

 Navigation

 	
 index

 	ray-core latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/ray-core/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/ray-core/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	ray-core latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 src/apps/benchmark/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

benchmark

This application connects to another mojo application, collects traces during
indicated period of time and computes a number of results based on the collected
traces. It can be used to measure performance of a mojo app, provided that the
app being benchmarked participates in the tracing
ecosystem.

Arguments

The benchmarking app requires the following arguments:

		--app=<app_url> - url of the application to be benchmarked

		--duration=<duration_seconds> - duration of the benchmark in seconds

The following arguments are optional:

		--trace-output=<output_file_path> - local file path at which the collected trace
will be written

Any other arguments are assumed to be descriptions of measurements to be
conducted on the collected trace data. Each measurement has to be of form:
<measurement_type>/<measurement_arg_1>/<measurement_arg_2>/....

The following measurement types are available:

		time_until/<trace_event_category>/<trace_event_name> - measures time until
the first occurence of the event named trace_event_name in category
trace_event_category.

		time_between/<first_event_category>/<first_event_name>/<second_event_category>/<second_event_name>
measures time between the first occurence of the event named
<first_event_name> in category <first_event_category> and the first occurence
of the event named <second_event_name> in category
<second_event_category>. The measurement will fail if the first occurence
of the first event happens after the first occurence of the second event.

		avg_duration/<trace_event_category>/<trace_event_name> - measures average
duration of all events named trace_event_name in category
trace_event_category.

		percentile_duration/<trace_event_category>/<trace_event_name>/0.XX -
measures the value at the XXth percentile of all events named
trace_event_name in category trace_event_category. E.g.
.../<trace_event_name/0.50 will give the 50th percentile.

Runner script

Devtools offers a helper script
allowing to run a list of benchmarks in controlled caching conditions, both
on Android and Linux.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/apps/shortcut/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

shortcut

This application creates a new shortcut on the android home screen.

Arguments

The shortcut app has the following arguments:

		<name> - name of the shortcut (required).

		<url> - URL to be launched. To launch a mojo application, use a mojo:// URL
(required).

		<icon_url> - URL of the icon to use (optional).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/benchmarks/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

benchmarks

This directory contains mojo applications that are run as performance benchmarks
by mojo_benchmark.

See also:

		documentation for
mojo_benchmark

Legacy benchmarks

benchmark_runner.py and the startup benchmark are the remainings of the
previous take on performance benchmarks. These can be dropped once we can track
startup time of the shell itself using the new system.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/apps/moterm/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Moterm

moterm is an application that provides an embeddable view, which provides a
VT100-style terminal that its embedder can connect to other applications. It is
not useful as a standalone application (embedded by something, like a window
manager, that is not aware of how to control it).

For an example of an embedder that’s useful as a standalone application, see the
Moterm example application.

Details

moterm exposes the mojo.terminal.Terminal interface to its embedder. Via
this interface, its embedder may connect to the terminal directly (for direct
input/output with the terminal) or request that the terminal connect to another
application. In the latter case, that application should implement the
mojo.terminal.TerminalClient interface.

Output to/input from the terminal is done via a mojo.files.File that behaves
“like a terminal” (in much the same way as in Unix one has terminal device
files and file descriptors to them).

See also

		//examples/moterm_example_app

		//mojo/services/files/interfaces

		//mojo/services/terminal/interfaces

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

src/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mojo

Mojo is a collection of interprocess communication technologies, protocols
and a runtime for creating applications and services that are composable while
being loosely coupled. It simplifies the creation of fully asynchronous
component-based systems and provides guarantees so that components made by
different vendors and in different programming languages can interoperate.

Set-up and code check-out

The instructions below only need to be done once. Note that a simple “git clone”
command is not sufficient to build the source code because this repo uses the
gclient command from depot_tools to manage most third party dependencies.

		Download
depot_tools [http://www.chromium.org/developers/how-tos/install-depot-tools]
and make sure it is in your path.

		[Googlers only] Install Goma in ~/goma.

		Create a directory somewhere for your checkout (preferably on an SSD), cd
into it, and run the following commands:

$ fetch mojo # append --target_os=android to include Android build support.
$ cd src

Or install-build-deps-android.sh if you plan to build for Android.
$./build/install-build-deps.sh

$ mojo/tools/mojob.py gn

The fetch mojo command does the following:

		creates a directory called ‘src’ under your checkout directory

		clones the repository using git clone

		clones dependencies with gclient sync

install-build-deps.sh installs any packages needed to build, then
mojo/tools/mojob.py gn runs gn args and configures the build directory,
out/Debug.

If the fetch command fails, you will need to delete the src directory and start
over.

[bookmark: configure-android]Adding Android bits in an existing checkout

If you configured your set-up for Linux and now wish to build for Android, edit
the .gclient file in your root Mojo directory (the parent directory to src.)
and add this line at the end of the file:

target_os = [u'android',u'linux']

Bring in Android-specific build dependencies:

$ build/install-build-deps-android.sh

Pull down all of the packages with this command:

$ gclient sync

Update your checkout

You can update your checkout like this. The order is important. You must do the
git pull first because gclient sync is dependent on the current revision.

Fetch changes from upstream and rebase the current branch on top
$ git pull --rebase
Update all modules as directed by the DEPS file
$ gclient sync

You do not need to rerun gn gen out/Debug - ninja does so automatically each
time you build. You might need to rerun mojo/tools/mojob.py gn if the GN
flags have changed.

[bookmark: buildmojo]Build Mojo

Linux

Build Mojo for Linux by running:

$ ninja -C out/Debug -j 10

You can also use the mojob.py script for building. This script automatically
calls ninja and sets -j to an appropriate value based on whether Goma (see the
section on Goma below) is present. You cannot specify a target name with this
script.

mojo/tools/mojob.py gn
mojo/tools/mojob.py build

Run a demo:

out/Debug/mojo_shell mojo:spinning_cube

Run the tests:

mojo/tools/mojob.py test

Run the benchmarks:

mojo/devtools/common/mojo_benchmark mojo/tools/data/benchmarks

Create a release build:

mojo/tools/mojob.py gn --release
mojo/tools/mojob.py build --release
mojo/tools/mojob.py test --release

Android

To build for Android, first make sure that your checkout is configured to build
for Android. After that you can use the mojob script as follows:

$ mojo/tools/mojob.py gn --android
$ mojo/tools/mojob.py build --android

The result will be in out/android_Debug. If you see javac compile errors,
make sure you have an up-to-date JDK [https://code.google.com/p/chromium/wiki/AndroidBuildInstructions#Install_Java_JDK]

Goma (Googlers only)

If you’re a Googler, you can use Goma, a distributed compiler service for
open-source projects such as Chrome and Android. If Goma is installed in the
default location (~/goma), it will work out-of-the-box with the mojob.py gn,
mojob.py build workflow described above.

You can also manually add:

use_goma = true

at the end of the file opened through:

$ gn args out/Debug

After you close the editor gn gen out/Debug will run automatically. Now you
can dramatically increase the number of parallel tasks:

$ ninja -C out/Debug -j 1000

Official builds

Official builds for android generate a signed Mojo Shell intended for
distribution. You normally should not need to produce one. If you have any
questions, reach out to etiennej@chromium.org.

Run Mojo Shell

Devtools mojo_run is a universal shell runner abstracting away the differences
between running on Linux and Android.

Having built Mojo as described above, a demo app can be run as follows:

mojo/devtools/common/mojo_run https://core.mojoapps.io/spinning_cube.mojo # Linux
mojo/devtools/common/mojo_run https://core.mojoapps.io/spinning_cube.mojo --android # Android

Development server

Whenever mojo_run is run, a development server is set up according to the
config file. The server runs on your machine, serving the locally
built apps, but appears to the shell under the https://core.mojoapps.io host.

You can ignore the config file and skip spawning the local server (for example,
in order to use apps at the actual https://core.mojoapps.io web host) by passing
--no-config-file to mojo_run.

More examples

Some applications can be run directly from the source tree. The development
server serves the src directory, allowing to refer to these apps. For
instance, this command serves a dart Mojo app from the source at
examples/dart/device_info/main.dart:

mojo/devtools/common/mojo_run https://core.mojoapps.io/examples/dart/device_info/lib/main.dart [--android]

Some applications implement ViewProvider and are run embedded in a view. To run
these, you can pass the app url using the --embed flag:

mojo/devtools/common/mojo_run --embed mojo:moterm_example_app [--android]

which is a shorthand for:

mojo/devtools/common/mojo_run "mojo:launcher mojo:moterm_example_app"

For additional information on mojo_run refer to the built-in help and the
documentation.
You can also request more information on what the tool is doing for you by
passing the --verbose flag.

[bookmark: debugging]Debugging, tracing, profiling

Devtools mojo_debug allows you to interactively inspect a running shell,
collect performance traces and attach a gdb debugger.

For additional information refer to the built-in help and the
documentation.

Android set-up

Adb

For the Android tooling to work, you will need to have adb in your PATH. For
that, you can either run:

source build/android/envsetup.sh

each time you open a fresh terminal, or add something like:

export PATH="$PATH":$MOJO_DIR/src/third_party/android_tools/sdk/platform-tools

to your ~/.bashrc file, $MOJO_DIR being a path to your Mojo checkout.

Device

The device has to be running Android 5.0 (Lollipop) or newer.

Many features useful for development (ie. streaming of the shell stdout when
running shell on the device) will not work unless the device is rooted and
running a userdebug build. For Googlers, follow the instructions at this
link [http://go/mojo-internal-build-instructions].

Running manually on Linux

If you wish to, you can also run the Linux Mojo shell directly with no wrappers:

./out/Debug/mojo_shell out/Debug/spinning_cube.mojo

Contribute

With git you should make all your changes in a local branch. Once your change is
committed, you can delete this branch.

Create a local branch named “mywork” and make changes to it.

 cd src
 git new-branch mywork
 vi ...

Commit your change locally. (this doesn’t commit your change to the SVN or Git
server)

 git commit -a

Fix your source code formatting.

$ git cl format

Upload your change for review.

$ git cl upload

Respond to review comments.

See Contributing code [http://www.chromium.org/developers/contributing-code]
for more detailed git instructions, including how to update your CL when you get
review comments. There’s a short tutorial that might be helpful to try before
making your first change: C++ in Chromium
101 [http://dev.chromium.org/developers/cpp-in-chromium-101-codelab].

To land a change after receiving LGTM:

$ git cl land

Monitoring

Our waterfall [http://build.chromium.org/p/client.mojo/waterfall] continuously
builds and tests the code. Don’t break the build!

Benchmarks

One of the bots, Mojo Linux
Perf [http://build.chromium.org/p/client.mojo/builders/Mojo%20Linux%20Perf] runs
a suite of benchmarks and uploads the results to
the performance dashboard [https://chromeperf.appspot.com/]. You can browse the
results here [https://chromeperf.appspot.com/report], putting mojo_benchmarks
as the “test suite”.

Automated alerts about performance regressions are sent to
mojo-perf-alerts@chromium.org [https://groups.google.com/a/chromium.org/forum/#!forum/mojo-perf-alerts].

For examples of interesting sets of graphs see:

		app
startup [https://chromeperf.appspot.com/report?sid=4848464df5ca8467770d80b309740ef56fbff00e773c2c53816fd8bff1fda1e0]

		ipc
performance [https://chromeperf.appspot.com/report?sid=9abc20b46f6f8d908b0f07847f1d42eab54c7025a098336e6dc2d3e2030d66f8]

Development Tools

These are some helpful tools for use during development.

Atom IDE plugins

Here are some useful plugins for Atom IDE during Mojo development.

		language-mojom: provides syntax highlighting for *.mojom files.

		clang-format: auto-formats C and C++ code in the editor (make sure to configure the path to the executable in the plugin settings).

Vim plugins

The //tools/vim directory contains the following plugins, refer to each script for installation instructions.

		mojom: provides syntax highlighting for *.mojom files.

		clang_format.vim: binds keyboard shortcuts to invoke clang-format.

		filetypes.vim: provides syntax highlighting for *.gyp, *.gypi, and DEPS files.

		ninja-build.vim: binds keyboard shortcuts to invoke the ninja build tool.

Address Sanitizer (ASAN)

Use ASAN to help find misuse of heap memory such as use-after-free errors.

$ mojo/tools/mojob.py gn --asan
$ mojo/tools/mojob.py build --asan

Use //tools/valgrind/asan/asan_symbolize.py to decode stack traces when ASAN detects an error at runtime.

This tool is not supported on Android.

Android Stack Parser

Use //mojo/devtools/common/android_stack_parser/stack to decode stack traces from Mojo programs running on Android.

Make sure to include the lines containing Caching mojo app XXX at YYY which are printed while the program starts up so that the stack tool can locate the necessary symbols on the host machine.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/examples/hello_mojo/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Hello Mojo example applications

hello_mojo_server and hello_mojo_client are like the echo
examples, but a bit more minimal and with no dependencies outside of
the Mojo public C/C++ SDK.

Running

For example, for a Linux debug build, from the command line:

$ out/Debug/mojo_shell mojo:hello_mojo_client

See also

		echo examples

		Mojo public C SDK

		Mojo public C++ SDK

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/third_party/js/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

 Name: url.js
URLs:
https://github.com/joyent/node/blob/master/lib/url.js
https://github.com/joyent/node/blob/master/lib/util.js
https://github.com/joyent/node/blob/master/lib/querystring.js
https://github.com/bestiejs/punycode.js
Version: Current versions on 1/13/2015
License: url.js, util.js, querystring.js - see source code, punycode.js - MIT
Security Critical: yes

Description:
A JavaScript URL class, see
https://github.com/joyent/node/blob/master/doc/api/url.markdown

Local Modifications:
AMD style module definitions for all files. Revised the Url constructor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojom/generated/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Generated Files

The intermediate representation passed from the Mojom parser (the frontend
of the Mojom compiler) to the code generators (the backend of the Mojom
Compiler) is a MojomFileGraph described in mojom_types.mojom and
mojom_files.mojom in mojo/public/interfaces/bindings. Thus the Mojom compiler
uses Mojo serialization to serialize the intermediate representation.

This situation potentially entails a circular dependency because it means that
in order to build the Mojom compiler it is necessary to use code that has been
generated by the Mojom compiler. In order to break this circular dependency we
check in the generated code needed by the compiler rather than generating it
while building the compiler.

This directory contains the checked-in generated Go code used by the frontend
of the compiler:
mojom_files/mojom_files.mojom.go and
mojom_types/mojom_types.mojom.go.

The backend of the Mojom compiler is written in Python and the corresponding
generated Python files may be found in
mojo/public/tools/bindings/pylib/mojom/generate/generated/mojom_files_mojom.py
and
mojo/public/tools/bindings/pylib/mojom/generate/generated/mojom_types_mojom.py

Instructions for updating these files

		Make changes to mojom_types.mojom and mojom_files.mojom. This may be done
either in the same patch as everything below or in its own initial patch.

		Compile these files to produce new generated files:
ninja -C out/Debug mojo/public/interfaces/bindings.

		Copy the newly generated mojom_files.mojom.go and mojom_types.mojom.go
into the appropriate locations in this directory.

		mojom_files.mojom.go needs to be manually patched in a minor way. In the
import section at the top replace “mojo/public/interfaces/bindings/mojom_types”
with “mojom/generated/mojom_types”.

		Update the Go code in the serialization module of the parser to compensate
for the changes if necessary. (Not necessary if the changes in step 1 were
backward compatible.)

		Perform the analog of steps 3, 4, 5 for the Python code in the backend of
the compiler. See
mojo/public/tools/bindings/pylib/mojom/generate/generated/README.md
for instructions.

		Land a patch containing your changes from steps 3 through 6.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/services/gfx/compositor/tests/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mozart API Tests

This directory contains test cases that exercise the Mozart Compositor APIs
through IPC as a client would.

These tests need a virtual framebuffer to execute. Run them like this:

$ testing/xvfb.py out/Debug mojo_run mojo:compositor_apptests
–shell-path out/Debug/mojo_shell –args-for=”mojo:native_viewport_service –use-test-config”

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/third_party/cython/src/CHANGES.html

 Navigation

 		
 index

 		ray-core latest documentation »

Cython Changelog

0.20.2 (2014-06-16)

Features added

		Some optimisations for set/frozenset instantiation.

		Support for C++ unordered_set and unordered_map.

Bugs fixed

		Access to attributes of optimised builtin methods (e.g.
[].append.__name__) could fail to compile.

		Memory leak when extension subtypes add a memory view as attribute
to those of the parent type without having Python object attributes
or a user provided dealloc method.

		Compiler crash on readonly properties in “binding” mode.

		Auto-encoding with c_string_encoding=ascii failed in Py3.3.

		Crash when subtyping freelist enabled Cython extension types with
Python classes that use __slots__.

		Freelist usage is restricted to CPython to avoid problems with other
Python implementations.

		Memory leak in memory views when copying overlapping, contiguous slices.

		Format checking when requesting non-contiguous buffers from
cython.array objects was disabled in Py3.

		C++ destructor calls in extension types could fail to compile in clang.

		Buffer format validation failed for sequences of strings in structs.

		Docstrings on extension type attributes in .pxd files were rejected.

0.20.1 (2014-02-11)

Bugs fixed

		Build error under recent MacOS-X versions where isspace() could not be
resolved by clang.

		List/Tuple literals multiplied by more than one factor were only multiplied
by the last factor instead of all.

		Lookups of special methods (specifically for context managers) could fail
in Python <= 2.6/3.1.

		Local variables were erroneously appended to the signature introspection
of Cython implemented functions with keyword-only arguments under Python 3.

		In-place assignments to variables with inferred Python builtin/extension
types could fail with type errors if the result value type was incompatible
with the type of the previous value.

		The C code generation order of cdef classes, closures, helper code,
etc. was not deterministic, thus leading to high code churn.

		Type inference could fail to deduce C enum types.

		Type inference could deduce unsafe or inefficient types from integer
assignments within a mix of inferred Python variables and integer
variables.

0.20 (2014-01-18)

Features added

		Support for CPython 3.4.

		Support for calling C++ template functions.

		yield is supported in finally clauses.

		The C code generated for finally blocks is duplicated for each exit
case to allow for better optimisations by the C compiler.

		Cython tries to undo the Python optimisationism of assigning a bound
method to a local variable when it can generate better code for the
direct call.

		Constant Python float values are cached.

		String equality comparisons can use faster type specific code in
more cases than before.

		String/Unicode formatting using the ‘%’ operator uses a faster
C-API call.

		bytearray has become a known type and supports coercion from and
to C strings. Indexing, slicing and decoding is optimised. Note that
this may have an impact on existing code due to type inference.

		Using cdef basestring stringvar and function arguments typed as
basestring is now meaningful and allows assigning exactly
str and unicode objects, but no subtypes of these types.

		Support for the __debug__ builtin.

		Assertions in Cython compiled modules are disabled if the running
Python interpreter was started with the “-O” option.

		Some types that Cython provides internally, such as functions and
generators, are now shared across modules if more than one Cython
implemented module is imported.

		The type inference algorithm works more fine granular by taking the
results of the control flow analysis into account.

		A new script in bin/cythonize provides a command line frontend
to the cythonize() compilation function (including distutils build).

		The new extension type decorator @cython.no_gc_clear prevents
objects from being cleared during cyclic garbage collection, thus
making sure that object attributes are kept alive until deallocation.

		During cyclic garbage collection, attributes of extension types that
cannot create reference cycles due to their type (e.g. strings) are
no longer considered for traversal or clearing. This can reduce the
processing overhead when searching for or cleaning up reference cycles.

		Package compilation (i.e. __init__.py files) now works, starting
with Python 3.3.

		The cython-mode.el script for Emacs was updated. Patch by Ivan Andrus.

		An option common_utility_include_dir was added to cythonize() to save
oft-used utility code once in a separate directory rather than as
part of each generated file.

		unraisable_tracebacks directive added to control printing of
tracebacks of unraisable exceptions.

Bugs fixed

		Abstract Python classes that subtyped a Cython extension type
failed to raise an exception on instantiation, and thus ended
up being instantiated.

		set.add(a_tuple) and set.discard(a_tuple) failed with a
TypeError in Py2.4.

		The PEP 3155 __qualname__ was incorrect for nested classes and
inner classes/functions declared as global.

		Several corner cases in the try-finally statement were fixed.

		The metaclass of a Python class was not inherited from its parent
class(es). It is now extracted from the list of base classes if not
provided explicitly using the Py3 metaclass keyword argument.
In Py2 compilation mode, a __metaclass__ entry in the class
dict will still take precedence if not using Py3 metaclass syntax,
but only after creating the class dict (which may have been done
by a metaclass of a base class, see PEP 3115). It is generally
recommended to use the explicit Py3 syntax to define metaclasses
for Python types at compile time.

		The automatic C switch statement generation behaves more safely for
heterogeneous value types (e.g. mixing enum and char), allowing for
a slightly wider application and reducing corner cases. It now always
generates a ‘default’ clause to avoid C compiler warnings about
unmatched enum values.

		Fixed a bug where class hierarchies declared out-of-order could result
in broken generated code.

		Fixed a bug which prevented overriding const methods of C++ classes.

		Fixed a crash when converting Python objects to C++ strings fails.

Other changes

		In Py3 compilation mode, Python2-style metaclasses declared by a
__metaclass__ class dict entry are ignored.

		In Py3.4+, the Cython generator type uses tp_finalize() for safer
cleanup instead of tp_del().

0.19.2 (2013-10-13)

Features added

Bugs fixed

		Some standard declarations were fixed or updated, including the previously
incorrect declaration of PyBuffer_FillInfo() and some missing bits in
libc.math.

		Heap allocated subtypes of type used the wrong base type struct at the
C level.

		Calling the unbound method dict.keys/value/items() in dict subtypes could
call the bound object method instead of the unbound supertype method.

		“yield” wasn’t supported in “return” value expressions.

		Using the “bint” type in memory views lead to unexpected results.
It is now an error.

		Assignments to global/closure variables could catch them in an illegal state
while deallocating the old value.

Other changes

0.19.1 (2013-05-11)

Features added

		Completely empty C-API structs for extension type slots (protocols like
number/mapping/sequence) are no longer generated into the C code.

