
ReadMyDocs Documentation
Release 1.9.2

pardahlman

August 02, 2016

Contents

1 Getting Started 3
1.1 Installation . 3
1.2 Creating instanse . 3
1.3 Broker connection . 4
1.4 Messaging pattern . 4

2 Message Context 7
2.1 Introduction . 7
2.2 Forwarding Context . 7
2.3 Default Context . 7
2.4 Advanced Context . 8
2.5 Custom Context . 8

3 Configuration 11
3.1 Configuration options . 11
3.2 vNext configuration file . 12
3.3 ConnectionString . 13

4 Extending RawRabbit 15
4.1 Installation . 15
4.2 The Extendable Bus Client . 15
4.3 Extension boiler plait . 15
4.4 List of extensions . 16

5 Bulk-fetching messages 17

6 Update Topology 19
6.1 Exchange updates . 19
6.2 Queue updates . 20

7 Message Sequence 21
7.1 Alternative to RPC . 21
7.2 Multi-message sequence . 22

8 Publisher Acknowledgements 23
8.1 Avoiding PublishConfirmException . 23

9 Message Priority 25
9.1 Priority for specific messages . 25

i

9.2 Setting priority based on message type . 25

10 Multiple Subscribers 27
10.1 Default behaviour . 27
10.2 Custom Behaviour . 27

11 Requeue with delay 29
11.1 Later execution . 29
11.2 Error strategy . 29

12 Inner workings 31
12.1 ChannelFactory . 31
12.2 ConsumerFactory . 32
12.3 TopologyProvider . 32

13 RabbitMq features 33
13.1 Lazy Queues . 33

14 Error Handling 35
14.1 Publish/Subscribe . 35
14.2 Request/Respond . 36

15 Logging 37

16 Attribute based configuration 39
16.1 Setting up the client . 39
16.2 Configure Messages . 39
16.3 Override with custom configuration . 39

17 Client upgrade 41
17.1 1.9.0 . 41
17.2 1.9.5 . 42

18 Contributing Guidelines 43
18.1 Create issue . 43
18.2 Write code . 43
18.3 Commit Code . 43
18.4 Create Pull Request . 43

ii

ReadMyDocs Documentation, Release 1.9.2

RawRabbit is a modern .NET client for communication over RabbitMq. It is written for vNext and is uses Microsoft’s
new frameworks for logging, configuration and dependecy injection It targets traditional NET runtimes, DNX runtimes
and has all the ground work done for .NET Core .

Contents:

Contents 1

http://rabbitmq.com/
http://www.asp.net/vnext
https://github.com/aspnet/Logging)
https://github.com/aspnet/Configuration
https://github.com/aspnet/DependencyInjection)
https://github.com/aspnet/dnx
https://github.com/dotnet/core

ReadMyDocs Documentation, Release 1.9.2

2 Contents

CHAPTER 1

Getting Started

1.1 Installation

Install the latest version of RawRabbit and RawRabbit.vNext from NuGet.

PM> Install-Package RawRabbit
PM> Install-Package RawRabbit.vNext

The vNext package contains the convenience class BusClientFactory that can be used to create a default in-
stance of the RawRabbit client. It makes life easier, but is not necesary.

1.2 Creating instanse

Depending on the scenario, there are a few different ways to instansiate the RawRabbit client. The methods de-
scribed below all have optional arguments for registering specific subdependeices.

1.2.1 vNext Application wire-up

If the application is bootstrapped from a vNext application, the dependecies and client can be registed by using the
AddRawRabbit extension for IServiceCollection

public void ConfigureServices(IServiceCollection services)
{

services.AddRawRabbit(); //optional overrides here, too.
}

1.2.2 Instance from factory

Create a new client by calling BusClientFactory.CreateDefault. If no arguments are provided, the local
configuration will be used (guest user on localhost:5672 with virtual host /).

var raw = BusClientFactory.CreateDefault();

3

https://www.nuget.org/packages/RawRabbit/
https://www.nuget.org/packages/RawRabbit.vNext/

ReadMyDocs Documentation, Release 1.9.2

1.2.3 Autofac

The package RawRabbit.DependencyInjection.Autofac contains modules and extension methods for reg-
istering RawRabbit.

var builder = new ContainerBuilder();
builder.RegisterRawRabbit("guest:guest@localhost:5672/");
var container = builder.Build();

1.2.4 Ninject

The package RawRabbit.DependencyInjection.Ninject contains modules and extension methods for reg-
istering RawRabbit.

var kernel = new StandardKernel();
kernel.RegisterRawRabbit("guest:guest@localhost:5672/");

1.3 Broker connection

As soon as the client is instansiated, it will try to connect to the broker. By default RawRabbit will try to connect to
localhost. Configuration can be provided in different ways.

1.3.1 Configuration object

The main configuration object for RawRabbit is RawRabbitConfiguration.

var config = new RawRabbitConfiguration
{

Username = "user",
Password = "password",
Port = 5672,
VirtualHost = "/vhost",
Hostnames = { "production" }
// more props here.

};
var client = BusClientFactory.CreateDefault(config);

Configuration can be supplied in configuration files. See the configuration section for more information.

1.4 Messaging pattern

Two of the main messaging patterns for RabbitMq are remote procedure calls (sometimes refered to as RPC or re-
quest/reply) and publish/subscribe.

1.4.1 Publish/Subscribe

Implementing the publish/subscribe pattern can be done with just a few lines of code. The
SubscribeAsyn<TMessage> method takes one argument Func<TMessage,TMessageContext,Task>
that will be invoked as the message is recived. Read more about the TMessageContext in the Message Context
section. Publish a message by calling PublishAsync<TMessage> with an instance of the message as argument.

