

 Navigation

 	
 index

 	
 next |

 	raven-js 1.1.19 documentation

Raven.js

Raven.js is a tiny standalone JavaScript client for Sentry. It can be
used to report errors from browser and node environments. The quality
of reporting will heavily depend on the environment the data is submitted
from.

Installation

Raven.js is distributed in a few different methods, and should get
included after any other libraries are included, but before your own
scripts. For all details see Installation. For just getting started,
you can use our CDN:

<script src="//cdn.ravenjs.com/1.1.19/raven.min.js"></script>

Configuring the Project

We must first configure Sentry to allow certain hosts to report errors.
This prevents abuse so somebody else couldn’t start sending errors to your
account from their site.

This can be found under the Project Settings page in Sentry. You’ll need
to add each domain that you plan to report from into the Allowed Domains
box. Alternatively if you’re not worried about CORS security, you can simply
enter * to whitelist all domains.

Configuring the Client

Now need to set up Raven.js to use your Sentry DSN:

Raven.config('___PUBLIC_DSN___').install()

At this point, Raven is ready to capture any uncaught exception.

Although, this technically works, this is not going to yield the greatest
results. It’s highly recommended to next check out Configuration and
Usage after you have it up and running to improve your results.

Reporting Errors

The simplest way, is to try and explicitly capture and report potentially
problematic code with a try...catch block and
Raven.captureException.

try {
 doSomething(a[0])
} catch(e) {
 Raven.captureException(e)
}

There are more ways to report errors. For a complete guide on this see
Reporting Errors Correctly.

Adding Context

While a user is logged in, you can tell Sentry to associate errors with
user data. This data is then submitted with each error which allows you
to figure out which users are affected.

Raven.setUserContext({
 email: 'matt@example.com',
 id: '123'
})

If at any point, the user becomes unauthenticated, you can call
Raven.setUserContext() with no arguments to remove their data.

Other similar methods are Raven.setExtraContext and
Raven.setTagsContext as well as Raven.context. See
Passing Additional Data for more info.

Dealing with Minified Source Code

Raven and Sentry support Source Maps [http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/]. If
you provide source maps in addition to your minified files that data
becomes available in Sentry. For more information see
Source Maps.

Deep Dive

For more detailed information about how to get most out of Raven.js there
is additional documentation available that covers all the rest:

	Installation

	Plugins

	Configuration

	Usage

	Source Maps

	Tips and Tricks

Development info:

	Contributing

Resources:

	Downloads and CDN [http://ravenjs.com/]

	Bug Tracker [http://github.com/getsentry/raven-js/issues]

	Github Project [http://github.com/getsentry/raven-js]

 Copyright 2015, Matt Robenolt.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	raven-js 1.1.19 documentation

Installation

Raven is distributed in a few different methods, and should get included
after any other libraries are included, but before your own scripts.

So for example:

<script src="jquery.js"></script>
<script src="//cdn.ravenjs.com/1.1.19/jquery,native/raven.min.js"></script>
<script>Raven.config('___PUBLIC_DSN___').install();</script>
<script src="app.js"></script>

This allows the ability for Raven’s plugins to instrument themselves. If
included before something like jQuery, it’d be impossible to use for
example, the jquery plugin.

Using our CDN

We serve our own builds off of Fastly [http://www.fastly.com/]. They
are accessible over both http and https, so we recommend leaving the
protocol off.

Our CDN distributes builds with and without plugins.

<script src="//cdn.ravenjs.com/1.1.19/raven.min.js"></script>

We highly recommend trying out a plugin or two since it’ll greatly
improve the chances that we can collect good information.

This version does not include any plugins. See ravenjs.com [http://ravenjs.com/] for more information about plugins and getting
other builds.

Bower

We also provide a way to deploy Raven via bower [http://bower.io/]. Useful if you want serve your own scripts instead of
depending on our CDN and mantain a bower.json with a list of
dependencies and versions (adding the --save flag would automatically
add it to bower.json).

