

    
      
          
            
  
Welcome to rcfdtdpy’s documentation!

RC-FDTD simulations are a staple of electromagnetic field simulations, and can be found in many fields and applications.
This package provides a framework for performing RC-FDTD simulations aimed at investigating a particular problem: the
simulation of materials that have rapidly evolving electric susceptibilities.

The scope of this problem is such that a few assumptions have been made that simplify the implementation of the
simulation as well as the computational complexity of the simulation. These are as follows


	All materials are linear dielectrics such that \(P(z,\omega)=\epsilon_0\chi E(z,\omega)\).


	The electric and magnetic fields are plane waves propagating along spatial coordinate \(z\).


	Materials are uniform along spatial coordinates \(x\) and \(y\).


	The electric and magnetic fields are zero for all time prior to the start of the simulation (\(E(z,t)=0\) for all \(t<0\)).


	The electric field \(E(z,t)\) is approximately constant over all time intervals of duration \(\Delta t\).


	The magnetization of all materials is zero (\(\vec{M}=\vec{0}\)).




Refer to the RC-FDTD Simulations page in order to learn more about how RC-FDTD simulations work and how simulation
parameters might be tweaked to produce more accurate results. For a description of various simulations run with this
package refer to this report.
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Getting Started

rcfdtdpy can be installed into an Anaconda 3.6 environment via

conda install -c jr137 rcfdtdpy





or using pip via

pip install rcfdtdpy





From here it is easy to start one’s first simulation. Perhaps we want to simulate a terahertz spectroscopy conductivity
measurement of a Drude metal using the NumericMaterial class. We must first import the required libraries and
define our simulation parameters.

# Imports
from rcfdtdpy import Simulation, Current, NumericMaterial
import numpy as np
from scipy.fftpack import fft, fftfreq
from scipy.optimize import curve_fit
from matplotlib import pyplot as plt

# Speed of light
c0 = 3e8  # m/s
# Spatial step size
di = 0.03e-6  # 0.03 um
# Temporal step size
dn = di / c0  # (0.03 um) / (3e8 m/s) = 0.1 fs
# Permittivity of free space
epsilon0 = 8.854187e-12
# Permeability of free space
mu0 = np.divide(1, np.multiply(epsilon0, np.square(c0)))
# Define simulation bounds
i0 = -1e-6  # -1 um
i1 = 1e-6  # 1 um
n0 = -0.5e-12  # -0.5 ps
n1 = 2.5e-12  # 2.5 ps
# Calculate simulation dimensions
ilen, nlen = Simulation.calc_dims(i0, i1, di, n0, n1, dn)
# Calculate arrays that provide the spatial and temporal value of each cell
z, t = Simulation.calc_arrays(i0, i1, di, n0, n1, dn)





We next need to define the current present in our simulation. We do this by defining the location of the current pulse
and the time at which the center of the current pulse occurs and then determining the spatial and temporal indices at
which these space and time values correspond to.

# Define current pulse location and time
thz_loc = -0.5e-6  # -0.5 um
thz_time = 0  # 0 fs
# Find the corresponding location and time indices
thz_loc_ind = np.argmin(np.abs(np.subtract(z, thz_loc)))
thz_time_ind = np.argmin(np.abs(np.subtract(t, thz_time)))





We will define the terahertz pulse time profile as the second derivative of a Gaussian with FWHM of 90fs. We define this
pulse as follows

thzshape = np.append(np.diff(np.diff(np.exp(-(((t - thz_time)/90e-15) ** 2)))), [0, 0])





We can now create our Current object

thzpulse = Current(thz_loc_ind, 0, ilen, nlen, thzshape)





Note that the length of the thzshape Numpy array is the same as the length of the simulation in time
nlen. For this reason the starting spatial index of the Current object must be set to 0. However
the length of the thzshape Numpy array can be less then the length of the simulation in time. If the user is
worried about the Current object taking up too much space in memory they might choose to define thzshape
over a small number of indices and simply define its starting index in space and time.