4 Chapter 1. Getting Started

https://www.nuget.org/packages/RawRabbit.DependencyInjection.Autofac
https://www.nuget.org/packages/RawRabbit.DependencyInjection.Ninject
https://www.rabbitmq.com/tutorials/tutorial-six-dotnet.html
https://www.rabbitmq.com/tutorials/tutorial-three-dotnet.html

ReadMyDocs Documentation, Release 1.9.2

var client = BusClientFactory.CreateDefault();
client.SubscribeAsync<BasicMessage>(async (msg, context) =>
{

Console.WriteLine($"Recieved: {msg.Prop}.");
});

await client.PublishAsync(new BasicMessage { Prop = "Hello, world!"});

1.4.2 Request/Reply

Similar to publish/subscribe, the message handler for a RequestAsync<TRequest, TResponse> in invoked
with the request and message context. It returns a Task<TResponse> that is sent back to the waiting requester.

var client = BusClientFactory.CreateDefault();
client.RespondAsync<BasicRequest, BasicResponse>(async (request, context) =>
{

return new BasicResponse();
});

var response = await client.RequestAsync<BasicRequest, BasicResponse>();

1.4.3 Other patterns

While publish/subscribe and request/reply lays in the core of RawRabbit, there are other ways to work with mes-
sages. The BulkGet extension (from NuGet RawRabbit.Extensions) allows for retrieving multiple messages
from multiple queues and Ack/Nack them in bulk:

var bulk = client.GetMessages(cfg => cfg
.ForMessage<BasicMessage>(msg => msg

.FromQueues("first_queue", "second_queue")

.WithBatchSize(4))
.ForMessage<SimpleMessage>(msg => msg

.FromQueues("another_queue")

.GetAll()

.WithNoAck()
));

1.4. Messaging pattern 5

ReadMyDocs Documentation, Release 1.9.2

6 Chapter 1. Getting Started

CHAPTER 2

Message Context

2.1 Introduction

Messages that are sent through RawRabbit are delivered with a message context. Any class that implements
IMessageContext can be used as a message context. This means that it is possible to replace the default con-
text with a domain specific context. The goal is to seperate the message and its metadata/context.

2.2 Forwarding Context

Message context can be forwarded to subsequent message handlers. This is useful when a consumer communicates
with other services that needs the message context to process the message correctly.

firstResponder.RespondAsync<FirstRequest, FirstResponse>((req, c) =>
{

firstResponder
.PublishAsync(new BasicMessage(), c.GlobalRequestId) //forward context.
.ContinueWith(t => new FirstReponse());

});

Another useful aspect of forwarding message contexts is that the global request id can be traced though the different
systems, making it easy to folllow a request from its originator to all systems that handle the message.

2.2.1 Example: User authorization

A user requests data from a UI. The user is authenticated and has a set of claims that allows the user to do access some
(but not all) data. The request arrives at the backend of the UI. The endpoint knows what claims the user has, but the
data is fetched from multiple underlying services communicate with over RabbitMq. Things like authentication and
authorization doesn’t have anything to do with the request itself, but it is something that the services needs to know of
for filtering data. The message context for this setup should contain a list of the users claims, so that the service can
evaluate if the requested action is authorized.

2.3 Default Context

The default message context, MessageContext, has only one member; GlobalRequestId.

7

ReadMyDocs Documentation, Release 1.9.2

2.4 Advanced Context

The AdvancedMessageContext contains properties that can be used to requeue message with delay and send
negative acknowledgements. Note that there is nothing magical with the AdvancedMessageContext. It is just a
custom context.

2.4.1 Instansiate bus with advanced context

The easiest way to create an instance of a RawRabbit client that uses an advanced context is to use the generic
CreateDefault<TMessageContext> method on BusClientFactory (from RawRabbit.vNext).

var client = BusClientFactory.CreateDefault<AdvancedMessageContext>();

2.5 Custom Context

2.5.1 The Message Context

There are only two requirements for a message context class. It needs to implement IMessageContext and it
needs to be serializable/deserializable by the registered IMessageContextProvider<TMessageContext>
(by default Newtonsoft.Json).

public class CustomContext : IMessageContext
{

public string CustomProperty { get; set; }
public ulong DeliveryTag {get; set;}
public Guid GlobalRequestId { get; set; }

}

2.5.2 The Context Provider

Message contexts are provided to the messages by the registered IMessageContextProvider. The default
implementation, MessageContextProvider<TMessageContext> can be used for most context (typically
POCO classes).

2.5.3 The Context Enhancer

A recieved message passes through the registered IContextEnhancer before any message handler is
invoked. The method WireUpContextFeatures is called with the current context, consumer and
BasicDeliverEventArgs (from RabbitMQ.Client).

public class CustomContextEnhancer : IContextEnhancer
{

public void WireUpContextFeatures<TMessageContext>(TMessageContext context, IRawConsumer consumer, BasicDeliverEventArgs args)
where TMessageContext : IMessageContext

{
var customContext = context as CustomContext;
if (customContext == null)
{

return;
}

8 Chapter 2. Message Context

ReadMyDocs Documentation, Release 1.9.2

customContext.DeliveryTag = args.DeliveryTag;
}

}

2.5.4 The RawRabbit Client

The easist way to create a client is by using the generic CreateDefault<TMessageContext> method on
BusClientFactory.

var client = BusClientFactory.CreateDefault<AdvancedMessageContext>();

The client can also be resolved from the service collection.

var service = new ServiceCollection()
.AddRawRabbit<CustomContext>()
.BuildServiceProvider();

var client = service.GetService<IBusClient<CustomContext>>();

2.5. Custom Context 9

ReadMyDocs Documentation, Release 1.9.2

10 Chapter 2. Message Context

CHAPTER 3

Configuration

As with most frameworks, the configuration of RawRabbit can be specified in either code or configuration. The
easiest way to configure a vNext application is by using the optional parameter in the IServiceCollection
extension:

private static void ConfigureApplication(IServiceCollection serviceCollection)
{

serviceCollection
.AddRawRabbit(

cfg => cfg.AddJsonFile("rawrabbit.json"),
ioc => ioc.AddTransient<ILogger, SerilogLogger>()

);
}

If the application follows the pre vNext standards you can still leverage this syntax by using the
BusClientFactory in RawRabbit.vNext package

BusClientFactory.CreateDefault(
cfg => cfg.AddJsonFile("rawrabbit.json"),
ioc => ioc.AddTransient<ILogger, SerilogLogger>()

)

3.1 Configuration options

3.1.1 Connecting to the broker

Username, password, virtual host, port and hosts are used for connecting to the host. Hosts is a list of strings that is
passed to the registered IConnectionFactory when establishing a connection. It uses the default host selection
strategy for RabbitMQ.Client, which is RandomHostnameSelector (as of 3.6.0).