$ bower install raven-js --save

<script src="/bower_components/raven-js/dist/raven.js"></script>

Also note that the file is uncompresed but is ready to pass to any decent
JavaScript compressor like uglify [https://github.com/mishoo/UglifyJS2].

npm

Raven is published to npm as well. https://www.npmjs.com/package/raven-js

$ npm install raven-js --save

Requirements

Raven expects the browser to provide window.JSON and
window.JSON.stringify. In Internet Explorer 8+ these are available in
standards mode [http://msdn.microsoft.com/en-us/library/cc288325(VS.85).aspx]. You can
also use json2.js [https://github.com/douglascrockford/JSON-js] to
provide the JSON implementation in browsers/modes which doesn’t support
native JSON

 Copyright 2015, Matt Robenolt.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	raven-js 1.1.19 documentation

Plugins

Plugins extend the functionality of Raven.js to cover common libraries and
environments automatically.

What are plugins?

In Raven.js, plugins are little snippets of code to augment functionality
for a specific application/framework. It is highly recommended to checkout
the list of plugins and use what apply to your project.

In order to keep the core small, we have opted to only include the most
basic functionality by default, and you can pick and choose which plugins
are applicable for you.

Why are plugins needed at all?

JavaScript is pretty restrictive when it comes to exception handling, and
there are a lot of things that make it difficult to get relevent
information, so it’s important that we inject code and wrap things
magically so we can extract what we need. See Usage for tips
regarding that.

All Plugins

	https://github.com/getsentry/raven-js/tree/master/plugins

	Download [http://ravenjs.com]

 Copyright 2015, Matt Robenolt.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	raven-js 1.1.19 documentation

Configuration

We must first configure the client to allow certain hosts to report
errors. This prevents abuse so somebody else couldn’t start sending
errors to your account from their site.

Note: Without setting this, all messages will be rejected!

This can be found under the Project Details page in Sentry.

Now need to set up Raven.js to use your Sentry DSN.

Raven.config('___PUBLIC_DSN___').install()

At this point, Raven is ready to capture any uncaught exception.

Although, this technically works, this is not going to yield the greatest
results. It’s highly recommended to next check out Usage.

Optional settings

Raven.config() can be passed an optional object for extra configuration.

	
logger

	The name of the logger used by Sentry. Default: javascript

{
 logger: 'javascript'
}

	
release

	Track the version of your application in Sentry.

{
 release: '721e41770371db95eee98ca2707686226b993eda'
}

Can also be defined with Raven.setReleaseContext('721e41770371db95eee98ca2707686226b993eda').

	
tags

	Additional tags [https://www.getsentry.com/docs/tags/] to assign to each event.

{
 tags: {git_commit: 'c0deb10c4'}
}

	
whitelistUrls

	The inverse of ignoreUrls. Only report errors from whole urls
matching a regex pattern or an exact string. whitelistUrls should
match the url of your actual JavaScript files. It should match the url
of your site if and only if you are inlining code inside <script>
tags.

Does not affect captureMessage or when non-error object is passed in
as argument to captureException.

{
 whitelistUrls: [/getsentry\.com/, /cdn\.getsentry\.com/]
}

	
ignoreErrors

	Very often, you will come across specific errors that are a result of
something other than your application, or errors that you’re
completely not interested in. ignoreErrors is a list of these
messages to be filtered out before being sent to Sentry as either
regular expressions or strings.

Does not affect captureMessage or when non-error object is passed in
as argument to captureException.

{
 ignoreErrors: ['fb_xd_fragment']
}

	
ignoreUrls

	The inverse of whitelistUrls and similar to ignoreErrors, but
will ignore errors from whole urls matching a regex pattern or an
exact string.

