in the second will be removed. You can use the
—stack-name parameter to override the default CloudFormation stack name if you need to manage different subsets of
your Lambda Functions independently. The intended usage is to deploy the functions for all of the Config rules in the
Security/Compliance account, which can be done simply by using rdk deploy -f —all from your working directory.

‘create-rule-template‘ command

This command generates a CloudFormation template that defines the AWS Config rules themselves, along with the
Config Role, Config data bucket, Configuration Recorder, and Delivery channel necessary for the Config rules to work
in a satellite account. You must specify the file name for the generated template using the —output-file or o command
line flags. The generated template takes a single parameter of the AccountID of the central compliance account that
contains the Lambda functions that will back your custom Config Rules. The generated template can be deployed
in the desired satellite accounts through any of the means that you can deploy any other CloudFormation template,
including the console, the CLI, as a CodePipeline task, or using StackSets. The create-rule-template command takes
all of the standard arguments for selecting Rules to include in the generated template, including lists of individual Rule
names, an —all flag, or using the RuleSets feature described below.

$ rdk create-rule-template -o remote-rule-template.json --all
Generating CloudFormation template!
CloudFormation template written to remote-rule-template.json

2.4.2 RuleSets

New as of version 0.3.11, it is possible to add RuleSet tags to rules that can be used to deploy and test groups of
rules together. Rules can belong to multiple RuleSets, and RuleSet membership is stored only in the parameters.json
metadata. The deploy, create-rule-template, and test-local commands are RuleSet-aware such that a RuleSet can be
passed in as the target instead of —all or a specific named Rule.

A comma-delimited list of RuleSets can be added to a Rule when you create it (using the —rulesets flag), as part of a
modify command, or using new ruleset subcommands to add or remove individual rules from a RuleSet.

2.4. Advanced Features 7

RDK Documentation, Release 1.0

Running rdk rulesets list will display a list of the RuleSets currently defined across all of the Rules in the working
directory

rdk-dev $ rdk rulesets list
RuleSets: AnotherRuleSet MyNewSet

Naming a specific RuleSet will list all of the Rules that are part of that RuleSet.

rdk-dev $ rdk rulesets list AnotherRuleSet
Rules in AnotherRuleSet : RSTest

Rules can be added to or removed from RuleSets using the add and remove subcommands:

rdk-dev $ rdk rulesets add MyNewSet RSTest
RSTest added to RuleSet MyNewSet

rdk-dev $ rdk rulesets remove AnotherRuleSet RSTest
RSTest removed from RuleSet AnotherRuleSet

RuleSets are a convenient way to maintain a single repository of Config Rules that may need to have subsets of them
deployed to different environments. For example your development environment may contain some of the Rules that
you run in Production but not all of them; RuleSets gives you a way to identify and selectively deploy the appropriate
Rules to each environment.

8 Chapter 2. Getting Started

CHAPTER 3

Command Reference

The RDK has some options that can be used to override the default behavior (mostly relating to the identity and
credentials used by the tool) that are common to all of the sub-commands.

usage: rdk [-h] [-p PROFILE] [~k ACCESS_KEY_ID] [-s SECRET_ACCESS_KEY]
[-r REGION] [-V]
<command>

3.1 Positional Arguments

<command> Possible choices: clean, create, create-rule-template, deploy, init, logs, modify,
rulesets, sample-ci, test-local, undeploy

Command to run. Refer to the usage instructions for each command for more
details

<command arguments> Run rdk <command> —help to see command-specific arguments.

3.2 Named Arguments

-p, --profile [optional] indicate which Profile to use.
-k, --access-key-id [optional] Access Key ID to use.

-s, --secret-access-key [optional] Secret Access Key to use.
-T, --region Select the region to run the command in.

-v, --version Display the version of this tool

RDK Documentation, Release 1.0

3.3 Sub-Commands

3.3.1 Clean

The clean command is the inverse of the init command, and can be used to completely remove Config resources
from an account, including the Configuration Recorder, Delivery Channel, S3 buckets, Roles, and Permissions. This
is useful for testing account provisioning automation and for running automated tests in a clean environment.

usage: rdk clean [-h] [-—force]

Named Arguments

--force [optional] Clean account without prompting for confirmation.