		Docstrings that directly follow a public/readonly attribute declaration
in a cdef class will be used as docstring of the auto-generated property.
This fixes ticket 206.

		The automatic signature documentation tries to preserve more semantics
of default arguments and argument types. Specifically, bint arguments
now appear as type bool.

		A warning is emitted when negative literal indices are found inside of
a code section that disables wraparound handling. This helps with
fixing invalid code that might fail in the face of future compiler
optimisations.

		Constant folding for boolean expressions (and/or) was improved.

		Added a build_dir option to cythonize() which allows one to place
the generated .c files outside the source tree.

Bugs fixed

		isinstance(X, type) failed to get optimised into a call to
PyType_Check(), as done for other builtin types.

		A spurious “from datetime cimport *” was removed from the “cpython”
declaration package. This means that the “datetime” declarations
(added in 0.19) are no longer available directly from the “cpython”
namespace, but only from “cpython.datetime”. This is the correct
way of doing it because the declarations refer to a standard library
module, not the core CPython C-API itself.

		The C code for extension types is now generated in topological order
instead of source code order to avoid C compiler errors about missing
declarations for subtypes that are defined before their parent.

		The memoryview type name no longer shows up in the module dict of
modules that use memory views. This fixes trac ticket 775.

		Regression in 0.19 that rejected valid C expressions from being used
in C array size declarations.

		In C++ mode, the C99-only keyword restrict could accidentally be
seen by the GNU C++ compiler. It is now specially handled for both
GCC and MSVC.

		Testing large (> int) C integer values for their truth value could fail
due to integer wrap-around.

Other changes

0.19 (2013-04-19)

Features added

		New directives c_string_type and c_string_encoding to more easily
and automatically convert between C strings and the different Python string
types.

		The extension type flag Py_TPFLAGS_HAVE_VERSION_TAG is enabled by default
on extension types and can be disabled using the type_version_tag compiler
directive.

		EXPERIMENTAL support for simple Cython code level line tracing. Enabled by
the “linetrace” compiler directive.

		Cython implemented functions make their argument and return type annotations
available through the __annotations__ attribute (PEP 3107).

		Access to non-cdef module globals and Python object attributes is faster.

		Py_UNICODE* coerces from and to Python unicode strings. This is
helpful when talking to Windows APIs, which use compatible wchar_t
arrays for strings. Note that the Py_UNICODE type is otherwise
deprecated as of CPython 3.3.

		isinstance(obj, basestring) is optimised. In Python 3 it only tests
for instances of str (i.e. Py2 unicode).

		The basestring builtin is mapped to str (i.e. Py2 unicode) when
compiling the generated C code under Python 3.

		Closures use freelists, which can speed up their creation quite substantially.
This is also visible for short running generator expressions, for example.

		A new class decorator @cython.freelist(N) creates a static freelist of N
instances for an extension type, thus avoiding the costly allocation step if
possible. This can speed up object instantiation by 20-30% in suitable
scenarios. Note that freelists are currently only supported for base types,
not for types that inherit from others.

		Fast extension type instantiation using the Type.__new__(Type) idiom has
gained support for passing arguments. It is also a bit faster for types defined
inside of the module.

		The Python2-only dict methods .iter*() and .view*() (requires Python 2.7)
are automatically mapped to the equivalent keys/values/items methods in Python 3
for typed dictionaries.

		Slicing unicode strings, lists and tuples is faster.

		list.append() is faster on average.

		raise Exception() from None suppresses the exception context in Py3.3.

		Py3 compatible exec(tuple) syntax is supported in Py2 code.

		Keyword arguments are supported for cdef functions.

		External C++ classes can be declared nogil. Patch by John Stumpo. This fixes
trac ticket 805.

Bugs fixed

		2-value slicing of unknown objects passes the correct slice when the getitem
protocol is used instead of the getslice protocol (especially in Python 3),
i.e. None values for missing bounds instead of [0,maxsize]. It is also
a bit faster in some cases, e.g. for constant bounds. This fixes trac ticket 636.

		Cascaded assignments of None values to extension type variables failed with
a TypeError at runtime.

		The __defaults__ attribute was not writable for Cython implemented
functions.

		Default values of keyword-only arguments showed up in __defaults__ instead
of __kwdefaults__ (which was not implemented). Both are available for
Cython implemented functions now, as specified in Python 3.x.

		yield works inside of with gil sections. It previously lead to a crash.
This fixes trac ticket 803.

		Static methods without explicitly named positional arguments (e.g. having only
*args) crashed when being called. This fixes trac ticket 804.

		dir() without arguments previously returned an unsorted list, which now
gets sorted as expected.

		dict.items(), dict.keys() and dict.values() no longer return lists
in Python 3.

		Exiting from an except-as clause now deletes the exception in Python 3 mode.

		The declarations of frexp() and ldexp() in math.pxd were incorrect.

Other changes

0.18 (2013-01-28)

Features added

		Named Unicode escapes (“N{...}”) are supported.

		Python functions/classes provide the special attribute “__qualname__”
as defined by PEP 3155.

		Added a directive overflowcheck which raises an OverflowException when
arithmetic with C ints overflow. This has a modest performance penalty, but
is much faster than using Python ints.

		Calls to nested Python functions are resolved at compile time.

		Type inference works across nested functions.

		py_bytes_string.decode(...) is optimised.

		C const declarations are supported in the language.

Bugs fixed

		Automatic C++ exception mapping didn’t work in nogil functions (only in
“with nogil” blocks).

Other changes

0.17.4 (2013-01-03)

Bugs fixed

		Garbage collection triggered during deallocation of container classes could lead to a double-deallocation.

0.17.3 (2012-12-14)

Features added

Bugs fixed

		During final interpreter cleanup (with types cleanup enabled at compile time), extension types that inherit from base types over more than one level that were cimported from other modules could lead to a crash.

		Weak-reference support in extension types (with a cdef __weakref__ attribute) generated incorrect deallocation code.

		In CPython 3.3, converting a Unicode character to the Py_UNICODE type could fail to raise an overflow for non-BMP characters that do not fit into a wchar_t on the current platform.

		Negative C integer constants lost their longness suffix in the generated C code.

Other changes

0.17.2 (2012-11-20)

Features added

		cythonize() gained a best effort compile mode that can be used to simply ignore .py files that fail to compile.

Bugs fixed

		Replacing an object reference with the value of one of its cdef attributes could generate incorrect C code that accessed the object after deleting its last reference.

		C-to-Python type coercions during cascaded comparisons could generate invalid C code, specifically when using the ‘in’ operator.

		“obj[1,]” passed a single integer into the item getter instead of a tuple.

		Cyclic imports at module init time did not work in Py3.

		The names of C++ destructors for template classes were built incorrectly.

		In pure mode, type casts in Cython syntax and the C ampersand operator are now rejected. Use the pure mode replacements instead.

		In pure mode, C type names and the sizeof() function are no longer recognised as such and can be used as normal Python names.

		The extended C level support for the CPython array type was declared too late to be used by user defined classes.

		C++ class nesting was broken.

		Better checking for required nullary constructors for stack-allocated C++ instances.

		Remove module docstring in no-docstring mode.

		Fix specialization for varargs function signatures.

		Fix several compiler crashes.

Other changes

		An experimental distutils script for compiling the CPython standard library was added as Tools/cystdlib.py.

0.17.1 (2012-09-26)

Features added

Bugs fixed

		A reference leak was fixed in the new dict iteration code when the loop target was not a plain variable but an unpacked tuple.

		Memory views did not handle the special case of a NULL buffer strides value, as allowed by PEP3118.

Other changes

0.17 (2012-09-01)

Features added

		Alpha quality support for compiling and running Cython generated extension modules in PyPy (through cpyext). Note that this requires at least PyPy 1.9 and in many cases also adaptations in user code, especially to avoid borrowed references when no owned reference is being held directly in C space (a reference in a Python list or dict is not enough, for example). See the documentation on porting Cython code to PyPy.

		“yield from” is supported (PEP 380) and a couple of minor problems with generators were fixed.

		C++ STL container classes automatically coerce from and to the equivalent Python container types on typed assignments and casts. Note that the data in the containers is copied during this conversion.

		C++ iterators can now be iterated over using “for x in cpp_container” whenever cpp_container has begin() and end() methods returning objects satisfying the iterator pattern (that is, it can be incremented, dereferenced, and compared (for non-equality)).

		cdef classes can now have C++ class members (provided a zero-argument constructor exists)

		A new cpython.array standard cimport file allows to efficiently talk to the stdlib array.array data type in Python 2. Since CPython does not export an official C-API for this module, it receives special casing by the compiler in order to avoid setup overhead on user side. In Python 3, both buffers and memory views on the array type already worked out of the box with earlier versions of Cython due to the native support for the buffer interface in the Py3 array module.

		Fast dict iteration is now enabled optimistically also for untyped variables when the common iteration methods are used.

		The unicode string processing code was adapted for the upcoming CPython 3.3 (PEP 393, new Unicode buffer layout).

		Buffer arguments and memory view arguments in Python functions can be declared “not None” to raise a TypeError on None input.

		c(p)def functions in pure mode can specify their return type with “@cython.returns()”.

		Automatic dispatch for fused functions with memoryview arguments

		Support newaxis indexing for memoryviews

		Support decorators for fused functions

Bugs fixed

		Old-style Py2 imports did not work reliably in Python 3.x and were broken in Python 3.3. Regardless of this fix, it’s generally best to be explicit about relative and global imports in Cython code because old-style imports have a higher overhead. To this end, “from __future__ import absolute_import” is supported in Python/Cython 2.x code now (previous versions of Cython already used it when compiling Python 3 code).

		Stricter constraints on the “inline” and “final” modifiers. If your code does not compile due to this change, chances are these modifiers were previously being ignored by the compiler and can be removed without any performance regression.

		Exceptions are always instantiated while raising them (as in Python), instead of risking to instantiate them in potentially unsafe situations when they need to be handled or otherwise processed.

		locals() properly ignores names that do not have Python compatible types (including automatically inferred types).

		Some garbage collection issues of memory views were fixed.

		numpy.pxd compiles in Python 3 mode.

		Several C compiler warnings were fixed.

		Several bugs related to memoryviews and fused types were fixed.

		Several bug-fixes and improvements related to cythonize(), including ccache-style caching.

Other changes

		libc.string provides a convenience declaration for const uchar in addition to const char.

		User declared char* types are now recognised as such and auto-coerce to and from Python bytes strings.

		callable() and next() compile to more efficient C code.

		list.append() is faster on average.

		Modules generated by @cython.inline() are written into the directory pointed to by the environment variable CYTHON_CACHE_DIR if set.

0.16 (2012-04-21)

Features added

		Enhancements to Cython’s function type (support for weak references, default arguments, code objects, dynamic attributes, classmethods, staticmethods, and more)

		Fused Types - Template-like support for functions and methods CEP 522 (docs)

		Typed views on memory - Support for efficient direct and indirect buffers (indexing, slicing, transposing, ...) CEP 517 (docs)

		super() without arguments

		Final cdef methods (which translate into direct calls on known instances)

Bugs fixed

		fix alignment handling for record types in buffer support

Other changes

		support default arguments for closures

		search sys.path for pxd files

		support C++ template casting

		faster traceback building and faster generator termination

		support inplace operators on indexed buffers

		allow nested prange sections

0.15.1 (2011-09-19)

Features added

Bugs fixed

Other changes

0.15 (2011-08-05)

Features added

		Generators (yield) - Cython has full support for generators, generator expressions and PEP 342 coroutines.

		The nonlocal keyword is supported.

		Re-acquiring the gil: with gil - works as expected within a nogil context.

		OpenMP support: prange.

		Control flow analysis prunes dead code and emits warnings and errors about uninitialised variables.

		Debugger command cy set to assign values of expressions to Cython variables and cy exec counterpart $cy_eval().

		Exception chaining PEP 3134.

		Relative imports PEP 328.

		Improved pure syntax including cython.cclass, cython.cfunc, and cython.ccall.

		The with statement has its own dedicated and faster C implementation.

		Support for del.

		Boundschecking directives implemented for builtin Python sequence types.

		Several updates and additions to the shipped standard library .pxd files.

		Forward declaration of types is no longer required for circular references.

Bugs fixed

Other changes

		Uninitialized variables are no longer initialized to None and accessing them has the same semantics as standard Python.

		globals() now returns a read-only dict of the Cython module’s globals, rather than the globals of the first non-Cython module in the stack

		Many C++ exceptions are now special cased to give closer Python counterparts. This means that except+ functions that formerly raised generic RuntimeErrors may raise something else such as ArithmeticError.

		The inlined generator expressions (introduced in Cython 0.13) were disabled in favour of full generator expression support. This breaks code that previously used them inside of cdef functions (usage in def functions continues to work) and induces a performance regression for cases that continue to work but that were previously inlined. We hope to reinstate this feature in the near future.

0.14.1 (2011-02-04)

Features added

		The gdb debugging support was extended to include all major Cython features, including closures.

		raise MemoryError() is now safe to use as Cython replaces it with the correct C-API call.

Bugs fixed

Other changes

		Decorators on special methods of cdef classes now raise a compile time error rather than being ignored.

		In Python 3 language level mode (-3 option), the ‘str’ type is now mapped to ‘unicode’, so that cdef str s declares a Unicode string even when running in Python 2.

0.14 (2010-12-14)

Features added

		Python classes can now be nested and receive a proper closure at definition time.

		Redefinition is supported for Python functions, even within the same scope.

		Lambda expressions are supported in class bodies and at the module level.

		Metaclasses are supported for Python classes, both in Python 2 and Python 3 syntax. The Python 3 syntax (using a keyword argument in the type declaration) is preferred and optimised at compile time.

		“final” extension classes prevent inheritance in Python space. This feature is available through the new “cython.final” decorator. In the future, these classes may receive further optimisations.

		“internal” extension classes do not show up in the module dictionary. This feature is available through the new “cython.internal” decorator.

		Extension type inheritance from builtin types, such as “cdef class MyUnicode(unicode)”, now works without further external type redeclarations (which are also strongly discouraged now and continue to issue a warning).

		GDB support. http://docs.cython.org/src/userguide/debugging.html

		A new build system with support for inline distutils directives, correct dependency tracking, and parallel compilation. http://wiki.cython.org/enhancements/distutils_preprocessing

		Support for dynamic compilation at runtime via the new cython.inline function and cython.compile decorator. http://wiki.cython.org/enhancements/inline

		“nogil” blocks are supported when compiling pure Python code by writing “with cython.nogil”.

		Iterating over arbitrary pointer types is now supported, as is an optimized version of the in operator, e.g. x in ptr[a:b].

Bugs fixed

		In parallel assignments, the right side was evaluated in reverse order in 0.13. This could result in errors if it had side effects (e.g. function calls).

		In some cases, methods of builtin types would raise a SystemError instead of an AttributeError when called on None.

Other changes

		Constant tuples are now cached over the lifetime of an extension module, just like CPython does. Constant argument tuples of Python function calls are also cached.

		Closures have tightened to include exactly the names used in the inner functions and classes. Previously, they held the complete locals of the defining function.

		The builtin “next()” function in Python 2.6 and later is now implemented internally and therefore available in all Python versions. This makes it the preferred and portable way of manually advancing an iterator.

		In addition to the previously supported inlined generator expressions in 0.13, “sorted(genexpr)” can now be used as well. Typing issues were fixed in “sum(genexpr)” that could lead to invalid C code being generated. Other known issues with inlined generator expressions were also fixed that make upgrading to 0.14 a strong recommendation for code that uses them. Note that general generators and generator expressions continue to be not supported.

		Inplace arithmetic operators now respect the cdivision directive and are supported for complex types.

		Typing a variable as type “complex” previously gave it the Python object type. It now uses the appropriate C/C++ double complex type. A side-effect is that assignments and typed function parameters now accept anything that Python can coerce to a complex, including integers and floats, and not only complex instances.

		Large integer literals pass through the compiler in a safer way. To prevent truncation in C code, non 32-bit literals are turned into Python objects if not used in a C context. This context can either be given by a clear C literal suffix such as “UL” or “LL” (or “L” in Python 3 code), or it can be an assignment to a typed variable or a typed function argument, in which case it is up to the user to take care of a sufficiently large value space of the target.

		Python functions are declared in the order they appear in the file, rather than all being created at module creation time. This is consistent with Python and needed to support, for example, conditional or repeated declarations of functions. In the face of circular imports this may cause code to break, so a new –disable-function-redefinition flag was added to revert to the old behavior. This flag will be removed in a future release, so should only be used as a stopgap until old code can be fixed.

0.13 (2010-08-25)

Features added

		Closures are fully supported for Python functions. Cython supports inner functions and lambda expressions. Generators and generator expressions are not supported in this release.

		Proper C++ support. Cython knows about C++ classes, templates and overloaded function signatures, so that Cython code can interact with them in a straight forward way.

		Type inference is enabled by default for safe C types (e.g. double, bint, C++ classes) and known extension types. This reduces the need for explicit type declarations and can improve the performance of untyped code in some cases. There is also a verbose compile mode for testing the impact on user code.

		Cython’s for-in-loop can iterate over C arrays and sliced pointers. The type of the loop variable will be inferred automatically in this case.

		The Py_UNICODE integer type for Unicode code points is fully supported, including for-loops and ‘in’ tests on unicode strings. It coerces from and to single character unicode strings. Note that untyped for-loop variables will automatically be inferred as Py_UNICODE when iterating over a unicode string. In most cases, this will be much more efficient than yielding sliced string objects, but can also have a negative performance impact when the variable is used in a Python context multiple times, so that it needs to coerce to a unicode string object more than once. If this happens, typing the loop variable as unicode or object will help.

		The built-in functions any(), all(), sum(), list(), set() and dict() are inlined as plain for loops when called on generator expressions. Note that generator expressions are not generally supported apart from this feature. Also, tuple(genexpr) is not currently supported - use tuple([listcomp]) instead.

		More shipped standard library declarations. The python_* and stdlib/stdio .pxd files have been deprecated in favor of clib.* and cpython[.*] and may get removed in a future release.

		Pure Python mode no longer disallows non-Python keywords like ‘cdef’, ‘include’ or ‘cimport’. It also no longer recognises syntax extensions like the for-from loop.

		Parsing has improved for Python 3 syntax in Python code, although not all features are correctly supported. The missing Python 3 features are being worked on for the next release.

		from __future__ import print_function is supported in Python 2.6 and later. Note that there is currently no emulation for earlier Python versions, so code that uses print() with this future import will require at least Python 2.6.

		New compiler directive language_level (valid values: 2 or 3) with corresponding command line options -2 and -3 requests source code compatibility with Python 2.x or Python 3.x respectively. Language level 3 currently enforces unicode literals for unprefixed string literals, enables the print function (requires Python 2.6 or later) and keeps loop variables in list comprehensions from leaking.

		Loop variables in set/dict comprehensions no longer leak into the surrounding scope (following Python 2.7). List comprehensions are unchanged in language level 2.

		print >> stream

Bugs fixed

Other changes

		The availability of type inference by default means that Cython will also infer the type of pointers on assignments. Previously, code like this:

cdef char* s = ...
untyped_variable = s

would convert the char* to a Python bytes string and assign that. This is no longer the case and no coercion will happen in the example above. The correct way of doing this is through an explicit cast or by typing the target variable, i.e.

cdef char* s = ...
untyped_variable1 = <bytes>s
untyped_variable2 = <object>s

cdef object py_object = s
cdef bytes bytes_string = s

		bool is no longer a valid type name by default. The problem is that it’s not clear whether bool should refer to the Python type or the C++ type, and expecting one and finding the other has already led to several hard-to-find bugs. Both types are available for importing: you can use from cpython cimport bool for the Python bool type, and from libcpp cimport bool for the C++ type. bool is still a valid object by default, so one can still write bool(x).

		__getsegcount__ is now correctly typed to take a Py_size_t* rather than an int*.

0.12.1 (2010-02-02)

Features added

		Type inference improvements.
		There have been several bug fixes and improvements to the type inferencer.

		Notably, there is now a “safe” mode enabled by setting the infer_types directive to None. (The None here refers to the “default” mode, which will be the default in 0.13.) This safe mode limits inference to Python object types and C doubles, which should speed up execution without affecting any semantics such as integer overflow behavior like infer_types=True might. There is also an infer_types.verbose option which allows one to see what types are inferred.

		The boundscheck directive works for lists and tuples as well as buffers.

		len(s) and s.decode(“encoding”) are efficiently supported for char* s.

		Cython’s INLINE macro has been renamed to CYTHON_INLINE to reduce conflict and has better support for the MSVC compiler on Windows. It is no longer clobbered if externally defined.

		Revision history is now omitted from the source package, resulting in a 85% size reduction. Running make repo will download the history and turn the directory into a complete Mercurial working repository.

		Cython modules don’t need to be recompiled when the size of an external type grows. (A warning, rather than an error, is produced.) This should be helpful for binary distributions relying on NumPy.

Bugs fixed

		Several other bugs and minor improvements have been made. This release should be fully backwards compatible with 0.12.

Other changes

0.12 (2009-11-23)

Features added

		Type inference with the infer_types directive

		Seamless C++ complex support

		Fast extension type instantiation using the normal Python meme obj = MyType.__new__(MyType)

		Improved support for Py3.1

		Cython now runs under Python 3.x using the 2to3 tool

		unittest support for doctests in Cython modules

		Optimised handling of C strings (char*): for c in cstring[2:50] and cstring.decode()

		Looping over c pointers: for i in intptr[:50].

		pyximport improvements

		cython_freeze improvements

Bugs fixed

		Many bug fixes

Other changes

		Many other optimisation, e.g. enumerate() loops, parallel swap assignments (a,b = b,a), and unicode.encode()

		More complete numpy.pxd

0.11.2 (2009-05-20)

Features added

		There’s now native complex floating point support! C99 complex will be used if complex.h is included, otherwise explicit complex arithmetic working on all C compilers is used. [Robert Bradshaw]

cdef double complex a = 1 + 0.3j
cdef np.ndarray[np.complex128_t, ndim=2] arr = \
 np.zeros(10, np.complex128)

		Cython can now generate a main()-method for embedding of the Python interpreter into an executable (see #289) [Robert Bradshaw]

		@wraparound directive (another way to disable arr[idx] for negative idx) [Dag Sverre Seljebotn]

		Correct support for NumPy record dtypes with different alignments, and “cdef packed struct” support [Dag Sverre Seljebotn]

		@callspec directive, allowing custom calling convention macros [Lisandro Dalcin]

Bugs fixed

Other changes

		Bug fixes and smaller improvements. For the full list, see [1].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/examples/dart/echo_client/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Dart Echo Client Example

This is the Dart version of the canonical Echo Client sample code for Mojo. It
starts up the dart_echo_server service and calls the EchoString() interface in
that server. The expected result is that it prints hello world.