3.1.2 Recovery From Network Failures

RawRabbit supports automatic recovery of connection and topology. AutomaticRecovery (bool) indicates
if recovery of connections, channels and QoS should be performed. If the recovery fails it, RawRabbit will wait
for RecoveryInterval (TimeSpan) until retrying again. AutomaticRecovery (bool) includes recovery
of exchanges, queues, bindings and consumers. More information about automatic recovering, see RabbitMq’s .NET
API guide (under section Automatic Recovery From Network Failures)

11

https://www.nuget.org/packages/RawRabbit.vNext/
https://www.rabbitmq.com/dotnet-api-guide.html
https://www.rabbitmq.com/dotnet-api-guide.html

ReadMyDocs Documentation, Release 1.9.2

3.1.3 Operation timeouts

For request/reply, the RequestTimeout (TimeSpan) specifies the amout of time to wait for a response to arrive.
PublishConfirmTimeout specifies the time to wait for a publish confirm from the broker.

3.1.4 Default topology settings

The default configuration for topology features (such as queue name, exchange type, auto delete) are specified in the
Exchange (GeneralExchangeConfiguration) and Queue (GeneralQueueConfiguration) proper-
ties. These values can be overriden by custom configuration when specifying an operation.

3.1.5 Other

When AutoCloseConnection (bool) is set to true, a connection will be closed when the last channel has
disconnected. Read more about this at RabbitMq’s .NET API guide (under section Disconnecting from RabbitMQ).

PersistentDeliveryMode (bool) specifies if messages should be persisted to disk. While it affects perfor-
mance, it makes the system more stabile for crashes/restart. Read more about it at RabbitMq’s AMQP concept (under
section Message Attributes and Payload)

3.2 vNext configuration file

Here’s a sample of how the rawrabbit.json configuration file could look like

{
"Username": "guest",
"Password": "guest",
"VirtualHost": "/",
"Port": 5672,
"Hostnames": ["localhost"],
"RequestTimeout": "00:00:10",
"PublishConfirmTimeout": "00:00:01",
"RecoveryInterval": "00:00:10",
"PersistentDeliveryMode": true,
"AutoCloseConnection": true,
"AutomaticRecovery": true,
"TopologyRecovery": true,
"Exchange": {

"Durable": true,
"AutoDelete": true,
"Type": "Topic"

},
"Queue": {

"AutoDelete": true,
"Durable": true,
"Exclusive": true

}
}

12 Chapter 3. Configuration

https://www.rabbitmq.com/confirms.html
https://www.rabbitmq.com/dotnet-api-guide.html
https://www.rabbitmq.com/tutorials/amqp-concepts.html

ReadMyDocs Documentation, Release 1.9.2

3.3 ConnectionString

RawRabbit also supports configuration from connection strings. The syntax is
username:password@host:port/vhost(?parameter=value). Where

• username is the username used for authentication to the broker (string)

• password is the password used for authentication to the broker (string)

• host is a comma seperated lists of brokers to connect to (string)

• port is the port used when connect to a broker (int)

• vhost is the virtual host to use on the broker (string)

• parameters is a query string like seperated list of parameters (string). Supported parame-
ters are the properties in the RawRabbitConfiguration object, such as requestTimeout,
persistentDeliveryMode etc.

The ConnectionStringParser can be used to create a configuration object

var connectionString = ConfigurationManager.ConnectionStrings["RabbitMq"];
var config = ConnectionStringParser.Parse(connectionString.ConnectionString);
var client = BusClientFactory.CreateDefault(config);

3.3.1 Localhost

<connectionStrings>
<add name="RawRabbit" connectionString="guest:guest@localhost:5672/?requestTimeout=10"/>

</connectionStrings>

3.3.2 Multiple hosts

Multiple hosts can specified by using a comma-seperated list.

<connectionStrings>
<add name="RawRabbit" connectionString="admin:admin@host1.production,host2.production:5672/"/>

</connectionStrings>

3.3. ConnectionString 13

ReadMyDocs Documentation, Release 1.9.2

14 Chapter 3. Configuration

CHAPTER 4

Extending RawRabbit

RawRabbit provides a solid foundation for reliable request/reply and publish/subscribe operations. In addition to
this, RawRabbit.Extensions can be used to write extensions to the client, making it possilbe to customize
the client for any specific needs. The extension framework exposes a method for resolving registered RawRabbit
internal services.

4.1 Installation

Install the latest version of RawRabbit.Extensions from NuGet.

PM> Install-Package RawRabbit.Extensions

4.2 The Extendable Bus Client

The ExtendableBusClient is an super class of the normal bus client, that ex-
poses the method GetService<TService> (which is just a wrapper around
Microsoft.Extensions.DependencyInjection.IServiceProvider). This method allows
you to resolve the registered services that RawRabbit uses. This way, if you for example has a custom
IContextProvider that you need to get a hold of, it’s just a call away.

4.3 Extension boiler plait

public static class RawRabbitExtensionExample
{

public static void DoStuff<TContext>(this IBusClient<TContext> client)
where TContext : IMessageContext

{
var extended = (client as ExtendableBusClient<TMessageContext>);
if (extended == null)
{

//TODO: nice error handling
throw new InvalidOperationException("");

}
var channel = extended.GetService<IChannelFactory>().CreateChannel();
// resolve stuff, make calls...