Default: False

3.3.2 Create

As of version 0.6, RDK supports Config remediation. Note that in order to use SSM documents for remediation you
must supply all of the necessary document parameters. These can be found in the SSM document listing on the AWS
console, but RDK will not validate at rule creation that you have all of the necessary parameters supplied.

Rules are stored in their own directory along with their metadata. This command is used to create the Rule and
metadata.

usage: rdk create <rulename> --runtime <runtime> [—--resource-types <resource types>
— | ——maximum-frequency <max execution frequency>] [optional configuration flags] [——
—rulesets <RuleSet tags>]

Positional Arguments

<rulename> Rule name to create/modify

Named Arguments
-R, --runtime Possible choices: nodejs4.3, java8, python2.7, python3.6, python3.6-lib,
python3.7, dotnetcorel.0, dotnetcore2.0
Runtime for lambda function
--source-identifier [optional] Used only for creating Managed Rules.
-1, --resource-types [optional] Resource types that will trigger event-based Rule evaluation

-m, --maximum-frequency Possible choices: One_Hour, Three_Hours, Six_Hours, Twelve_Hours,
TwentyFour_Hours

[optional] Maximum execution frequency for scheduled Rules
-i, --input-parameters [optional] JSON for required Config parameters.
--optional-parameters [optional] JSON for optional Config parameters.

--tags [optional] JSON for tags to be applied to all CFN created resources.

10 Chapter 3. Command Reference

RDK Documentation, Release 1.0

-s, --rulesets [optional] comma-delimited list of RuleSet names to add this Rule to.
--remediation-action [optional] SSM document for remediation.
--remediation-action-version [optional] SSM document version for remediation action.
--auto-remediate [optional] Set the SSM remediation to trigger automatically.

Default: False
--auto-remediation-retry-attempts [optional] Number of times to retry automated remediation.
--auto-remediation-retry-time [optional] Duration of automated remediation retries.

--remediation-concurrent-execution-percent [optional] Concurrent execution rate of the SSM docu-
ment for remediation.

--remediation-error-rate-percent [optional] Error rate that will mark the batch as “failed” for SSM
remediation execution.

--remediation-resource-id-parameter [optional] Parameter that will be passed to SSM remediation
document.

--remediation-parameters [optional] JSON-formatted string of additional parameters required by the
SSM document.

3.3.3 Create-Rule-Template

Generates and saves to a file a single CloudFormation template that can be used to deploy the specified Rule(s) into
any account. This feature has two primary uses:

* Multi-account Config setup in which the Lambda Functions for custom Rules are deployed into a centralized
“security” or “compliance” account and the Config Rules themselves are deployed into “application” or “satel-
lite” accounts.

* Combine many Config Rules into a single CloudFormation template for easier atomic deployment and manage-
ment.

The generated CloudFormation template includes a Parameter for the AccountID that contains the Lambda functions
that provide the compliance logic for the Rules, and also exposes all of the Config Rule input parameters as CloudFor-
mation stack parameters.

By default the generated CloudFormation template will set up Config as per the settings used by the RDK init
command, but those resources can be omitted using the ——rules-only flag.

The -—config-role-arn flag can be used for assigning existing config role to the created Configuration Recorder.

As of version 0.6, RDK supports Config remediation. Note that in order to use SSM documents for remediation you
must supply all of the necessary document parameters. These can be found in the SSM document listing on the AWS
console, but RDK will not validate at rule creation that you have all of the necessary parameters supplied.

[-h] [-—all] [-s RULESETS] -o OUTPUT_FILE
[-—config-role-arn CONFIG_ROLE_ARN]
[-—rules-only]

[<rulename> [<rulename> ...]]

usage: rdk create-rule-template

Positional Arguments

<rulename> Rule name(s) to include in template. A CloudFormation template will be created,
but Rule(s) will not be pushed to AWS.

3.3. Sub-Commands 11

RDK Documentation, Release 1.0

Named Arguments
--all, -a All rules in the working directory will be included in the generated CloudForma-
tion template.
Default: False
-s, --rulesets comma-delimited RuleSet names to be included in the generated template.
-0, --output-file filename of generated CloudFormation template

Default: “RDK-Config-Rules”

--config-role-arn [optional] Assign existing iam role as config role. If omitted, “config-role” will
be created.
--rules-only [optional] Generate a CloudFormation Template that only includes the Config

Rules and not the Bucket, Configuration Recorder, and Delivery Channel.