We are now prepared to define our material. Like with the Current object we begin by defining the location and
spatial and temporal extent of our material. We specify that our material starts at location \(0\) nm and is
\(50\) nm thick.

# Set material length
material_length = 0.050e-6  # 50 nm
# Set locations
material_start = 0
material_end = material_start + material_length
# Find the corresponding location and time indices
material_ind_start = np.argmin(np.abs(np.subtract(z, material_start)))
material_ind_end = np.argmin(np.abs(np.subtract(z, material_end)))
# Determine matrix length in indices
material_ind_len = material_ind_end - material_ind_start





The electric susceptibility of a Drude metal in time is given by


\[\chi(t)=A\left(1-\exp{\left[-2\gamma t\right]}\right)\]

If you have no idea where this definition of susceptibility comes from, read up on the Lorentz oscillator. It is very
easy to implement this material into our simulation.

# Define constants
a = np.complex64(1e16)
gamma = np.complex64(1e12 * 2 * np.pi)

# Define electric susceptibility in time
def chi(t):
    return a*(1-np.exp(-2*gamma*t))

# Define the high frequency permittivity in time (simply a constant)
def inf_perm(t):
    return 1

# Create our material!
drude = NumericMaterial(di, dn, ilen, nlen, material_ind_start, material_ind_end, chi, inf_perm)

# Export the susceptibility of the material
drude_chi = drude.export_chi()





Now that \(\chi^m\) has been calculated for each simulation time step, we can check that our Drude material has the
expected form of electric susceptibility in time. We plot the electric susceptibility versus time

plt.plot(t*1e12, drude_chi)
plt.xlabel('time [ps]')
plt.ylabel('$\chi(t)$')
plt.show()





[image: _images/start_chi_plot.png]
The analytic and simulated values of \(\chi(t)\) are in agreement. We must now specify what field values our
simulation will record.

We would like to view our simulation evolving in time, meaning that we must store field values at each step in time.
Lets say we would like to view the first third of the simulation.

nstore = np.arange(0, int(nlen/3), 100)





We choose to record the field values every 100 simulation steps for the first third of the simulation. We also would
like to be able to calculate the transmission of our material in time. Therefore we wish to record the field value at
every time step at the opposite side of the material from the current pulse. Since the material is \(50\) nm in
length and starts at location \(0\) nm, recording the field value near the end of the simulation space will provide
us with the transmitted field.

We specify that the simulation will have absorbing boundaries. The Simulation object is initialized and the
simulation is run.

s = Simulation(i0, i1, di, n0, n1, dn, epsilon0, mu0, 'absorbing', thzpulse, drude, nstore=nstore, istore=[ilen-6])
# Run simulation
s.simulate()





Now that the simulation has been run we export the fields stored by the Simulation object. The
Simulation object simulates two sets of electric and magnetic fields: a field that interacts with materials and
one that does not. This provides every simulation with a reference set of field values. We export the stored field
values as well as the electric electric susceptibility.

# Export field values
hfield, efield, hfield_ref, efield_ref = s.export_ifields()





We proceed to produce plots of the transmitted and reference fields in time and frequency.

# Plot in time
plt.plot(t, np.real(efield), label='$E_{t}(t)$')
plt.plot(t, np.real(efield_ref), label='$E_{ref}(t)$')
plt.ylabel('Amplitude [?]')
plt.xlabel('time [s]')
plt.legend()
plt.show()

# Calculate time difference
dt = np.diff(t)[0] # Calculate time step difference in fs

# Calculate Fourier transforms
freq = fftfreq(nlen, dt) # in Hz
trans = fft(np.real(efield[:,0]))
ref = fft(np.real(efield_ref[:,0]))

