<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.33 Kiosk Mode</td>
<td>49</td>
</tr>
<tr>
<td>3.34 How to do a volatile Virtual Machine</td>
<td>50</td>
</tr>
<tr>
<td>3.35 Ravada Cluster</td>
<td>51</td>
</tr>
<tr>
<td>3.36 How to make a virtual machine disk sparse</td>
<td>55</td>
</tr>
<tr>
<td>3.37 Server Hardware</td>
<td>55</td>
</tr>
<tr>
<td>3.38 Cluster Hardware</td>
<td>58</td>
</tr>
<tr>
<td>3.39 Ravada CLI</td>
<td>58</td>
</tr>
<tr>
<td>3.40 Intel GPU Virtualisation (GVT-g)</td>
<td>59</td>
</tr>
<tr>
<td>3.41 Adding Custom Messages</td>
<td>65</td>
</tr>
<tr>
<td>3.42 Create a custom login template</td>
<td>65</td>
</tr>
<tr>
<td>3.43 Create a custom footer template</td>
<td>66</td>
</tr>
<tr>
<td>3.44 Disable Spice Password</td>
<td>67</td>
</tr>
<tr>
<td>3.45 Ravada advanced settings</td>
<td>67</td>
</tr>
<tr>
<td>3.46 New documentation</td>
<td>69</td>
</tr>
<tr>
<td>3.47 Configure LDAP Authentication</td>
<td>71</td>
</tr>
<tr>
<td>3.48 Authentication with Active Directory</td>
<td>73</td>
</tr>
<tr>
<td>3.49 Set access restrictions to Virtual Machines</td>
<td>74</td>
</tr>
<tr>
<td>3.50 Test Active Directory</td>
<td>75</td>
</tr>
<tr>
<td>3.51 Tuning Ravada</td>
<td>76</td>
</tr>
<tr>
<td>3.52 Server Monitoring</td>
<td>76</td>
</tr>
<tr>
<td>3.53 Guide button step-by-step</td>
<td>80</td>
</tr>
<tr>
<td>3.54 Local JS and CSS files instead CDN</td>
<td>81</td>
</tr>
<tr>
<td>3.55 Exposing a Virtual Machine</td>
<td>81</td>
</tr>
<tr>
<td>3.56 Exposing Ports from a Virtual Machine</td>
<td>82</td>
</tr>
<tr>
<td>3.57 Install Alpine Linux</td>
<td>84</td>
</tr>
<tr>
<td>3.58 Install Windows 10</td>
<td>87</td>
</tr>
<tr>
<td>3.59 How to extend a Ravada Windows guest’s disk space</td>
<td>88</td>
</tr>
<tr>
<td>3.60 How to extend a Ravada Linux guest’s disk space</td>
<td>90</td>
</tr>
<tr>
<td>3.61 How to enable KVM virsh console access</td>
<td>91</td>
</tr>
<tr>
<td>3.62 Reduce the image size after cloning a physical PC</td>
<td>91</td>
</tr>
<tr>
<td>3.63 Qemu Guest Agent</td>
<td>92</td>
</tr>
<tr>
<td>3.64 Set Hostname</td>
<td>93</td>
</tr>
<tr>
<td>3.65 Development Tools</td>
<td>95</td>
</tr>
<tr>
<td>3.66 Commit Rules</td>
<td>95</td>
</tr>
<tr>
<td>3.67 Database Changes</td>
<td>97</td>
</tr>
<tr>
<td>3.68 Editor configuration rules</td>
<td>97</td>
</tr>
<tr>
<td>3.69 Local ISO server</td>
<td>98</td>
</tr>
<tr>
<td>3.70 Steps to release</td>
<td>100</td>
</tr>
<tr>
<td>3.71 Run Ravada in development mode</td>
<td>102</td>
</tr>
<tr>
<td>3.72 Testing environment</td>
<td>103</td>
</tr>
<tr>
<td>3.73 How to create tests</td>
<td>104</td>
</tr>
<tr>
<td>3.74 Translations</td>
<td>108</td>
</tr>
<tr>
<td>3.75 Ravada Documentation</td>
<td>109</td>
</tr>
<tr>
<td>3.76 Frontend Libraries</td>
<td>109</td>
</tr>
<tr>
<td>3.77 Hardening Spice security with TLS</td>
<td>110</td>
</tr>
</tbody>
</table>
The chances are you’re here because you’ve been searching for free Virtual Desktop Infrastructure (VDI) documentation. Whether it is a large or a small project, you can start with VDI and see its benefits right away! We assume you do want to start your VDI project as quickly as possible. Therefore, RAVADA VDI is the perfect software for you!

Ravada VDI is a free and open-source project that allows users to connect to a virtual desktop. So it is a VDI broker.
By following the documentation and editing some configuration files, you'll be able to deploy a VM within minutes.
Who is Ravada meant for?

Ravada is meant for sysadmins who have some background in GNU/Linux, and want to deploy a VDI project.

Note: Get started with VDI, without reinventing the wheel.

We have written some documentation and hosted it on Read the Docs for you. This documentation is *on-going*, so if there is something you think is missing, don’t hesitate and drop us a line! In the meantime, we are still improving RAVADA VDI and its documentation, so new sections will be popping out from time to time.

Our code uses the AGPL license and it is available on GitHub.
CHAPTER 3

Ravada VDI documentation

The main documentation for the site is divided into three main sections:

- Administrator Documentation
- Feature Documentation
- Guest VM section

Do you feel like giving us a hand? Here you have all the information you need as a developer:

- Developer Documentation

3.1 Install Ravada

3.1.1 Requirements

3.1.2 OS

Ravada works in any Linux distribution but we only support the package for Ubuntu, Debian and Fedora server.

You can also install Ravada using Docker.

3.1.3 Hardware

It depends on the number and type of virtual machines. For common scenarios server memory, storage and network bandwidth are the most critical requirements.

Memory

RAM is the main issue. Multiply the number of concurrent workstations by the amount of memory each one requires and that is the total RAM the server must have. However, recent virtualization improvements allow you to overcommit the memory.
Disks

The faster the disks, the better. Ravada uses incremental files for the disks images, so clones won’t require many space. Read these recommendations if you want to buy a new dedicated server.

3.1.4 Install Ravada

Follow the detailed instructions in this section to install on different operating systems:

- Ubuntu
- Debian
- RedHat Fedora

Ravada can be installed from package or using docker.

- Docker

Follow this guide if you are only upgrading Ravada from a previous version already installed.

3.1.5 Client

The client must have a spice viewer such as virt-viewer. There is a package for linux and it can also be downloaded for windows.

3.1.6 Run

When Ravada is installed, learn how to run and use it.

3.1.7 Help

Struggling with the installation procedure? We tried to make it easy but let us know if you need assistance. There is also a troubleshooting page with common problems that admins may face.