Default: False

3.3.4 Deploy

This command will deploy the specified Rule(s) to the Account and Region determined by the credentials being used to
execute the command, and the value of the AWS_DEFAULT_REGION environment variable, unless those credentials
or region are overridden using the common flags.

Once deployed, RDK will _not_ explicitly start a Rule evaluation. Depending on the changes being made to your
Config Rule setup AWS Config may re-evaluate the deployed Rules automatically, or you can run an evaluation using
the AWS configservice CLI.

The ——lambda-role-arn flag can be used for assigning existing iam role to all Lambda functions created for
Custom Config Rules.

The ——functions-only flag can be used as part of a multi-account deployment strategy to push _only_ the
Lambda functions (and necessary Roles and Permssions) to the target account. This is intended to be used in conjunc-
tion with the create-rule-template command in order to separate the compliance logic from the evaluated
accounts. For an example of how this looks in practice, check out the AWS Compliance-as-Code Engine.

Note: Behind the scenes the ——functions-only flag generates a CloudFormation template and runs a “create” or
“update” on the targeted AWS Account and Region. If subsequent calls to deploy with the ——functions-only
flag are made with the same stack name (either the default or otherwise) but with different Config rules targeted,
any Rules deployed in previous deploy” "s but not included in the latest ° deploy will be re-
moved. After a functions-only deploy _only_ the Rules specifically targeted by that command (either through
Rulesets or an explicit list supplied on the command line) will be deployed in the environment, all others will be
removed.s

usage: rdk deploy [-h] [-—-all] [-s RULESETS] [-f]
[-—lambda-role—-arn LAMBDA_ ROLE_ARN]
[-—stack-name STACK_NAME]
[-—execution-role—-name EXECUTION_ROLE_NAME]
[--rdklib-layer—-arn RDKLIB_LAYER_ARN]
[--lambda-layers LAMBDA_LAYERS]

[

<rulename> [<rulename> ...]]

Positional Arguments

<rulename> Rule name(s) to deploy. Rule(s) will be pushed to AWS.

12 Chapter 3. Command Reference

https://github.com/awslabs/aws-config-engine-for-compliance-as-code/

RDK Documentation, Release 1.0

Named Arguments

--all, -a All rules in the working directory will be deployed.
Default: False

-s, --rulesets comma-delimited list of RuleSet names

-f, --functions-only [optional] Only deploy Lambda functions. Useful for cross-account deployments.
Default: False

--lambda-role-arn [optional] Assign existing iam role to lambda functions. If omitted, “rdkLamb-
daRole” will be created.

--stack-name [optional] CloudFormation Stack name for use with —functions-only option. If
omitted, “RDK-Config-Rule-Functions” will be used.

--execution-role-name [optional] IAM Role that the Lambda function(s) will assume in each target
account.

--rdklib-layer-arn [optional] Lambda Layer ARN that contains the desired rdklib. Note that Lambda
Layers are region-specific.

--lambda-layers [optional] Comma-separated list of Lambda Layer ARNs to deploy with your
Lambda function(s).

3.3.5 Init

Sets up the AWS Config Service in an AWS Account. This includes:
* Config Configuration Recorder
* Config Delivery Channel

IAM Role for Delivery Channel

S3 Bucket for Configuration Snapshots
¢ S3 Bucket for Lambda Code

Additionally, init will make sure that the Configuration Recorder is on and functioning, that the Delivery Channel
has the appropriate Role attached, and that the Delivery Channel Role has the proper permissions.

Note: Even without Config Rules running the Configuration Recorder is still capturing Configuration Item snapshots
and storing them in S3, so running init will incur AWS charges!

Also Note: AWS Config is a regional service, so running init will only set up Config in the region currently specified
in your AWS_DEFAULT_REGION environment variable or in the ——region flag.

usage: rdk init [-h]

3.3.6 Logs

The 1ogs command provides a shortcut to accessing the CloudWatch Logs output from the Lambda Functions that
back your custom Config Rules. Logs are displayed in chronological order going back the number of log entries
specified by the ——number flag (default 3). It supports a ——follow flag similar to the UNIX command tail so
that you can choose to continually poll CloudWatch to deliver new log items as they are delivered by your Lambda
function.