15

https://www.nuget.org/packages/RawRabbit.Extensions/
https://www.nuget.org/packages/Microsoft.Extensions.DependencyInjection.Abstractions/

ReadMyDocs Documentation, Release 1.9.2

}
}

4.4 List of extensions

• The BulkGet extension can be used to fetch multiple messages from multiple queues and ACK/NACK them in
bulk.

• The Message Sequence Extension can be used to get a RPC like behaviour, but allows for multiple subscribers
to act on the message

• The Update Topology Extension can be used to change topologic features.

16 Chapter 4. Extending RawRabbit

CHAPTER 5

Bulk-fetching messages

There are times where it is easier to fetch a bunch of messages and process them in a bulk operation, rather than
having an active subscriber that processes the messages as they come. This is not part of the core functionality of
RawRabbit, but exists as a client extension from the RawRabbit.Extensions package.

Getting started with the extensions are easy. Create an bus client using the
RawRabbitFactory.GetExtendableClient() method. That’s it - you’re ready to bulk fetch!

var bulk = client.GetMessages(cfg => cfg
.ForMessage<BasicMessage>(msg => msg

.FromQueues("first_queue", "second_queue")

.WithBatchSize(4))
.ForMessage<SimpleMessage>(msg => msg

.FromQueues("another_queue")

.GetAll()

.WithNoAck()
));

The fluent builder lets specify what message type you are interested in retrieving, from what queues and how large the
batch should be. If you want to get all messages, simple use GetAll() and it will empty the queues.

The result contains method for getting messages by type. You can decide for each message if you want to Ack it,
Nack it or put it back in the queue again.

var basics = bulk.GetMessages<BasicMessage>()
foreach (var message in basics)
{

if (CanBeProcessed(message))
{

// do stuff
message.Ack();

}
else
{

message.Nack();
}

}

If you feel like performing Ack/Nack the entire bulk, that’s fine too

bulk.AckAll();

Learn more and try it out yourself by running the BulkGetTests.cs

17

https://github.com/pardahlman/RawRabbit/wiki/Extending-RawRabbit
https://www.nuget.org/packages/RawRabbit.Exntensions
https://github.com/pardahlman/RawRabbit/blob/master/src/RawRabbit.IntegrationTests/Extensions/BulkGetTests.cs

ReadMyDocs Documentation, Release 1.9.2

18 Chapter 5. Bulk-fetching messages

CHAPTER 6

Update Topology

Topology features such as queues and exchanges cannot be updated in RabbitMq. However, sometimes it can be
desired to change type, durability or other configuration aspects. This can be done with the UpdateTopology
extension. It removes topology features and re-declares them based on configuration. The extension is available
through RawRabbit.Extensions that can be installed via the NuGet console

PM> Install-Package RawRabbit.Extensions

6.1 Exchange updates

Updating an exchanges requires two things, the name of the exchange to update and the new desired configuration.
Changing the type and durability of exchange my_exchange can be done with a few lines of code.

await client.UpdateTopologyAsync(t => t
.ForExchange("my_exchange")
.UseConfiguration(e => e

.WithType(ExchangeType.Topic)

.WithDurability(false))
);

The name of the exchange can also be extracted by the message type and the registered INamingConvention

await client.UpdateTopologyAsync(c => c
.ExchangeForMessage<BasicMessage>()
.UseConfiguration(e => e.WithType(ExchangeType.Topic)));

Values that are not provided in the configuration builder will default to the values of the
GeneralExchangeConfiguration on the registered RawRabbitConfiguration. If
the general exchange configuration has changed and a solution wide update is desired, the
UseConventionForExchange<TMessage> method can be used

var result = await client.UpdateTopologyAsync(c => c
.UseConventionForExchange<FirstMessage>()

);

6.1.1 Change multiple exchanges

The different signatures can be combined in a number of ways to update exchanges. If multiple update configurations
are defined for the same exchange, only the latest one will be used.

19

https://www.nuget.org/packages/RawRabbit.Extensions/

ReadMyDocs Documentation, Release 1.9.2

await client.UpdateTopologyAsync(c => c
.ForExchange("my_exchange")
.UseConfiguration(x => x.WithAutoDelete())
.ExchangeForMessage<BasicMessage>()
.UseConfiguration(x => x.WithType(ExchangeType.Direct))
.ExchangeForMessage<SimpleMessage>()
.UseConventions<BasicMessage>()
.UseConventionForExchange<FirstMessage>()
.UseConventionForExchange<SecondMessage>()
.UseConventionForExchange<ThirdMessage>()

);

6.1.2 Downtime

Updating an exchange consists of three steps

1. Deleting exchange

2. Re-declare exchange

3. Re-add existing queue bindings

It is not until all queue bindings have been re-added to an exchange that everything works as expected. The extension
method returns an result object that contains information about what bindings that has been re-added and the execution
time.

var result = await client.UpdateTopologyAsync(t => t
.ForExchange(exchangeName)
.UseConfiguration(e => e

.WithType(ExchangeType.Topic)

.WithDurability(false))
);

ExchangeConfiguration exchangeConfig = result.Exchanges[0].Exchange;
TimeSpan executionTime = result.Exchanges[0].ExecutionTime;
List<Binding> bindings = result.Exchanges[0].Bindings;

6.1.3 Binding Key Transformer

In addition to be able to re-define features of the exchange, the binding key can be updated with the optional argu-
ment bindingKeyTransformer. This can be useful when adding or removing wildcard routing while changing
exchange type from one that supports wildcard and one that does not.

await currentClient.UpdateTopologyAsync(c => c
.ExchangeForMessage<BasicMessage>()
.UseConfiguration(

exchange => exchange.WithType(ExchangeType.Direct),
bindingKey => bindingKey.Replace(".*", string.Empty))

);

6.2 Queue updates

There are currently no support for updating queues.