{
 ignoreUrls: [/graph\.facebook\.com/, 'http://example.com/script2.js']
}

Does not affect captureMessage or when non-error object is passed in
as argument to captureException.

	
includePaths

	An array of regex patterns to indicate which urls are a part of your
app in the stack trace. All other frames will appear collapsed inside
Sentry to make it easier to discern between frames that happened in
your code vs other code. It’d be suggested to add the current page
url, and the host for your CDN.

{
 includePaths: [/https?:\/\/getsentry\.com/, /https?:\/\/cdn\.getsentry\.com/]
}

	
dataCallback

	A function that allows mutation of the data payload right before being
sent to Sentry.

{
 dataCallback: function(data) {
 // do something to data
 return data;
 }
}

	
shouldSendCallback

	A callback function that allows you to apply your own filters to
determine if the message should be sent to Sentry.

{
 shouldSendCallback: function(data) {
 return false;
 }
}

	
maxMessageLength

	By default, raven truncates messages to a max length of 100
characters. You can customize the max length with this parameter.

Putting it all together

<!doctype html>
<html>
<head>
 <title>Awesome stuff happening here</title>
</head>
<body>
 ...
 <script src="jquery.min.js"></script>
 <script src="//cdn.ravenjs.com/1.1.18/jquery,native/raven.min.js"></script>
 <script>
 Raven.config('___PUBLIC_DSN___', {
 logger: 'my-logger',
 whitelistUrls: [
 /disqus\.com/,
 /getsentry\.com/
],
 ignoreErrors: [
 'fb_xd_fragment',
 /ReferenceError:.*/
],
 includePaths: [
 /https?:\/\/(www\.)?getsentry\.com/
]
 }).install();
 </script>
 <script src="myapp.js"></script>
</body>
</html>

TraceKit specific optional settings

Usually there is no need to touch these settings, but they exist in case
you need to tweak something.

	
fetchContext

	Enable TraceKit to attempt to fetch source files to look up anonymous
function names, this can be useful to enable if you don’t get the context
for some entries in the stack trace. Default value is false.

{
 fetchContext: true
}

	
linesOfContext

	The count of lines surrounding the error line that should be used as
context in the stack trace, default value is 11. Only applicable when
fetchContext is enabled.

{
 linesOfContext: 11
}

	
collectWindowErrors

	Enable or disable the TraceKit window.onerror handler, default
value is true.

{
 collectWindowErrors: true
}

 Copyright 2015, Matt Robenolt.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	raven-js 1.1.19 documentation

Usage

By default, Raven makes a few efforts to try its best to capture
meaningful stack traces, but browsers make it pretty difficult.

The easiest solution is to prevent an error from bubbling all of the way
up the stack to window.

Reporting Errors Correctly

There are different methods to report errors and this all depends a little
bit on circumstances.

try … catch

The simplest way, is to try and explicitly capture and report potentially
problematic code with a try...catch block and
Raven.captureException.

try {
 doSomething(a[0])
} catch(e) {
 Raven.captureException(e)
}

Do not throw strings! Always throw an actual Error object. For
example:

throw new Error('broken') // good
throw 'broken' // bad

It’s impossible to retrieve a stack trace from a string. If this happens,
Raven transmits the error as a plain message.

context/wrap

Raven.context allows you to wrap any function to be immediately
executed. Behind the scenes, Raven is just wrapping your code in a
try...catch block to record the exception before re-throwing it.

Raven.context(function() {
 doSomething(a[0])
})

Raven.wrap wraps a function in a similar way to Raven.context, but
instead of executing the function, it returns another function. This is
especially useful when passing around a callback.

var doIt = function() {
 // doing cool stuff
}

setTimeout(Raven.wrap(doIt), 1000)

Tracking Users

While a user is logged in, you can tell Sentry to associate errors with
user data.

Raven.setUserContext({
 email: 'matt@example.com',
 id: '123'
})

If at any point, the user becomes unauthenticated, you can call
Raven.setUserContext() with no arguments to remove their data. This
would only really be useful in a large web app where the user logs in/out
without a page reload.