# Remove unwanted frequencies
freq = freq[1:int(nlen/2)]
trans = trans[1:int(nlen/2)]
ref = ref[1:int(nlen/2)]

# Plot transformed fields
plt.plot(freq * 1e-12, np.abs(trans), label='$E_{t}(\omega)$')
plt.plot(freq * 1e-12, np.abs(ref), label='$E_{ref}(\omega)$')
plt.xlabel(r'frequency [THz]')
plt.xlim(0, 10)
plt.legend()
plt.show()
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In the thin sample limit the conductivity of a material can be calculated via


\[\sigma(\omega)=\frac{2}{Z_0d}\left(\frac{1}{t(\omega)}-1\right)\]

where \(Z_0\) is the impedance of free space and \(t(\omega)=\frac{E_{t}(\omega)}{E_{ref}(\omega)}\). We next
extract the conductivity of our simulated material and compare it to the analytical form of the conductivity of a Drude
metal


\[\sigma(\omega)=\frac{\sigma_0}{1+i\omega\tau}\]

# Remove zero indicies from all arrays
nonzero_ind = np.nonzero(ref)
freq = freq[nonzero_ind]
ref = ref[nonzero_ind]
trans = trans[nonzero_ind]

# Calculate t
spec = np.divide(trans, ref)

# Set constants
Z0 = np.multiply(mu0, c0) # Ohms (impedance of free space)

# Calculate the angular frequency
ang_freq = 2 * np.pi * freq # THz * 2pi

# Calculate conductivity
conductivity = np.multiply(np.divide(2, Z0*material_length), np.subtract(np.divide(1, spec), 1))

# Only fit to frequencies below 14THz, as the terahertz pulse has approximately zero amplitude above 14THz
freq_max = np.argmin(np.abs(np.subtract(14e12, freq)))

# Define fit functions
def cond_real(omega, sigma0, tau):
    return sigma0/(1+(tau*omega)**2)

def cond_imag(omega, sigma0, tau):
    return (-omega*tau*sigma0)/(1+(tau*omega)**2)

# Take real and imaginary parts
cfreq = freq[:freq_max]
creal = np.real(conductivity)[:freq_max]
cimag = np.imag(conductivity)[:freq_max]

# Run curve fit
popt_real, pcov_real = curve_fit(cond_real, cfreq, creal, p0=[1e5, 0.4e-12])
popt_imag, pcov_imag = curve_fit(cond_imag, cfreq, cimag, p0=[1e5, 0.2e-12])

fit_real = cond_real(freq, *popt_real)
fit_imag = cond_imag(freq, *popt_imag)

# Setup plot
fig, (ax0, ax1) = plt.subplots(2, 1, sharex=True, dpi=100)
ax0.set_ylabel(r'$\sigma_1$', fontsize=15)
ax1.set_ylabel(r'$\sigma_2$', fontsize=15)
ax1.set_xlabel(r'$\omega$ [THz]', fontsize=15)
ax0.set_title(r'Drude Model (numeric)', fontsize=15)
ax1.set_xlim(0, 15)
ax0.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
ax0.tick_params(labelsize=15)
ax0.set_ylim(0, 1.1e5)
ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
ax1.tick_params(labelsize=15)
ax1.set_ylim(-6e4, 0)

# Plot simulated conductivity
ax0.plot(freq*1e-12, np.real(conductivity), 'b-', label='simulation')
ax1.plot(freq*1e-12, np.imag(conductivity), 'b-', label='simulation')

# Plot analytic conductivity
ax0.plot(freq*1e-12, fit_real, 'r--', label='analytic')
ax1.plot(freq*1e-12, fit_imag, 'r--', label='analytic')

ax0.legend()
ax1.legend()

plt.tight_layout()

plt.show()





[image: _images/start_conductivity_fit.png]
That’s it! We have successfully simulated a Drude metal and examined how simulations are run with rcfdtdpy! You can
download the complete start.py file.





          

      

      

    

  

    
      
          
            
  
RC-FDTD Simulations

Recursive convolution finite difference time domain (RC-FDTD) simulations have long been used to numerically solve
Maxwell’s equations. This simulation technique discretizes the time domain and evolves the electric and magnetic fields
in time using a set of update equations. Within the simulation, space is discretized into intervals of length
\(\Delta z\) and time into intervals of length \(\Delta t\). A specific point in time and space is accessed via
\(z=i\Delta z\) and \(t=n\Delta t\). The simulation relies on a number of assumptions:


	All materials are linear dielectrics such that \(P(z,\omega)=\epsilon_0\chi E(z,\omega)\).