3.3. Sub-Commands 13

RDK Documentation, Release 1.0

In addition to any output that your function emits via print () or console.log () commands, Lambda will also
record log lines for the start and stop of each Lambda invocation, including the runtime and memory usage.

usage: rdk logs <rulename> [-n/--number NUMBER] [-f/--follow]

Positional Arguments

<rulename> Rule whose logs will be displayed

Named Arguments

-f, --follow [optional] Continuously poll Lambda logs and write to stdout.
Default: False
-n, --number [optional] Number of previous logged events to display.

Default: 3

3.3.7 Modify

Used to modify the local metadata for Config Rules created by the RDK. This command takes the same arguments
as the create command (all of them optional), and overwrites the Rule metadata for any flag specified. Changes
made using modify are not automatically pushed out to your AWS Account, and must be deployed as usual using
the deploy command.

usage: rdk modify <rulename> [--runtime <runtime>] [--resource-types <resource types>
—] [-—maximum-frequency <max execution frequency>] [--input-parameters <parameter,
—~JSON>] [—-—-tags <tags JSON>] [--rulesets <RuleSet tags>]

Positional Arguments

<rulename> Rule name to create/modify

Named Arguments
-R, --runtime Possible choices: nodejs4.3, java8, python2.7, python3.6, python3.6-lib,
python3.7, dotnetcorel.0, dotnetcore2.0
Runtime for lambda function
--source-identifier [optional] Used only for creating Managed Rules.
-1, --resource-types [optional] Resource types that will trigger event-based Rule evaluation

-m, --maximum-frequency Possible choices: One_Hour, Three_Hours, Six_Hours, Twelve_Hours,
TwentyFour_Hours

[optional] Maximum execution frequency for scheduled Rules
-i, --input-parameters [optional] JSON for required Config parameters.
--optional-parameters [optional] JSON for optional Config parameters.

--tags [optional] JSON for tags to be applied to all CFN created resources.

14 Chapter 3. Command Reference

RDK Documentation, Release 1.0

-s, --rulesets [optional] comma-delimited list of RuleSet names to add this Rule to.
--remediation-action [optional] SSM document for remediation.
--remediation-action-version [optional] SSM document version for remediation action.
--auto-remediate [optional] Set the SSM remediation to trigger automatically.

Default: False
--auto-remediation-retry-attempts [optional] Number of times to retry automated remediation.
--auto-remediation-retry-time [optional] Duration of automated remediation retries.

--remediation-concurrent-execution-percent [optional] Concurrent execution rate of the SSM docu-
ment for remediation.

--remediation-error-rate-percent [optional] Error rate that will mark the batch as “failed” for SSM
remediation execution.

--remediation-resource-id-parameter [optional] Parameter that will be passed to SSM remediation
document.

--remediation-parameters [optional] JSON-formatted string of additional parameters required by the
SSM document.

3.3.8 Rulesets

Rulesets provide a mechanism to tag individual Config Rules into groups that can be acted on as a unit. Ruleset tags are
single keywords, and the commands deploy, create-rule—-template, and undeploy can all expand Ruleset
parameters and operate on the resulting list of Rules.

The most common use-case for Rulesets is to define standardized Account metadata or data classifications, and then
tag individual Rules to all of the appropriate metadata tags or classification levels.

Example: If you have Account classifications of “Public”, “Private”, and “Restricted” you can tag all of your Rules
as “Restricted”, and a subset of them that deal with private network security as “Private”. Then when you need to
deploy controls to a new “Private” account you can simply use rdk create-rule-template --rulesets
Private to generate a CloudFormation template that includes all of the Rules necessary for your “Private” clas-
sification, but omit the Rules that are only necessary for “Restricted” accounts. Additionally, as your compliance
requirements change and you add Config Rules you can tag them as appropriate, re-generate your CloudFormation
templates, and re-deploy to make sure your Accounts are all up-to-date.