This data is generally submitted with each error or message and allows you
to figure out which errors are affected by problems.

Capturing Messages

Raven.captureMessage('Broken!')

Passing Additional Data

captureException, context, wrap, and captureMessage
functions all allow passing additional data to be tagged onto the error,
such as tags or extra for additional context.

Raven.captureException(e, {tags: { key: "value" }})

Raven.captureMessage('Broken!', {tags: { key: "value" }})

Raven.context({tags: { key: "value" }}, function(){ ... })

Raven.wrap({logger: "my.module"}, function(){ ... })

Raven.captureException(e, {extra: { foo: "bar" }})

You can also set context variables globally to be merged in with future
exceptions with setExtraContext and setTagsContext.

Raven.setExtraContext({ foo: "bar" })
Raven.setTagsContext({ key: "value" })

Getting Back an Event ID

An event id is a globally unique id for the event that was just sent. This
event id can be used to find the exact event from within Sentry.

This is often used to display for the user and report an error to customer
service.

Raven.lastEventId()

Raven.lastEventId() will be undefined until an event is sent. After an
event is sent, it will contain the string id.

Raven.captureMessage('Broken!')
alert(Raven.lastEventId())

Verify Raven Setup

If you need to conditionally check if raven needs to be initialized or
not, you can use the isSetup function. It will return true if Raven
is already initialized:

Raven.isSetup()

Dealing with Minified Source Code

Raven and Sentry support Source Maps [http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/].

We have provided some instructions to creating Source Maps over at
https://www.getsentry.com/docs/sourcemaps/. Also, checkout our Gruntfile [https://github.com/getsentry/raven-js/blob/master/Gruntfile.js] for a
good example of what we’re doing.

You can use Source Map Validator [http://sourcemap-validator.herokuapp.com/] to help verify that things
are correct.

CORS

If you’re hosting your scripts on another domain and things don’t get
caught by Raven, it’s likely that the error will bubble up to
window.onerror. If this happens, the error will report some ugly
Script error and Raven will drop it on the floor since this is a
useless error for everybody.

To help mitigate this, we can tell the browser that these scripts are safe
and we’re allowing them to expose their errors to us.

In your <script> tag, specify the crossorigin attribute:

<script src="//cdn.example.com/script.js" crossorigin="anonymous"></script>

And set an Access-Control-Allow-Origin HTTP header on that file.

Access-Control-Allow-Origin: *

Note

both of these steps need to be done or your scripts might not
even get executed

Custom Grouping Behavior

In some cases you may see issues where Sentry groups multiple events together
when they should be separate entities. In other cases, Sentry simply doesn’t
group events together because they’re so sporadic that they never look the same.

Both of these problems can be addressed by specifying the fingerprint
attribute.

For example, if you have HTTP 404 (page not found) errors, and you’d prefer they
deduplicate by taking into account the URL:

Raven.captureException(ex, {fingerprint: ['{{ default }}', 'http://my-url/']});

 Copyright 2015, Matt Robenolt.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	raven-js 1.1.19 documentation

Source Maps

In various browsers Sentry supports deminifying JavaScript via source
maps. A source map is a file generated by your minifier which compresses a
mapping of the minified file to the original uncompressed version(s).

One important thing to note is that even though we support mapping files,
a users browser may not actually be able to collect the required
information for the server to generate a sourcemap.

Sentry requires the following to be able to map tracebacks to their source:

	A source map header or footer

	A publicly accessible uncompressed version of the source

	A line of context that includes a line number, column number, and filename

The first two items are the responsibility of you, the end-user, and you
can take care of publishing them as part of your build process. The latter
however, with an individual line of context, is severely crippled in many
browsers.

One thing to note is that Sentry will attempt to process the source map
before storing (or grouping) an event. This ensures that if we are able to
deminify the source, we’ll be able to more effectively group similar
events over time.</p>

Browser Support

In our experiences, the only browser that routinely delivers usable error
reports is Google Chrome.