	The electric and magnetic fields are plane waves propagating along spatial coordinate \(z\).


	Materials are uniform along spatial coordinates \(x\) and \(y\).


	The electric and magnetic fields are zero for all time prior to the start of the simulation (\(E(z,t)=0\) for all \(t<0\)).


	The electric field \(E(z,t)\) is approximately constant over all time intervals of duration \(\Delta t\).


	The magnetization of all materials is zero (\(\vec{M}=\vec{0}\)).




These assumptions allow the derivation of the discretized displacement field \(D^{i,n}\). The displacement field
\(\vec{D}(\vec{r},\omega)\), with the requirement that simulated materials are linear dielectrics such that
\(P(z,\omega)=\epsilon_0\chi(z,\omega) E(z,\omega)\) and the requirement that the field varies over only the spatial
coordinate \(z\) we find that \(D(z,\omega)\) is


\[D(z,\omega)=\epsilon_0\left[1+\chi (z,\omega)\right]E(z,\omega)\]

The displacement field \(D(z,\omega)\) can be transformed to the time domain via


\[\begin{split}D(z,t)=&\mathcal{F}^{-1}\left\{D(z,\omega)\right\} \\
=&\mathcal{F}^{-1}\left\{\epsilon_0\left[1+\chi (\omega)\right]E(z,\omega)\right\} \\
=&\mathcal{F}^{-1}\left\{\epsilon_0\mathcal{F}\left\{1+\chi (t)\right\}\mathcal{F}\left\{E(z,t)\right\}\right\}\end{split}\]

where \(\mathcal{F}\left\{a(t)\right\}\) and \(\mathcal{F}^{-1}\left\{a(\nu)\right\}\) to denote Fourier and
inverse Fourier transforms. Thus via the convolution theorem


\[\begin{split}D(z,t)&=\mathcal{F}^{-1}\left\{\epsilon_0\mathcal{F}\left\{1+\chi (t)\right\}\mathcal{F}\left\{E(z,t)\right\}\right\} \\
&=\epsilon_0\left[1+\chi (t)\right]*\left[E(z,t)\right] \\
&=\epsilon_0\left[\epsilon_\infty E(z,t)+\int_0^t\chi (\tau)E(z,t-\tau) d\tau\right]\end{split}\]

where \(*\) denotes a convolution. It is assumed that \(E(z,t)=0\) for all \(t<0\). We discretize this
result by replacing the \(z\) and \(t\) coordinates via \(z=i\Delta z\) and \(t=n\Delta t\) where
\(i,n\in\mathbb{R}\), yielding


\[\begin{split}D(i\Delta z,n\Delta t)=&\epsilon_0\epsilon_\infty E(i\Delta z,n\Delta t) \\
&+\epsilon_0\int_0^{n\Delta t}\chi (\tau)E(i\Delta z,n\Delta -\tau) d\tau\end{split}\]

Assuming that \(E(i\Delta z,n\Delta -\tau)\) is constant over all time intervals of duration \(\Delta t\) the
integral is replaced with a sum


\[D^{i,n}=\epsilon_0\epsilon_\infty E^{i,n}+\epsilon_0\sum^{n-1}_{m=0}E^{i,n-m}\chi ^m \label{eq:disp}\]

where


\[\chi ^m=\int_{m\Delta t}^{(m+1)\Delta t}\chi (\tau) d\tau\]

It is not assumed \(\chi(t)\) is constant over any time interval. This result is consistent with the result
derived in Luebbers et al. and Beard et al..


\[D^{i,n}=\epsilon_0\epsilon_\infty E^{i,n}+\epsilon_0\sum^{n-1}_{m=0}E^{i,n-m}\chi ^m\]

where


\[\chi ^m=\int_{m\Delta t}^{(m+1)\Delta t}\chi (\tau) d\tau \label{eq:chi_conv}\]

This result is significant for the RC-FDTD simulation framework implmented here as it means a material can be simulated
as long as one can define $chi(t)$ for that material.