The source code to the Dart version of the Echo Server can be found in
[mojo/src/benchmarks/mojo_rtt_benchmark/lib/echo_server.dart]
(https://github.com/domokit/mojo/blob/master/benchmarks/mojo_rtt_benchmark/lib/echo_server.dart).

The tutorial for this code can be found at:
https://docs.google.com/document/d/1mufrtxTk8w9qa3jcnlgqsYkWlyhwEpc7aWNaSOks7ug/edit?usp=sharing

Running the code

Run using the Dart echo server, named dart_echo_server.mojo (this name is
hardcoded into the client sources as the default server):

$ out/Debug/mojo_shell mojo:dart_echo_client

Run using the C++ echo server to show that any server can implement an interface.
Note that .mojo is left off:

$ out/Debug/mojo_shell "--args-for=mojo:dart_echo_client echo_server" mojo:dart_echo_client

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/examples/js/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

JavaScript Mojo Example Applications

		users-guide.md - How to build and run JS Mojo applications

		hello.js, world.js - A minimal application that connects to another.

		wget.js - Uses the network service to load a URL.

		cube.js - A JS version of examples/spinning_cube.

		share_echo.js, share_echo_target.js - Peer to peer service sharing.

		show_image.js - Simple use of the window_manager interface.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/examples/js/users-guide.html

 Navigation

 		
 index

 		ray-core latest documentation »

Running Mojo Applications

A Mojo application written in JavaScript is launched with mojo_shell like this:

 mojo_shell <js-application-url>

Where js-application-url is a URL understood by the shell. For example
a file or an http URL that names a JS source file. The JS file itself
must begin with a Mojo “shebang” that specifies the Mojo URL of the JS
content handler. In other words, the first line of the JS source file
must be:

#!mojo mojo:js_content_handler

Following the shebang should be a single AMD module called “main” whose value
is an Application subclass. The JS content handler will create an instance of
the Application and make it the client of the Mojo shell. The JS content handler
is itself a Mojo application and it’s responsible for creating an instance of V8
and loading the “main” JS module and all of the modules the main module
depends on.

JavaScript Classes

The JS content handler depends on the ECMAScript6 (“Harmony”) classes feature.

As of January 2015 Chrome enables Harmony classes by default.

The JS Application Class

Mojo JS applications are defined with the Application class. The
Application class handles incoming requests for services and provides
services of its own.

This is the overall structure of a JS Mojo application:

#!mojo mojo:js_content_handler

define("main", ["mojo/services/public/js/application",
 <list of other modules that this application depends on>
],
 function(application, <one parameter per dependent module>) {
 class MyApplication extends application.Application {
 constructor(appShell, url) {
 super(appShell, url); // Initializes this.shell, this.url.
 // MyApplication initializations here.
 }

 initialize(args) {
 }

 acceptConnection(url, serviceProvider) {
 }
 }
 }

 return MyApplication;
 });

The hello.js example is little more than this basic skeleton.

The JS content handler loads the “main” module and constructs an
instance of its value, which must be an Application subclass. The
application’s constructor is passed two arguments:

		appShell - a pointer to the Mojo shell. Typically this will be wrapped by a
JS Shell object, see below.

		url - the URL this application was loaded from as a String.

The inherited Application class constructor initializes the shell and url
properties. It’s unlikely that you’ll want to use the appShell argument
directly.

The initialize() and acceptConnection() methods are defined by application.mojom
and they’re needed because the JS content handler makes the JS application the
Mojo shell’s client.

The intiailize() method is called once, after the constructor has run
and before any calls to acceptConnection(). The value of its parameter
is the argument list specified for this application with
mojo_shell. Arguments can be specified using the mojo_shell
--args-for command line argument or by just adding them after the
application’s URL and enclosing the entire expression in quotes:

 mojo_shell '<js-application-url> arg1 arg2'

See the wget.js for an example of command-line argument use.

The acceptConnection() method is called each time another application connects
to this one. The first call corresponds the mojo_shell’s initial connection.
The serviceProvider parameter is a JS ServiceProvider, see the “Requesting
and Providing Services” section below.

JS Bindings

The JS bindings map from incoming Mojo messages to JS values, and
similarly from outgoing JS values to Mojo messages.

To use or implement a service you’ll need the JS bindings for the
service’s Mojo interface. The bindings are generated by the build system and end
up in files whose name is the same as the ‘.mojom’ file with a ‘.js’
suffix. It’s often helpful to look at the generated ‘.mojom.js’ files.

The JS bindings for a Mojo interface’s API are delivered as a JS module whose
name is based on the ‘.mojom’ file’s path. For example, to use the Mojo network
service you need the JS module based on network_service.mojom:

 define("main", [
 "mojo/services/network/interfaces/network_service.mojom",
 "mojo/services/public/js/application",
]
 function(net, application) {
 class MyApplication extends application.Application {
 initialize(args) {
 var netService = this.shell.connectToService(
 "mojo:network_service", net.NetworkService);
 // Use netService's NetworkService methods.
 }
 ...
 }
 ...
 }
 return MyApplication;
 });

The first connectToService() parameter is the Mojo URL for the network service
application and the second is the JS “interface” object for NetworkService. The
JS interface object’s properties identify the generated JS bindings classes
used to provide or connect to a service. For example (from
network_service.mojom.js):

var NetworkService = {
 name: 'mojo::NetworkService', // Fully qualified Mojo interface name.
 proxyClass: NetworkServiceProxy,
 stubClass: NetworkServiceStub,
 // ...
};

The ‘proxyClass’ is used to access another application’s NetworkService and the
‘stubClass’ is used to create an implementation of NetworkService.

JS Bindings for Basic Types

In most cases the mapping from Mojo types to JS types is simple.

Mojo Type | JS Type
————- | ————-
bool | true or false
int8, uint8 | Number
int16, uint16 | Number
int32, uint32 | Number
int64, uint64 | Number*
float, double | Number
string | String
array | Array
map | Map

The support for 64 bit integers is currently limited to 53 bits per
the current JS standard. Only integer values in the range from
Number.MIN_SAFE_INTEGER to Number.MAX_SAFE_INTEGER can be
represented exactly. Larger and smaller values are approximated by
double precision Numbers.

Unspecified bool parameter or struct field values default to false
unless an explicit Mojo default was specified.

Unspecified integer values similarly default to 0.

Unspecified nullable string, array, and map values similarly default to
null and can be specified as null. In Mojom a nullable type has a
? suffix.

JS Bindings for Structs

Mojo structs are mapped to JS objects. An eponymous class is generated for each
struct type. The struct class constructor has an object-valued parameter to make
it a little easier to specify a struct value. For example:

// Mojom definitions
struct Foo {
 string? name;
 array<int32>? values;
};

interface I {
 PassFoo(Foo foo);
}

// JavaScript Usage, assuming we have a proxy for I, iProxy

// Rough and ready struct construction:
var foo = new Foo;
foo.name = "foo";
foo.values = [1,2,3];
iProxy.PassFoo(foo);

// Using the Foo constructor parameter:
iProxy.PassFoo(new Foo({name: "foo", values: [1,2,3]}));
iProxy.PassFoo(new Foo); // name, values are null
iProxy.PassFoo(new Foo({name: null}); // Same as previous line.

An unspecified nullable struct parameter or struct field value defaults to
null.

JS Bindings for Interface Parameters

Stubs and Proxies

TODO: briefly introduce message pipes.
TODO: explain what stubs and proxies are, explain what’s meant by “local” and “remote”.
TODO: explain the StubBindings and ProxyBindings functions.
TODO: support creating a proxy from a handle new MyProxy(someHandle);
TODO: explain the Connection object and how it relates to this stuff.

From a user’s point of view, the bindings are in terms of the (remote)
proxy class and the (local) stub class. Properties are added to instances
of these classes using functions called StubBindings and ProxyBindings.

The caller and callee use cases that follow are in terms of the following mojom:

interface I {
 provideFoo(Foo foo); // TODO: Explain
 requestFoo(Foo& foo); // TODO: Explain
}

Callers

Assuming that we have a proxy for interface I, iProxy.

An iProxy.provideFoo() call implies that we have an implementation of
Foo, and want a proxy for Bar (Foo’s client).

var barProxy;
iProxy.provideFoo(function(remote) {
 barProxy = remote;
 return myFooImpl;
});

An iProxy.requestFoo() call implies that we have an implementation of
Bar and want a proxy for Foo (Bar’s client).

var fooProxy;
iProxy.requestFoo(function(remote) {
 fooProxy = remote;
 return myBarImpl;
});

In the requestFoo() case, if no client were defined for Bar the function
parameter need not return anything.

The wget.js example includes a request for the URLLoader service.

Callees

An implementation of provideFoo(Foo foo) implies that we have an
implementation of Bar (Foo’s client) and want a proxy to the Foo
that has been passed to us.

void provideFoo(fooProxy) {
 ProxyBindings(fooProxy).setLocalDelegate(myMyBarImpl);
}

An implementation of requestFoo(Foo& foo) implies that we have an
implementation of Foo and want a proxy for the Bar (Foo’s client)
that’s been passed to us.

void requestFoo(barProxy) {
 ProxyBindings(barProxy).setLocallocalDelegate(myFooImpl);
}

Mojo Responses are Promises

Mojo functions can return zero or more values called a “response”. For example
the EchoString function below returns a string or null.

interface EchoService {
 EchoString(string? value) => (string? value);
};

The response is delivered to the function caller asynchronously. In C++ the
caller provides a Callback object whose Run() method has one argument for
each response parameter. In JS, Mojo functions that specify a response return
a Promise object. The Promise resolves to an object with one property per
response parameter. In the EchoString case that would be something like
{value: "foo"}.

Similarly, the implementation of a Mojo interface functions that specify a
response, must return a Promise. The implementation of EchoString() could
be written like this:

MyEchoStringImpl.prototype.EchoString = function(s) {
 return Promise.resolve({value: s});
};

The JS Shell Class

The JS Shell class simplifies connecting to applications and services. It’s a
wrapper for the Application’s appShell argument. The Application constructor
creates a Shell and assigns it to this.shell.

The Shell’s connectToService() method returns a “proxy” to a service provided by
another application.

 define("main", [
 "mojo/services/network/interfaces/network_service.mojom",
 "mojo/services/public/js/application",
]
 function(net, application) {
 class MyApplication extends application.Application {
 initialize(args) {
 var netService = this.shell.connectToService(
 "mojo:network_service", net.NetworkService);
 // Use netService's NetworkService methods.
 }
 ...
 }
 ...
 }
 return MyApplication;
 });

In the netService case above the Shell connects to the Mojo application at
“mojo:network_service”, then connects to its service called
NetworkService.name with an instance of NetworkService.proxyClass. The proxy
instance is returned. The netService proxy can be used immediately.

The wget.js example demonstrates using the network service.

Requesting and Providing Services

Mojo applications can connect to services provided by other applications and
they can provide services of their own. A service is an implementation of a Mojo
interface that was defined as part of a Mojo module in a ”.mojom” file.

When an application starts, its initialize() method runs and then its
acceptConnection() method runs. The acceptConnection() method
indicates that another application has connected to this one and it
always runs at least once.

acceptConnection(initiatorURL, serviceProvider) {
 // provide services to the initiator here
 // request services from the initiator here
}

The acceptConnection serviceProvider argument can be used to provide
services to the initiator, and to request services from the
initiator. An application can decide exactly what to do based on the
initiator’s URL. The serviceProvider argument is-a JS ServiceProvider,
an object that wraps a Mojo ServiceProvider proxy.

The ServiceProvider requestService() method gets a proxy for a service
from the initator and optionally provides a client implementation.

The ServiceProvider provideService() method registers an interface
implementation factory for a Mojo interface. The factory function is
provided with an proxy for the interface’s client, if it has one.

An application can also connect to other applications and their
services using its shell’s connectToApplication() and
connectToService() methods. The shell’s connectToApplication() returns
a ServiceProvider. The shell’s connectToService() method is just a
convenience, it’s defined like this:

connectToService(url, service, client) {
 return this.connectToApplication(url).requestService(service, clientImpl);
};

The value of service is an interface object that identifies a Mojo
interface that the application at url implements.

The usage examples that follow are based on the following trivial Mojo
interface:

interface EchoService {
 EchoString(string? value) => (string? value);
};

Requesting a Service Using the Application’s Shell

The Shell’s connectToService() method returns a proxy to a Mojo
service provided by another application. The proxy can be used immediately.

Given the URL of a Mojo application that implements the EchoService we
can use the application’s shell to get an EchoService proxy. Here’s a
complete application:

#!mojo mojo:js_content_handler

define("main", [
 "console",
 "mojo/services/public/js/application",
 "services/js/test/echo_service.mojom"
], function(console, appModule, echoModule) {

 class EchoShellRequest extends appModule.Application {
 initialize(args) {
 var url = "file:/foo/bar/echo.js";
 var echoService = this.shell.connectToService(url, echoModule.EchoService);
 echoService.echoString("foo").then(function(result) {
 console.log("echoString(foo) => " + result.value);
 });
 }
 }
 return EchoShellRequest;
});

Requesting a Service from an Application’s ServiceProvider

The Shell’s connectToApplication() method returns a JS ServiceProvider
object that serves as a proxy to a ServiceProvider implemented by the
target application. The ServiceProvider can be used to request services
from the target application and to provide services to the target application.

The echo_share.js and echo_share_target.js applications demonstrate this.

Providing a Service with an Application’s ServiceProvider

A complete application that unconditionally provides the EchoService
looks like this:

#!mojo mojo:js_content_handler

define("main", [
 "mojo/services/public/js/application",
 "services/js/test/echo_service.mojom"
], function(appModule, echoModule) {

 class EchoService extends appModule.Application {
 acceptConnection(initiatorURL, serviceProvider) {
 function EchoServiceImpl(client) {
 this.echoString = function(s) {
 return Promise.resolve({value: s});
 };
 }
 serviceProvider.provideService(echoModule.EchoService, EchoServiceImpl);
 }
 }
 return EchoService;
});

As you can see, EchoServiceImpl is just a function that returns an
object that implements the methods in the Mojo EchoService
interface. If the EchoService defined a client interface, the factory
function’s client parameter would be a proxy for the initiator’s
client service. EchoService doesn’t have a client so we could have
omitted this parameter.

Each time another application connects to this one, the EchoServiceImpl
function will be called. The caller will be able to run the
echoString() method and will get its response via a Promise.

The echo_share.js and echo_share_target.js applications demonstrate this.

Final note

An initiator’s serviceProvider object can be retained and used to
request or provide services at any time, not just from within
application’s acceptConnection() method.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/examples/native_run_app/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Native run example application

native_run_app is a terminal client application (i.e., one providing the
mojo.terminal.TerminalClient service) that allows native (Linux) applications
to be run inside a Mojo (Moterm) terminal. It does this by
using the native_support service, which provides facilities to
(programmatically) run native applications.

See //examples/moterm_example_app for an example of how
it may be used.

See also

		//apps/moterm

		//services/native_support

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/examples/echo_terminal/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

echo_terminal

An application that’s able to accept connections from terminals (i.e.,
implements |terminal.TerminalClient|), and which simply echoes all characters
reads from a terminal (i.e., for each character read, it’ll write it back whence
it came).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/examples/ui/jank/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Jank Example

This directory contains a simple application whose sole purpose is to
misbehave and produce broken behavior. Buttons in the application trigger
various functions such as stalling or crashing the app.

USAGE

out/Debug/mojo_shell “mojo:launcher mojo:jank_view”

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/examples/ui/shapes/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Skia GPU Accelerated Drawing Example (Ganesh)

This directory contains a simple application which uses Skia’s
Ganesh renderer to draw some simple shapes in a view.

USAGE

out/Debug/mojo_shell “mojo:launcher mojo:shapes_view”

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/examples/java_android/echo/src/org/chromium/examples/java_echo/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Java Echo Example Applications

Usage:

cd <mojo>/src

mojo/devtools/common/mojo_run --android mojo:java_echo_client --logcat-tags=JavaEchoClient

To use the Java Echo Server instead of the native Echo Server:

mojo/devtools/common/mojo_run --android mojo:java_echo_client --logcat-tags=JavaEchoClient,JavaEchoServer --url-mappings=mojo:echo_server=mojo:java_echo_server

To send a message of your choice:

mojo/devtools/common/mojo_run --android mojo:java_echo_client --logcat-tags=JavaEchoClient,JavaEchoServer --url-mappings=mojo:echo_server=mojo:java_echo_server --args-for='mojo:java_echo_client Hello Mojo'

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/examples/indirect_service/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Indirect Service Demo

This demo is intended to highlight the difference between requesting a service
and providing one. The demo is based on two services: IntegerService and
IndirectIntegerService.

interface IntegerService {
Increment() => (int32 value);
};

This trival interface just manages a single internal integer that’s initialized
to 0. The Increment() method returns a new value.

interface IndirectIntegerService {
Set(IntegerService? service);
Get(IntegerService&? service);
};

This service delegates to the one IntegerService provided by the Set() method.
Clients use Get() to request a connection to an IntegerService that targets the
delegate. This is roughly an IntegerService “pointer”.

The demo creates a set of threads all of which get their own connection to the
shared IntegerService via the IndirectIntegerService. The threads all access
the IntegerService at the same time and then display a little table of the
results.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/examples/ui/noodles/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Multithreaded rendering example.

This directory contains a simple application which rasterizes frames on
a separate thread from the one it uses to handle view events and to produce
each frame’s content.

For the purposes of this example, the content consists of a Lissajous figure.

USAGE

out/Debug/mojo_shell “mojo:launcher mojo:noodles_view”

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/examples/ui/tile/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mozart View Tiling Example

This directory contains a simple application which embeds any number of
views from other applications all tiled in a row.

The applications must implement the ViewProvider interface and register
their Views with the ViewManager for this to work.

USAGE

Specify the urls of the views to embed as a comma-delimited query string.

out/Debug/mojo_shell “mojo:launcher mojo:tile_view?views=[,[,...]]“

eg. out/Debug/mojo_shell “mojo:launcher mojo:tile_view?views=mojo:spinning_cube_view,mojo:noodles_view”

The query string may also encode tiling options by appending parameters to
the end of the query string.

Version mode for child views:

&vm=any : composite most recent unblocked version of each child (default)
&vm=exact : composite only exact version of child specified during
 layout (forces frame-level synchronization of resizing)

Combinator mode for child views:

&cm=merge : use MERGE combinator (default)
&cm=prune : use PRUNE combinator
&cm=flash : use FALLBACK combinator with solid red color as
 alternate content
&cm=dim : use FALLBACK combinator with a dimmed layer containing the
 most recent unblocked version of the child

Orientation mode for child views:

&o=h : tile children horizontally
&o=v : tile children vertically

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/examples/ui/png_viewer/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

PNG Content Handler Example

This directory contains a simple application which decodes and views
PNGs by implementing a Mojo content handler.

USAGE

out/Debug/mojo_shell “mojo:launcher http://.../my.png”

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/examples/bank_app/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Running bank_app

Bank is a sample application that uses the vanadium principal service to
enable applications to obtain a user identity for authentication. The app
currently only works on android and with go build support.

The customer obtains a user identity through the principal service and then
talks to the bank to deposit/withdraw some money. The bank will only accept
transactions from customers that have a user identity.

To run customer

$MOJO_DIR/src/mojo/devtools/common/mojo_run mojo:customer –android

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/examples/moterm_example_app/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Moterm example application

moterm_example_app is an example application that embeds
Moterm, uses it to provide a prompt, and allows it to be
connected to other applications (which should provide the
mojo.terminal.TerminalClient service).

Running

On Linux, run it in the usual way, e.g.:

$ mojo/devtools/common/mojo_run --enable-multiprocess \
 "mojo:launcher mojo:moterm_example_app"

You’ll probably need to click on the window to give it keyboard focus. You may
also want to resize the window (especially horizontally) to make it bigger.

At the :) prompt, you may enter the URL for any application providing the
mojo.terminal.TerminalClient service.

Example 1: Dart netcat

An example of a terminal client application written in Dart is dart_netcat:

:) mojo:dart_netcat

At this point, the terminal’s input/output is transferred to the specified
application. In this case, it just outputs a help message and closes the
terminal, returning you to the :) prompt. You may also try:

:) mojo:dart_netcat?localhost&port=80

In this case, mojo:dart_netcat will make a TCP connection to the specified
host/port. Assuming you have a web server running on your machine, you may try
entering:

GET /

(It’s probably a bug in mojo:dart_netcat that it doesn’t close the terminal
“file”. You can press Control-D to return to the :) prompt. The unhandled Dart
exception after you press Control-D is definitely a bug.)

Example 2: Running native console applications

The native_support service supports running native (Linux) applications. The
native_run_app application provides a terminal client front-end:

:) mojo:native_run_app

At its >>> prompt, you can enter name of a native application. E.g.:

>>> bash
$ echo hello linux
hello linux
$

Example 3: JavaScript REPL

A terminal client application (written in JavaScript, using the JavaScript
content handler) that provides a JavaScript REPL:

:) file:///path/to/src/examples/js/repl.js

At its > prompt, you can enter JavaScript expressions. E.g.:

> function add(x, y) { return x + y; }
undefined
> add("hello ", 123)
"hello 123"
>

See also

		//apps/moterm

		//examples/dart/netcat

		//examples/native_run_app

		//examples/js/repl.js

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/examples/ui/spinning_cube/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mozart Spinning Cube Example

This directory contains a simple application which draws a spinning cube
into a View.

USAGE

out/Debug/mojo_shell “mojo:launcher mojo:spinning_cube_view”

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/examples/ui/pdf_viewer/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

PDF Content Handler Example

This directory contains a simple application which decodes and views
PDFs by implementing a Mojo content handler.