3.2 Install Ravada in Ubuntu

3.2.1 Upgrade Ravada

Follow this guide if you are only upgrading Ravada from a previous version already installed.

3.2.2 Ubuntu

Note: We only provide support for Ubuntu 18.04 and 20.04.

We provide deb Ubuntu packages on the UPC ETSETB repository.

Install the ravada package. Choose the one that matches your OS release:
When you run dpkg now it may show some errors, it is ok, keep reading.

```
$ wget http://infoteleco.upc.edu/img/debian/ravada_0.8.3_ubuntu-18.04_all.deb
$ sudo dpkg -i ravada_0.8.3_ubuntu-18.04_all.deb
```

The last command will show a warning about missing dependencies. Install them running:

```
$ sudo apt-get update
$ sudo apt-get -f install
```

3.2.3 Mysql Database

MySQL server

Warning: MySql required minimum version 5.6

It is required a MySQL server, it can be installed in another host or in the same one as the ravada package.

```
$ sudo apt-get install mysql-server
```

After completion of mysql installation, run command:

```
$ sudo mysql_secure_installation
```

MySQL database and user

It is required a database for internal use. In this examples we call it *ravada*. We also need an user and a password to connect to the database. It is customary to call it *rvd_user*. In this stage the system wants you to set a password for the sql connection.

Warning: When installing MySQL you wont be asked for a password, you can set a password for the root user in MySQL via *mysql_secure_installation* or type your user's password when it ask's you for a password.

Create the database:

```
$ sudo mysqladmin -u root -p create ravada
```

Grant all permissions on this database to the *rvd_user*:

```
$ sudo mysql -u root -p ravada -e "create user 'rvd_user'@'localhost' identified by 'Pword12345*'";
$ sudo mysql -u root -p ravada -e "grant all on ravada.* to 'rvd_user'@'localhost'";
```

The password chosen must fulfill the following characteristics:

- At least 8 characters.
- At least 1 number.
- At least 1 special character.
Config file

Create a config file at /etc/ravada.conf with the username and password you just declared at the previous step. Please note that you need to edit the user and password via an editor. Here, we present Vi as an example.

```bash
sudo vi /etc/ravada.conf
db:
  user: rvd_user
  password: Pword12345*
```

3.2.4 Ravada web user

Add a new user for the ravada web. Use rvd_back to create it. It will perform some initialization duties in the database the very first time this script is executed.

When asked if this user is admin answer yes.

```bash
$ sudo /usr/sbin/rvd_back --add-user user.name
```

3.2.5 Client

The client must have a spice viewer such as virt-viewer. There is a package for linux and it can also be downloaded for windows.

3.2.6 Run

The Ravada server is now installed, learn how to run and use it.

3.2.7 Help

Struggling with the installation procedure? We tried to make it easy but let us know if you need assistance. There is also a troubleshooting page with common problems that admins may face.

3.3 Install Ravada in Debian

3.3.1 Upgrade Ravada

Follow this guide if you are only upgrading Ravada from a previous version already installed.

3.3.2 Debian

This is the guide to install Ravada in Debian Buster. Follow this guide if you prefer Debian Jessie.

We provide deb packages on the UPC ETSETB repository.

Install the ravada package. Choose the one that matches your OS release:

- `ravada_0.8.3_debian-10_all.deb`

When you run dpkg now it may show some errors, it is ok, keep reading.
$ wget http://infoteleco.upc.edu/img/debian/ravada_0.8.3_debian-10_all.deb
$ sudo dpkg -i ravada_0.8.3_debian-10_all.deb

The last command will show a warning about missing dependencies. Install them running:

$ sudo apt-get update
$ sudo apt-get -f install

Debian KVM

You must enable spice KVM manually:

$ sudo ln -s /usr/bin/kvm /usr/bin/kvm-spice

3.3.3 Mysql Database

MariaDB server

It is required a MySQL or MariaDB server, it can be installed in another host or in the same one as the ravada package.

$ sudo apt-get install mariadb-server

MariaDB database and user

It is required a database for internal use. In this examples we call it `ravada`. We also need an user and a password to connect to the database. It is customary to call it `rvd_user`. In this stage the system wants you to set a password for the sql connection.

$ sudo mysqladmin -u root -p create ravada

Grant all permissions on this database to the `rvd_user`:

$ sudo mysql -u root -p ravada -e "create user 'rvd_user'@'localhost' identified by 'Pword12345*';"

$ sudo mysql -u root -p ravada -e "grant all on ravada.* to rvd_user@'localhost';"

The password chosen must fulfill the following characteristics:

- At least 8 characters.
- At least 1 number.
- At least 1 special character.

Config file

Create a config file at `/etc/ravada.conf` with the username and password you just declared at the previous step. Please note that you need to edit the user and password via an editor. Here, we present Vi as an example.

```bash
sudo vi /etc/ravada.conf
db:
  user: rvd_user
  password: Pword12345*
```

3.3. Install Ravada in Debian
3.3.4 Ravada web user

Add a new user for the ravada web. Use rvd_back to create it. It will perform some initialization duties in the database the very first time this script is executed.

When asked if this user is admin answer yes.

$ sudo /usr/sbin/rvd_back --add-user user.name

3.3.5 Client

The client must have a spice viewer such as virt-viewer. There is a package for linux and it can also be downloaded for windows.

3.3.6 Run

The Ravada server is now installed, learn how to run and use it.

3.3.7 Help

Struggling with the installation procedure? We tried to make it easy but let us know if you need assistance. There is also a troubleshooting page with common problems that admins may face.

3.4 Install Ravada on Fedora

3.4.1 Requirements

3.4.2 OS

Ravada works in any Linux distribution.

3.4.3 Hardware

It depends on the number and type of virtual machines. For common scenarios are server memory, storage and network bandwidth the most critical requirements.

Memory

RAM is the main issue. Multiply the number of concurrent workstations by the amount of memory each one requires and that is the total RAM the server must have.

Disks

The faster the disks, the better. Ravada uses incremental files for the disks images, so clones won’t require many space.
3.4.4 Install Ravada

Follow this guide if you are only upgrading Ravada from a previous version already installed.

3.4.5 Fedora and EPEL7

You can install ravada using the ‘dnf’ package manager.

$ sudo dnf install ravada

Add link to kvm-spice

This may change in the future but actually a link to kvm-spice is required. Create it this way:

$ ln -s /usr/bin/qemu-kvm /usr/bin/kvm-spice

MySQL server

It is required a MySQL server, in Fedora we use MariaDB server. It can be installed in another host or in the same as the ravada package.

$ sudo dnf install mariadb mariadb-server

And don’t forget to enable and start the server process:

$ sudo systemctl enable --now mariadb.service
$ sudo systemctl start mariadb.service

MySQL database and user

It is required a database for internal use. In this examples we call it ravada. We also need an user and a password to connect to the database. It is customary to call it rvd_user. In this stage the system wants you to set a password for the sql connection.