We proceed by deriving the update equations for the electric and magnetic fields. With the requirement that
\(\vec{M}=\vec{0}\) and the requirement that the electric and magnetic fields are uniform in spatial coordinates
\(x\) and \(y\), Faraday’s law of induction and Ampere’s law with Maxwell’s addition reduce to


\[\frac{\partial E}{\partial z}=-\mu_0\frac{\partial H}{\partial t} \qquad -\frac{\partial H}{\partial z}=I_f+\frac{\partial D}{\partial t}\]

where \(I_f\) is along \(\hat{z}\). Noting the definition of a derivative we find


\[\begin{split}\lim_{\Delta z\to0}\frac{E(z+\Delta z,t)-E(z,t)}{\Delta z}=-\mu_0\lim_{\Delta t\to0}\frac{H(z,t+\Delta t)-H(z,t)}{\Delta t} \\
-\lim_{\Delta z\to0}\frac{H(z+\Delta z,t)-H(z,t)}{\Delta z}=I_f+\lim_{\Delta t\to0}\frac{D(z,t+\Delta t)-D(z,t)}{\Delta t}\end{split}\]

From here the discretization process is simple. We simply remove each limit from the equations, define an appropriate
value of \(\Delta z\) and \(\Delta t\), and replace the fields with their discretized forms.


\[\begin{split}\frac{E^{i+1,n}-E^{i,n}}{\Delta z}=-\mu_0\frac{H^{i,n+1}-H^{i,n}}{\Delta t} \label{eq:faraday} \\
-\frac{H^{i+1,n}-H^{i,n}}{\Delta z}=I_f+\frac{D^{i,n+1}-D^{i,n}}{\Delta t} \label{eq:ampere}\end{split}\]

If \(\Delta z\) and \(\Delta t\) aren’t small enough such that the derivative is accurate then the RC-FDTD
simulation will break down.

We solve Eq.(ref{eq:faraday}) for \(H^{i,n+1}\), finding the following update equation


\[H^{i,n+1}=H^{i,n}-\frac{1}{\mu_0}\frac{\Delta t}{\Delta z}\left[E^{i+1,n}-E^{i,n}\right]\]

In order to solve Eq.(ref{eq:ampere}) we use the result of Eq.(ref{eq:disp}) to determine \(D^{i,n+1}-D^{i,n}\) in
terms of \(E^{i+1,n}\) and \(E^{i,n}\)


\[\begin{split}D^{i,n+1}-D^{i,n}&=\epsilon_0\epsilon_\infty E^{i,n+1}+\epsilon_0\sum^{n}_{m=0}E^{i,n+1-m}\chi ^m-\epsilon_0\epsilon_\infty E^{i,n}-\epsilon_0\sum^{n-1}_{m=0}E^{i,n-m}\chi ^m \\
&=\epsilon_0\epsilon_\infty\left[E^{i,n+1}-E^{i,n}\right]+\epsilon_0\left[\sum^{n}_{m=0}E^{i,n+1-m}\chi ^m-\sum^{n-1}_{m=0}E^{i,n-m}\chi ^m\right]\end{split}\]

Noting that


\[\begin{split}\sum^{n}_{m=0}E^{i,n+1-m}\chi ^m-\sum^{n-1}_{m=0}E^{i,n-m}\chi ^m&=E^{i,n+1}\chi ^0+\sum^{n}_{m=1}E^{i,n+1-m}\chi ^m-\sum^{n-1}_{m=0}E^{i,n-m}\chi ^m \\
&=E^{i,n+1}\chi ^0+\sum^{n-1}_{m=0}E^{i,n+1-(m+1)}\chi ^{m+1}-\sum^{n-1}_{m=0}E^{i,n-m}\chi ^m \\
&=E^{i,n+1}\chi ^0+\sum^{n-1}_{m=0}E^{i,n-m}\left[\chi ^{m+1}-\chi ^m\right] \\\end{split}\]