You may also choose to classify accounts using binary attributes (“Prod” vs. “Non-Prod” or “PCI” vs. “Non-PCI”), and
then generate account-specific CloudFormation templates using the Account metadata to ensure that the appropriate
controls are deployed.

usage: rdk rulesets [list | [[add | remove] <ruleset> <rulename>]

Positional Arguments

subcommand One of list, add, or remove
ruleset Name of RuleSet
rulename Name of Rule to be added or removed

3.3. Sub-Commands 15

RDK Documentation, Release 1.0

3.3.9 Sample-ClI

This utility command outputs a sample Configuration Item for the specified resource type. This can be useful when
writing new custom Config Rules to help developers know what the CI structure and plausible values for the resource
type are.

Note that you can construct Config Evaluations for any resource type that is supported by CloudFormation, however
you can not create change-triggered Config Rules for resource types not explicitly supported by Config, and some of
the console functionality in AWS Config may be limited.

CFN-supported resources Config-supported resources

usage: rdk sample-ci [-h] <resource type>

Positional Arguments

<resource type> Possible choices: AWS::ACM::Certificate, AWS::ApiGateway::RestApi,

AWS::ApiGateway::Stage, AWS::ApiGateway V2::Api,
AWS::ApiGateway V2::Stage, AWS::AutoScaling::AutoScalingGroup,
AWS::AutoScaling::LaunchConfiguration, ~AWS::AutoScaling::ScalingPolicy,
AWS::AutoScaling::ScheduledAction, AWS::CloudFormation::Stack,
AWS::CloudFront::Distribution, AWS::CloudFront::StreamingDistribution,
AWS::CloudTrail::Trail, AWS::CloudWatch::Alarm,
AWS::CodeBuild::Project, AWS::CodePipeline::Pipeline,
AWS::DynamoDB::Table, AWS::EC2::CustomerGateway,
AWS::EC2::EIP, AWS::EC2::EgressOnlyInternetGateway,
AWS::EC2::FlowLog, AWS::EC2::Host, AWS::EC2::Instance,
AWS::EC2::InternetGateway, AWS::EC2::NatGateway,
AWS::EC2::NetworkAcl, AWS::EC2::NetworkInterface,
AWS::EC2::RouteTable, AWS::EC2::SecurityGroup,
AWS::EC2::Subnet, AWS::EC2::VPC, AWS::EC2::VPCEndpoint,
AWS::EC2::VPCEndpointService, AWS::EC2::VPCPeeringConnection,
AWS::EC2::VPNConnection, AWS::EC2::VPNGateway,
AWS::EC2::Volume, AWS::ElasticBeanstalk::Application,

AWS::ElasticBeanstalk::ApplicationVersion, AWS::ElasticBeanstalk::Environment,
AWS::ElasticLoadBalancing::L.oadBalancer, AWS::ElasticL.oadBalancingV2::LoadBalancer,
AWS:: IAM::Group, AWS:: IAM::Policy, AWS:: IAM::Role, AWS::IAM::User,
AWS::Lambda::Function, = AWS::QLDB::Ledger, = AWS::RDS::DBCluster,

AWS::RDS::DBClusterSnapshot, AWS::RDS::DBInstance,
AWS::RDS::DBSecurityGroup, AWS::RDS::DBSnapshot,
AWS::RDS::DBSubnetGroup, AWS::RDS::EventSubscription,
AWS::Redshift::Cluster, AWS::Redshift::ClusterParameterGroup,
AWS::Redshift::ClusterSecurityGroup, AWS::Redshift::ClusterSnapshot,
AWS::Redshift::ClusterSubnetGroup, AWS::Redshift::EventSubscription,
AWS::S3::AccountPublicAccessBlock, AWS::S3::Bucket,

AWS::SSM::AssociationCompliance, AWS::SSM::ManagedInstancelnventory,
AWS::SSM::PatchCompliance, AWS::ServiceCatalog::CloudFormationProduct,
AWS::ServiceCatalog::CloudFormationProvisionedProduct,

AWS::ServiceCatalog::Portfolio, AWS::Shield::Protection,
AWS::ShieldRegional::Protection, AWS::WAF::RateBasedRule,
AWS::WAF::Rule, AWS::WAF::RuleGroup, AWS::WAF::WebACL,
AWS::WAFRegional::RateBasedRule, AWS::WAFRegional::Rule,
AWS::WAFRegional::RuleGroup, AWS::WAFRegional:: WebACL,

AWS::XRay::EncryptionConfig

16 Chapter 3. Command Reference

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-supported-resources.html
https://docs.aws.amazon.com/config/latest/developerguide/resource-config-reference.html

RDK Documentation, Release 1.0

Resource name (e.g. “AWS::EC2::Instance”) to display a sample CI JSON docu-
ment for.