For additional information, see this more up-to-date wiki page [https://github.com/ryanseddon/source-map/wiki/Source-maps:-languages,-tools-and-other-inf].

Generating a Source Map

While there are several compression libraries which support source maps,
as of writing our recommendation is to use UglifyJS [https://github.com/mishoo/UglifyJS2]. That said, many tools such as
webpack [http://webpack.github.io/] and browserify [http://browserify.org/].

As an example, we can look at how we used to do things with Sentry (pre-webpack):

node_modules/uglify-js/bin/uglifyjs {input} \
 --source-map-root={relroot}/ \
 --source-map-url={name}.map.js \
 --source-map={relpath}/{name}.map.js -o {output}

We won’t attempt to go into the complexities of source maps, so we
recommend taking a stab at compiling them, and running them against a
validator.

Validating a Source Map

We maintain an online validation tool that can be used to test your source
(and sourcemaps) against: sourcemaps.io [http://sourcemaps.io].

Uploading Source Maps to Sentry

In many cases your application may sit behind firewalls or you simply
can’t expose source code to the public. Sentry provides an abstraction
called Releases which you can attach source artifacts to.

The release API is intended to allow you to store source files (and
sourcemaps) within Sentry. This removes the requirement for them to be
web-accessible, and also removes any inconsistency that could come from
network flakiness (on either your end, or Sentry’s end).

	Start by creating a new API key under your organization’s API Keys nav
(on the home).

	Ensure you you have project:write selected under scopes.

	You’ll use HTTP basic auth with the api key being your username, and an
empty value for the password.

Now you need to setup your build system to create a release, and attach
the various source files. You will want to upload all dist files (i.e. the
minified/shipped JS), the referenced sourcemaps, and the files that those
sourcemaps point to.

Create a new release
$ curl https://app.getsentry.com/api/0/projects/:organization_slug/:project_slug/releases/ \
 -u [api_key]: \
 -X POST \
 -d '{"version": "abcdef"}' \
 -H 'Content-Type: application/json'

{
 "dateCreated": "2015-03-06T04:51:32.723Z",
 "version": "2da95dfb052f477380608d59d32b4ab9"
}

Upload a file for the given release
Note: The filename should be the *full* url that this
would be referenced as in production.
$ curl https://app.getsentry.com/api/0/projects/:organization_slug/:project_slug/releases/2da95dfb052f477380608d59d32b4ab9/files/ \
 -u [api_key]: \
 -X POST \
 -F file=@README.rst \
 -F name="http://example.com/readme.rst"

{
 "dateCreated": "2015-03-06T04:53:00.308Z",
 "headers": {
 "Content-Type": "application/octet-stream"
 },
 "id": "1",
 "name": "http://example.com/readme.rst",
 "sha1": "22591348ed129fe016c535654f6493737f0f9df6",
 "size": 452
}

If you make a mistake, you can also simply clear out the release
$ curl https://app.getsentry.com/api/0/projects/:organization_slug/:project_slug/releases/2da95dfb052f477380608d59d32b4ab9/ \
 -u [api_key]: \
 -X DELETE

Additionally, you’ll need to configure the client to send the release:

Raven.config({
 release: '2da95dfb052f477380608d59d32b4ab9'
});

Note: You dont have to upload the source files (ref’d by sourcemaps),
but without them the grouping algorithm will not be as strong, and the UI
will not show any contextual source.

Additional information can be found in the Releases API documentation [https://app.getsentry.com/docs/api/releases/].

 Copyright 2015, Matt Robenolt.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	raven-js 1.1.19 documentation

Tips and Tricks

These are some general recommendations and tips for how to get the most
out of Raven.js and Sentry.

Decluttering Sentry

The first thing to do is to consider constructing a whitelist of domains
in which might raise acceptable exceptions.