USAGE

out/Debug/mojo_shell “mojo:launcher http://.../my.pdf”

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/examples/shadows/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Physically modeled shadows

This directory contains a testbed app for developing physically modeled shadows.

USAGE

out/Debug/mojo_shell “mojo:launcher mojo:shadows_view”

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mojo

Mojo is an effort to extract a common platform out of Chrome’s renderer and
plugin processes that can support multiple types of sandboxed content, such as
HTML, Pepper, or NaCl.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/examples/echo/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Example Echo Client & Server

This echo client/server demonstrate how to create and use a mojom interface,
as well as demonstrating one way to communicate between mojo applications.

For a deeper dive into this code, refer to the Mojo
Tutorial [https://docs.google.com/document/d/1mufrtxTk8w9qa3jcnlgqsYkWlyhwEpc7aWNaSOks7ug].

Running the Echo Client & Server

$./mojo/tools/mojob.py gn
$./mojo/tools/mojob.py build
$./out/Debug/mojo_shell mojo:echo_client

You should see output along the lines of:

[1010/194919:INFO:echo_client.cc(21)] ***** Response: hello world

This means that our echo_client started, contacted the echo_server (which was
started by the shell), sent a string through a mojom interface, and got a
response.

Echo Client Structure

By running the echo_client through mojo_shell, we run a Mojo
Application [https://docs.google.com/document/d/1xjt_TPjTu0elix8fNdBgWmnjJdJAtqSr1XDS_C-Ct8E].
Mojo Applications have main threads (run as MojoMain), and they may
communicate with other applications using Mojo IPC. This section will describe
the steps taken to start up the echo client, and what is necessary
to make an IPC call to the echo server service.

ApplicationRunner: It calls your application

In echo_client.cc’s MojoMain function, a new ApplicationRunner called runner
is created. This class is used by the shell for setting up and communicating
with an application. This is a common pattern in Mojo apps: a runner takes an
implementation of an ApplicationDelegate and runs it.

In echo_client, the delegate is a class called EchoClientDelegate.

ApplicationDelegate: Your application will be a subclass of this

The ApplicationDelegate class is what we can think of as the heart of our
“app”. It can implement three methods:

		void Initialize(ApplicationImpl* app) – Called during setup.

		bool ConfigureIncomingConnection(ApplicationConnection* connection) –
Configures what happens when a connection attempts to reach our application.

		void Quit() – Called before termination.

Our echo_client only implements the Initialize method, since it does not need
to accept any incoming connections (it just makes one outgoing connection).

This initialize method takes an ApplicationImpl* app as an argument, which can
be used to contact other services. Here, we contact the “mojo:echo_server”
service using the ConnectToService method. This method takes a URL as an
argument, and passes an interface back in an InterfacePtr.

app->ConnectToService("mojo:echo_server", &echo_);

Note: When the Mojo Shell notices the echo_server service is not running, it
will automatically start the server service. This is why only running the client
is necessary for this example to work.

Mojom Interfaces: An mechanism for predictable message passing

Interfaces are defined in ”.mojom” files, and they allow applications to
interact with each other in a procedure-call mechanism. In mojom interfaces,
a client invokes a method, the arguments are serialized and passed to the
receiver, and the receiver invokes the method (and returns any results).

The Mojom
language [https://docs.google.com/document/d/1r7yCseBktlDEN9CKp_JWD0ZYxMi4GCsLXMvSN5sI04k]
is used to define the simple EchoString interface, defined in echo.mojom. To
compile the mojom interface, it must be built using the “mojom” template in a
BUILD.gn file. The “echo.mojom” file is compiled as a part of a target named
“bindings”. This will autogenerate a few files, one of which we are including in
our echo_client.cc example: “examples/echo/echo.mojom.h”. Since our mojom file
specifies interface Echo, we can refer to the EchoPtr type to access our
interface.

If you create an interface FooBar, then you can use a type FooBarPtr to
reference your interface.

Since our interface defines the method:

EchoString(string? value) => (string? value)

this creates the following method (and more code, not shown):

void EchoString(const mojo::String& value, mojo::Callback<void(mojo::String)>);

This method is callable on an InterfacePtr which properly implements our mojom
interface (so, in this case, an EchoPtr, like the one returned from our
call to ConnectToService).

The second argument to our interface is a mojo::Callback class, which is
just a Runnable with varying arguments. For the echo_client example, we created
a ResponsePrinter class to act as this callback. By implementing Run, which
merely prints out the string we get from the echo server, we are able to call
the EchoString method on the EchoPtr received from ConnectToService.

echo_->EchoString("hello world", ResponsePrinter());

In summary, the echo_client connects to the echo_server service using
the ConnectToService method, passing an interface defined in a mojom file. The
methods of this interface can then be invoked on the EchoPtr, with appropriate
callback implementations being passed where necessary.

Echo Server Structure

The echo server, like the echo client, is implemented as an application. This
means it has a MojoMain function, an ApplicationRunner, and an
ApplicationDelegate actually implementing the core application.

echo_server.cc contains three different types of servers, though only one can be
used at a time. To try changing the server, uncomment one of the lines in
MojoMain. These different ApplicationDelegate derivations demonstrate
different ways in which incoming requests can be handled.

All three servers, being ApplicationDelegate derivations, implement
ConfigureIncomingConnection in the same way:

service_provider_impl->AddService<Echo>(
 [this](const mojo::ConnectionContext& connection_context,
 mojo::InterfaceRequest<Echo> echo_request) {
 ...
 });

This should be read as “For any incoming connections to this server, use the
given lambda function use this to create the Echo interface”.

EchoImpl: The Interface Implementation

All three implementations use the EchoImpl class, implementing the Echo
interface we defined in our mojom file, which does what you would expect of an
echo server: it sends back the supplied value String back to the client.

callback.Run(value);

If we wanted the server to pass back something else, we would pass a different
value here. However, as defined by our interface, the echo server can only
return a String.

Server 1: MultiServer

On calls to Create, this server creates a new StrongBindingEchoImpl object
for each request. This object is derived from EchoImpl, so it implements the
interface, but by using the StrongBinding class, it cleans up after itself
once the message pipe used for the request is closed.

Server 2: SingletonServer

This server creates an EchoImpl object when it is constructed, and for each
call to Create, binds the request to this single implementation. A
BindingSet is used so that multiple requests can be bound to the same object.

Server 3: OneAtATimeServer

This server creates an EchoImpl object, like the SingletonServer, but uses a
single Binding, rather than a BindingSet. This means that when a new client
connects to the OneAtATimeServer, the previous binding is closed, and a new
binding is made between the new client and the interface implementation.

The OneAtATimeServer demonstrates a pattern that should be avoided because it
contains a race condition for multiple clients. If a new client binds to the
server before the first client managed to call EchoString, the first client’s
call would cause an error. Unless you have a specific use case for this
behavior, it is advised to avoid creating a server like this.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/examples/forwarding_content_handler/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

ForwardingContentHandler

This content handler forwards to another “target” Mojo application.
The content handler reads the target application’s URL
from the initial URL and then connects to it.

If you change the sample.fch file in this directory so that it
contains a legitimate Mojo application URL, then to run this
appllication with mojo_shell, set DIR to be the absolute
path for this directory, then:

mojo_shell “file://$DIR/sample.fch”

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/devtools/common/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Devtools

Unopinionated tools for running, debugging, testing and
benchmarking Mojo apps.

Install

git clone https://github.com/domokit/devtools.git

Contents

Devtools offers the following tools:

		mojo_run - documentation - shell runner

		mojo_debug - documentation - debugger

		mojo_test - apptest runner

		mojo_benchmark - documentation - perf test runner

Additionally, remote_adb_setup script helps to configure adb on a remote
machine to communicate with a device attached to a local machine, forwarding the
ports used by mojo_run.

Development

The library is canonically developed in the mojo
repository [https://github.com/domokit/mojo/tree/master/mojo/devtools/common],
https://github.com/domokit/devtools is a mirror allowing to consume it
separately.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/devtools/common/docs/mojo_run.html

 Navigation

 		
 index

 		ray-core latest documentation »

mojo_run

mojo_run allows you to run a Mojo shell either on the host, or on an attached
Android device.

mojo_run APP_URL # Run on Linux host.
mojo_run APP_URL --android # Run on Android device.
mojo_run "APP_URL APP_ARGUMENTS" # Run an app with startup arguments

mojo version

mojo_run will download mojo shell and configure it to use mojo: apps built
at the corresponding version, if you pass the git commit sha of the
https://github.com/domokit/mojo repository as --mojo-version:

mojo_run APP_URL --mojo-version SOME_HASH

If your project uses a pinned version of mojo, you can put the pinned hash in
a MOJO_VERSION file in any ancestor directory of mojo_run. This will make
mojo_run infer the parameter automatically.

If you don’t want to use prebuilt binaries at the given version, you can
configure the shell binary and the origin to use manually:

mojo_run APP_URL --shell-path path/to/shell/binary --origin ORIGIN_URL

Running applications in a view

Some applications implement ViewProvider and are run embedded in a view. To run
these, you can pass the app url using the --embed flag:

mojo_run --embed APP_URL [--android]

Running multiple instances simultaneously

mojo_run sets up development servers on fixed ports to facilitate caching
between runs and allow the script to work remotely using adb_remote_setup.
This would normally prevent two or more instances of mojo_run from running
simulatenously as the development servers cannot be spawned twice on the same
ports.

In order to run the same set of binaries simultaneously one can use the
--reuse-servers switch for second and further instances. This will make the
second and further instances assume that development servers are already
spawned.

On Android one needs to indicate the id of the device to be targeted in each
run. For example, we could run the following in one shell:

mojo_run APP_URL --android --target-device DEVICE_ID

and the following in another:

mojo_run APP_URL --android --target-device ANOTHER_DEVICE_ID --reuse-servers

Device id can be obtained from adb devices.

On Linux one needs to use a different $HOME directory for each run, to avoid
collision of the cache storage. For example, we could run the following in one
shell:

mojo_run APP_URL

and the following in another:

mkdir ~/another_home
HOME=~/another_home mojo_run APP_URL --reuse-servers

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/devtools/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Devtools packages

The common subdirectory contains what we currently expose as “devtools”,
mirroring it as a separate repository [https://github.com/domokit/devtools] for
consumption without a Mojo checkout.

Further subdirectories TBD might be added in the future, to contain heavy
language-specific tooling which we will mirror / expose separately.

The toolsets are intended for consumption by Mojo consumers as separate
checkouts. No dependencies on files outside of devtools are allowed.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/dart/packages/_mojo_for_test_only/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

 This directory contains generated bindings for mojom interfaces that we
do not ship. If you need to add a new mojom interface for testing purposes,
use [DartPackage=”_mojo_for_test_only”]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/dart/packages/mojo/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Dart Mojo Applications

Mojo Application API

TODO(zra)

Application Packaging

All Dart sources for a Mojo application are collected in a specially formatted
snapshot file, which is understood by Dart’s content handler in the Mojo shell.
This section describes what the various parts of that package are, and how they
all make it to the right place.

GN Template

Dart Mojo applications are built with the GN template ‘dart_pkg’ defined in
//mojo/public/dart/rules.gni. Here is an example:

dart_pkg("foo") {
 app_name_override = "dart_foo"
 app = "lib/main.dart"
 sources = [
 "lib/foo.dart",
 "pubspec.yaml",
]
 deps = [
 ":foo_mojom",
 "//third_party/dart-pkg",
]
}

mojom("foo_mojom") {
 sources = [
 "foo.mojom",
]
}

There are several parts. See the documentation in //mojo/public/dart/rules.gni
for all the details.

pub packages

Dart Mojo applications may use packages from the pub package repository at
pub.dartlang.org.

The “foo” example above has uses_pub set to true. Suppose the “foo” package’s
pubspec.yaml is as follows:

name: foo
version: 0.0.1
description: Foo
dependencies:
 crypto: ">=0.9.0 <0.10.0"

The script //mojo/public/tools/git/dart_pub_get.py should be run before build
time, e.g. as a “runhooks” action during gclient sync. The script traverses
a directory tree looking for pubspec.yaml files. On finding one, in the
containing directory, it runs pub get. This creates a “packages/” directory
in the source tree adjacent to the pubspec.yaml file containing the downloaded
Dart packages. pub get also creates a pubspec.lock file that locks down
pub packages to specific versions. This pubspec.lock file must be checked in
in order to have hermetic builds.

During the build, The dart_pkg rule looks for a “packages/” directory, and
ensures that its contents are available when running the application.

Generated bindings

The script //mojo/public/tools/bindings/generators/mojom_dart_generator.py
and the templates under //mojo/public/tools/bindings/generators/dart_templates
govern how .mojom files are compiled into Dart code.

Consider the foo.mojom file used by our example:

[DartPackage="foo"]
module foo;

struct Foo {
 int32 code;
 string? description;
};

This contents of this file are in the foo module. The Dart source generated
for this file will end up under, e.g. //out/Debug/gen/dart- pkg/foo/lib/foo/network_error.mojom.dart, along with the other Dart sources
generated for .mojom files with the “foo” DartPackage annotation in the
foo module.

Resulting file

The dart_pkg rule has two results. The first result is a Dart snapshot file
zipped up into a .mojo file in the build output directory—something like
//out/Release/foo.mojo. This file is understood by the Dart content handler
and is suitable for deployment. The second result is a directory layout of the
“foo” app that can be served by a webserver. When the URL of lib/main.dart is
given to the mojo_shell, the app will be run in the Dart content handler.

They layout for our “foo” example will be the following:

//lib/main.dart
//lib/foo.dart
//lib/foo/foo.mojom.dart
//packages/crypto/... # Dart's crypto pub package.
//packages/mojo/... # Mojo SDK Dart libraries.

Where //packages/mojo contains Dart’s Mojo bindings, //packages/crypto
contains the crypto pub package, and //lib/foo/ contains the bindings
generated for foo.mojom.

Mojo’s Dart content handler sets the package root for a Dart application to be
the packages directory. Therefore, Dart sources in this application can use the
following imports:

import 'package:crypto/crypto.dart';
import 'package:foo/foo/foo.mojom.dart';
import 'package:mojo/application.dart';

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/devtools/common/docs/mojo_debug.html

 Navigation

 		
 index

 		ray-core latest documentation »

mojo_debug

mojo_debug allows you to interactively inspect a running shell, collect
performance traces and attach a gdb debugger.

Tracing

Performance
traces [https://www.chromium.org/developers/how-tos/trace-event-profiling-tool]
can either be collected by Mojo Shell during its startup, or collected
interactively by mojo_debug.

To trace the Mojo Shell startup, use the --trace-startup flag:

mojo_run --trace-startup APP_URL [--android]

In order to collect traces interactively through mojo_debug, make sure that
the app being inspected was run with --debugger switch. E.g.:

mojo_run --debugger APP_URL [--android]

While Mojo Shell is running, tracing can be started and stopped by these two
commands respectively:

mojo_debug tracing start
mojo_debug tracing stop [result.json]

Trace files can be then loaded using the trace viewer in Chrome available at
about://tracing.

GDB

It is possible to inspect a Mojo Shell process using GDB. The mojo_debug
script can be used to launch GDB and attach it to a running shell process
(android only):

mojo_debug gdb attach

Once started, GDB will first stop the Mojo Shell execution, then load symbols
from loaded Mojo applications. Please note that this initial step can take some
time (up to several minutes in the worst case).

After each execution pause, GDB will update the set of loaded symbols based on
the selected thread only. If you need symbols for all threads, use the
update-symbols GDB command:

(gdb) update-symbols

If you only want to update symbols for the current selected thread (for example,
after changing threads), use the current option:

(gdb) update-symbols current

If you want to debug the startup of your application, you can pass
--wait-for-debugger to mojo_run to have the Mojo Shell stop and wait to be
attached by gdb before continuing.

Android crash stacks

When Mojo shell crashes on Android (“Unfortunately, Mojo shell has stopped.”)
due to a crash in native code, mojo_debug can be used to find and symbolize
the stack trace present in the device log:

mojo_debug device stack

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/devtools/common/docs/mojo_benchmark.html

 Navigation

 		
 index

 		ray-core latest documentation »

mojo_benchmark

mojo_benchmark allows you to run performance tests for any Mojo application
that participates in the tracing
ecosystem [https://github.com/domokit/mojo/blob/master/mojo/services/tracing/interfaces/tracing.mojom]
with no app changes required.

The script reads a list of benchmarks to run from a file, runs each benchmark in
controlled caching conditions with tracing enabled and performs specified
measurements on the collected trace data.

Defining benchmarks

mojo_benchmark runs performance tests defined in a benchmark file. The
benchmark file is a Python program setting a dictionary of the following format:

benchmarks = [
 {
 'name': '<name of the benchmark>',
 'app': '<url of the app to benchmark>',
 'shell-args': [],
 'duration': <duration in seconds>,

 # List of measurements to make.
 'measurements': [
 {
 'name': <my_measurement>,
 'spec': <spec>,
 },
 (...)
],
 },
]

The benchmark file may reference the target_os global that will be any of
(‘android’, ‘linux’), indicating the system on which the benchmarks are run.

Measurement specs

The following types of measurements are available:

		time_until

		time_between

		avg_duration

		percentile_duration

time_until records the time until the first occurence of the targeted event.
The underlying benchmark runner records the time origin just before issuing the
connection call to the application being benchmarked. Results of time_until
measurements are relative to this time. Spec format:

'time_until/<category>/<event>'

time_between records the time between the first occurence of the first
targeted event and the first occurence of the second targeted event. Spec
format:

'time_between/<category1>/<event1>/<category2>/<event2>'

avg_duration records the average duration of all occurences of the targeted
event. Spec format:

'avg_duration/<category>/<event>'

percentile_duration records the value at the given percentile of durations of
all occurences of the targeted event. Spec format:

'percentile_duration/<category>/<event>/<percentile>'

where <percentile> is a number between 0.0 and 0.1.

Caching

The script runs each benchmark twice. The first run (cold start) clears
caches of the following apps on startup:

		network_service.mojo

		url_response_disk_cache.mojo

The second run (warm start) runs immediately afterwards, without clearing
any caches.

Example

For an app that records a trace event named “initialized” in category “my_app”
once its initialization is complete, we can benchmark the initialization time of
the app (from the moment someone tries to connect to it to the app completing
its initialization) using the following benchmark file:

benchmarks = [
 {
 'name': 'My app initialization',
 'app': 'https://my_domain/my_app.mojo',
 'duration': 10,
 'measurements': [
 'time_until/my_app/initialized',
],
 },
]

Dashboard

mojo_benchmark supports uploading the results to an instance of a Catapult
performance dashboard. In order to upload the results of a run to performance
dashboard, pass the --upload flag along with required meta-data describing the
data being uploaded:

mojo_benchmark \
--upload \
--master-name my-master \
--bot-name my-bot \
--test-name my-test-suite
--builder-name my-builder \
--build-number my-build
--server-url http://my-server.example.com

If no --server-url is specified, the script assumes that a local instance of
the dashboard is running at http://localhost:8080. The script assumes that the
working directory from which it is called is a git repository and queries it to
determine the sequential number identifying the revision (as the number of
commits in the current branch in the repository).

For more information refer to:

		Catapult project [https://github.com/catapult-project/catapult]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/dart/packages/mojo_sdk/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

mojo_sdk

This is a meta-package for the Mojo Dart SDK. This package depends on
specific versions of Mojo Dart SDK leaf packages which are compatible
with each other.

Your project should depend on a fixed version of this package and not
on any of the Mojo Dart SDK leaf packages.