3.3.10 Test-Local

Shorthand command for running the unit tests defined for Config Rules that use a Python runtime. When a Python
2.7 or 3.6+ Rule is created using the create command a unit test template is created in the Rule directory. This test
boilerplate includes minimal tests, as well as a framework for using the mock library for stubbing out Boto3 calls. This
allows more sophisticated test cases to be written for Periodic rules that need to make API calls to gather information
about the environment.

usage: rdk test-local [-h] [-—all] [--test-ci-json TEST_CI_JSON]
—-—test-ci-types TEST_CI_TYPES] [--verbose]

<rulename> [, <rulename>, .. .]

[

[

[-s RULESETS]

[

[<rulename> [, <rulename>, ...] ...]]

Positional Arguments

<rulename>[,<rulename>,...] Rule name(s) to test

Named Arguments

--all, -a Test will be run against all rules in the working directory.
Default: False

--test-ci-json, -j [optional] JSON for test CI for testing.

--test-ci-types, -t [optional] CI type to use for testing.

--verbose, -v [optional] Enable full log output
Default: False

-s, --rulesets [p[tional] comma-delimited list of RuleSet names

3.3.11 Undeploy

The inverse of deploy, this command is used to remove a Config Rule and its Lambda Function from the targeted
account.

This is intended to be used primarily for clean-up for testing deployment automation (perhaps from a CI/CD pipeline)
to ensure that it works from an empty account, or to clean up a test account during development. See also the clean
command if you want to more thoroughly scrub Config from your account.

usage: rdk undeploy [-h] [-—all] [-s RULESETS] [—f]
[--lambda-role—-arn LAMBDA_ROLE_ARN]
[--stack-name STACK_NAME]
[--execution-role-name EXECUTION_ROLE_NAME]
[-—rdklib-layer—-arn RDKLIB_LAYER_ARN]
[-—lambda-layers LAMBDA_LAYERS] [-—force]

[

<rulename> [<rulename> ...]]

3.3. Sub-Commands 17

./clean.html

RDK Documentation, Release 1.0

Positional Arguments

<rulename>

Named Arguments

--all, -a

-s, --rulesets

-f, --functions-only

--lambda-role-arn

--stack-name

Rule name(s) to deploy. Rule(s) will be pushed to AWS.

All rules in the working directory will be deployed.

Default: False

comma-delimited list of RuleSet names

[optional] Only deploy Lambda functions. Useful for cross-account deployments.
Default: False

[optional] Assign existing iam role to lambda functions. If omitted, “rdkLamb-
daRole” will be created.

[optional] CloudFormation Stack name for use with —functions-only option. If
omitted, “RDK-Config-Rule-Functions” will be used.

--execution-role-name [optional] IAM Role that the Lambda function(s) will assume in each target

--rdklib-layer-arn

--lambda-layers

--force

account.

[optional] Lambda Layer ARN that contains the desired rdklib. Note that Lambda
Layers are region-specific.

[optional] Comma-separated list of Lambda Layer ARNs to deploy with your
Lambda function(s).

[optional] Remove selected Rules from account without prompting for confirma-
tion.

Default: False

18

Chapter 3. Command Reference

CHAPTER 4

Indices and tables

* genindex
* modindex

e search

19

	Introduction
	Getting Started
	Prerequisites
	Installation
	Usage
	Configure your env
	Create Rules
	Edit Rules Locally
	Write and Run Unit Tests
	Modify Rule
	Deploy Rule
	View Logs For Deployed Rule

	Advanced Features
	Cross-Account Deployments
	RuleSets

	Command Reference
	Positional Arguments
	Named Arguments
	Sub-Commands
	Clean
	Create
	Create-Rule-Template
	Deploy
	Init
	Logs
	Modify
	Rulesets
	Sample-CI
	Test-Local
	Undeploy

	Indices and tables