Warning: If installing ravada on Ubuntu 18 or newer you should enter your user’s password instead of mysql’s root password.

Create the database:

$ sudo mysqladmin -u root -p create ravada

Grant all permissions on this database to the rvd_user:

$ sudo mysql -u root -p ravada -e "grant all on ravada.* to rvd_user@'localhost' identified by 'Pword12345';"

The password chosen must fulfill the following characteristics:

• At least 8 characters.
• At least 1 number.
• At least 1 special character.
Config file

Create a config file at /etc/ravada.conf with the username and password you just declared at the previous step. Please note that you need to edit the user and password via an editor. Here, we present Vi as an example.

```
sudo vi /etc/ravada.conf
```
```
db:
  user: rvd_user
  password: Pword12345*
```

3.4.6 Ravada web user

Add a new user for the ravada web. Use rvd_back to create it. It will perform some initialization duties in the database the very first time this script is executed.

When asked if this user is admin answer yes.

$ sudo /usr/sbin/rvd_back --add-user user.name

3.4.7 Firewall (Optional)

The server must be able to send DHCP packets to its own virtual interface.

KVM should be using a virtual interface for the NAT domains. Look what is the address range and add it to your iptables configuration.

First we try to find out what is the new internal network:

```
sudo route -n
```
```
192.168.122.0 0.0.0.0 255.255.255.0 U 0 0 0 virbr0
```

So it is 192.168.122.0, netmask 24. Add it to your iptables configuration:

```
$ sudo iptables -A INPUT -s 192.168.122.0/24 -p udp --dport 67:68 --sport 67:68 -j ACCEPT
```

To confirm that the configuration was updated, check it with:

```
$ sudo iptables -S
```

3.4.8 Client

The client must have a spice viewer such as virt-viewer. There is a package for linux and it can also be downloaded for windows.

3.4.9 Run

The Ravada server is now installed, learn how to run and use it.

3.4.10 Help

Struggling with the installation procedure? We tried to make it easy but let us know if you need assistance.

There is also a troubleshooting page with common problems that admins may face.
3.5 Install Ravada - Ubuntu Xenial

It is advisable to install Ravada in one of the supported platforms: Ubuntu Bionic (18.04) or Fedora. But if you want to install in another distribution it can be done.

3.5.1 Packages

Install those packages:

$ sudo apt-get install perl libmojolicious-perl mysql-common libauthen-passphrase-perl libdbd-mysql-perl... adduser libdigest-sha-perl qemu-kvm libnet-ssh2-perl libfile-rsync-perl libdate-calc-perl libparallel-forkmanager-perl

In addition you need one package that it still may not be in Ubuntu repository, download from our own server at the UPC ETSETB repository and install it this way:

$ wget http://infoteleco.upc.edu/img/debian/libmojolicious-plugin-renderfile-perl_0.10-1_all.deb
$ sudo dpkg -i libmojolicious-plugin-renderfile-perl_0.10-1_all.deb

These packages are required to build some dependencies from source:

$ sudo apt-get install gcc gcc-4.8 make libssh2-1-dev libnet-ssh2-perl libssh2-1 libdate-calc-perl zlib1g-dev libpcre3-dev zlib1g-dev libpcre3-dev

3.5.2 Perl Modules

Some Perl modules must be compiled from source:

$ sudo perl -MCPAN -we 'install "Net::SSH2"'

3.5.3 Database and configuration

From now on you can follow the instructions for Ubuntu 18.04. Skip to the MySQL installation step.

Install Ravada in Ubuntu 18.04.

3.6 Install Ravada from dockers

3.6.1 Requirements

3.6.2 OS

Install Docker and docker-compose on your local machine.

Note: There are several versions of the Compose file format – 1, 2, 2.x, and 3.x. For now, we use 2.2 keep this in mind https://docs.docker.com/compose/compose-file/

As of now [at the time of writing this doc], we recommend

$ docker --version
$ Docker version 10.7.0, build a872fc2f86
$ docker-compose --version
$ docker-compose version 0.8.0, build d4d1b42b
3.6.3 Hardware

It depends on the number and type of virtual machines. For common scenarios are server memory, storage and network bandwidth the most critical requirements.

Memory

RAM is the main issue. Multiply the number of concurrent workstations by the amount of memory each one requires and that is the total RAM the server must have.

Disks

The faster the disks, the better. Ravada uses incremental files for the disks images, so clones won’t require many space.

3.6.4 Install Ravada from dockers

Follow these steps:

$ cd ~
$ mkdir src
$ git clone https://github.com/UPC/ravada.git
$ cd ravada/dockerfy
$ docker-compose pull
$ docker-compose up -d

3.6.5 Ravada web user

Add a new user for the ravada web. Use rvd_back to create it. It will perform some initialization duties in the database the very first time this script is executed.

Connect to ravada-back docker: (We’ll implement an automatically solution to avoid this case)

$ ~/src/ravada/dockerfy> docker exec -it ravada-back bash
$ root@6c3089f22e77:/ravada# PERL5LIB=./lib ./script/rvd_back --add-user admin
$ admin password: acme
$ is admin ? : [y/n] y

It’s over! You can connect to: http://localhost:3000

3.6.6 Client

The client must have a spice viewer such as virt-viewer. There is a package for linux and it can also be downloaded for windows.

3.6.7 Run

The Ravada server is now installed, learn how to run and use it.
3.6.8 Dockers troubleshoots

- Check if all dockers are up

 `$ docker-compose ps`

- **No such file or directory** If you see this message remember that the source project must be in your HOME directory inside src directory: `~/.src/ravada`

 `$ root@6f8d2946c40c:/ravada# PERL5LIB=./lib ./script/rvd_back --add-user soporte`

 `$ bash: ./script/rvd_back: No such file or directory`

 - **Let’s do a reset:** We want to return to an initial starting point Remove all dockers and volume associated.

 `$ cd ~/.src/ravada/dockerfy/utils`

 `$./remove_all.sh`

3.6.9 Help

Struggling with the installation procedure? We tried to make it easy but let us know if you need assistance. Maybe this slides can help you.

There is also a troubleshooting page with common problems that admins may face.