Depending on mojo_sdk

Add the following to your pubspec.yaml:

dependencies:
 mojo_sdk: 0.1.0

Always use an exact version of the mojo_sdk package when expressing your
dependency

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/dart/packages/mojo/CHANGELOG.html

 Navigation

 		
 index

 		ray-core latest documentation »

0.4.25

		51 changes: https://github.com/domokit/mojo/compare/38edfe4...ee5b33c

MOJO_SDK: ee5b33cba0face525d425d6bd8682e5de038ad73

0.4.24

		47 changes: https://github.com/domokit/mojo/compare/24614f9...ff47297

MOJO_SDK: ff47297bfaed2660b106a67d6693343b0bc8356b

0.4.23

		28 changes: https://github.com/domokit/mojo/compare/107bac0...ef5cd66

MOJO_SDK: ef5cd660ec6f1c50eaff62c81ea7662662d04e15

0.4.22

		22 changes: https://github.com/domokit/mojo/compare/12d71ee...f56fd59

MOJO_SDK: f56fd59ec51e1ecdd52fb848ceff1b6b6fe7f7fa

0.4.21

		35 changes: https://github.com/domokit/mojo/compare/e95b5db...c200560

MOJO_SDK: c200560ac45a79b61b8e8c0444af471789f5669f

0.4.20

		125 changes: https://github.com/domokit/mojo/compare/2f662f4...705723c

MOJO_SDK: 705723c25a51b30a89b6431a6377b09e4069561e

0.4.19

		62 changes: https://github.com/domokit/mojo/compare/91e87dd...7c72e53

MOJO_SDK: 7c72e53d105c346dd82cbdbeb12d9e3f0712093d

0.4.18

		103 changes: https://github.com/domokit/mojo/compare/f59d613...31c5037

MOJO_SDK: 31c5037ab2c63649632c9f2d4227ebe6f22015a4

0.4.17

		48 changes: https://github.com/domokit/mojo/compare/2829804...1484e83

MOJO_SDK: 1484e831758d05c7af0f27c199d24e3bbdc6383f

0.4.16

		80 changes: https://github.com/domokit/mojo/compare/9ec7563...1308cd1

MOJO_SDK: 1308cd12434c9536a28592ff09399a57ef7f4f77

0.4.15

		17 changes: https://github.com/domokit/mojo/compare/f64c6d6...c9e1513

MOJO_SDK: c9e15130499cc859050668ea6f78485001c96251

0.4.14

		41 changes: https://github.com/domokit/mojo/compare/ecb64e7...b3aaccc

MOJO_SDK: b3aaccc8d9408bc645ee633e7030c605f333be95

0.4.13

		63 changes: https://github.com/domokit/mojo/compare/56bf5b4...2ae2bcc

MOJO_SDK: 2ae2bccb82f37947c69ab5d6e06c2d109690a394

0.4.12

		25 changes: https://github.com/domokit/mojo/compare/1d94b2f...ebf4352

MOJO_SDK: ebf435275996a69482ea342aa3ae881aecd6c90e

0.4.11

		52 changes: https://github.com/domokit/mojo/compare/c6806ae...3f50c60

MOJO_SDK: 3f50c60f8af5bb485f248ceea2407a59f09caad5

0.4.10

		55 changes: https://github.com/domokit/mojo/compare/e50fde8...bb76300

0.4.9

		65 changes: https://github.com/domokit/mojo/compare/d0070e0...b56047c

0.4.8

		16 changes: https://github.com/domokit/mojo/compare/a05a1a6...e93037e

0.4.7

		45 changes: https://github.com/domokit/mojo/compare/1bf8c18...5fb6ad9

0.4.6

		63 changes: https://github.com/domokit/mojo/compare/3ab01fc...3d67098

0.4.5

		11 changes: https://github.com/domokit/mojo/compare/0f44252...2ccd493

0.4.4

		62 changes: https://github.com/domokit/mojo/compare/1a0ec50...3616f6d

0.4.3

		5 changes: https://github.com/domokit/mojo/compare/fb583de...e4ac236

0.4.2

		3 changes: https://github.com/domokit/mojo/compare/4267a7d...b65b17a

0.4.1

		0 changes: https://github.com/domokit/mojo/compare/70dca39...70dca39

0.3.2

		62 changes: https://github.com/domokit/mojo/compare/b917a90...3230048

0.3.1

		64 changes: https://github.com/domokit/mojo/compare/e590bb1...241ff8a

0.3.0

		17 changes: https://github.com/domokit/mojo/compare/8a9c751...63df3b7

0.2.1

		79 changes: https://github.com/domokit/mojo/compare/2fa0b55...0ea08b0

0.2.0

		92 changes: https://github.com/domokit/mojo/compare/c1d7bc9...0894421

0.1.0

		0 changes: https://github.com/domokit/mojo/compare/86d3dc4...86d3dc4

0.0.25

		166 changes: https://github.com/domokit/mojo/compare/5fa852b...3139c74

0.0.23

0.0.22

		58 changes: https://github.com/domokit/mojo/compare/e172885...35de44e

0.0.18

		89 changes: https://github.com/domokit/mojo/compare/0fd4d06...c3119f6

0.0.17

		18 changes: https://github.com/domokit/mojo/compare/e7433cf...8879bfd

0.0.16

		27 changes: https://github.com/domokit/mojo/compare/e028733...e7433cf

0.0.15

		6 changes: https://github.com/domokit/mojo/compare/4df2d39...e028733

0.0.14

		138 changes: https://github.com/domokit/mojo/compare/850ac24...cf84c48

0.0.13

		70 changes: https://github.com/domokit/mojo/compare/889091e...136e0d4

0.0.12

		29 changes: https://github.com/domokit/mojo/compare/e25e3e2...432ce45

0.0.11

		197 changes: https://github.com/domokit/mojo/compare/bdbb0c7...fb1b726

0.0.10

		23 changes: https://github.com/domokit/mojo/compare/1b7bcee...be9dad7

0.0.8

		Update version to match sky package. 0.0.7 was skipped.

0.0.6

		Fix interface name capitalization bug in Dart bindings

		Add support for interface control messages (queryVersion, requireVersion)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/dart/packages/mojo_apptest/CHANGELOG.html

 Navigation

 		
 index

 		ray-core latest documentation »

0.2.33

		50 changes: https://github.com/domokit/mojo/compare/e157db5...5cdbd5d

MOJO_SDK: 5cdbd5dc103fe6f715af3387b43b85436f4cd131

0.2.32

		48 changes: https://github.com/domokit/mojo/compare/3405784...850e9e4

MOJO_SDK: 850e9e46981b42869f5217119faeeb1444781210

0.2.31

		28 changes: https://github.com/domokit/mojo/compare/057a062...7615ee5

MOJO_SDK: 7615ee57250e71eb370a9ad808dbcfba2028eec8

0.2.30

		21 changes: https://github.com/domokit/mojo/compare/b3a693d...9fee976

MOJO_SDK: 9fee97604c5f232308a7d7af3373734b090c875c

0.2.29

		33 changes: https://github.com/domokit/mojo/compare/73d6208...ef526bb

MOJO_SDK: ef526bb5c9a4a340d0b98375a7721861f7b06b70

0.2.28

		128 changes: https://github.com/domokit/mojo/compare/98d9d77...c7c9fc0

MOJO_SDK: c7c9fc0bafaac2a6f357c1231fa40d3dc2310220

0.2.27

		39 changes: https://github.com/domokit/mojo/compare/ee6b938...e4d03ca

MOJO_SDK: e4d03ca48527afe3d6090c01b486e83d87bfa8af

0.2.26

		21 changes: https://github.com/domokit/mojo/compare/74fea6c...ccedda3

MOJO_SDK: ccedda3926e3d933890a98ea3e5f83446bddff19

0.2.25

		25 changes: https://github.com/domokit/mojo/compare/735911e...5bb113e

MOJO_SDK: 5bb113eb0d57135418e7a01613fe53e298e0b2d4

0.2.24

		58 changes: https://github.com/domokit/mojo/compare/b76db37...ccd4c03

MOJO_SDK: ccd4c03ab17fabd1cc8f6bfa9ecb7ef697070de8

0.2.23

		19 changes: https://github.com/domokit/mojo/compare/fb7d03d...368aeb0

MOJO_SDK: 368aeb022cfcfbff1d497cbe5f841d35de3d7beb

0.2.22

		35 changes: https://github.com/domokit/mojo/compare/2b11118...9da3423

MOJO_SDK: 9da3423f38d27e51da52bbc42afd60779d13db43

0.2.21

		12 changes: https://github.com/domokit/mojo/compare/1431b34...c1cebef

MOJO_SDK: c1cebef28defaba64d168b2cfd5a5425b27d9112

0.2.20

		80 changes: https://github.com/domokit/mojo/compare/1dd4e18...64f99bc

MOJO_SDK: 64f99bc8253b89c1a128a2ed64490f2f9216a41a

0.2.19

		2 changes: https://github.com/domokit/mojo/compare/c9e1513...eea814b

MOJO_SDK: eea814b3f09df6ca7e906544d7ebffeea3741c79

0.2.18

		41 changes: https://github.com/domokit/mojo/compare/ecb64e7...b3aaccc

MOJO_SDK: b3aaccc8d9408bc645ee633e7030c605f333be95

0.2.17

		63 changes: https://github.com/domokit/mojo/compare/56bf5b4...2ae2bcc

MOJO_SDK: 2ae2bccb82f37947c69ab5d6e06c2d109690a394

0.2.16

		25 changes: https://github.com/domokit/mojo/compare/1d94b2f...ebf4352

MOJO_SDK: ebf435275996a69482ea342aa3ae881aecd6c90e

0.2.15

		52 changes: https://github.com/domokit/mojo/compare/c6806ae...3f50c60

MOJO_SDK: 3f50c60f8af5bb485f248ceea2407a59f09caad5

0.2.14

		55 changes: https://github.com/domokit/mojo/compare/e50fde8...bb76300

0.2.13

		57 changes: https://github.com/domokit/mojo/compare/1b56f2d...b56047c

0.2.12

		5 changes: https://github.com/domokit/mojo/compare/5d91188...d0070e0

0.2.11

		0 changes: https://github.com/domokit/mojo/compare/419ddbf...419ddbf

0.2.10

		123 changes: https://github.com/domokit/mojo/compare/0f44252...5fb6ad9

0.2.9

		62 changes: https://github.com/domokit/mojo/compare/1a0ec50...3616f6d

0.2.8

		51 changes: https://github.com/domokit/mojo/compare/9e11eee...e4ac236

0.2.7

		0 changes: https://github.com/domokit/mojo/compare/b65b17a...b65b17a

0.2.6

		25 changes: https://github.com/domokit/mojo/compare/2918964...70dca39

0.2.5

		62 changes: https://github.com/domokit/mojo/compare/b917a90...3230048

0.2.4

		64 changes: https://github.com/domokit/mojo/compare/e590bb1...241ff8a

0.2.3

		17 changes: https://github.com/domokit/mojo/compare/8a9c751...63df3b7

0.2.2

		73 changes: https://github.com/domokit/mojo/compare/5ae7a82...0ea08b0

0.2.0

		92 changes: https://github.com/domokit/mojo/compare/c1d7bc9...0894421

0.1.0

		0 changes: https://github.com/domokit/mojo/compare/86d3dc4...86d3dc4

Declare dependency on mojo 0.1.x

0.0.25

		161 changes: https://github.com/domokit/mojo/compare/04e9966...3139c74

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/dart/packages/mojo_services/CHANGELOG.html

 Navigation

 		
 index

 		ray-core latest documentation »

0.4.32

		51 changes: https://github.com/domokit/mojo/compare/38edfe4...ee5b33c

MOJO_SDK: ee5b33cba0face525d425d6bd8682e5de038ad73

0.4.31

		47 changes: https://github.com/domokit/mojo/compare/24614f9...ff47297

MOJO_SDK: ff47297bfaed2660b106a67d6693343b0bc8356b

0.4.30

		28 changes: https://github.com/domokit/mojo/compare/107bac0...ef5cd66

MOJO_SDK: ef5cd660ec6f1c50eaff62c81ea7662662d04e15

0.4.29

		22 changes: https://github.com/domokit/mojo/compare/12d71ee...f56fd59

MOJO_SDK: f56fd59ec51e1ecdd52fb848ceff1b6b6fe7f7fa

0.4.28

		35 changes: https://github.com/domokit/mojo/compare/e95b5db...c200560

MOJO_SDK: c200560ac45a79b61b8e8c0444af471789f5669f

0.4.27

		125 changes: https://github.com/domokit/mojo/compare/2f662f4...705723c

MOJO_SDK: 705723c25a51b30a89b6431a6377b09e4069561e

0.4.26

		42 changes: https://github.com/domokit/mojo/compare/1277443...7c72e53

MOJO_SDK: 7c72e53d105c346dd82cbdbeb12d9e3f0712093d

0.4.25

		19 changes: https://github.com/domokit/mojo/compare/91e87dd...21303e1

MOJO_SDK: 21303e136815a9c10321433fe6efaa4e5fc13b34

0.4.24

		24 changes: https://github.com/domokit/mojo/compare/68bf047...31c5037

MOJO_SDK: 31c5037ab2c63649632c9f2d4227ebe6f22015a4

0.4.23

		58 changes: https://github.com/domokit/mojo/compare/335418d...c7fc1d1

MOJO_SDK: c7fc1d1c06fab3dab3e1b111ee417688b841a7a0

0.4.22

		19 changes: https://github.com/domokit/mojo/compare/f59d613...3521661

MOJO_SDK: 3521661ee7561dc24eb8878ff66a34116fba1ca7

0.4.21

		36 changes: https://github.com/domokit/mojo/compare/b5b1a0d...1484e83

MOJO_SDK: 1484e831758d05c7af0f27c199d24e3bbdc6383f

0.4.20

		11 changes: https://github.com/domokit/mojo/compare/2829804...c1287c1

MOJO_SDK: c1287c19972d5010f0c0ada3464a0d3e459e7480

0.4.19

		80 changes: https://github.com/domokit/mojo/compare/9ec7563...1308cd1

MOJO_SDK: 1308cd12434c9536a28592ff09399a57ef7f4f77

0.4.18

		17 changes: https://github.com/domokit/mojo/compare/f64c6d6...c9e1513

MOJO_SDK: c9e15130499cc859050668ea6f78485001c96251

0.4.17

		41 changes: https://github.com/domokit/mojo/compare/ecb64e7...b3aaccc

MOJO_SDK: b3aaccc8d9408bc645ee633e7030c605f333be95

0.4.16

		25 changes: https://github.com/domokit/mojo/compare/147dc02...2ae2bcc

MOJO_SDK: 2ae2bccb82f37947c69ab5d6e06c2d109690a394

0.4.15

		36 changes: https://github.com/domokit/mojo/compare/56bf5b4...c4d0fb2

MOJO_SDK: c4d0fb29b488b2e4d3a86361fa2409bd65ac9cb4

0.4.14

		25 changes: https://github.com/domokit/mojo/compare/1d94b2f...ebf4352

MOJO_SDK: ebf435275996a69482ea342aa3ae881aecd6c90e

0.4.13

		52 changes: https://github.com/domokit/mojo/compare/c6806ae...3f50c60

MOJO_SDK: 3f50c60f8af5bb485f248ceea2407a59f09caad5

0.4.12

		55 changes: https://github.com/domokit/mojo/compare/e50fde8...bb76300

0.4.11

		57 changes: https://github.com/domokit/mojo/compare/1b56f2d...b56047c

0.4.10

		20 changes: https://github.com/domokit/mojo/compare/a05a1a6...d0070e0

0.4.9

		45 changes: https://github.com/domokit/mojo/compare/1bf8c18...5fb6ad9

0.4.8

		63 changes: https://github.com/domokit/mojo/compare/3ab01fc...3d67098

0.4.7

		11 changes: https://github.com/domokit/mojo/compare/0f44252...2ccd493

0.4.6

		47 changes: https://github.com/domokit/mojo/compare/9972a29...3616f6d

0.4.5

		81 changes: https://github.com/domokit/mojo/compare/c05d8ad...e4ac236

0.4.4

		0 changes: https://github.com/domokit/mojo/compare/b65b17a...b65b17a

0.4.3

		25 changes: https://github.com/domokit/mojo/compare/2918964...70dca39

0.4.2

		62 changes: https://github.com/domokit/mojo/compare/b917a90...3230048

0.4.1

		64 changes: https://github.com/domokit/mojo/compare/e590bb1...241ff8a

0.4.0

		17 changes: https://github.com/domokit/mojo/compare/8a9c751...63df3b7

0.3.1

		43 changes: https://github.com/domokit/mojo/compare/9639eee...0ea08b0

0.3.0

		30 changes: https://github.com/domokit/mojo/compare/4875b4b...e261f03

0.2.0

		92 changes: https://github.com/domokit/mojo/compare/c1d7bc9...0894421

0.1.0

		0 changes: https://github.com/domokit/mojo/compare/86d3dc4...86d3dc4

Declare dependency on mojom and mojo 0.1.x

0.0.25

		187 changes: https://github.com/domokit/mojo/compare/e5cc610...3139c74

0.0.23

0.0.22

		58 changes: https://github.com/domokit/mojo/compare/e172885...35de44e

0.0.16

		89 changes: https://github.com/domokit/mojo/compare/0fd4d06...c3119f6

0.0.15

		18 changes: https://github.com/domokit/mojo/compare/e7433cf...8879bfd

0.0.14

		27 changes: https://github.com/domokit/mojo/compare/e028733...e7433cf

0.0.13

		6 changes: https://github.com/domokit/mojo/compare/4df2d39...e028733

0.0.12

		138 changes: https://github.com/domokit/mojo/compare/850ac24...cf84c48

0.0.11

		70 changes: https://github.com/domokit/mojo/compare/889091e...136e0d4

0.0.10

		29 changes: https://github.com/domokit/mojo/compare/e25e3e2...432ce45

0.0.9

		197 changes: https://github.com/domokit/mojo/compare/bdbb0c7...fb1b726

0.0.8

		23 changes: https://github.com/domokit/mojo/compare/1b7bcee...be9dad7

0.0.6

		Initial release

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/dart/packages/mojom/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

mojom

This package is a placeholder for generated mojom bindings. It contains a script
lib/generate.dart.

This script generates Mojo bindings for a Dart package. Dart packages will be
populated according to the DartPackage annotations in .mojom files. Any .mojom
files that don’t have an annotation will have their bindings generated into a
local copy of the ‘mojom’ package. Annotations specifying the host package will
cause generation into the host package’s lib/ directory. For every other
DartPackage annotation, the bindings will be generated into the named package,
either into the global package cache if a package of that name has already been
fetched, or into a local directory created under the current package’s packages/
directory.

Generated Mojo bindings in other pub packages should be installed into this
package by saying the following after pub get:

$ dart -p packages packages/mojom/generate.dart

If desired, additional directories holding .mojom.dart files can be specified;
their contents will be installed to this package as well:

$ dart -p packages packages/mojom/generate.dart -a </path/to/mojom/dir>

Full options:

$ dart packages/mojom/generate.dart [-p package-root]
 [-a additional-dirs]
 [-m mojo-sdk]
 [-g] # Generate from .mojom files
 [-d] # Download from .mojoms files
 [-i] # Ignore duplicates
 [-v] # verbose
 [-f] # Fake (dry) run

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/dart/packages/mojo_sdk/CHANGELOG.html

 Navigation

 		
 index

 		ray-core latest documentation »

0.2.29

		50 changes: https://github.com/domokit/mojo/compare/850e9e4...db036b1

MOJO_SDK: db036b199725a51710b2628a40151f61c3ebbb7e

0.2.28

		48 changes: https://github.com/domokit/mojo/compare/7615ee5...38f0fb1

MOJO_SDK: 38f0fb14f31edc51e94593c1915209bcc63d3c9c

0.2.27

		28 changes: https://github.com/domokit/mojo/compare/9fee976...24614f9

MOJO_SDK: 24614f9961413d4527a5b1bc525102380f825705

0.2.26

		21 changes: https://github.com/domokit/mojo/compare/ef526bb...107bac0

MOJO_SDK: 107bac064ffded510eb8a893f5beb3faa4b7324a

0.2.25

		32 changes: https://github.com/domokit/mojo/compare/c7c9fc0...12d71ee

MOJO_SDK: 12d71ee39a0af5940e1ec6807702bd05e2f3c236

0.2.24

		125 changes: https://github.com/domokit/mojo/compare/e4d03ca...e95b5db

MOJO_SDK: e95b5dbca09e6c189ca497e41a6a01b20b536f14

0.2.23

		39 changes: https://github.com/domokit/mojo/compare/ccedda3...2f662f4

MOJO_SDK: 2f662f419ff3328ee1d1a1a47e2a0056b80a2086

0.2.22

		21 changes: https://github.com/domokit/mojo/compare/5bb113e...d3a630f

MOJO_SDK: d3a630fd6b85c5fdbb944d748827e79e962eb012

0.2.21

		25 changes: https://github.com/domokit/mojo/compare/ccd4c03...b013d06

MOJO_SDK: b013d061e7904f5e8a26fe94e64481b01444886d

0.2.20

		58 changes: https://github.com/domokit/mojo/compare/368aeb0...68bf047

MOJO_SDK: 68bf04748a69d8702e8f888f711082feee690011

0.2.19

		19 changes: https://github.com/domokit/mojo/compare/9da3423...335418d

MOJO_SDK: 335418d40d1cc46f14b43d37c4b7a0a5b7777689

0.2.18

		35 changes: https://github.com/domokit/mojo/compare/c1cebef...f59d613

MOJO_SDK: f59d61349e6c690320e56314687782fc1817f9a1

0.2.17

		12 changes: https://github.com/domokit/mojo/compare/64f99bc...1f8e74c

MOJO_SDK: 1f8e74c594bf1e638d026b6ad12b83d2f1fd8bc9

0.2.16

		80 changes: https://github.com/domokit/mojo/compare/eea814b...2829804

MOJO_SDK: 2829804fb7dce2fe603e430913b948e819c811b0

0.2.15

		1 changes: https://github.com/domokit/mojo/compare/c9e1513...9ec7563

MOJO_SDK: 9ec7563706bc9a57cc0b645c93433fc9139c80e5

0.2.14

		43 changes: https://github.com/domokit/mojo/compare/4a4d4e0...f64c6d6

MOJO_SDK: f64c6d64858915d32f185ee6fc7b438b46ca3738

0.2.13

		25 changes: https://github.com/domokit/mojo/compare/fa66287...ecb64e7

MOJO_SDK: ecb64e7a16dca8374350e5b329694de85a7a1476

0.2.12

		37 changes: https://github.com/domokit/mojo/compare/47b52f1...147dc02

MOJO_SDK: 147dc026d9a6aca871d35875d0fd51fc19c3dc93

0.2.11

		24 changes: https://github.com/domokit/mojo/compare/41cb528...56bf5b4

MOJO_SDK: 56bf5b4c1fe3657dde809878257a83865ba84815

0.2.10

		52 changes: https://github.com/domokit/mojo/compare/06597eb...683c4ed

MOJO_SDK: 683c4ed82364dd30f6de501dffcf058264d01e80

0.2.9

		56 changes: https://github.com/domokit/mojo/compare/0f041af...9f9de2e

0.2.8

		57 changes: https://github.com/domokit/mojo/compare/b7c8cb1...e50fde8

0.2.7

		27 changes: https://github.com/domokit/mojo/compare/90c1048...1b56f2d

0.2.6

		40 changes: https://github.com/domokit/mojo/compare/f3f28cb...a05a1a6

0.2.5

		64 changes: https://github.com/domokit/mojo/compare/e2b1bc4...0bfcb82

0.2.4

		12 changes: https://github.com/domokit/mojo/compare/b8b9b38...3ab01fc

0.2.3

		50 changes: https://github.com/domokit/mojo/compare/9972a29...06341ac

0.1.0

		Initial release

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/dart/packages/mojo_services/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

mojo_services

This package contains generated bindings for mojo services

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/dart/packages/mojo_tools/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/dart/packages/mojo_tools/CHANGELOG.html

 Navigation

 		
 index

 		ray-core latest documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/dart/packages/mojom/CHANGELOG.html

 Navigation

 		
 index

 		ray-core latest documentation »