and letting


\[\begin{split}\Delta\chi^m&=\chi^m-\chi^{m+1} \\
\psi^n&=\sum^{n-1}_{m=0}E^{i,n-m}\Delta\chi^m\end{split}\]

we find


\[\begin{split}D^{i,n+1}-D^{i,n}&=\epsilon_0\epsilon_\infty\left[E^{i,n+1}-E^{i,n}\right]+\epsilon_0\left[E^{i,n+1}\chi^0-\psi^n\right] \\
&=\epsilon_0\left[\epsilon_\infty+\chi^0\right]E^{i,n+1}-\epsilon_0\epsilon_\infty E^{i,n}-\epsilon_0\psi^n\end{split}\]

Substituting this result into Eq.(ref{eq:ampere}) and solving for \(E^{i,n+1}\) we find


\[\begin{split}E^{i,n+1}=&\frac{\epsilon_\infty}{\epsilon_\infty+\chi^0}E^{i,n}+\frac{1}{\epsilon_\infty+\chi^0}\psi^n-\frac{\Delta tI_f}{\epsilon_0\left[\epsilon_\infty+\chi^0\right]} \\
&-\frac{1}{\epsilon_0\left[\epsilon_\infty+\chi^0\right]}\frac{\Delta t}{\Delta z}\left[H^{i+1,n}-H^{i,n}\right]\end{split}\]

We then implement the Yee cell in the simulation by offsetting the electric and magnetic field cells by half a spatial
and temporal incrementcite{beard}, producing


\[\begin{split}H^{i+1/2,n+1/2}=&H^{i+1/2,n-1/2}-\frac{1}{\mu_0}\frac{\Delta t}{\Delta z}\left[E^{i+1,n}-E^{i,n}\right] \label{eq:hup} \\
E^{i,n+1}=&\frac{\epsilon_\infty}{\epsilon_\infty+\chi^0}E^{i,n}+\frac{1}{\epsilon_\infty+\chi^0}\psi^n-\frac{\Delta tI_f}{\epsilon_0\left[\epsilon_\infty+\chi^0\right]} \\
&-\frac{1}{\epsilon_0\left[\epsilon_\infty+\chi^0\right]}\frac{\Delta t}{\Delta z}\left[H^{i+1/2,n+1/2}-H^{i-1/2,n+1/2}\right]\end{split}\]

where


\[\begin{split}\Delta\chi^m&=\chi^m-\chi^{m+1} \nonumber \\
\psi^n&=\sum^{n-1}_{m=0}E^{i,n-m}\Delta\chi^m \label{eq:psi}\end{split}\]

The accuracy of the derivative approximation inherent to these update equations relies on choosing some \(\Delta z\)
and \(\Delta t\) small enough such that the electric and magnetic fields are approximately linear over spatial
intervals \(\Delta z\) and time intervals \(\Delta t\). If this condition is not met then the accuracy of the
derivative approximation breaks down. The update equations derived here are significant as they reveal that any linear
dielectric can be accurately simulated via the RC-FDTD method as long as the electric susceptibility of the material
\(\chi(t)\) is well defined. We turn our attention to modeling the electric susceptibility of materials in section
ref{sec:susceptibility}.

rcfdtdpy provides a framework in which the user need only provide the electric susceptibility \(\chi(t)\) to run a
simulation.





          

      

      

    

  

    
      
          
            
  
Reference


Simulation

The Simulation class treats field indices as follows

[image: _images/field_structure.png]

	
class rcfdtdpy.sim.Simulation(i0, i1, di, n0, n1, dn, epsilon0, mu0, boundary, currents=[], materials=[], nstore=[], istore=[])

	Represents a single simulation. Field is initialized to all zeros.