3.7 Running Ravada in production

Ravada has two daemons that must run on the production server:

- `rvd_back`: must run as root and manages the virtual machines
- `rvd_front`: is the web frontend that sends requests to the backend

3.7.1 System services

Configuration for boot start

There are two services to start and stop the two ravada daemons:

After install or upgrade you may have to refresh the systemd service units:

```
$ sudo systemctl daemon-reload
```

Check the services are enabled to run at startup

```
$ sudo systemctl enable rvd_back
$ sudo systemctl enable rvd_front
```

Start

```
$ sudo systemctl start rvd_back
$ sudo systemctl start rvd_front
```
Status

You should check if the daemons started right the very first time with the status command. See troubleshooting frequently problems if it failed to start.

```bash
$ sudo systemctl status rvd_back
$ sudo systemctl status rvd_front
```

Stop

```bash
$ sudo systemctl stop rvd_back
$ sudo systemctl stop rvd_front
```

3.7.2 Qemu

Ravada uses Qemu to manage the virtual machines. We encourage change this settings so hibernated machines are stored compressed. This way you will save a large amount of disk space on your server.

Edit the file `/etc/libvirt/qemu.conf` and uncomment and change this line:

```bash
save_image_format = "bzip2"
```

You have to restart libvirt after changing this file:

```bash
$ sudo systemctl restart libvirtd
```

3.7.3 Apache

You can reach the Ravada frontend heading to `http://your.server.ip:8081/`. It is advised to run an Apache server or similar before the frontend.

In order to make ravada use apache, you must follow the steps explained on [here](#).

3.7.4 Firewall

Ravada uses `iptables` to restrict the access to the virtual machines. These iptables rules grants access to the admin workstation to all the domains and disables the access to everyone else. When the users access through the web broker they are allowed to the port of their virtual machines. Ravada uses its own iptables chain called ‘ravada’ to do so:

```bash
-A INPUT -p tcp -m tcp -s ip.of.admin.workstation --dport 5900:7000 -j ACCEPT
-A INPUT -p tcp -m tcp --dport 5900:7000 -j DROP
```

3.7.5 Help

Struggling with the installation procedure? We tried to make it easy but let us know if you need assistance.

There is also a troubleshooting page with common problems that admins may face.

If you do not know how to create a virtual machine, please read creating virtual machines.
3.8 Post Install Recommendations

3.8.1 Firewall

The server must be able to send DHCP packets to its own virtual interface.

KVM should be using a virtual interface for the NAT domains.

First we try to find out what is the new internal network:

 sudo ip route

... 192.168.122.0/24 dev virbr0 proto kernel scope link src 192.168.122.1

So it is the interface virbr0.

Add it to your iptables configuration. This will allow some traffic between the host and the virtual machines: DHCP, DNS and ping.

$ sudo iptables -A INPUT -i virbr0 -p udp -m udp --dport 67:68 -j ACCEPT
$ sudo iptables -A INPUT -i virbr0 -p udp -m udp --dport 53 -j ACCEPT
$ sudo iptables -A INPUT -i virbr0 -p udp -m udp --dport 5353 -j ACCEPT
$ sudo iptables -A INPUT -i virbr0 -p tcp -m tcp --dport 53 -j ACCEPT
$ sudo iptables -A INPUT -i virbr0 -p tcp -m tcp --dport 5353 -j ACCEPT
$ sudo iptables -A INPUT -i virbr0 -p icmp --icmp-type 8 -j ACCEPT
$ sudo iptables -A OUTPUT -o virbr0 -p udp -m udp --port 67:68 -j ACCEPT
$ sudo iptables -A OUTPUT -o virbr0 -p udp -m udp --port 53 -j ACCEPT
$ sudo iptables -A OUTPUT -o virbr0 -p udp -m udp --port 5353 -j ACCEPT
$ sudo iptables -A OUTPUT -o virbr0 -p icmp --icmp-type 8 -j ACCEPT

To confirm that the configuration was updated, check it with:

$ sudo iptables -S

3.8.2 Configuration

The frontend has a secret passphrase that should be changed. Cookies and user session rely on this. You can have many passphrases that get rotated to improve security even more.

Change the file /etc/rvd_front.conf line secrets like this:

```
, secrets => ['my secret 1', 'my secret 2']
```

3.9 Development release

Note: If you are not sure, you probably want to install the stable release. Follow this guide.

You can get the development release cloning the sources.

```
$ git clone https://github.com/UPC/ravada.git
```

Warning: Don’t do this if you install a packaged release.
3.9.1 Possible development scenarios where to deploy

Obviously if you can deploy on a physical machine will be better but it is not always possible. In that case you can test on a nested KVM, that is, a KVM inside another KVM.

Note: KVM requires VT-X / AMD-V.

```sh
$ sudo apt install cpu-checker
$ sudo kvm-ok
```

Warning: Do not consider VirtualBox in this situation, because it doesn’t pass VT-X / AMD-V to the guest operating system.

3.9.2 Ubuntu required packages

Check this file at the line `depends` for a list of required packages. You must install it running:

Note: The libvirt-bin package was dropped since Ubuntu 18.10. The package was split into two parts: `libvirt-daemon-system` and `libvirt-clients`.

```sh
$ sudo apt-get install perl libmojolicious-perl mysql-common libauthen-passphrase-perl libdbd-mysql-perl ...
```

3.9.3 Mysql Database

Ravada needs a MySQL database to store information.

MySQL server

Warning: MySQL required minimum version 5.6

It is required a MySQL server, it can be installed in another host or in the same one as the ravada package.

Ubuntu based distros

```
$ sudo apt-get install mysql-server
```

Debian based distros

```
$ sudo apt-get install mariadb-server
```

RedHat and Fedora based distros

```
$ sudo dnf install mariadb mariadb-server
$ sudo systemctl enable --now mariadb.service
$ sudo systemctl start mariadb.service
```

After completion of mysql installation, run command:

```
$ sudo mysql_secure_installation
```
MySQL database and user

It is required a database for internal use. In this examples we call it *ravada*. We also need an user and a password to connect to the database. It is customary to call it *rvd_user*. In this stage the system wants you to set a password for the sql connection.

Warning: When installing MySQL you won't be asked for a password, you can set a password for the root user in MySQL via *mysql_secure_installation* or type your user’s password when it asks you for a password.

Create the database:

```
$ sudo mysqladmin -u root -p create ravada
```

Grant all permissions on this database to the *rvd_user*:

```
$ sudo mysql -u root -p ravada -e "create user 'rvd_user'@'localhost' identified by 'Pword12345*';"
$ sudo mysql -u root -p ravada -e "grant all on ravada.* to rvd_user@'localhost';"
```

The password chosen must fulfill the following characteristics:

- At least 8 characters.
- At least 1 number.
- At least 1 special character.

3.9.4 Config file

Create a config file at `/etc/ravada.conf` with the username and password you just declared at the previous step.

```
db:
  user: rvd_user
  password: *****
```

When developing Ravada, your username must be able to read the configuration file. Protect the config file from others and make it yours.

```
$ sudo chmod o-rx /etc/ravada.conf
$ sudo chown your_username /etc/ravada.conf
```

3.9.5 Ravada web user

Add a new user for the ravada web. Use *rvd_back* to create it.

```
$ cd ravada
$ sudo PERL5LIB=./lib ./script/rvd_back --add-user user.name
```

3.9.6 Firewall(Optional)

The server must be able to send DHCP packets to its own virtual interface.