0.2.33

		50 changes: https://github.com/domokit/mojo/compare/e157db5...5cdbd5d

MOJO_SDK: 5cdbd5dc103fe6f715af3387b43b85436f4cd131

0.2.32

		48 changes: https://github.com/domokit/mojo/compare/3405784...850e9e4

MOJO_SDK: 850e9e46981b42869f5217119faeeb1444781210

0.2.31

		28 changes: https://github.com/domokit/mojo/compare/057a062...7615ee5

MOJO_SDK: 7615ee57250e71eb370a9ad808dbcfba2028eec8

0.2.30

		21 changes: https://github.com/domokit/mojo/compare/b3a693d...9fee976

MOJO_SDK: 9fee97604c5f232308a7d7af3373734b090c875c

0.2.29

		33 changes: https://github.com/domokit/mojo/compare/73d6208...ef526bb

MOJO_SDK: ef526bb5c9a4a340d0b98375a7721861f7b06b70

0.2.28

		128 changes: https://github.com/domokit/mojo/compare/98d9d77...c7c9fc0

MOJO_SDK: c7c9fc0bafaac2a6f357c1231fa40d3dc2310220

0.2.27

		39 changes: https://github.com/domokit/mojo/compare/ee6b938...e4d03ca

MOJO_SDK: e4d03ca48527afe3d6090c01b486e83d87bfa8af

0.2.26

		21 changes: https://github.com/domokit/mojo/compare/74fea6c...ccedda3

MOJO_SDK: ccedda3926e3d933890a98ea3e5f83446bddff19

0.2.25

		25 changes: https://github.com/domokit/mojo/compare/735911e...5bb113e

MOJO_SDK: 5bb113eb0d57135418e7a01613fe53e298e0b2d4

0.2.24

		58 changes: https://github.com/domokit/mojo/compare/b76db37...ccd4c03

MOJO_SDK: ccd4c03ab17fabd1cc8f6bfa9ecb7ef697070de8

0.2.23

		19 changes: https://github.com/domokit/mojo/compare/fb7d03d...368aeb0

MOJO_SDK: 368aeb022cfcfbff1d497cbe5f841d35de3d7beb

0.2.22

		35 changes: https://github.com/domokit/mojo/compare/2b11118...9da3423

MOJO_SDK: 9da3423f38d27e51da52bbc42afd60779d13db43

0.2.21

		12 changes: https://github.com/domokit/mojo/compare/1431b34...c1cebef

MOJO_SDK: c1cebef28defaba64d168b2cfd5a5425b27d9112

0.2.20

		80 changes: https://github.com/domokit/mojo/compare/1dd4e18...64f99bc

MOJO_SDK: 64f99bc8253b89c1a128a2ed64490f2f9216a41a

0.2.19

		2 changes: https://github.com/domokit/mojo/compare/c9e1513...eea814b

MOJO_SDK: eea814b3f09df6ca7e906544d7ebffeea3741c79

0.2.18

		41 changes: https://github.com/domokit/mojo/compare/ecb64e7...b3aaccc

MOJO_SDK: b3aaccc8d9408bc645ee633e7030c605f333be95

0.2.17

		2 changes: https://github.com/domokit/mojo/compare/00e94a8...2ae2bcc

MOJO_SDK: 2ae2bccb82f37947c69ab5d6e06c2d109690a394

0.2.16

		25 changes: https://github.com/domokit/mojo/compare/1d94b2f...ebf4352

MOJO_SDK: ebf435275996a69482ea342aa3ae881aecd6c90e

0.2.15

		52 changes: https://github.com/domokit/mojo/compare/c6806ae...3f50c60

MOJO_SDK: 3f50c60f8af5bb485f248ceea2407a59f09caad5

0.2.14

		55 changes: https://github.com/domokit/mojo/compare/e50fde8...bb76300

0.2.13

		57 changes: https://github.com/domokit/mojo/compare/1b56f2d...b56047c

0.2.12

		20 changes: https://github.com/domokit/mojo/compare/a05a1a6...d0070e0

0.2.11

		45 changes: https://github.com/domokit/mojo/compare/1bf8c18...5fb6ad9

0.2.10

		77 changes: https://github.com/domokit/mojo/compare/0f44252...3d67098

0.2.9

		62 changes: https://github.com/domokit/mojo/compare/1a0ec50...3616f6d

0.2.8

		5 changes: https://github.com/domokit/mojo/compare/fb583de...e4ac236

0.2.7

		0 changes: https://github.com/domokit/mojo/compare/b65b17a...b65b17a

0.2.6

		25 changes: https://github.com/domokit/mojo/compare/2918964...70dca39

0.2.5

		62 changes: https://github.com/domokit/mojo/compare/b917a90...3230048

0.2.4

		64 changes: https://github.com/domokit/mojo/compare/e590bb1...241ff8a

0.2.3

		17 changes: https://github.com/domokit/mojo/compare/8a9c751...63df3b7

0.2.2

		0 changes: https://github.com/domokit/mojo/compare/0ea08b0...0ea08b0

0.2.0

		92 changes: https://github.com/domokit/mojo/compare/c1d7bc9...0894421

0.1.0

		0 changes: https://github.com/domokit/mojo/compare/86d3dc4...86d3dc4

Declare dependency on mojo 0.1.x

0.0.25

		72 changes: https://github.com/domokit/mojo/compare/da2f238...3139c74

0.0.23

0.0.22

		59 changes: https://github.com/domokit/mojo/compare/c73419d...35de44e

0.0.18

		89 changes: https://github.com/domokit/mojo/compare/0fd4d06...c3119f6

0.0.17

		18 changes: https://github.com/domokit/mojo/compare/e7433cf...8879bfd

0.0.16

		27 changes: https://github.com/domokit/mojo/compare/e028733...e7433cf

0.0.15

		6 changes: https://github.com/domokit/mojo/compare/4df2d39...e028733

0.0.14

		138 changes: https://github.com/domokit/mojo/compare/850ac24...cf84c48

0.0.13

		70 changes: https://github.com/domokit/mojo/compare/889091e...136e0d4

0.0.12

		29 changes: https://github.com/domokit/mojo/compare/e25e3e2...432ce45

0.0.11

		12 changes: https://github.com/domokit/mojo/compare/7ba339b...fb1b726

0.0.10

		23 changes: https://github.com/domokit/mojo/compare/1b7bcee...be9dad7

0.0.8

		Update version to match sky package. 0.0.6 and 0.0.7 were skipped.

0.0.5

		First update after dart dev summit to match mojo and sky packages.

0.0.1

		Initial placeholder package for generated mojom bindings.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/dart/packages/mojom/lib/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

mojom

mojom.dart files will appear here after running the generate script (see the
top-level documentation for this package).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/dart/embedder/HACKING.html

 Navigation

 		
 index

 		ray-core latest documentation »

Dart Embedder Hacking

Debugging

Under Mojo, by default the Dart VM is built in Release mode regardless of the
mode that Mojo is built in. That is, when Mojo is built in Debug mode, the
Dart VM is still built in Release mode. To change this behavior while working
on the embedder, pass dart_debug=true to gn to configure a Debug build of the
Dart VM. I.e.:

$ gn gen --check out/Debug --args='... dart_debug=true'

Embedder packages

In order to implement the ‘dart:io’ library (and run a service isolate hosting
Observatory), the Mojo Dart embedder needs to use some package: imports. Mojo
applications should be able to use a different version of these packages than
the embedder. In other words, the embedder snapshot cannot include any
‘package:’ imports because they will prohibit an application from using a newer
version of the package. In order to allow the embedder to use packages
without interfering with an application’s intended version, we clone the
packages used by the embedder and rewrite the url to start with ‘dart:‘
(not ‘package:’). Each dart: import must have a mapping provided
to gen_snapshot which maps from the import uri to a real file system path.

The complete list of packages used by the embedder is located at
//mojo/dart/embedder/packages.dart.

Adding an embedder package can be done in three steps:

		Add ‘dart:_‘ import to packages.dart, for example:

import ‘dart:_mojo/public/dart/application.dart’;

		Add dart_embedder_package to //mojo/dart/embedder/BUILD.gn, for example:

dart_embedder_package(“dart_embedder_package_application”) {
package = “mojo/public/interfaces/application”
}

		Add the package directory to the list in :generate_snapshot_bin, for example:

rebase_path(“//mojo/public/interfaces/application”),

Dart IO

Under Mojo, the ‘dart:io’ implementation is not complete and likely suffers
from subtle differences. Implementation status:

‘dart:io’ feature	Mojo Service	Implemented
——————	——————–	———–
Socket	mojo:network_service	Yes
ServerSocket	mojo:network_service	Yes
DNS	mojo:network_srevice	Yes
SecureSocket	N/A	No
SecureServerSocket	N/A	No
Datagram	mojo:network_service	No
File system	mojo:files	Yes
Zlib Gzip Filter	N/A	Yes

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/edk/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mojo EDK (embedder development kit)

The Mojo EDK is a “library” that provides implementations of the basic Mojo
system primitives (e.g., message pipes). It is not meant for ordinary
applications, but for embedders who in turn expose the basic Mojo primitives
to other applications/content.

For example, this is used by mojo_shell to implement the Mojo primitives,
which it in turn exposes to Mojo applications, and by Flutter, which exposes
Mojo primitives to Flutter applications. (mojo_shell and Flutter are embedders
of the Mojo system implementation.)

Note: The embedder API is not stable (neither at the source nor at the binary
level) and will evolve over time.

Organization

Subdirectories

		//mojo/edk/base_edk: The embedder API requires various things to
be implemented or injected by the embedder. This contains implementations of
these things for use with //base. (This may also be usable with
other sufficiently-similar derivatives of Chromium’s
//base [https://chromium.googlesource.com/chromium/src/+/master/base/].)

		//mojo/edk/embedder: The header files in this directory constitute
the public API available to embedders. (The .cc files are private and mostly
serve to bridge between the public API and the private API in
system.)

		//mojo/edk/platform: This contains platform abstractions and
declarations of embedder-dependent things. Some of these must be provided by
the embedder, either by implementing an interface or by implementing a class
outright.

		//mojo/edk/system: This contains the bulk of the actual
implementation, and is entirely private.

		//mojo/edk/system/test: This contains private test helpers used
by the EDK’s internal tests.

		//mojo/edk/test: In principle, this contains test helpers for use by
embedders (but see the TODO below).

		//mojo/edk/util: This contains basic helpers built on top of the C++
library and also some POSIX APIs, notably pthreads. These are used by all the
other parts of the EDK, and are also available for embedders to use. (Outside
its tests, it should not depend on other parts of the EDK.)

TODO(vtl)

		//mojo/edk/test currently contains things that aren’t meant for
embedders. (They can’t be moved to //mojo/edk/system/test
because of their dependencies, but they should be moved elsewhere instead.)

		There should be a “platform” directory. Many of the things in
//mojo/edk/embedder (especially in the platform target) should
be moved here (though some of the implementations should be moved to
//mojo/edk/base_edk.

See also

		//mojo/public: the Mojo public SDK

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

src/mojo/tools/configs/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

 This directory contains alternative config files that can be passed to
mojo_run.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		ray-core latest documentation »

The Ray Core

To get started, execute the following commands:

git clone https://github.com/amplab/ray-core
cd ray-core
glient sync
cd src
gn gen out/Debug
ninja -C out/Debug -j 16

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/gles2/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mojo GLES2

We export this dynamically linked library via mojo/public/gles2 in order to
hide the gpu/command_buffer/client dependency from clients of the Mojo API.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/services/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mojo services “public” interfaces and libraries

This directory contains “public” interfaces and libraries for various Mojo
services (whose implementations are elsewhere, including in particular
//services; some implementations may be in separate repos).

(Note that “core”, i.e. absolutely essential, interfaces are under
//mojo/public/interfaces.)

The majority of the contents under this directory are mojom files describing the
interfaces, located under <service_name>/interfaces. Note that some
subdirectories do not correspond directly to a “service” per se, but to a more
general group of interfaces (which may in turn be used by other “services”).

There are also some language-specific libraries (especially for the “client”
side, but occasionally also for the implementation side) in corresponding
subdirectories. For example, C++ libraries are under <service_name>/cpp.

See also

		//services

		//mojo/public

		//mojo/public/interfaces

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/services/network/interfaces/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Network interfaces

This directory contains the mojom files describing the interfaces used by the
network service (mojo:network_service).

With the exception of this file, the contents of this directory is a direct
mirror of
github.com/domokit/monet/tree/master/mojo/services/network/interfaces [https://github.com/domokit/monet/tree/master/mojo/services/network/interfaces],
ideally at the revision indicated in
//mojo/public/tools/NETWORK_SERVICE_VERSION.

Instead of modifying the files in this directory directly, please make the
changes “upstream” and mirror them back to this directory.

See also

		//mojo/public/interfaces/network

		github.com/domokit/monet [https://github.com/domokit/monet]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/public/platform/dart/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Dart Embedding Support

This directory contains the implementation of the native methods used by
the ‘dart:mojo.internal’ library.

NOTE: The contents of this directory should only be used if you are implementing
a custom content handler that runs dart code that expects ‘dart:mojo.internal’.

NOTE: The build rules are written in such a way that the Dart SDK is checked out
under //dart.

NOTE: The sources in this directory indirectly coupled to the revision of the
Dart SDK checked out under //dart. You must ensure that you are using the
same revision.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/public/tools/bindings/mojom_tool/bin/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mojom Tool Binaries

On supported systems
(as of this writing only 64-bit Linux)
the appropriate architecture-specific subdirectory will contain a file named
mojom after gclient sync is executed. The file mojom
is an executable built from (some version of) the Go code in
https://github.com/domokit/mojo/tree/master/mojom/mojom_tool.

The file mojom is downloaded by gclient sync from Google Cloud
Storage from a file named mojo/mojom_tool/arch/sha1 where arch
is an architecture-specific folder name and sha1 is the SHA1
digest of the file. Each architecture-specific subdirectory contains a
file named mojom.sha1, for example
linux64/mojom.sha1,
that specifies the SHA1 digest of the current version of the binary on that
architecture and lets gclient sync
decide whether or not the binary is already up-to-date.

To browse the Google Cloud Storage bucket go to
https://console.developers.google.com/storage/browser/mojo/mojom_parser/.

Updating the File

To update the version of mojom that will be downloaded by
gclient sync, see
https://github.com/domokit/mojo/blob/master/mojom/tools/build_mojom_tool.py.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		ray-core latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/public/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mojo Public API

The Mojo Public API is a binary stable API to the Mojo system.

It consists of support for a number of programming languages (with a directory
for each support language), some “build” tools and build-time requirements, and
interface definitions for Mojo services (specified using an IDL).

Note that there are various subdirectories named tests/. These contain tests of
the code in the enclosing directory, and are not meant for use by Mojo
applications.

C/CPP/JS

The c/, cpp/, js/ subdirectories define the API for C, C++, and JavaScript,
respectively.

The basic principle for these directories is that they consist of the source
files that one needs at build/deployment/run time (as appropriate for the
language), organized in a natural way for the particular language.

Interfaces

The interfaces/ subdirectory contains Mojo IDL (a.k.a. .mojom) descriptions of
standard Mojo services.

Platform

The platform/ subdirectory contains any build-time requirements (e.g., static
libraries) that may be needed to produce a Mojo application for certain
platforms, such as a native shared library or as a NaCl binary.

Tools

The tools/ subdirectory contains tools that are useful/necessary at
build/deployment time. These tools may be needed (as a practical necessity) to
use the API in any given language, e.g., to generate bindings from Mojo IDL
files.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/public/cpp/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mojo Public C++ API

This directory contains C++ language bindings for the Mojo Public API.

A number of subdirectories provide wrappers for the lower-level C APIs (in
subdirectories of the same name, under mojo/public/c/). Typically, these
wrappers provide increased convenience and/or type-safety.

Other subdirectories provide support (static) libraries of various sorts. In
this case, the organization is to have the public interface for the library
defined in header files in the subdirectory itself and the implementation of the
library at a lower level, under a lib (sub)subdirectory. A developer should be
able to substitute their own implementation of any such support library, and
expect other support libraries, which may depend on that library, to work
properly.

Bindings

The bindings/ subdirectory contains a support (static) library needed by the
code generated by the bindings generator tool (in mojo/public/tools/bindings/),
which translates Mojo IDL (.mojom) files into idiomatic C++ (among other
languages).

This library depends on the Environment library.

Environment

The environment/ subdirectory contains a support (static) library that
represents shared state needed to support the Bindings and GLES2 libraries.

This library depends on the Utility library.

Shell

The shell/ subdirectory contains a support (static) library that aids in writing
Mojo applications and interacting with the Shell service.

System

The system/ subdirectory contains C++ wrappers (and some additional helpers) of
the API defined in mojo/public/c/system/, which defines the basic, “core” API,
especially used to communicate with Mojo services.

Test Support

The test_support/ subdirectory contains C++ test support functionality for
“internal” tests. It is not meant for general use by Mojo applications.

Utility

The utility/ subdirectory contains a support (static) library that provides
various basic functionality. Most notably, it provides an implementation of a
RunLoop based on MojoWaitMany() that applications may use as the basis for
asynchronous message processing.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/public/tools/bindings/pylib/mojom/generate/generated/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

 The files in this directory are generated by the mojom bindings generator.
Since they are used by the new version of the mojom bindings generator,
we need to check them in to break the circular dependency.

The sources are:
mojo/public/interfaces/bindings/mojom_types.mojom
mojo/public/interfaces/bindings/mojom_files.mojom

TODO(azani): Write a script that updates those files automatically.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/nacl/nonsfi/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

About

This directory contains the necessary components to run Non-SFI NaCl
nexes (native executables) from within Mojo.

Using

The Non-SFI NaCl and accompanying tests should be built by default for Linux.
The boolean indicating if they are built is “mojo_use_nacl_nonsfi”, defined
inside the BUILD files.

Building Non-SFI NaCl

Build Mojo (all following commands assume you are in the root of the mojo
repository):

$./mojo/tools/mojob.py gn
$./mojo/tools/mojob.py build

Doing this build step will automatically create the necessary content handlers
and pexes.

Translating and Running Pexes

When portable executable files (pexes) are generated by mojo, they are created
as .pexe.mojo files. These pexes are generated by building a gn target with
the mojo_native_application template with a PNaCl toolchain.

The “pexe” part of the name comes from the fact that they are portable, and the
“mojo” part of the name comes from the fact that they have the line #!mojo mojo:content_handler_nonsfi_pexe prepended to them, so the appropriate pexe
content handler can be found by the Mojo Shell.

To run the FOOBAR.pexe.mojo pexe (aka, to translate and execute it), run the
following:

$./out/Debug/mojo_shell --enable-multiprocess ./out/Debug/FOOBAR.pexe.mojo

or, alternatively, for a version compatible with Android:

$./mojo/devtools/common/mojo_run --enable-multiprocess mojo:FOOBAR.pexe
[--android]

For more information on the process of translating and handling nexes and pexes,
refer to the services/nacl directory.

Manually Translating Pexes and Running Nexes

A raw pexe of unit tests will be built, at
./out/Debug/newlib_pnacl/monacl_test.pexe. To manually translate this pexe
into a non-SFI nexe:

$./native_client/toolchain/linux_x86/pnacl_newlib/bin/pnacl-translate \
./out/Debug/newlib_pnacl/FOOBAR.pexe -o FOOBAR.nexe -arch x86-32-nonsfi

Now, you should have the fully translated nexe (called
FOOBAR.nexe). You can run the nexe through the monacl shell
(a minimal, “nexe-only” shell, which loads the nexe ELF file – see
monacl_shell_nonsfi.cc):

$./out/Debug/clang_x86/monacl_shell_nonsfi FOOBAR.nexe

This monacl_shell_nonsfi is the easiest way to run nexes in Mojo – however, it
is not the only way. Usually, applications are launched through the
“mojo_shell”, but some additional information is required to know how to handle
this content (i.e., how does the mojo_shell know it is dealing with a nonsfi
nexe?).

The BUILD.gn files in Mojo automatically make the “monacl_test” pexe, translate
it to a nexe, and prepend a line (#!mojo mojo:content_handler_nonsfi_nexe) to
the front of the file, at which point it is also runnable through the
mojo_shell.
These files, which start with this “#!” line, are ”.mojo” files. The nexes can
be run like this:

$./out/Debug/mojo_shell --enable-multiprocess out/Debug/FOOBAR.mojo

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/docs/intro/mojom_idl.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mojom IDL

The Mojom IDL (interface definition language) is primarily used to describe
interfaces to be used on message pipes. Below, we give a
brief overview of some practical aspects of the Mojom language (for more
details, see the Mojom language. Elsewhere, we
describe the Mojom protocol. (TODO(vtl): Also,
serialization format? Versioning?)

Text files written in Mojom IDL are given the .mojom extension by convention
(and are usually referred to as Mojom/mojom/.mojom files). Mojom IDL permits
C++-style comments: single-line comments starting with // or multi-line
comments enclosed by /* ... */.

The Mojom bindings generator (TODO(vtl): link?) may be used to generate code
in a variety of languages (including C++, Dart, and Go) from a Mojom file. Such
generated code “implements” the things specified in the Mojom file, in a way
that’s appropriate for the particular target language.

Modules and imports

A Mojom file begins with an optional module declaration, which acts like a C++
namespace declaration (applying to the entire file). It is then followed by zero
or more import statements, which make the contents of the imported files (and,
transitively, their imports) available in the current file. For example:

module my_module.my_submodule;

import "path/to/another.mojom";
import "path/to/yet/a/different.mojom";

Name resolution

Name resolution is basically C++-like (with . instead of ::): Within
my_module.my_submodule, an unnested declaration of a name Foo declares
something with “full” name my_module.my_submodule.Foo. A use of a name Foo
could either refer to one of the “full” names: my_module.my_submodule.Foo,
my_module.Foo, or Foo (searched in that order).

Nested declarations act in the expected way. E.g., if Foo is a struct
containing an enum declaration of Bar, then Foo.Bar (or
my_submodule.Foo.Bar, or my_module.my_submodule.Foo.Bar) can be used to
refer to that enum outside of Foo.

Names and ordinals

Generally, at a binary (as opposed to source) level, names in Mojom are not
important (except in that they must not collide). Names may be changed without
affecting binary compatibility.

Instead, what’s important are ordinals, which apply to struct fields
(including message request/response parameters) and interface messages. Often,
these are left implicit, in which case ordinals are assigned consecutively
starting from 0. (Obviously, with implicit declaration, the order of declaration
of struct fields, etc. is important.) Ordinals may also be assigned explicitly,
using the notation @123 (for example). (This allows struct fields, etc. to be
re-ordered in a Mojom file without breaking binary compatibility.)

Though ordinals are important for evolving Mojom files in a backwards-compatible
way, we will not discuss them in this introduction.