20 Chapter 6. Update Topology

CHAPTER 7

Message Sequence

In many scenarios, it is considered good practice to have an event-driven architecture where message streams of
subsequent publish and subscribe moves the business transactions forward. However, there are scenarios where this is
not an option. One example is handling web requestes, where the caller synchronously waits for a response.

7.1 Alternative to RPC

Consider a user login scenario that is handled with UserLoginRequest and UserLoginResponse.

// normal rpc response
client.RespondAsync<UserLoginRequest, UserLoginResponse>(async (request, context) =>
{

var result = await Authenticate();
return new UserLoginResponse {Token = result};

});

// normal rpc request
var respons = await client.RequestAsync<UserLoginRequest, UserLoginResponse>();

There are a few drawbacks of using this pattern. The way RPC is implemented with a private response queue,
alternativly a direct-rpc queue, makes the calls private between the requester and responder. This is where the
MessageSequence extension can be useful.

// normal subscribe
client.SubscribeAsync<UserLoginRequest>(async (msg, context) =>
{

var result = await Authenticate();
await client.PublishAsync(new UserLoginResponse { Token = result}, context.GlobalMessageId);

});

// equivalent message sequence
var sequence = _client.ExecuteSequence(c => c

.PublishAsync<UserLoginRequest>()

.Complete<UserLoginResponse>()
);

The return object is a MessageSequence<TComplete> where <TComplete> is the generic type of
the .Complete<TComplete> call. The sequence has a Task<TComplete> that completes as the
UserLoginResponse is published. The major difference is that the message sequence rely on the message con-
text’s GlobalRequestId to match the response to the request, rather than having a private response queue or
correlation id. The recieving end of the UserLoginRequest looks like this

21

ReadMyDocs Documentation, Release 1.9.2

One of the benifits is that the message sequence “response” is actually a publish that is published on the exchange
according to the registered INamingConvention. That means that any other subscribers of the LoginResponse
can act upon the message.

7.2 Multi-message sequence

The MessageSequence extension provides methods to act upon multiple events.

var chain = _client.ExecuteSequence(c => c
.PublishAsync<UserLoginAttempted>()
.When<UserGeograficPosition>((msg, ctx) => ActOnGeograficPosition(msg.Position))
.When<UserContactDetail>((msg, ctx) => ActOnContactDetails(msg.Details))
.Complete<UserLoggoedIn>()

);

7.2.1 Optional messages in chain

The When call has an optional parameter that can be used to mark a step in the sequence as optional, meaning that if
a message that corresponds to a step later in the sequence is recieved, it skips that step.

var chain = _client.ExecuteSequence(c => c
.PublishAsync<UserLoginAttempted>()
.When<UserPasswordIsWeak>(

(msg, ctx) => PromptChangePassword(),
(cfg) => cfg.IsOptional())

.Complete<UserLoggoedIn>()
);

7.2.2 Abort sequence premature

The optional parameter for the When also have a method to indicate that if the messagee is recieved, it aborts the
execution of the sequence. All handlers that are marked as aborting execution is by default optional.

var chain = _client.ExecuteSequence(c => c
.PublishAsync<UserLoginAttempted>()
.When<UserLoginFailed>(

(msg, ctx) => PromptChangePassword(),
(cfg) => cfg.AbortsExecution())

.Complete<UserLoggoedIn>()
);

22 Chapter 7. Message Sequence

CHAPTER 8

Publisher Acknowledgements

RabbitMq has support for Confirms/Publisher Acknowledgements, meaning that a publisher gets a basic-ack when
the message has been accepted by all queues (or the broker verified that the message is unroutable). RawRabbit
uses this feature when performing PublishAsync<TMessage> calls. The Task returned from publish call is
completed once the broker has confirmed the published message.

If the message hasn’t been confirmed within a specified amount of time, the task will fault with a
PublishConfirmException. To change the timeout, change the PublishConfirmTimeout property on
the configuration object.

var config = new RawRabbitConfiguration
{

PublishConfirmTimeout = TimeSpan.FromMilliseconds(500)
};
var publisher = BusClientFactory.CreateDefault(config);

There is a slight performance hit using using this feature. If you want to disable it, just register the
NoAckAcknowledger when instantiating the bus client.

var publisher = BusClientFactory.CreateDefault(s =>
s.AddSingleton<IPublishAcknowledger, NoAckAcknowledger>()

);

8.1 Avoiding PublishConfirmException

There are a few potential reasons for PublishConfirmException being thrown. If the broker is in heavy use
and/or the application publishes multiple concurrent publishes on the PublishConfirmTimeout should be in-
creased. Another option is to register the NoAckAcknowledger.

23

https://www.rabbitmq.com/confirms.html

ReadMyDocs Documentation, Release 1.9.2

24 Chapter 8. Publisher Acknowledgements

CHAPTER 9

Message Priority

9.1 Priority for specific messages

To be able to leverage the Priority Queue feature in RabbitMq, you first have to indicate that the queue to which you are
subscribing to has the x-max-priority argument. This can be done by using the optional configuration argument
on the SubscribeAsync method

subscriber.SubscribeAsync<BasicMessage>(async (message, context) =>
{

// do stuff
}, cfg => cfg

.WithQueue(q => q.WithArgument(QueueArgument.MaxPriority, 3))

.WithPrefetchCount(1)
);

In this example, the prefetch count is sets to one, since the already prefetched messages would be processed before a
not prefetched message with higher priority.