KVM should be using a virtual interface for the NAT domains. Look what is the address range and add it to your iptables configuration.

First we try to find out what is the new internal network:
RavadaVDI

sudo route -n
...
192.168.122.0 0.0.0.0 255.255.255.0 U 0 0 0 virbr0

So it is 192.168.122.0, netmask 24. Add it to your iptables configuration:

```
-A INPUT -s 192.168.122.0/24 -p udp --dport 67:68 --sport 67:68 -j ACCEPT
```

3.9.7 Client

The client must have a spice viewer such as virt-viewer. There is a package for linux and it can also be downloaded for windows.

3.9.8 Daemons

Ravada has two daemons that must run on the server:

- **rvd_back**: must run as root and manages the virtual machines
- **rvd_front**: is the web frontend that sends requests to the backend

Run each one of these commands in a separate terminal

Run the backend in a terminal:

```
$ sudo PERL5LIB=./lib ./script/rvd_back --debug
$ Starting rvd_back v1.2.0
```

The backend must be stopped and started again when you change a library file. Stop it pressing CTRL-C

Run the frontend in another terminal:

```
$ PERL5LIB=./lib morbo ./script/rvd_front
$ Server available at http://127.0.0.1:3000
```

Now you must be able to reach ravada at the location http://your.ip:3000 or http://127.0.0.1:3000 if you run it in your own workstation.

The frontend will restart itself when it detects a change in the libraries. There is no need to stop it and start it again.

3.9.9 Start/Shutdown scripts

If you wish to create a script to automatize the start and shutdown of the ravada server, you can use these two bash scripts:

```bash
#!/bin/bash
#script to start ravada server

display_usage()
{
    echo "./start_ravada"
    echo "./start_ravada 1 (messages not shown to terminal)"
}

if [ "$1" == "-h" ]
then
display_usage
exit 1
```

(continues on next page)
else
 SHOW_MESSAGES=$1
 export PERL5LIB="./lib"
 if ["$SHOW_MESSAGES" == "1"]
 then
 morbo -v ./script/rvd_front > /dev/null 2>&1 &
 sudo PERL5LIB=./lib ./script/rvd_back --debug > /dev/null 2>&1 &
 else
 morbo -v ./script/rvd_front &
 sudo PERL5LIB=./lib ./script/rvd_back --debug &
 fi
 fi
 echo "Server initialized successfully."
fi

#!/bin/bash
#script to shutdown the ravada server
pid_front=$(pidof './script/rvd_front')
if [-n "$pid_front"];then
 echo "Shutting down rvd_front"
 sudo kill -15 $pid_front
else
 echo rvd_front already down
fi

pid_back=$(pidof -x './script/rvd_back')
if [-n "$pid_back"];then
 echo "Shutting down rvd_back"
 sudo kill -15 $pid_back
else
 echo rvd_back already down
fi

3.10 Ubuntu installation

This document aims to demonstrate how to install Ubuntu operating system on user computer.

Tip: You can try Ubuntu Desktop or Server, last is recommended.

3.10.1 Steps

1. The user needs at least 4.5 GB of free space on their computer.
2. Connect your USB or DVD containing Ubuntu program.
3. When you turn on your computer the below image must show up automatically or by pressing F12.
4. Make sure you are connected to internet, then the below image is shown. Mark both options and click on "continue".
5. Below shows how to Use the checkboxes to choose whether you’d like to Install Ubuntu alongside another operating system, delete your existing operating system and replace it with Ubuntu. in our case we select “Something Else” and click on “continue”.

6. In this stage, you will create partitions.

7. The last step is choosing your language and region. After doing so and restarting your computer you can start using Ubuntu.

3.11 Add KVM storage pool

If you run out of disk space you may add a new disk.

Note: KVM mush then be informed about this new space available by creating a new storage pool.

3.11.1 Add the drive to the system

After booting with the new drive, check dmesg to find out the name of the new disk. It will probably be called /dev/sdSOMETHING.

Double check this is actually the new disk, if not you may erase all the contents of the system. Type `df` to see the old disk partitions.

Create a new partition with `fdisk`. It should show it as empty. Add only one primary partition for all the free space.

Replace `sdX` by the real name of the new device:

```bash
$ sudo fdisk /dev/sdX
```

Format it with large files tuning:

```bash
$ sudo mkfs.ext4 -m 0.001 -T largefiles /dev/sdX1
```

3.11.2 Mount the new partition

Add this new partition to the filesystem table:

```bash
sudo mkdir /var/lib/libvirt/images.2
sudo vim /etc/fstab
/dev/sdb1 /var/lib/libvirt/images.2 ext4 auto 0 3
```

It will mount it next time you boot, but it can be used without rebooting issuing:

```bash
$ sudo mount -a
```

3.11.3 Add the drive to the Virtual Manager

```bash
$ sudo virsh pool-define-as pool2 dir - - - - /var/lib/libvirt/images.2
$ sudo virsh pool-autostart pool2
$ sudo virsh pool-start pool2
$ sudo virsh pool-list
```

And that’s it, now Ravada will use the pool that has more empty space the next time it needs to create a volume. If you want to fine tune what storage pool is used by default follow the advanced settings documentation.

Run Hypnotoad service and Apache as a proxy for it.
3.12 Upgrading

Even if you had Apache proxy already set up you must add some configuration options. Check Hypnotoad, modules and configuration and make sure it is exactly like this.

3.13 Configure Hypnotoad proxy

First of all you need to tell hypnotoad we are behind a proxy. This allows Mojolicious to automatically pick up the X-Forwarded-For and X-Forwarded-Proto headers.

Edit the file `/etc/rvd_front.conf` and make sure there is a line with `proxy => 1` inside hypnotoad.

```yaml
hypnotoad => {
  pid_file => '/var/run/ravada/rvd_front.pid'
,listen => ['http://*:8081']
,proxy => 1
}
```

Restart the front server to reload this configuration:

```
$ sudo systemctl restart rvd_front
```

3.14 Install Apache

```
# apt-get install apache2
```

3.15 Enable apache modules

Enable these modules.

Tip: Do it even if it is not the first time you set up Apache. We added some modules in the latest release.

```
# a2enmod ssl proxy proxy_http proxy_connect proxy_wstunnel headers
```

3.16 Apache Proxy Configuration

Link the https configuration and add the proxy lines.

```
# a2ensite default-ssl
```

Edit `/etc/apache2/sites-enabled/default-ssl.conf`.

Tip: Do not forget new `ProxyPass` and `RequestHeader` lines added in the last release.
More information about SSL configuration from Mozilla and Letsencrypt non profit CA.

3.17 Apache redirect to https

Redirect all the connections to https.