Naming style

Though names are not important, various code generators expect names in a
certain style, in order to transform them into a style more appropriate for a
given target language:

		StudlyCaps (a.k.a. CapitalizedCamelCase) for: (struct, interface, union,
and enum) type names and message (a.k.a. function or method) names;

		unix_hacker_style for field names (in structs and unions) and “parameter”
names;

		ALL_CAPS_UNIX_HACKER_STYLE for enum value names; and

		kStudlyCaps for const names.

Following this style is highly recommended (and may be required as a practical
matter).

Interfaces

A Mojom interface is (typically) used to describe communication on a message
pipe. Typically, message pipes are created with a particular interface in mind,
with one endpoint designated the client (which sends request messages and
receives response messages) and the other designated the server or impl
(which receives request messages and sends response messages).

For example, take the following Mojom interface declaration:

interface MyInterface {
 Foo(int32 a, string b);
 Bar() => (bool x, uint32 y);
 Baz() => ();
};

This specifies a Mojom interface in which the client may send three types of
messages, namely Foo, Bar, and Baz (see the note below about names in
Mojom). The first does not have a response message defined, whereas the latter
two do. Whenever the server receives a Bar or Baz message, it must
(eventually) send a (single) corresponding response message.

The Foo request message contains two pieces of data: a signed (two’s
complement) 32-bit integer called a and a Unicode string called b. On the
“wire”, the message basically consists of metadata and a (serialized) struct
(see below) containing a and b.

The Bar request message contains no data, so on the wire it’s just metadata
and an empty struct. It has a response message, containing a boolean value x
and an unsigned 32-bit integer y, which on the wire consists of metadata and a
struct with x and y. Each time the server receives a Bar message, it is
supposed to (eventually) respond by sending the response message. (Note: The
client may include as part of the request message’s metadata an identifier for
the request; the response’s metadata will then include this identifier, allowing
it to match responses to requests.)

The Baz request message also contains no data. It requires a response, also
containing no data. Note that even though the response has no data, a response
message must nonetheless be sent, functioning as an “ack”. (Thus this is
different from not having a response, as was the case for Foo.)

Structs

Mojom defines a way of serializing data structures (with the Mojom IDL providing
a way of specifying those data structures). A Mojom struct is the basic unit
of serialization. As we saw above, messages are basically just structs, with a
small amount of additional metadata.

Here is a simple example of a struct declaration:

struct MyStruct {
 int32 a;
 string b;
};

Structs (and interfaces) may also contain enum and const declarations, which
we will discuss below.

Types

Non-reference (simple and enum) types

We have seen some simple types above, namely int32, uint32, and bool. A
complete list of simple types is:

		bool: boolean values;

		int8, int16, int32, int64: signed 2’s-complement integers of the given
size;

		uint8, uint16, uint32, uint64: unsigned integers of the given size;
and

		float, double: single- and double-precision IEEE floating-point numbers.

Additionally, there are enum types, which are user-defined. Internally, enums
are signed 2’s complement 32-bit integers, so their values are restricted to
that range. For example:

enum MyEnum {
 ONE_VALUE = 1,
 ANOTHER_VALUE = -5,
 THIRD_VALUE, // Implicit value of -5 + 1 = -4.
 A_DUPLICATE_VALUE = THIRD_VALUE,
};

Such an enum type may be used in a struct. For example:

struct AStruct {
 MyEnum x;
 double y;
};

(As previously mentioned, an enum declaration may be nested inside a struct or
interface declaration.)

Together, the simple and enum types comprise the non-reference types. The
remaining types are the reference types: pointer types and handle types.
Unlike the non-reference types, the reference types all have some notion of
“null”.

Pointer types

A struct is itself a pointer type, and can be used as a member of another struct
(or as a request/response parameter, for that matter). For example:

struct MyStruct {
 int32 a;
 string b;
};

struct MySecondStruct {
 MyStruct x;
 MyStruct? y;
};

Here, x is a non-nullable (i.e., required) field of MySecondStruct,
whereas y is nullable (i.e., optional).

A complete list of pointer types is:

		structs: structs, as discussed above;

		string/string?: Unicode strings;

		array<Type>/array<Type>?: variable-size arrays (a.k.a. vectors or lists)
of type “Type” (which may be any type);

		array<Type, n>/array<Type, n>?: fixed-size arrays of type “Type” and size
“n”;

		map<KeyType, ValueType>/map<KeyType, ValueType>?: maps (a.k.a.
dictionaries) of key type “KeyType” (which may be any non-reference type or
string) and value type “ValueType” (which may be any type); and

		unions: see below.

Unions

Unions are “tagged unions”. Union declarations look like struct declarations,
but with different meaning. For example:

union MyUnion {
 int32 a;
 int32 b;
 string c;
};

An element of type MyUnion must contain either an int32 (called a), an
int32 (called b), or a string called c. (Like for structs, MyUnion z
indicates a non-nullable instance, and MyUnion? indicates a nullable instance;
in the nullable case, z may either be null or it must contain one of a, b,
or c.)

Handle types

Raw handle types

There are the “raw” handle types corresponding to different Mojo
handle types, with mostly self-explanatory names: handle (any
kind of Mojo handle), handle<message_pipe>, handle<data_pipe_consumer>,
handle<data_pipe_producer>, and handle<shared_buffer>. These are used to
indicate that a given message or struct contains the indicated type of Mojo
handle (recall that messages sent on Mojo message pipes may
contain handles in addition to simple data).

Like the pointer types, these may also be nullable (e.g., handle?,
handle<message_pipe>?, etc.), where “null” indicates that no handle is to be
sent (and may be realized, e.g., as the invalid Mojo handle).

Interface types

We have already seen interface type declarations. In a message (or struct), it
is just a message pipe (endpoint) handle. However, it promises that the peer
implements the given interface. For example:

interface MyFirstInterface {
 Foo() => ();
};

interface MySecondInterface {
 Bar(MyFirstInterface x);
 Baz(MyFirstInterface& y); // Interface request! See below.
};

Here, a receiver of a Bar message is promised a message pipe handle on which
it can send (request) messages from MyFirstInterface (and then possibly
receive responses). I.e., on receiving a Bar message, it may then send Foo
message on x (and then receive the response to Foo).

Like other handle types, instances may be non-nullable or nullable (e.g.,
MyFirstInterface?).

Interface request types

Interface request types are very much like interface types, and also arise
from interface type declarations. They are annotated by a trailing &: e.g.,
MyFirstInterface& (or MyFirstInterface&? for the nullable version).

In a message (or struct), an interface request is also just a message pipe
handle. However, it is a promise/”request” that the given message pipe handle
implement the given interface (in contrast with the peer implementing it).

In the above example, the receiver of Baz also gets a message pipe handle.
However, the receiver is expected to implement MyFirstInterface on it (or pass
it to someone else who will do so). I.e., Foo may be received on y (and
then the response sent on it).

Pipelining

We saw above that Mojom allows both “interfaces” and “interface requests” to be
sent in messages. Consider the following interface:

interface Foo {
 // ...
};

interface FooFactory {
 CreateFoo1() => (Foo foo);
 CreateFoo2(Foo& foo_request);
};

CreateFoo1 and CreateFoo2 are functionally very similar: in both cases, the
sender will (eventually) be able to send Foo messages on some message pipe
handle. However, there are some important differences.

In the case of CreateFoo1, the sender is only able to do so upon receiving the
response to CreateFoo1, since the message pipe handle to which Foo messages
can be written is contained in the response message to CreateFoo1.

For CreateFoo2, the operation is somewhat different. Before sending
CreateFoo2, the sender creates a message pipe. This consists of two message
pipe handles (for peer endpoints), which we’ll call foo and foo_request (the
latter of which will be sent in the CreateFoo2 message). Since message pipes
are asynchronous and buffered, the sender can start writing Foo messages to
foo at any time, possibly even before CreateFoo2 is sent! I.e., it can use
foo without waiting for a response message. This is referred to as
pipelining.

Pipelining is typically more efficient, since it eliminates the need to wait for
a response, and it is often more natural, since receiving the response often
entails returning to the message loop. Thus this is generally the preferred
pattern for “factories” as in the above example.

The main caveat is that with pipelining, there is no flow control. The sender of
CreateFoo2 has no indication of when foo is actually “ready”, though even in
the case of CreateFoo1 there is no real promise that the foo in the response
is actually “ready”. (This is perhaps an indication that flow control should be
done on Foo, e.g., by having its messages have responses.)

Relatedly, with pipelining, there is limited opportunity to send back
information regarding foo. (E.g., the preferred method of signalling error is
to simply close foo_request.) So if additional information is needed to make
use of foo, perhaps the pattern of CreateFoo1 is preferable, e.g.:

 CreateFoo() => (Foo foo, NeededInfo info);

Consts

Mojom supports “constants” to be declared, mainly to provide a way of defining
semantically significant values to be used in messages, structs, etc. For
example:

const int32 kZero = 0;
const bool kVeryTrue = true;
const double kMyDouble = 123.456;
const string kMyString = "my string";

enum MyEnum {
 ZERO,
 ONE,
 TWO,
};
const MyEnum kMyEnumValue = TWO;

The type may be any non-reference type (including enum types; see above) or
string. The value must be appropriate (e.g., in range) for the given type.
(There is additional syntax for doubles and floats: double.INFINITY,
double.NEGATIVE_INFINITY, double.NAN, and similarly for floats.)

Const declarations may be made at the top level, or they may be nested within
interface and struct declarations.

Annotations

Various elements in Mojom files may have (optional) annotations. These are
lists of key-value pairs, containing “secondary” information. For example:

[DartPackage="foobar",
 JavaPackage="com.example.mojo.foobar"]
module foobar;

This is an annotation attached to the module keyword with two key-value pairs
(one to be used by the Dart language generator and the other by the Java
language generator, respectively).

Apart from language-specific annotations, one noteworthy annotation is the
ServiceName annotation (for interfaces):

[ServiceName="foobar.MyInterface"]
interface MyInterface {
 // ...
};

This indicates the standard name to use in conjunction with
mojo.ServiceProvider.ConnectToService() (TODO(vtl): need a reference for
that).

Annotations are also used for versioning, but we will not discuss that here.

See also

TODO(vtl)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/docs/intro/message_pipes.html

 Navigation

 		
 index

 		ray-core latest documentation »

Message pipes

Message pipes are the primary communication mechanism between Mojo programs. A
message pipe is a point-to-point (with each side being called a message pipe
endpoint), bidirectional message passing mechanism, where messages may contain
both data and Mojo handles.

It’s important to understand that a message pipe is a “transport”: it provides a
way for data and handles to be sent between Mojo programs. The system is unaware
of the meaning of the data or of the handles (other than their intrinsic
properties).

That said, Mojo provides a standard way of communicating over message pipes,
namely via a standardized protocol together with Mojom IDL
files.

Messages

A message consists of two things:

		a finite sequence of bytes, and

		a finite sequence of Mojo handles.

Both of these are determined when the message is sent (or written). Messages
are framed in the sense that they are “atomic” units: they are sent and
received (or read) as entire units, not just by Mojo programs themselves but
by the system, which is aware of and enforces the message boundaries.

(Note on terminology: We’ll use “send” and “write” interchangeably, and
similarly for “receive” and “read”. “Write” and “read” correspond more closely
to the names usually given to the basic Mojo operations, e.g.,
MojoWriteMessage() and MojoReadMessage().)

Asynchronous operation and queueing

Message pipes are asynchronous in the sense that sent messages do not have
intrinsic response messages mediated/enforced by the system. (This is different
from saying that message write/read are asynchronous operations: these
operations are actually synchronous and complete “immediately”. However, note
that reading a message is “nonblocking” in the sense that it will fail if a
message is not available to be read. Thus a message must be waited for, and the
combined wait-then-read may form an asynchronous pattern.)

To allow message writes to complete immediately, messages are queued. Indeed,
one can understand a message pipe as a pair of queues, one in each direction.
Each endpoint has opposite notions of incoming and outgoing queues (recall that
message pipes have a pair of endpoints).

Writing a message to an endpoint then simply entails enqueueing that message on
that endpoint’s outgoing queue (which is the peer endpoint’s incoming queue).
Reading a message from an endpoint is just dequeueing a message from that
endpoint’s incoming queue (which is the peer endpoint’s outgoing queue).

Queueing is unlimited. Why? The problem is that limiting queueing exposes Mojo
programs to complex deadlock problems:

		One way of limiting queue sizes is to block the sender if the queue is “full”.
However, the receiver may not be able or willing to consume messages until the
sender does something else (and this is often the case in asynchronous
programming). For example, perhaps the putative “receiver” does not yet even
have a handle to the endpoint yet, and that handle is sent in a message (over
some other message pipe).

		Another way would be to have the write fail if the queue is full. Then the
sender would want to additionally queue on its side. The thread would continue
running and, e.g., run its message loop. However, sender-side queueing
basically makes it impossible for the sender to transfer that endpoint
(handle), at least until the sender-side queue is cleared. However, the
receiver may not be able/willing to proceed until the sender has transferred
the aforementioned endpoint.

Thus we allow unlimited queueing. (TODO(vtl): Probably we’ll eventually
allow “hard” queue limits to be set for the purposes of preventing
denial-of-service. However, the response to overruns will be hard failures, in
the sense that the message pipe may be destroyed, rather than soft,
“recoverable” failures – since those expose deadlock issues.) It is then up to
Mojo programs to implement flow control in some way. (TODO(vtl): Write more
about this in the context of Mojom.)

“Synchronous” operation

Though message pipes are asynchronous as discussed above, they may be used in a
synchronous fashion: immediately after sending a request message, one can then
just block and wait for the response message (and then read it and process
it). Of course, this requires that the protocol support this:

		Message pipes must be used in a “directional” way: there must be fixed request
and response directions or, equivalently, one endpoint belongs to the client
and the other to the server (or impl). (Historical note: This is the case
for the current Mojom protocol, but not in previous
versions.) The issue here is that without this, the sender of the request
messages may have to process incoming request messages from its peer.

		Request messages must have unique response messages. (In the Mojom protocol,
request messages have optional unique responses. For messages without
responses, one can just proceed immediately without waiting. However, without
response messages there may be flow control issues; again, see above.) The
important point is that for each request message, there is a well-defined
number of response messages for each request and not arbitrary “callback”
messages.

		The sending of a response message must not depend on a future action of the
client. (This is a higher-level semantic that is not enforced by the Mojom
protocol. E.g., one may define a Mojom interface in which the response to a
message Foo isn’t sent until the client sends a request Bar.)

That said, whether one wants to, or even can, use this synchronous mode of
operation may depend on a number of things:

		For message-loop-centric programming languages, this mode is at best
undesirable (and possibly infeasible, depending on what facilities are exposed
to user code). (E.g., this is the case for JavaScript and Dart.)

		Similarly, on a message-loop programming model (in which threads – if there
are more than one – are mostly coordinated by “message passing”), it is
typically undesirable to block any thread (with a message loop). Indeed, if
other message pipes are serviced by a message loop, blocking the thread may
result in deadlock. (E.g., this is the usual programming model for the
standard Mojom C++ bindings.)

		Even when blocking is permissible, it may not be desirable to do so:
advancement of the program then relies on trusting the server to be
responsive and send responses in a timely fashion.

		Mixing asynchronous and synchronous operation is problematic: one cannot send
a request and synchronously wait for a response while responses to other
messages are still pending. (Theoretically, one could buffer such other
responses until the response to particular request is received, and process
those other responses later, but this would be dubious at best.)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/docs/intro/programs.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mojo programs

TODO(vtl)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/docs/intro/what_is_mojo.html

 Navigation

 		
 index

 		ray-core latest documentation »

What is Mojo?

Mojo is a layered system for programs to interact with the “system”. The system
should be compared to a microkernel-based operating system. That is, most system
services are provided via IPC (interprocess communication), especially via
message passing, with other Mojo programs.

Broadly speaking, there are the following layers to Mojo:

		The Mojo system API: low-level API for basic program operation and IPC.

		Mojom: a protocol for communicating over IPC (together with a language, also
called Mojom, for describing messages and data).

		Descriptions of services provided via IPC (usually specified using the Mojom
language, together with additional human-readable text to specify additional
semantics, etc.).

		Implementations of those services.

The Mojo system API

At the lowest layer, Mojo provides a “raw” API for interacting with the system,
which should be fairly minimal due to the microkernel-like nature of the system.

Mojo is intended to be language-agnostic. It should be possible to write
programs in many different languages, which interact with other Mojo programs
(possibly written in different languages). As such there is no single Mojo
system API: some things that may be required for one language may simply be
inappropriate for another. (Indeed, there may even be multiple versions of “the”
Mojo system API even for a single language.)

Due to the nature of the system, there is a common thread among the Mojo system
APIs provided to different languages, namely IPC. It is desirable to provide
low-level access to IPC (e.g., sending/receiving messages at the byte level), so
that programs written in a given programming language have “first-class” access
to the basic communication primitives.

All that said, at the lowest level, the Mojo system API for native programs is
intended to be complete, in the sense that it is the only API that is used to
interact with the operating system (defining this API is a work in progress).
Thus it must include basic mechanisms for memory management, thread
creation/destruction, synchronization, etc.

Mojom

As hinted at above, “Mojom” itself consists of several layers:

		The lowest, most essential layer is a protocol (or family of protocols),
consisting of semantic specifications and byte-level message formats.
(This layer is the only one that is essential for interoperability between
programs.)

		On a given message pipe, certain messages may be sent (in one direction or
another). Mojom includes a language for specifying those messages (and also
relatedly includes a way of specifying data formats), grouped into
interfaces. (Thus the Mojom language is often referred to as an interface
description language or IDL.) An interface specified in the Mojom language
can then be interpreted to provide a description of messages at the byte level
(and related low-level semantics, e.g., which messages require response
messages).

		A tool for interpreting Mojom files: this tool takes as input files written in
the Mojom language. For supported programming languages, it then generates
code to make using or implementing interfaces in that language easier.
(Provided with low-level access to IPC, one can of course always, e.g., send
the correct sequence of bytes, but this would hardly be practical.)

TODO(vtl)

Service descriptions

TODO(vtl)

Service implementations

TODO(vtl)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/docs/intro/intro.html

 Navigation

 		
 index

 		ray-core latest documentation »

Introduction to Mojo

This is a high-level introduction to Mojo, and tries to explain its most
important aspects.

		What is Mojo?

		Mojo programs

		Mojo handles (objects)

		Message pipes

		Mojom IDL

		Mojom protocol

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/docs/mojom_lang/mojom_lang.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mojom language reference

This is a reference for the Mojom interface definition language (IDL). See
Mojom IDL for a shorter introduction.

The Mojom language is ultimately about defining types (and things associated
to types), including in particular interface types (hence “interface
definition language”). It also allows “constant” values to be defined for some
simple types, though this is mostly in support of the former role.

Mojom files

Mojom files are Unicode text files, encoded in UTF-8. Whitespace (spaces,
tabs, newlines, carriage returns) is not significant in Mojom files, except
insofar as they separate tokens. Thus any consecutive sequence of whitespace
characters may be replaced by a single whitespace character without any semantic
change.

Comments

There are two kinds of comments. Both are ignored, except that they too
separate tokens (so any comment may be replaced by a single whitespace
character).

The first is the single-line (C++-style) comment. It is started by a //
outside of a string literal and outside another comment and terminated by a
newline. For example:

// This is a comment.

interface// This "separates" tokens.
AnInterface {};

const string kAConstString = "// This is not a comment.";

[AnAttribute="// This is also not a comment either."]
interface AnotherInterface {};

The second is the multi-line (C-style) comment. It is started by a /*
outside of a string literal and terminated by a */ (anywhere!). For example:

/* This is a
 multi-line comment. */

/* /* Comments don't nest. */

/* // The "//" is meaningless here. */

/* "This isn't a string literal. */

interface/*This_separates_tokens*/AnInterface {};

const string kAConstString = "/* This is not a comment. */";

File structure

Apart from comments and whitespace, a Mojom file consists of, in order:

		an optional module declaration;

		zero or more import statements (the order of these is not important); and

		zero or more declarations of structs, interfaces, unions, enums, or
consts (the order of these is not important).
These elements will be described in following sections.

As stated above, the order of struct/interface/union/enum/const declarations is
not important. This is required to allow “cyclic” structures to be defined.
Nonetheless, whenever possible, one should declare things before they are
“used”. For example, the following is valid but not recommended:

// NOT recommended.

const MyEnum kMyConst = kMyOtherConst;
const MyEnum kMyOtherConst = A_VALUE;

enum MyEnum {
 A_VALUE,
 ANOTHER_VALUE,
};

Names and identifiers

Names in Mojom start with a letter (a-z, A-Z) and are followed by any
number of letters, digits (0-9), or underscores (_). For example:
MyThing, MyThing123, MyThing_123, my_thing, myThing, MY_THING. (See
below for naming conventions, however.)

Various things in Mojom are named (i.e., assigned names):

		types (e.g., interfaces, structs, unions, and enums),

		things associated with particular types (e.g., messages in interfaces,
parameters in messages, fields in structs and unions, and values in enums),
and

		const values.

Identifiers consist of one or more names, separated by .. These are used in
module declarations, as well as in referencing other named things.

Namespacing and name resolution

As mentioned above, not only are types named, but things associated with a given
type may be named. For example, consider:

enum MyEnum {
 A_VALUE,
 ANOTHER_VALUE,
 A_DUPLICATE_VALUE = A_VALUE,
};

MyEnum is the name of an enum type, and A_VALUE is the name of a value of
MyEnum. Within the scope of MyEnum (or where that scope is implied),
A_VALUE may be used without additional qualification. Outside that scope, it
may be referred to using the identifier MyEnum.A_VALUE.

Some type definitions allow (some) other type definitions to be nested within.
For example:

struct MyStruct {
 enum MyEnum {
 A_VALUE,
 };

 MyEnum my_field1 = A_VALUE;
 MyStruct.MyEnum my_field2 = MyStruct.MyEnum.A_VALUE;
};

Within MyStruct, MyEnum may be referred to without qualification (e.g., to
define the field my_field1). Outside, it may be referred to using the
identifier MyStruct.MyEnum. Notice that my_field1 is assigned a default
value of A_VALUE, which is resolved correctly since there is an implied scope
of MyEnum. It would also be legal to write the default value as
MyEnum.A_VALUE or even MyStruct.MyEnum.A_VALUE, as is done for my_field2.