	Parameters

	
	i0 – The spatial value at which the field starts


	i1 – The spatial value at which the field ends


	di – The spatial step size


	n0 – The temporal value at which the field starts


	n1 – The temporal value at which the field ends


	dn – The temporal step size


	epsilon0 – \(\epsilon_0\), the vacuum permittivity


	mu0 – \(\mu_0\), the vacuum permeability


	boundary – The boundary type of the field, either ‘zero’, for fields bounded by zeros or ‘absorbing’ for absorbing boundary conditions


	currents – A Current object or a list of Current objects that represent the currents present in the simulation, defaults to none


	materials – A Material object or a list of Material objects that represent the materials present in the simulation, defaults to none


	nstore – A list of time indices to save field values at in all points in space


	istore – A list of spatial indices to save field values at in all points in time









	
static calc_arrays(i0, i1, di, n0, n1, dn)

	Calculates spatial and time arrays of the same dimensions of the simulation. Array values are populated by their
the spatial and temporal values at their respective simulation spatial and temporal indices.


	Parameters

	
	i0 – The spatial value at which the field starts


	i1 – The spatial value at which the field ends


	di – The spatial step size


	n0 – The temporal value at which the field starts


	n1 – The temporal value at which the field ends


	dn – The temporal step size






	Returns

	A tuple (z, t) of the spatial and temporal arrays










	
static calc_dims(i0, i1, di, n0, n1, dn)

	Calculates the dimensions of the simulation in cells.


	Parameters

	
	i0 – The spatial value at which the field starts


	i1 – The spatial value at which the field ends


	di – The spatial step size


	n0 – The temporal value at which the field starts


	n1 – The temporal value at which the field ends


	dn – The temporal step size






	Returns

	A tuple (ilen, nlen) of the spatial and temporal dimensions










	
export_ifields()

	Exports the field values at spatial indices specified by istore at the Simulation object’s initialization,
where an index along axis=1 corresponds to the corresponding spatial index in istore. Values along axis=0
correspond to the temporal index.


	Returns

	(hfield, efield, hfieldr, efieldr) where the suffix r corresponds to a reference field. If istore is unspecified returns None










	
export_nfields()

	Exports the field values at temporal indices specified by nstore at the Simulation object’s initialization,
where an index along axis=0 corresponds to the corresponding temporal index in nstore. Values along axis=1
correspond to the spatial index.


	Returns

	(hfield, efield, hfieldr, efieldr) where the suffix r corresponds to a reference field. If nstore is unspecified returns None










	
get_dims()

	Returns the dimensions of the simulation.


	Returns

	A tuple (ilen, nlen) containing the spatial and temporal dimensions in cells










	
get_materials()

	Returns the list of Material objects present in the simulation.


	Returns

	A list of Material objects










	
simulate(tqdmarg={})

	Executes the simulation.


	Parameters

	tqdmarg – The arguments to pass the tdqm iterator (lookup arguments on the tqdm documentation)
















Current

The Current class is used to represent currents in the simulation. The current argument passed to the
Current object at initialization is represented using the following two dimensional array

[image: _images/current_numpy_structure.png]
where \(n\) represents the time index of the current and \(i\) represents the spatial index of the current.


	
class rcfdtdpy.sim.Current(i0, n0, ilen, nlen, current)

	The Current class is used to represent a current in the simulation.


	Parameters

	
	i0 – The starting spatial index of the current


	n0 – The starting temporal index of the current


	ilen – The number of spatial indices in the simulation


	nlen – The number of temporal indices in the simulation


	current – A matrix representing the current, where axis=0 represents locations in time \(n\) and axis=1 represents locations in space \(i\)









	
get_current(n)

	Returns the current at time index \(n\) as an array the length of the simulation












Materials

There are a number of material types that have been implemented for use with the RC-FDTD simulation.


Material

The Material class is an abstract class containing the properties and functions that any material implementation
should have. Any subclass of material should call to super at initialization and implement each function defined here.


	
class rcfdtdpy.sim.Material(di, dn, ilen, nlen, material_i0, material_i1, material_n0, material_n1)

	The Material class is an abstract class that defines the minimum requirements for a Material object to have in the
simulation. All Materials in the simulation must inherit Material.