Edit `/etc/apache2/sites-enabled/000-default.conf`

```<VirtualHost *:80>
   ServerName hostname.domainname
   Redirect / https://hostname.domainname/
</VirtualHost>`

**Tip:** Remember restart Apache2 service, with `systemctl restart apache2` or `services apache2 restart`.

```$ sudo systemctl restart apache2```

3.18 How to import a Virtualbox image

Note: In this example we have VirtualBox machine called `EXAMPLE`.

3.18.1 Create an empty Virtual Machine

From the Ravada admin form, create a new virtual machine with the same operative system as the one installed in the virtual box machine.

Do not install anything in that machine, keep it off. Check what is the name of the disk volume and remove the other volumes.

Check the contents `file` attribute with the command `virsh edit EXAMPLE`,

```source file='''/var/lib/libvirt/images/EXAMPLE-vda-id8Q.img'```

Remove the `swap`, `cdrom` and other disk volumes.

This is the SWAP volume, notice its name ends in `.SWAP.img`.
This is the cdrom disk drive, remove it too.

Remove also the SWAP image file:

```bash
$ sudo rm /var/lib/libvirt/images-celerra1/EXAMPLE-aGam.SWAP.img
```

### 3.18.2 Convert the image file

Make sure the VirtualBox machine is down, then convert the VDI to raw, then to qcow2. This converted image will be used by the empty virtual machine that was created before.

**DIRECTLY VDI TO QCOW2**

```bash
$ qemu-img convert -p -f vdi -O qcow2 EXAMPLE.vdi EXAMPLE.qcow2
```

**OR IN TWO STEPS**

1. **Convert to raw**

```bash
$ VBoxManage clonehd --format RAW EXAMPLE.vdi EXAMPLE.img
```

2. **Convert to qcow2**

Convert to qcow2 using the name you saw before in the XML definition of the machine:

```bash
$ sudo qemu-img convert -p -f raw EXAMPLE.vdi -O qcow2 /var/lib/libvirt/images/EXAMPLE-vda-id8Q.img
```

### 3.19 How to create a Virtual Machine

It is probable that when you start reading this document, you have set up and install Ravada successfully and now it is time to create a virtual machine.

#### 3.19.1 Steps

1. First of all, log into Ravada using the username and password you created in previous steps of installation.
2. On top right of the page, click on “Admin Tools” and then “Machines”.
3. In the new page, click on “New Machine”.
4. Choose a name for your virtual machine and choose an option for the ISO image. The selected image needs to be installed accordingly.
5. Now, you can see a list of available machines and the operations of each.

**Note:** Please note that you can see any upcoming error or problems in section “messages”.

### 3.20 How to dump a hard drive to Ravada

#### 3.20.1 Introduction

#### 3.20.2 Tools

- External hard disk or something similar, you will need to save about 60GB or 100GB.

#### 3.20.3 Procedure

See the video: https://www.youtube.com/watch?v=KtgdWsyNemA

### 3.21 How to Install a local LDAP

#### 3.21.1 Install 389-ds

```
$ sudo apt-get install 389-ds-base
```

#### 3.21.2 Configure directory server

**Release 1.3 [old]**

This is the configuration tool for older releases of 389 directory server. If there is no setup-ds tool in your system you probably have the new release, skip to Release 1.4 instruction bellow.

```
$ sudo setup-ds
```

When requested the server name, answer with the full qualified domain name of the host: hostname.domainname. In the next step you must supply the domain name as base for the configuration. So if your domain name is “foobar.com”, the base will be “dc=foobar,dc=com”.

**Release 1.4 [new]**

From release 1.4 we provide an example configuration file for creating the new directory instance. Review it at `/etc/ds389.conf` and use it with `dscreate`:

```
$ sudo dscreate from-file /etc/ds389.conf
```
Enable and Start the service

$ sudo systemctl start dirsrv@localhost
$ sudo systemctl enable dirsrv@localhost

3.21.3 Add a LDAP section in the config file

The config file usually is /etc/ravada.conf. Add this configuration:

```ini
ldap:
 admin_group: test.admin.group
 admin_user:
 dn: cn=Directory Manager
 password: 12345678
 base: 'dc=example,dc=com'
```

3.21.4 Insert one test user

The ravada backend script allows creating users in the LDAP

$ sudo rvd_back --add-user-ldap jimmy.mcnulty

There are more commands to easily manage LDAP entries. Check the LDAP section from the CLI documentation.

3.22 How to add a KVM template

ISO images are required to create KVM virtual machines. They can be placed or downloaded at run time.

3.22.1 Placing your own ISO image

Copy the .iso file to the KVM storage, it is /var/lib/libvirt/images by default. Make sure everybody can read it

# chmod 755 file.iso

Get the md5 for the ISO file, you will need it for the next step:

# md5sum file.iso

Add an entry to the SQL table:

```
mysql -u rvd_user -p ravada
mysql> INSERT INTO iso_images (name, description, arch, xml, xml_volume, md5, sha256, device)
VALUES ('name','the description', 'i386', 'name.xml' ,'name-vol.xml','bbblamd5sumjustgenerated','mysha256sum','/var/lib/libvirt/images/file.iso');
```

3.22.2 XML file

A XML template file is required if you want to create machines from this ISO. In the directory /var/lib/ravada/xml there are examples. You can make new ones creating a new machine from another tool like virt-manager. Once it is down dump the xml with

# virsh dumpxml machine > name.xml
3.22.3 XML Volume file

Create a new xml volume file based in another one from /var/lib/ravada/xml.

3.22.4 URL based ISO (simplified)

For most Linux based distributions, you won’t need to manually download the ISO. Here we’re assuming that there are a valid VM definition XML and a volume XML files (based on Ubuntu 16.04 Xenial Xerus).

```
mysql -u rvd_user -p ravada
mysql> INSERT INTO iso_images (name, description, arch, xml, xml_volume, url, sha256_url)
 VALUES ('Mint 18.2 BETA Mate 64 bits', 'Mint Serena 18.2 BETA with Mate Desktop based on Ubuntu Xenial Xerus', 'amd64', 'https://ftp.heanet.ie/mirrors/linuxmint.com/testing/sha256sum.txt');
```

3.22.5 Windows specifics

For Windows you will need the virtio ISO that can be downloaded from https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso

Save it to /var/lib/libvirt/images and change the owner as you did for the Windows ISO.