Now that you have a queue that honours the priority property, you can send messages to it with priority set. This is
also done with the fluent configuration builder. In fact, with the builder you get access to all BasicProperties for
a message.

publisher.PublishAsync(new BasicMessage
{

Prop = "I am important"
}, configuration: cfg =>

cfg.WithProperties(p => p.Priority = 9)
);

9.2 Setting priority based on message type

Sometime you want more of a policy like approach, like “All messages of type X is important”.
This can be achieved by implementing a custom IBasicPropertiesProvider. In the method
GetProperties<TMessage>(Action<IBasicProperties> custom) you have access to the message
type and it returns the properties that will be set in all outgoing messages.

25

https://www.rabbitmq.com/priority.html

ReadMyDocs Documentation, Release 1.9.2

26 Chapter 9. Message Priority

CHAPTER 10

Multiple Subscribers

By default, RawRabbit assumes that when a message is published (PublishAsync<TMessage>()), all unique,
subscribers (with matching routing key on corresponding exchange) wants it. All subscribers are considered to be
unique, except those who are hosted in applications that have multiple instances connected to the broker. This can
happend if applications are deployed to multiple servers and connected to the same RabbitMq host (or clustered
hosts).

The reason for this behaviour is that in many cases it is unwanted to perform an operation multiple times.

10.1 Default behaviour

10.1.1 Example: Confirmation email

A service subscribes to a message OrderSent, the service sends an email to the customer. Even if this service has
multiple insanse connected to the same broker, only one email should be sent.

The default behaviour is achieved by creating unique queue names that contains:

• queue name (extracted from naing convention)

• the application name (extracted from executing folder)

• a unique counter of subscriber to a message type (given the instance of the bus client). In order to make the
queue names shorter, the counter is emitted for the first subscriber.

Note that the unique counter is per instance of IBusClient. It is therefore recommended to wire up the bus client as
a singelton in the IoC container. If you use the BusClientFactory or register the IoC using the ServiceCollection
extension AddRawRabbit(), this is done for you.

10.2 Custom Behaviour

For some scenarios, the default behaviour is not desired. It can be modified on for each subscriber by setting a
subscription id, or for the entire client by registering a custom INamingConvention.

10.2.1 Example: Clear Cache

A service subscribes to a NewDataAvailable, the service should clear its cache when recieving this message. If
the service has multiple instance connected to the broker, each instanse should recieve the message and clear the cache.

27

ReadMyDocs Documentation, Release 1.9.2

10.2.2 Specifying Subscriber Id

The solution is to specify a unique subscription id for the service.

secondSubscriber.SubscribeAsync<BasicMessage>(async (message, context) =>
{

//do stuff...
}, cfg => cfg.WithSubscriberId("unique_id"));

28 Chapter 10. Multiple Subscribers

CHAPTER 11

Requeue with delay

RawRabbit supports requeing of messages with a predefined retry time interval. The feature uses the dead
letter exchange in combination with the time to live extension. The idea comes from yuserinterface’s
blog; a message that should be retried later is published to a “retry” exchange on a queue that has the actual exchange
as its dead letter exchange and a time to live that matches the desired timespan. In order to use RetryLater, make
sure you use an advanced message context.

11.1 Later execution

client.SubscribeAsync<BasicMessage>(async (message, context) =>
{

if (CanNotBeProcessed())
{

context.RetryLater(TimeSpan.FromMinutes(5));
return;

}
// five minutes later we're here.

});

11.2 Error strategy

The advanced context has information about

• Original sent date, that is the DateTime when the message was first published

• Number of retries, that is how many times it has been retried. This is useful for error strategies such as “retry
three times, then Nack it all together).

The requeue can also be used as an error strategy.

client.SubscribeAsync<BasicMessage>(async (message, context) =>
{

if (context.RetryInfo.NumberOfRetries > 10)
{

throw new Exception($"Unable to handle message '{context.GlobalRequestId}'.");
}
// more code here...

});

29

https://www.rabbitmq.com/dlx.html
https://www.rabbitmq.com/dlx.html
https://www.rabbitmq.com/ttl.html
http://yuserinterface.com/dev/2013/01/08/how-to-schedule-delay-messages-with-rabbitmq-using-a-dead-letter-exchange/
http://yuserinterface.com/dev/2013/01/08/how-to-schedule-delay-messages-with-rabbitmq-using-a-dead-letter-exchange/

ReadMyDocs Documentation, Release 1.9.2

30 Chapter 11. Requeue with delay

CHAPTER 12

Inner workings

This section contains information about the inner workings of RawRabbit. It can be a useful reference guide for
users who wants to extend or modify the standard behaviour of the framework.

12.1 ChannelFactory

The default implementation of the IChannelFactory is aptly named ChannelFactory. It has two main meth-
ods

• GetChannelAsync returns an existing open channel that is reused by other operations in the application.

• CreateChannelAsync return an new, open channel that the caller is responsible to close.

12.1.1 Avoiding ‘Pipelining’ exceptions

It is forbidden to perform multiple synchronous operations on the same channel. Note that synchronous and asyn-
chronous in this section does not refer to Microsoft’s Task execution, but rahter how the call is handled by the broker.
Synchronous operations include declaring queues and exchanges. It is not adviced to use GetChannelAsync and
perform a synchronious operation, as you may get a Pipelining of requests forbidden exception.

12.1.2 Managing channel count

The ChannelFactory is configured with the ChannelFactoryConfiguration object. The default be-
haviour is to re-use the same open channel whenever GetChannelAsync is called. MaxChannelCount states
the maximum amout of channels in the channel pool.

Initialize multiple channels

The property InitialChannelCount can be used to define the number of channels that will be initialied as the
ChannelFactory is initialzed.

Dynamic scaling of channel count

It is possible to open and close aditional channels if the workload for the currently open channels are above the
specified threshold WorkThreshold. Note that EnableScaleUp and/or EnableScaleDown needs to be set to
true to have scaling enabled. ScaleInterval defines the interval for checking if scaling should be performed.
If scaling down is enable, the GracefulCloseInterval is used to know how long to wait before closing the

31

ReadMyDocs Documentation, Release 1.9.2

channel. It is recommended to let the graceful close interval be a couple of minutes to make sure that the channel is
not in used in other classes.