	Parameters

	
	di – The spatial time step of the simulation


	dn – The temporal step size of the simulation


	ilen – The number of spatial indices in the simulation


	nlen – The number of temporal indices in the simulation


	material_i0 – The starting spatial index of the material


	material_i1 – The ending spatial index of the material


	material_n0 – The starting temporal index of the material


	material_n1 – The ending temporal index of the material









	
get_chi0()

	Returns the value of \(\chi_0\) at the current time step in the simulation at each spatial location in the
simulation.


	Returns

	The current value of \(\chi_0\) at each spatial location in the simulation










	
get_epsiloninf()

	Returns the value of \(\epsilon_\infty\) at the current time step in the simulation at each spatial location
in the simulation.


	Returns

	The current value of \(\epsilon_\infty\) at each spatial location in the simulation










	
get_psi()

	Returns the value of \(\psi\) at the current time step in the simulation at each spatial location in the
simulation.


	Returns

	The current value of \(\psi\) at each spatial location in the simulation










	
reset_material()

	This function is called before each simulation. It should reset any material values that are calculated during
the simulation to their initial values.






	
update_material(n, efield)

	This function is called at the start of each simulation time step. It should update the \(\chi\) and
\(\psi\) values of the material to their values at n.


	Parameters

	
	n – The current temporal index of the simulation.


	efield – The previous electric field of the simulation.



















EmptyMaterial

The EmptyMaterial class represents vacuum


	
class rcfdtdpy.sim.EmptyMaterial(di, dn, ilen, nlen)

	Represents an empty Material, i.e. vacuum


	
get_chi0()

	Returns the value of \(\chi_0\) at the current time step in the simulation at each spatial location in the
simulation.


	Returns

	The current value of \(\chi_0\) at each spatial location in the simulation










	
get_epsiloninf()

	Returns the value of \(\epsilon_\infty\) at the current time step in the simulation at each spatial location
in the simulation.


	Returns

	The current value of \(\epsilon_\infty\) at each spatial location in the simulation










	
get_psi()

	Returns the value of \(\psi\) at the current time step in the simulation at each spatial location in the
simulation.


	Returns

	The current value of \(\psi\) at each spatial location in the simulation










	
reset_material()

	This function is called before each simulation. It should reset any material values that are calculated during
the simulation to their initial values.






	
update_material(n, efield)

	This function is called at the start of each simulation time step. It should update the \(\chi\) and
\(\psi\) values of the material to their values at n.


	Parameters

	
	n – The current temporal index of the simulation.


	efield – The previous electric field of the simulation.



















StaticMaterial

The StaticMaterial class is an implementation of the Material class. The variables \(A_1\), \(A_2\),
\(\gamma\), and \(\beta\) are represented using the following two dimensional array

[image: _images/material_numpy_structure.png]
where \(m_0\) is the starting index of the material. Increments along the vertical axis represent increments in the
oscillator index \(j\), and increments along the horizontal axis represent increments in space.

The StaticMaterial class uses the update equations for \(\psi^n\) derived in Beard et al..


	
class rcfdtdpy.sim.StaticMaterial(di, dn, ilen, nlen, material_i0, epsiloninf, a1, a2, g, b, opacity=None, istore=[])

	The StaticMaterial class allows for the simulation of a static material, that is a material that has a constant
definition of electric susceptibility in time. The electric susceptibility is modeled using a harmonic oscillator.
This material is more computationally efficient than NumericMaterial, and uses the update equations specified in
Beard et al..


	Parameters

	
	di – The spatial time step of the simulation


	dn – The temporal step size of the simulation


	ilen – The number of spatial indices in the simulation


	nlen – The number of temporal indices in the simulation


	material_i0 – The starting spatial index of the material


	epsiloninf – The \(\epsilon_\infty\) of the material, which is constant over space and time.


	a1 – A matrix representing \(A_1\) where axis=0 represents the \(j\) th oscillator and axis=1 represents the \(i\) th spatial index


	a2 – A matrix representing \(A_2\) where axis=0 represents the \(j\) th oscillator and axis=1 represents the \(i\) th spatial index


	g – A matrix representing \(\gamma\) where axis=0 represents the \(j\) th oscillator and axis=1 represents the \(i\) th spatial index


	b – A matrix representing 
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