```
chmod 755 /var/lib/libvirt/images/virtio-win-0.1.126.iso
```

Then edit your Windows xml file and point the second CD drive to that ISO. For the current stable virtio version, it looks like this: virsh edit machinename

```
<disk type='file' device='cdrom'>
 <driver name='qemu' type='raw'/>
 <source file='/var/lib/libvirt/images/virtio-win-0.1.126.iso'/>
 <target dev='hdc' bus='ide'/>
 <readonly/>
 <address type='drive' controller='0' bus='1' target='0' unit='0'/>
</disk>
```

You should also ensure that the system disk cache is set to ‘directsync’:

```
<driver name='qemu' type='qcow2' cache='directsync' io='native'/>
```

If you’re using the NEC xhci USB controller (the default one in our environment), you’ll need to obtain a suitable driver for the µPD720200 chipset. Plugable.com has it here http://plugable.com/drivers/renesas (2nd entry).

3.23 New ISO image

In order to use an ISO file when you create a new machine, you must first place it inside the KVM directory:

```
/var/lib/libvirt/images
```

Then you have to tell the storage engine that you changed a file manually.

```
sudo virsh pool-list
Name State Autostart
---------- -------- --------
default active yes
pool2 active yes
sudo virsh pool-refresh default
sudo virsh pool-refresh pool2
```
Reload the new machine form so the file you just uploaded shows up in the ISO list.

After that, Ravada is able to use he ISO when selecting it while creating a machine. Also, ISOs that were downloaded from Ravada can also be found in this directory.

If you want to include a KVM templated instead, use this guide.

If you need the xml or the volume (for when you wanna add a new template), you can extract them via virsh using the following commands:

- $ sudo virsh pool-list #in order to see the list of available pools
- $ sudo virsh vol-list default #in order to see the list of volumes available
- $ sudo virsh vol-dumpxml --pool default name_of_the_existing_machine.qcow2 #obtain the dump of a selected volume
- $ sudo virsh dumpxml name_of_the_existing_machine #obtain the xml of a existing selected machine

### 3.24 How to import a OpenGnsys image

First of all, copy the .img OpenGnsys image file to your Ravada system.

The .img OpenGnsys files are raw disk dump compressed with lzop. You can see the contents of a img lzop file with:

- $ lzop -l B5part3dataUbuntu.img
- $ method compressed uncompr. ratio uncompressed_name
- $ LZ01X-1 4536669058 7962881402 57.0% B5part3dataUbuntu.img.raw

Now, we will decompress the file. We have to force it because it doesn’t have a .lzop extension:

- $ lzop -x -S .img /opt/opengnsys/images/B5part3dataUbuntu.img
- $ ls
  4 drwxr-xr-x 2 root root 4096 Nov 27 12:49 .
  12 drwxrwxr-x 13 root opengnsys 12288 Nov 27 12:48 ..
  7776256 -rwxrwxr-x 1 opengnsys opengnsys 7962881402 Oct 26 12:51 B5part3dataUbuntu

As you can see, the raw file have no extension.

- $ file B5part3dataUbuntu
- $ B5part3dataUbuntu: data

Now, we have the raw content of our image disk. Opengnsys uses partclone to create an image disk. The next step is dump this raw file to a qcow2 disk using partclone.

**Tip:** You can get the partclone utilities from opengnsys, you can download from the web: [https://partclone.org/download/](https://partclone.org/download/), or extract from a partclone package for you linux distribution.

You can inspect the raw file with:

- $ ./partclone.info ./B5part3dataUbuntu
- $ Partclone v0.2.38 http://partclone.org
- $ unknow mode
- $ File system: EXTFS
- $ Device size: 69.8 GB
- $ Space in use: 69.7 GB
- $ Free Space: 85.1 MB
- $ Block size: 4096 Byte
- $ Used block: 17008739

Now, we have to create an empty qcow2 file and dump the raw file inside. First of all, create the qcow2 file. It’s important to check the size to ensure that the dump will fit in.

- $ qemu-img create -f qcow2 B5part3dataUbuntu.qcow2 70G

### 3.24. How to import a OpenGnsys image
Now, we mount the qcow2 file in your system, to dump it.

**Tip:** You can follow this guide to do it: [How to mount a qcow2 disk image](#)

```
$ qemu-nbd --connect=/dev/nbd0 ./B5part3dataUbuntu.qcow2
```

Now, we can create the partition structure of your disk. After create it, this is the result:

```
$ fdisk /dev/nbd0
$ Disk /dev/nbd0: 90 GiB, 96636764160 bytes, 188743680 sectors
$ Units: sectors of 1 * 512 = 512 bytes
$ Sector size (logical/physical): 512 bytes / 512 bytes
$ I/O size (minimum/optimal): 512 bytes / 512 bytes
$ Disklabel type: dos
$ Disk identifier: 0xc0545c3a
$
$ Device Boot Start End Sectors Size Id Type
$ /dev/nbd0p1 2048 182454271 182452224 87G 83 Linux
$ /dev/nbd0p2 182454272 188743679 6289408 3G 82 Linux swap / Solaris
```

Now, we have 2 partitions, /dev/nbd0p1 and /dev/nbd0p2. To dump the img disk we have to use the partclone.ext3 utility:

**Command to restore:**

```
$ # ./partclone.ext3 -s ./B5part3dataUbuntu -O /dev/nbd0p1 -r
$ Partclone v0.2.38 http://partclone.org
$ Starting to restore image (. /B5part3dataUbuntu) to device (/dev/nbd0p1)
$ Calculating bitmap... Please wait... done!
$ File system: EXTFS
$ Device size: 69.8 GB
$ Space in use: 69.7 GB
$ Free Space: 85.1 MB
$ Block size: 4096 Byte
$ Used block : 17008739
```

The process begins, and you can follow the logs:

```
$ 00:00:07, Remaining: 00:05:36, Completed: 2.04%, Rate: 12.16GB/min,
$ Elapsed: 00:00:01, Completed: 99.97%, Rate: 1.23GB/min,
$ Elapsed: 00:00:01, Completed: 99.97%, Rate: 1.23GB/min,
$ Elapsed: 00:05:28, Remaining: 00:00:00, Completed: 99.98%, Rate: 1.23GB/min,
$ Elapsed: 00:05:29, Remaining: 00:00:00, Completed:100.00%, Rate: 1.23GB/min,
$ Elapsed: 00:56:29, Remaining: 00:00:00, Completed:100.00%, Rate: 1.23GB/min,
$ Total Time: 00:56:29, Ave. Rate: 1.2GB/min, 100.00% completed!
$ Total Time: 00:56:29, Ave. Rate: 1.2GB/min, 100.00% completed!
$ Syncing... OK!
$ Partclone successfully restored the image (. /B5part3dataUbuntu) to the device (/dev/nbd0p1)
$ Cloned successfully.
$ root@willow: /ssd/estegoxCloneC6root@willow:/ssd/estegoxCloneC6#
$
$ Now, you can verify the filesystem, mounting it:
$ mount /dev/nbd0p1 /mnt/suse
$
Maybe didn’t full the entire disk. You can expand it to fit all the disk:

$ umount /mnt/suse
$ e2fsck /dev/nbd0p1
$ e2fsck 1.43.5 (04-Aug-2017)
$ /dev/nbd0p1: clean, 1897474/5701632 files, 16969078/22806528 blocks
$ resize2fs /dev/nbd0p1

Now, unmount que qcow2 file:

$qemu-nbd --disconnect /dev/nbd0

And that’s all! Now you can create a Ravada vm and attach the disk.