If your scripts are loaded from cdn.example.com and your site is
example.com it’d be reasonable to set whitelistUrls to:

whitelistUrls: [
 /https?:\/\/((cdn|www)\.)?example\.com/
]

Since this accepts a regular expression, that would catch anything
*.example.com or example.com exactly. See also: Config:
whitelistUrls.

Next, checkout the list of plugins we provide and see
which are applicable to you.

The community has compiled a list of common ignore rules for common
things, like Facebook, Chrome extensions, etc. So it’s recommended to at
least check these out and see if they apply to you. Check out the
original gist [https://gist.github.com/impressiver/5092952].

var ravenOptions = {
 ignoreErrors: [
 // Random plugins/extensions
 'top.GLOBALS',
 // See: http://blog.errorception.com/2012/03/tale-of-unfindable-js-error. html
 'originalCreateNotification',
 'canvas.contentDocument',
 'MyApp_RemoveAllHighlights',
 'http://tt.epicplay.com',
 'Can\'t find variable: ZiteReader',
 'jigsaw is not defined',
 'ComboSearch is not defined',
 'http://loading.retry.widdit.com/',
 'atomicFindClose',
 // Facebook borked
 'fb_xd_fragment',
 // ISP "optimizing" proxy - `Cache-Control: no-transform` seems to
 // reduce this. (thanks @acdha)
 // See http://stackoverflow.com/questions/4113268
 'bmi_SafeAddOnload',
 'EBCallBackMessageReceived',
 // See http://toolbar.conduit.com/Developer/HtmlAndGadget/Methods/JSInjection.aspx
 'conduitPage'
],
 ignoreUrls: [
 // Facebook flakiness
 /graph\.facebook\.com/i,
 // Facebook blocked
 /connect\.facebook\.net\/en_US\/all\.js/i,
 // Woopra flakiness
 /eatdifferent\.com\.woopra-ns\.com/i,
 /static\.woopra\.com\/js\/woopra\.js/i,
 // Chrome extensions
 /extensions\//i,
 /^chrome:\/\//i,
 // Other plugins
 /127\.0\.0\.1:4001\/isrunning/i, // Cacaoweb
 /webappstoolbarba\.texthelp\.com\//i,
 /metrics\.itunes\.apple\.com\.edgesuite\.net\//i
]
};

Sampling Data

It happens frequently that errors sent from your frontend can be
overwhelming. One solution here is to only send a sample of the events
that happen. You can do this via the shouldSendCallback setting:

shouldSendCallback: function(data) {
 // only send 10% of errors
 var sampleRate = 10;
 return (Math.random() * 100 <= sampleRate);
}

jQuery AJAX Error Reporting

For automatically AJAX errors from jQuery the following tip might come in
helpful. However depending on the type of request you might have to do
slightly different things.

Same Origin

Whenever an Ajax request completes with an error, jQuery triggers the
ajaxError event, passing the event object, the jqXHR object
(prior to jQuery 1.5, the XHR object), and the settings object
that was used in the creation of the request. When an HTTP error occurs,
the fourth argument (thrownError) receives the textual portion of the
HTTP status, such as “Not Found” or “Internal Server Error.”

You can use this event to globally handle Ajax errors:

$(document).ajaxError(function(event, jqXHR, ajaxSettings, thrownError) {
 Raven.captureMessage(thrownError || jqXHR.statusText, {
 extra: {
 type: ajaxSettings.type,
 url: ajaxSettings.url,
 data: ajaxSettings.data,
 status: jqXHR.status,
 error: thrownError || jqXHR.statusText,
 response: jqXHR.responseText.substring(0, 100)
 }
 });
});

Note:

	This handler is not called for cross-domain script and cross-domain
JSONP requests.

	If $.ajax() or $.ajaxSetup() is called with the global
option set to false, the .ajaxError() method will not fire.