12.1.3 Alternative implementations

The ThreadBasedChannelFactory uses a ThreadLocal<IModel> property to make sure that channels are
only used in one thread.

12.2 ConsumerFactory

It is the consumer factory’s responsibility to wire up and return an IRawConsumer. The IRawConsumer
has to implementations, EventingRawConsumer (default) that inherits from EventingBasicConsumer and
QueueingRawConsumer that inherits from QueueingBasicConsumer.

12.3 TopologyProvider

The TopologyProvider has async methods for creating topology features, such as queues and exchanges. In order
to prevent pipelinging exception, it uses it’s own private channel that is disposes two seconds after last usage. It keeps
a list of queues and exchanges that is has declared, so that if a DeclareQueueAsync is called for a queue recently
declared, it returns without doing a roundtrip to the broker.

32 Chapter 12. Inner workings

CHAPTER 13

RabbitMq features

13.1 Lazy Queues

As of 3.6.0 RabbitMq supports Lazy Queues. To configure a specific queue as Lazy, simply use the optional
configuration argument and set QueueMode to lazy.

subscriber.SubscribeAsync<BasicMessage>((message, context) =>
//do stuff...
, cfg => cfg

.WithQueue(q => q
.WithArgument(QueueArgument.QueueMode, "lazy"))

);

33

https://www.rabbitmq.com/lazy-queues.html

ReadMyDocs Documentation, Release 1.9.2

34 Chapter 13. RabbitMq features

CHAPTER 14

Error Handling

The error handling pipeline for RawRabbit is contained in the IErrorHandlingStrategy. It is granu-
lar in the sense that different strategies can be employed depending on messaging pattern. All methods in the
DefaultStrategy are marked as virtual and can easierly be overriden in derived classes.

14.1 Publish/Subscribe

There is no error handling in the publish phase, as there are only a few things that can go wrong here, and exceptions
thrown here would most probably need to be resolved (like Topology missmatch).

Any unhandled exception in an subscriber results in the message being published in the default error exchange, together
with the exception and other useful metadata.

14.1.1 The default error exchange

The default error exchange name is resolved from the registered INamingConventions. By default, no queues
are bound to this exchange, and the message will be dropped by the message broker.

To consume messages from the default error queue, setup a consumer for HandlerExceptionMessage

client.SubscribeAsync<HandlerExceptionMessage>((message, context) =>
{

var originalMsg = message.Message;
var originalContext = context;
var unhandled = message.Exception;
return HandleAsync(originalMsg, originalContext, unhandled);

}, c => c
.WithExchange(e => e.WithName(conventions.ErrorExchangeNamingConvention()))
.WithQueue(q => q.WithArgument(QueueArgument.MessageTtl, 1000))
.WithRoutingKey("#"));

The routing key # secures that all unhandled exceptions are recieved in the message handler. However, the message
is published with its original routing key, so it is possible to change the routing key to SendOrderRequest or any
other message that exists in the solution.

It is optional to use the Queue Time To Live attribute and it might be adjusted for different queues depending on the
importance of the message.

Messages can also be fetch in a more batch like behaviour by using the Bulk Get Extension.

35

https://www.rabbitmq.com/ttl.html

ReadMyDocs Documentation, Release 1.9.2

14.2 Request/Respond

Exceptions thrown in the responder message handler is by default caught and sent back to the requester where it
is re-thrown. The re-thrown exception is then again caught by OnResponseRecievedException, which does
nothing be default. Since the request/respond pattern is synchronious. The behaviour could easerly be change to
send the message to the default exchange, but remember that the caller is waiting for a task to finish, otherwise the
application itself will stall.

36 Chapter 14. Error Handling

CHAPTER 15

Logging

RawRabbit comes with a console logger, which makes sense when playing around in a console app. However,
you probably want to use the same logger as you use in the rest of the project. This can be done by download-
ing RawRabbit.Logger.Serilog, RawRabbit.Logger.NLog, RawRabbit.Logger.Log4Net or im-
plement your own custom logger. Create a logger is fairly easy, it is a matter of implementing ILogger and
ILoggerFactory.

The logger is provided to RawRabbit though the registered ILoggerFactory, so it is enough to register the desired
factory to use it in all internal classes

RawRabbitFactory.GetDefaultBusClient(
ioc => ioc.AddSingleton<ILoggerFactory, RawRabbit.Logging.Serilog.LoggerFactory>()

);

Similarly for vNext apps

collection.AddRawRabbit(
custom: ioc => ioc.AddSingleton<ILoggerFactory, RawRabbit.Logging.Serilog.LoggerFactory>()

)

37

ReadMyDocs Documentation, Release 1.9.2

38 Chapter 15. Logging

CHAPTER 16

Attribute based configuration

RawRabbit has support for attribute based configuration in the NuGet package RawRabbit.Attributes.

16.1 Setting up the client

In order to get the client to scan messages for attributes, register AttributeConfigEvaluator as the
IConfigurationEvaluator

var client = BusClientFactory.CreateDefault(ioc => ioc
.AddSingleton<IConfigurationEvaluator, AttributeConfigEvaluator>()

);

16.2 Configure Messages

There are different attributes that configure different configuration aspects: QueueAttribute,
ExchangeAttribute and RoutingAttribute. Note that for the Request/Respond pattern only the
attributes of the request message type is scanned.