Thus names live in a name hierarchy, with the “enclosing” scopes often being
other type names. Additionally, module names (see below) can be used to define
artificial outermost scopes.

Names (or, more properly, identifiers) are resolved in a C++-like way: Scopes
are searched from inside outwards, i.e., starting with the current, innermost
scope and then working outwards.

Standard naming style

Though Mojom allows arbitrary names, as indicated above, there are standard
stylistic conventions for naming different things. Code generators for different
languages typically expect these styles to be followed, since they will often
convert the standard style to one appropriate for their target language. Thus
following the standard style is highly recommended.

The standard styles are (getting ahead of ourselves slightly):

		StudlyCaps (i.e., concatenated capitalized words), used for user-defined
(struct, interface, union, enum) type names and message (a.k.a. function or
method) names;

		unix_hacker_style (i.e., lowercase words joined by underscores), used for
field (a.k.a. “parameter” for messages) names in structs, unions, and
messages;

		ALL_CAPS_UNIX_HACKER_STYLE (i.e., uppercase words joined by underscores),
used for enum value names; and

		kStudlyCaps (i.e., k followed by concatenated capitalized words), used for
const names.

Module statements

The Mojom module statement is a way of logically grouping Mojom declarations.
For example:

module my_module;

Mojom modules are similar to C++ namespaces (and the standard C++ code generator
would put generated code into the my_module namespace), in that there is no
implication that the file contains the entirety of the “module” definition;
multiple files may have the same module statement. (There is also no requirement
that the module name have anything to do with the file path containing the Mojom
file.)

The specified Mojom module name is an identifier: it can consist of multiple
parts separated by .. For example:

module my_module.my_submodule;

struct MyStruct {
};

Recall that name look-up is similar to C++: E.g., if the current module is
my_module.my_submodule then MyStruct, my_submodule.MyStruct, and
my_module.my_submodule.MyStruct all refer to the above struct, whereas if the
current module is just my_module then only the latter two do.

Note that “module name” is really a misnomer, since Mojom does not actually
define modules per se. Instead, as suggested above, module names play only a
namespacing role, defining the “root” namespace for the contents of a file.

Import statements

An import statement makes the declarations from another Mojom file available
in the current Mojom file. Moreover, it operates transitively, in that it also
makes the imports of the imported file available, etc. The “argument” to the
import statement is a string literal that is interpreted as the path to the file
to import. Tools that work with Mojom files are typically provided with a search
path for importing files (just as a C++ compiler can be provided with an
“include path”), for the purposes of resolving these paths. (TODO(vtl): This
always includes the current Mojom file’s path, right? Is the current path the
first path that’s searched?)

For example:

module my_module;

import "path/to/another.mojom";
import "path/to/yet/a/different.mojom";

This makes the contents of the two specified Mojom files available, together
with whatever they import, transitively. (Names are resolved in the way
described in the previous section.)

Import cycles are not permitted (so, e.g., it would be an error if
path/to/another.mojom imported the current Mojom file). However, it is
entirely valid for Mojom files to be imported (transitively) multiple times
(e.g., it is fine for path/to/another.mojom to also import
path/to/yet/a/different.mojom).

Types in Mojom

Types in Mojom are really only used in two ways:

		first, in declaring additional types (recall that the Mojom language is nearly
entirely about defining types!); and

		second, in declaring const values.
The first way really covers a lot of ground, however. Type identifiers (i.e.,
identifiers that resolve to some type definition) may occur in:

		field declarations within struct and union declarations;

		in message declarations (in both request and response parameters) in interface
declarations (this is really very similar to the use in struct field
declarations); and

		in “composite” type specifiers (e.g., to specify an array of a given type).

Reference and non-reference types

There are two basic classes of types, reference types and non-reference
types. The latter class is easier to understand, consisting of the built-in
number (integer and floating-point) types, as well as user-defined enum types.
All other types are reference types: they have some notion of null (i.e.,
non-presence).

Nullability

When an identifier is used (in another type definition, including in message
parameters) to refer to a reference type, by default the instance of the type is
taken to be non-nullable, i.e., required to not be null. One may allow that
instance to be null (i.e., specify a nullable instance) by appending ? to
the identifier. For example, if Foo is a reference type:

struct MyStruct {
 Foo foo1;
 Foo? foo2;
};

In an instance of MyStruct, the foo1 field may never be null while the
foo2 field may be null.

This also applies to composite type specifiers. For example:

		array<Foo> is a non-nullable array of non-nullable Foo (the array itself
may not be null, nor can any element of the array);

		array<Foo?> is a non-nullable array of nullable Foo (the array itself may
not be null, but any element of the array may be null);

		array<Foo>? is a nullable array of non-nullable Foo; and

		array<Foo?>? is a nullable array of nullable Foo.
(See below for details on arrays.)

Built-in types

Simple types

Strings

Arrays

Maps

Raw handle types

TODO(vtl): The stuff below is old stuff to be reorganized/rewritten.

Interfaces

A Mojom interface is (typically) used to describe communication on a message
pipe. Typically, message pipes are created with a particular interface in mind,
with one endpoint designated the client (which sends request messages and
receives response messages) and the other designed that server or impl
(which receives request messages and sends response messages).

For example, take the following Mojom interface declaration:

interface MyInterface {
 Foo(int32 a, string b);
 Bar() => (bool x, uint32 y);
 Baz() => ();
};

This specifies a Mojom interface in which the client may send three types of
messages, namely Foo, Bar, and Baz (see the note below about names in
Mojom). The first does not have a response message defined, whereas the latter
two do. Whenever the server receives a Bar or Baz message, it must
(eventually) send a (single) corresponding response message.

The Foo request message contains two pieces of data: a signed (two’s
complement) 32-bit integer called a and a Unicode string called b. On the
“wire”, the message basically consists of metadata and a (serialized) struct
(see below) containing a and b.

The Bar request message contains no data, so on the wire it’s just metadata
and an empty struct. It has a response message, containing a boolean value x
and an unsigned 32-bit integer y, which on the wire consists of metadata and a
struct with x and y. Each time the server receives a Bar message, it is
supposed to (eventually) respond by sending the response message. (Note: The
client may include as part of the request message’s metadata an identifier for
the request; the response’s metadata will then include this identifier, allowing
it to match responses to requests.)

The Baz request message also contains no data. It requires a response, also
containing no data. Note that even though the response has no data, a response
message must nonetheless be sent, functioning as an “ack”. (Thus this is
different from not having a response, as was the case for Foo.)

Structs

Mojom defines a way of serializing data structures (with the Mojom IDL providing
a way of specifying those data structures). A Mojom struct is the basic unit
of serialization. As we saw above, messages are basically just structs, with a
small amount of additional metadata.

Here is a simple example of a struct declaration:

struct MyStruct {
 int32 a;
 string b;
};

We will discuss in greater detail how structs are declared later.

Names in Mojom

Names in Mojom are not important. Except in affecting compatibility at the level
of source code (when generating bindings), names in a Mojom file may be changed
arbitrarily without any effect on the “meaning” of the Mojom file (subject to
basic language requirements, e.g., avoiding collisions with keywords and other
names). E.g., the following is completely equivalent to the interface discussed
above:

interface Something {
 One(int32 an_integer, string a_string);
 Two() => (bool a_boolean, uint32 an_unsigned);
 Three() => ();
};

The Something interface is compatible at a binary level with MyInterface. A
client using the Something interface may communicate with a server
implementing the MyInterface with no issues, and vice versa.

The reason for this is that elements (messages, parameters, struct members,
etc.) are actually identified by ordinal value. They may be specified
explicitly (using @123 notation; see below). If they are not specified
explicitly, they are automatically assigned. (The ordinal values for each
interface/struct/etc. must assign distinct values for each item, in a
consecutive range starting at 0.)

Explicitly assigning ordinals allows Mojom files to be rearranged “physically”
without changing their meaning. E.g., perhaps one would write:

interface MyInterface {
 Bar@1() => (bool x@0, uint32 y@1);
 Baz@2() => ();

 // Please don't use this in new code!
 FooDeprecated@0(int32 a@0, string b@1);
};

Ordinals also tie into the versioning scheme (TODO(vtl): link?), which
allows Mojom files to be evolved in a backwards-compatible way. We will not
discuss this matter further here.

TODO(vtl): Maybe mention exceptions to this in attributes (e.g.,
ServiceName).

Struct declarations

A Mojom struct declaration consists of a finite sequence of field
declaration, each of which consists of a type, a name, and optionally a
default value (if applicable for the given type). (If no default value is
declared, then the default is the default value for the field type, typically 0,
null, or similar.)

Additionally, a struct may contain enum and const declarations (TODO(vtl):
why not struct/union/interface declarations?). While the order of the field
declarations (with respect to one another) is important, the ordering of the
enum/const declarations (with respect to both the field declarations and other
enum/const declarations) is not. (But as before, we recommend declaring things
before “use”.)

Here is an example with these elements:

struct Foo {
 const int8 kSomeConstant = 123;

 enum MyEnum {
 A_VALUE,
 ANOTHER_VALUE
 };

 int8 first_field = kSomeConstant;
 uint32 second_field = 123;
 MyEnum etc_etc = A_VALUE;
 float a; // Default value is 0.
 string? b; // Default value is null.
};

(Note that kSomeConstant may be referred to as Foo.kSomeConstant and,
similarly, MyEnum as Foo.MyEnum. This is required outside of the Foo
declaration.)

Interface declarations

TODO(vtl)

Union declarations

TODO(vtl)

Enum declarations

TODO(vtl)

Const declarations

TODO(vtl)

TODO(vtl): Write/(re)organize the sections below.

Data types

Primitive types

Standard types

Enum types

“Pointer” types

Nullability

Strings

Maps

Structs

Arrays

Unions

Handle types

Raw handle types

Interface types

Interface request types

Annotations

Pipelining

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/docs/intro/mojom_protocol.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mojom protocol

TODO(vtl)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/docs/intro/handles.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mojo handles (objects)

Mojo handles are analogous to Unix file descriptors or Windows HANDLEs. That
is, they are basically-opaque integers that a program can use to refer to system
resources. Like their Unix and Windows equivalents, a Mojo handle value only has
meaning within a given process.

That said, there are some differences:

		There is a single value, 0, that is guaranteed to never be a valid Mojo
handle. This is unlike Unix, where all negative file descriptors are usually
taken to be invalid, even if -1 is often taken to be the “canonical” invalid
file descriptor value.

		The allocation of Mojo handle values is not specified. This is unlike Unix,
where file descriptors are allocated sequentially, with the lowest (positive)
unused value allocated.

		Unlike Windows, there are no “pseudohandles”. That is, there is no Mojo handle
value whose meaning is context dependent (within the same process).

		In general, Mojo handles need not be duplicatable, whereas their Unix and
Windows equivalents can universally be duplicated.

		Mojo handles can be sent across message pipes. Unlike
sending file descriptors over Unix domain sockets (using SCM_RIGHTS), this
is done with transfer semantics: after a message with attached Mojo handles is
sent, the Mojo handle values become invalid in the sending process. (Even if
the receiving process is the same as the sending process, the received Mojo
handle values will probably be different from the values that were sent.)

		Each Mojo handle has a set of “rights”, which control what operations can be
performed on a given handle. The rights for a given handle are immutable.
However, any handle may be replaced with an “equivalent” handle with a
(possibly) reduced set of rights.

		A Mojo handle has a well-defined life-cycle, and is only invalidated either by
being transferred across a message pipe, by being replaced (by an “equivalent”
handle), or by being closed. Unlike Unix’s overloaded close() (which may
fail due to data loss, i.e., inability to flush), closing a (valid) Mojo
handle never fails.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/mojo/public/c/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mojo Public C API

This directory contains C language bindings for the Mojo Public API.

Environment

The environment/ subdirectory defines some common things that, while not part of
the system API, may be required for GLES2 (for example). These are things that a
Mojo application may be required to provide to the GLES2 (for example) library
in order to use it. (However, the Mojo application may implement these things as
it sees fit.)

GLES2

The gles2/ subdirectory defines the GLES2 C API that’s available to Mojo
applications. To use GLES2, Mojo applications must link against a dynamic
library (the exact mechanism being platform-dependent) and use the header files
in this directory as well as the standard Khronos GLES2 header files.

The reason for this, rather than providing GLES2 using the standard Mojo IPC
mechanism, is performance: The protocol (and transport mechanisms) used to
communicate with the Mojo GLES2 service is not stable nor “public” (mainly for
performance reasons), and using the dynamic library shields the application from
changes to the underlying system.

System

The system/ subdirectory provides definitions of the basic low-level API used by
all Mojo applications (whether directly or indirectly). These consist primarily
of the IPC primitives used to communicate with Mojo services.

Though the message protocol is stable, the implementation of the transport is
not, and access to the IPC mechanisms must be via the primitives defined in this
directory.

Test Support

This directory contains a C API for running tests. This API is only available
under special, specific test conditions. It is not meant for general use by Mojo
applications.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/docs/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Documents

This directory (tree) contains documentation about Mojo.

		Introduction to Mojo

Notes

Documentation under this directory should be in Markdown whenever possible. It
should generally adhere to the Google documentation
guide [https://github.com/google/styleguide/tree/gh-pages/docguide], including
in particular the Markdown style
guide [https://github.com/google/styleguide/blob/gh-pages/docguide/style.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/services/ui/launcher/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mozart Launcher

This directory contains the Launcher, a simple tool for hosting a View
inside of the NativeViewport.

In other words, use this to run UI applications which implement the
ViewProvider interface and which register their views with the ViewManager.

USAGE

out/Debug/mojo_shell “mojo:launcher “

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/services/ui/input_manager/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mozart Input Manager

This directory contains an Associate

It doesn’t make sense to run this application stand-alone since it
doesn’t have any UI of its own to display. Instead, use the Mozart
Launcher or some other application to launch and embed the UI of some
other application using the view manager.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/services/ui/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mozart UI System

This directory contains the Mozart UI System, an implementation of a
composable view management system named after the classical composer.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/services/ui/view_manager/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mozart View Manager

This directory contains an implementation of the ViewManager interface.
It provides a composable view management system for used by other
applications.

It doesn’t make sense to run this application stand-alone since it
doesn’t have any UI of its own to display. Instead, use the Mozart
Launcher or some other application to launch and embed the UI of some
other application using the view manager.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/services/gfx/compositor/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mozart Compositor

This directory contains an implementation of the Compositor interface.
It provides a graphical compositor system for use by other applications.

It doesn’t make sense to run this application stand-alone since it
doesn’t have any UI of its own to display. Instead, use the Mozart
Launcher or some other application to launch and embed the UI of some
other application using the view manager.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/services/nacl/nonsfi/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

About

This directory contains the services required to execute both nexes and pexes.

Using

For information about how to build and use nexes and pexes from within Mojo,
refer to the mojo/nacl directory.

Non-SFI Nexe Content Handler

The nexe content handler is simple. It:

		Acquires the desired nexe and dumps it into a temporary file,

		Accesses the MojoHandle connecting the content handler to the shell, and

		Launches the Non-SFI nexe.

Non-SFI Pexe Content Handler

The pexe content handler is slightly more complex. Although it is similar
in structure to the Non-SFI nexe content handler, it has an additional step
between item 1 and 2: convert the incoming pexe into a nexe.

This pexe to nexe translation requires two steps: compilation and linking.
For each of these steps, a helper service is launched. These helper services
are actually executed as nexes – pnacl_llc.nexe and ld.nexe. The
translation done by these nexes is executed as part of a callback to IRT
functions, nacl_irt_private_pnacl_translator_compile, and
nacl_irt_private_pnacl_translator_link. This makes communication between
the content handler and these helper nexes more complicated.

For the full picture of the compilation process:

		PexeContentHandler
		Hash the input file, and observe if it has already been translated.
If it has, then read the pre-translated nexe from storage and launch it
immediately.

		Create a message pipe, which has a parent and child handle.

		Call PexeCompilerStart, passing in the child end of the message pipe. This
contacts a new service which is responsible for launching pnacl_llc.nexe.

		PexeCompiler (new process)
		Launch the pnacl_llc nexe using the child end of the pipe received from the
PexeContentHandler

		The pnacl_llc nexe uses the IRT to make a call to ServeTranslateRequest
(defined in mojo/nacl/nonsfi/irt_pnacl_translator_compile.cc). This creates
the PexeCompiler service, which is ready to handle a single request. It is
bound to the child end of the pipe.

		Meanwhile, back in the PexeContentHandler:
		Bind the parent end of the pipe to a PexeCompiler service. Now,
PexeCompile can be called with inputs defined by a mojom interface, and
outputs can be received via callback

		Call PexeCompile, passing in the name of the pexe, and receiving the
object files created by compilation

		Meanwhile, back in the pnacl_llc nexe:
		Actually do the requested compilation, and pass back the newly created
object files.

The linking process works similarly, but utilizes a different interface which
lets it receive object files and return a linked nexe. Once linking has
finished, the PexeContentHandler may choose to cache the resultant nexe so that
future clients accessing the same pexe will be able to skip the translation
process.

Once both the compilation and linking steps have been completed, the
PexeContentHandler is able to launch the requested nexe.

Note: For x86 and x86-64 systems, Subzero is used for translating the pexe
into a native format, and sz.nexe is used instead of pnacl-llc.nexe.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/services/gfx/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mozart Graphics System

This directory contains Mozart Graphics System, an implementation of a
graphical compositor system named after the classical composer.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/sdk_build/data/cpp/README-sdk.html

 Navigation

 		
 index

 		ray-core latest documentation »

Mojo C++ SDK

This is a minimal SDK for writing/building Mojo applications/services in C++.
Currently, it supports building for Linux. (TODO(vtl): Support other
configurations/targets.)

It includes a simple Makefile that demonstrates building a couple of simple
example applications/services (in examples/hello_mojo). Note that the Makefile
is intended to be illustrative, and not for maximal correctness or practicality
(for example, it does not deal with dependencies correctly).

Users of the SDK are expected to set up builds in an appropriate way for their
situation, but the Makefile should show the key steps (in particular, generating
the C++ source files from Mojom files).

Prerequisites

To fetch the Mojom tool and clang:

		bash

		python 2.7

To build the examples:

		binutils

		make

Set up

To get started quickly, just run the following:

$ mojo_sdk_setup/setup.sh

This is equivalent to performing the steps below separately:

$ mojo_sdk_setup/download_mojom_tool.sh
$ mojo_sdk_setup/download_clang.sh

The first downloads a binary for the Mojom tool, which is needed to generate
code from Mojom files. The second downloads a suitable version of clang, which
is needed by the included Makefile. (One should also be able to build using
another compiler with sufficient C++11 support.)

Building the examples

To build the included examples:

$ make -j8

(or similar). All the build output is put into the out subdirectory. The
examples themselves are hello_mojo_client.mojo and hello_mojo_server.mojo.

See also

		The Mojo project on GitHub [https://github.com/domokit/mojo]

		Mojo documentation [https://github.com/domokit/mojo/tree/master/docs]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/services/http_server/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

How to run HTTP apps on GCE

These are the steps to create a Mojo app that handles some URLs and push it to run on Google Compute Engine.

Set up Google Cloud Platform

Install Google Cloud Platform SDK: https://cloud.google.com/sdk/

Authenticate

You’ll need to set a project for the Google Cloud Platform scripts. If you’re a Googler, note that you shouldn’t use a corporate card for this.

If you’re on the Mojo team, ping blundell to get added to the “mojodemos” project first.

If you’re not on Mojo team, then create a project on Google Compute Engine and replace “mojodemos” with your project-id below. Also make sure to enable the “Google Compute Engine” API” at your project’s console https://console.developers.google.com

gcloud auth login
gcloud config set project mojodemos

Create a VM

Now create a VM that’ll run the binary. The Debian image doesn’t work because of some GLib dependencies in our binaries that we should remove (http://crbug.com/433886). Until then, you have to use the Ubuntu image:

gcloud compute instances create YOUR-VM-NAME-HERE --image ubuntu-1404-trusty-v20141031a --image-project ubuntu-os-cloud --zone us-central1-a

Make note of the external IP address of this machine; you’ll use this later to connect to the Mojo app.

Install some required packages:

gcloud compute ssh YOUR-VM-NAME-HERE --command "sudo apt-get install libgconf-2-4 -y" --zone us-central1-a
gcloud compute ssh YOUR-VM-NAME-HERE --command "sudo apt-get install libnss3 -y" --zone us-central1-a

If you’re not using mojodemos project-id and created a new project, add a firewall rule to allow port 80:

gcloud compute firewall-rules create allow-http --description "Incoming http allowed." --allow tcp:80

Push the Mojo binaries

Create a directory to hold the binaries:

gcloud compute ssh YOUR-VM-NAME-HERE --command "mkdir ~/mojo" --zone us-central1-a

For this example, we’ll use the examples/http_handler binary which is a minimal Mojo HTTP app. Assuming you’ve built the release binary:

gcloud compute copy-files out/Release/http_handler.mojo out/Release/http_server.mojo out/Release/network_service.mojo out/Release/mojo_shell YOUR-VM-NAME-HERE:~/mojo --zone us-central1-a

Run the Mojo app

gcloud compute ssh YOUR-VM-NAME-HERE --command "sudo mojo/mojo_shell mojo://http_handler" --zone us-central1-a

Now you can visit the IP address from the previous step.

Delete the VM

Once you’re not using the VM anymore:

gcloud compute instances delete YOUR-VM-NAME-HERE --zone us-central1-a

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/sdk_build/README.html

 Navigation

 		
 index

 		ray-core latest documentation »

Tools/scripts/data for building SDKs

This directory contains (or will contain) tools, scripts, and data for building
SDKs (for various languages and platforms).

build_sdk.py

This is a script that creates a directory containing an “SDK” using the
instructions in a given “SDK specification file” and data from the current git
repository (which should be clean; for testing purposes, you may give the
--allow-dirty-tree flag).

For example:

$./build_sdk.py data/cpp/cpp.sdk /tmp/my_cpp_sdk

This creates an SDK for C++ in /tmp/my_cpp_sdk.

This script does not handle packaging such an SDK (e.g., into a tarball) or
uploading it (e.g., to Google Cloud Storage).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