	As of jQuery 1.8, the .ajaxError() method should only be attached to
document.

Cross Origin

Due security reasons most web browsers are not giving permissions to
access error messages for cross domain scripts. This is not jQuery issue
but an overall javascript limitation.

Depending on your situation you have different options now:

When you control the backend

If you have access to the backend system you are calling, you can set
response headers to allow a cross domain call:

Access-Control-Allow-Origin: http://domain1.com, http://domain2.com

Script tags have now got a new non-standard attribute called
crossorigin (read more [https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script#attr-crossorigin]).
The most secure value for this would be anonymous. So, you’ll have to
modify your script tags to look like the following:

<script src="http://sub.domain.com/script.js" crossorigin="anonymous"></script>

When you have no access to the backend

If you have no access to the backend, you could try a workaround, which is
basically adding a timeout on the Ajax call. This is however very dirty,
and will fail on slow connection or long response time:

$.ajax({
 url: 'http:/mysite/leaflet.js',
 success: function() { ... },
 error: function() { ... },
 timeout: 2000, // 2 seconds timeout before error function will be called
 dataType: 'script',
 crossDomain: true
});

 Copyright 2015, Matt Robenolt.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	raven-js 1.1.19 documentation

Contributing

This part of the documentation gives you a basic overview of how to help
with the development of Raven.js.

Setting up an Environment

To run the test suite and run our code linter, node.js and npm are
required. If you don’t have node installed, get it here [http://nodejs.org/download/] first.

Installing all other dependencies is as simple as:

$ npm install

And if you don’t have Grunt [http://gruntjs.com/] already, feel free to
install that globally:

$ npm install -g grunt-cli

Running the Test Suite

The test suite is powered by Mocha [http://visionmedia.github.com/mocha/] and can both run from the command
line, or in the browser.

From the command line:

$ grunt test

From your browser:

$ grunt run:test

Then visit: http://localhost:8000/test/

Compiling Raven.js

The simplest way to compile your own version of Raven.js is with the
supplied grunt command:

$ grunt build

By default, this will compile raven.js and all of the included plugins.

If you only want to compile the core raven.js:

$ grunt build.core

Files are compiled into build/.

Contributing Back Code

Please, send over suggestions and bug fixes in the form of pull requests
on GitHub [https://github.com/getsentry/raven-js]. Any nontrivial
fixes/features should include tests. Do not include any changes to the
dist/ folder or bump version numbers yourself.

Documentation

The documentation is written using reStructuredText [http://en.wikipedia.org/wiki/ReStructuredText], and compiled using
Sphinx [http://sphinx-doc.org/]. If you don’t have Sphinx installed,
you can do it using following command (assuming you have Python already
installed in your system):

$ pip install sphinx

Documentation can be then compiled by running:

$ make docs

Afterwards you can view it in your browser by running following command
and than pointing your browser to http://127.0.0.1:8000/:

$ grunt run:docs

Releasing New Version

	Bump version numbers in both package.json and bower.json.

	$ grunt dist This will compile a new version and update it in the
dist/ folder.

	Confirm that build was fine, etc.

	Commit new version, create a tag. Push to GitHub.

	$ grunt publish to recompile all plugins and all permutations and
upload to S3.

	$ npm publish to push to npm.

	Confirm that the new version exists behind cdn.ravenjs.com

	Update version in the gh-pages branch specifically for
http://ravenjs.com/.

	glhf

 Copyright 2015, Matt Robenolt.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	raven-js 1.1.19 documentation

Index

 Copyright 2015, Matt Robenolt.
 Created using Sphinx 1.3.1.

 _static/down.png

_static/ajax-loader.gif

_static/comment-close.png

_static/up.png

_static/comment-bright.png

_static/file.png

_static/plus.png

search.html

 Navigation

 		
 index

 		raven-js 1.1.19 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Matt Robenolt.
 Created using Sphinx 1.3.1.

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/down-pressed.png