[Queue(Name = "my_queue", MessageTtl = 300, DeadLeterExchange = "dlx", Durable = false)]
[Exchange(Name = "my_topic", Type = ExchangeType.Topic)]
[Routing(RoutingKey = "my_key", NoAck = true, PrefetchCount = 50)]
private class AttributedMessage
{

public string Property { get; set; }
}

16.3 Override with custom configuration

The AttributeConfigEvaluator looks for configuration attributes and fallback to the default
ConfigurationEvaluator. It also honors the custom configuration provided in the optional configuraiton
argument.

client.SubscribeAsync<AttributedMessage>((message, context) =>
{

tcs.TrySetResult(message);
return Task.FromResult(true);

}, c => c.WithRoutingKey("overridden"));

39

https://www.nuget.org/packages/RawRabbit.Attributes/

ReadMyDocs Documentation, Release 1.9.2

40 Chapter 16. Attribute based configuration

CHAPTER 17

Client upgrade

17.1 1.9.0

In release 1.9.0, the default message routing behaviour was changed so that any published message gets its
GlobalMessageId appended to the routing key. A message that previously was published with routingkey foo,
will use foo.870A9C90-CDEC-4D8D-870B-50BA121BD88F. This is used in the Message Sequence Exten-
sion to route only relevant messages to the different clients. Subscribers to messages use a wildcard routing foo.#
and the messages will be delivered to the consumer. Previously, the Direct exchange type was the default type in
RawRabbit, but wildcard routing is not supported there, which is why the new default is Topic.

When a consumer is set up, RawRabbit verifies that the exchange to which it want to bind the consumer to exists. If
the exchange is exists but it is declared with a different type than the one that exists, an exception will be thrown.

17.1.1 Using existring configuration

The old configuration can be used by registering a “legacy” (pre 1.9.0) configuration

var cfg = RawRabbitConfiguration.Local.AsLegacy();
var client = RawRabbitFactory.GetExtendableClient(ioc => ioc.AddSingleton(s => cfg));

The AsLegacy extension sets the configuration value RouteWithGlobalId to false and resets the default ex-
change type to Direct.

17.1.2 Upgrading from < 1.9.0

If you want to use the new configuration on existing environments, the Update Topology Extension can be used to
re-declare and re-bind queues with minimal downtime:

var client = RawRabbitFactory.GetExtendableClient();
await client.UpdateTopologyAsync(c => c

.ExchangeForMessage<BasicMessage>()

.UseConfiguration(
exchange => exchange.WithType(ExchangeType.Topic),
bindingKey => $"{bindingKey}.#")

);

By adding the # wildcard, the consumer matches zero or more words in the routing key, making it compatible with
clients that use the old configuration.

41

ReadMyDocs Documentation, Release 1.9.2

17.2 1.9.5

With 1.9.5, the life time management has been looked over thoroughly. Previously, the base client implemented the
IDisposable interface, that in turn disposed all of its own resoruces, all the way down the IChannelFactory.
This is wanted behaviour in applications where the busclient is registered as a single instance with the same life time
as the applications. However, in web applications, we might want to build the bus client for each request, customiz-
ing dependencies based on the HttpContext. Disposing everything in that scenario will lead to a unneccesary
performance hit.

To address this, the IDisposable interface was removed from the base client, and added to derived clientes
in the Disposable namespace. This is the client that is returned from the BusClientFactory (and the
RawRabbitFactory for extendable bus clients).

17.2.1 Updraging to 1.9.5

There should be no major problems with this update. If you are using the factory classes for creating bus clients and
somehow misses any references in your class, make sure to use

• RawRabbit.vNext.Disposable.IBusClient where your previously used
RawRabbit.IBusClient

• RawRabbit.Extensions.Disposable.IBusClient where your previously used
RawRabbit.IBusClient for extensions.

42 Chapter 17. Client upgrade

CHAPTER 18

Contributing Guidelines

You are more than welcome to contribute to RawRabbit. Here are some guidelines for the process.

18.1 Create issue

With a few exceptions, every commits should be connected to an issue. That means that if you’ve found a bug or
implemented a feature, it should be reported in the issue section.

18.2 Write code

Write as beautiful code as possible! RawRabbit is indented with tabs and not spaces.

18.3 Commit Code

Make sure that all commits start with (#issue-number), like (#19) Invoke message handlers in
sync manner. This way, the commits will appear in the issue and is easier found from the console git log
--grep #19.

Follow the official guide lines. In short, the seven rules of a great git commit message should be honored:

1. Separate subject from body with a blank line

2. Limit the subject line to 50 characters

3. Capitalize the subject line

4. Do not end the subject line with a period

5. Use the imperative mood in the subject line

6. Wrap the body at 72 characters

7. Use the body to explain what and why vs. how

18.4 Create Pull Request

Once the feature is developed, create a pull to stable.

43

https://github.com/pardahlman/RawRabbit/issues
http://ryanseddon.github.io/spaces-talk/images/batman-slap.jpg
https://www.git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project#Commit-Guidelines
http://chris.beams.io/posts/git-commit/

	Getting Started
	Installation
	Creating instanse
	Broker connection
	Messaging pattern

	Message Context
	Introduction
	Forwarding Context
	Default Context
	Advanced Context
	Custom Context

	Configuration
	Configuration options
	vNext configuration file
	ConnectionString

	Extending RawRabbit
	Installation
	The Extendable Bus Client
	Extension boiler plait
	List of extensions

	Bulk-fetching messages
	Update Topology
	Exchange updates
	Queue updates

	Message Sequence
	Alternative to RPC
	Multi-message sequence

	Publisher Acknowledgements
	Avoiding PublishConfirmException

	Message Priority
	Priority for specific messages
	Setting priority based on message type

	Multiple Subscribers
	Default behaviour
	Custom Behaviour

	Requeue with delay
	Later execution
	Error strategy

	Inner workings
	ChannelFactory
	ConsumerFactory
	TopologyProvider

	RabbitMq features
	Lazy Queues

	Error Handling
	Publish/Subscribe
	Request/Respond

	Logging
	Attribute based configuration
	Setting up the client
	Configure Messages
	Override with custom configuration

	Client upgrade
	1.9.0
	1.9.5

	Contributing Guidelines
	Create issue
	Write code
	Commit Code
	Create Pull Request