It’s possible that the system needs some extra adjustments. One tipical problem is modify the /etc/fstab to change the /dev/sda references to /dev/vda. Another common problem is recreate the grub boot or add support to /dev/vda devices.

3.25 Integrating Ravada and OpenGnsys

Opengnsys is a open source project for remote deployment. This is a project developed for many Spanish universities to provide a full tool to deploy, manage, clone and manage remote computers. Opengnsys allow distribute and install many different operating systems.

Opengnsys is based in a PXE boot and a Linux graphical agent that allows manage remotely the computer from a centralized console. Here, we will explain how adapt our RAVA system to support boot from Opengnsys. The final objective is automate the creation a virtual machine with the same image that we have created for our classrooms.

3.25.1 DHCP boot options

First of all, we have to provide the dhcp options next-server and filename. to our dhcp server. Ravada is a KVM-based solutions, so, the dhcp server is the standard integrated in KVM. The DHCP-KVM server allows some configurations. Edit the KVM network configuration and add these options to the dhcp section:

$ virsh#virsh net-edit default
$ <network>
$ <name>default</name>
$ <uuid>85909d3b-f219-4055-92a3-d36c0c57810c</uuid>
$ <forward mode='nat'/>
$ <bridge name='virbr0' stp='on' delay='0'/>
$ <mac address='52:54:00:1a:06:50'/>
$ <ip address='192.168.122.1' netmask='255.255.255.0'/>
$ <tftp root='/'/>
$ <dhcp>

3.25. Integrating Ravada and OpenGnsys 33
3.25.2 Create and empty virtual machine

Now, you have to create and empty virtual machine. And empty machine boots from the iPXE network boot firmware client integrated in KVM. This is a snapshot of a vm booting process:

![Virtual machine booting process](image)

3.25.3 NAT adaptation

Now, we have detected that TFTP doesn’t work with the default KVM NAT configuration. You have to add support for it. This document explain it: https://beaveryoga.wordpress.com/2016/12/10/iptables-and-tftp-howto/

3.25.4 Create the virtual machine in the Opengnsys console

We have to create the support configuration to this virtual PC in the Opengnsys console.

The virtual machine runs inside a NATed network, usually with a 192.168.122.0/24 IP address. Then, these vms uses the Ravada server as gateway. We have to create an new classroom with the NAT configuration to allow opengnsys to assign correctly the network mask and the gateway. This is the ravada-classroom configuration:
Now, we have to create a computer inside your ravada classroom that is your virtual machine. Copy the MAC address of your empty machine:

```bash
$ virsh net-dhcp-leases default
```

<table>
<thead>
<tr>
<th>Expiry Time</th>
<th>MAC address</th>
<th>Protocol</th>
<th>IP address</th>
<th>Hostname</th>
<th>Client</th>
</tr>
</thead>
</table>

- gateway: 192.168.122.1 (KVM NAT default gateway)
- netmask: 255.255.255.0 (KVM NAT default netmask)
- IP multicast: your multicast group
- Menu: your page menu
- Repository: your image repository
And now, re-generate the TFTPBOOT files:
In this example, we have assigned the new PC to the ogAdmin group.

Now, you can boot the empty machine:

We have detected that the new machine boots, but it hangs just when the menu had to appear. After debugging, we have detected that the virtual machine don’t have access to the http server with the menus. This a problem with routing. We have resolved creating a fake computer with the IP and MAC address of the KVM external NAT:

```
$ ifconfig
$ br0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
$ inet 10.10.73.24 netmask 255.255.255.0 broadcast 10.10.73.255
$ inet6 fe80::20a:f7ff:feba:c980 prefixlen 64 scopeid 0x20<link>
$ ether 00:0a:f7:ba:c9:80 txqueuelen 1000 (Ethernet)
$ RX packets 11251336 bytes 196755808380 (196.7 GB)
$ RX errors 0 dropped 0 overruns 0 frame 0
$ TX packets 11875794 bytes 4220061188 (4.2 GB)
$ TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```
- IP: external NAT address of your RAVADA system
- MAC: external MAC address of your RAVADA system

This is our standard menu:
Now, you can boot your standard images in a virtual environment of Ravada. You have to be sure that your images have support to run in a virtualized system. In Linux images, the kernel have support /dev/vda devices. In Windows systems, you have to add the virtio drivers.

3.25.5 Special script adaptation

Our images boots ok, but our opengnsys instance doesn’t detect the virtual disk. The problem was in our system, wich is very old (v1.0.5). To add support to detect /dev/vda devices, we have patched the /opt/opengnsys/client/lib/engine/bin/Disk.lib library:

```bash
$ # Listar dispositivo para los discos duros (tipos: 3=hd, 8=sd 253=vda). inLab 2018
$ ALLDISKS=$(awk '($1==3 || $1==8 || $1==253) && $4!~/[0-9]/ printf "/dev/%s ",$4' /proc/partitions)
$ VOLGROUPS=$(vgs -a --noheadings 2>/dev/null | awk 'printf "/dev/%s ",$1')
$ ALLDISKS=$\{ALLDISKS $VOLGROUPS\}
```

This patch adds vda disk detection to the ogDiskToDev function. (minor 253 -> vda devices). This problem was fixed in later versions.

3.26 Operation
3.26.1 Create users

$ sudo ./usr/sbin/rvd_back --add-user=username

$ sudo ./usr/sbin/rvd_back --add-user-ldap=username

3.26.2 Import KVM virtual machines

Usually, virtual machines are created within ravada, but they can be imported from existing KVM domains. Once the domain is created:

$ sudo ./usr/sbin/rvd_back --import-domain=a

It will ask the name of the user the domain will be owned by.

3.26.3 View all rvd_back options

In order to manage your backend easily, rvd_back has a few flags that lets you made different things (like changing the password for an user).

If you want to view the full list, execute:

$ sudo rvd_back --help

3.26.4 Admin

Note: Must run from the frontend

Create Virtual Machine

Go to Admin -> Machines and press New Machine button.

If anything goes wrong check Admin -> Messages for information from the Ravada backend.

ISO MD5 mismatch

When downloading the ISO, it may fail or get old. Check the error message for the name of the ISO file and the ID.

Option 1: clean ISO and MD5

- Remove the ISO file shown at the error message
- Clean the MD5 entry in the database:

$ mysql -u rvd_user -p ravada mysql > update iso_images set md5='' WHERE id=*ID*

Then you have to create the machine again from scratch and make it download the ISO file.
Option 2: refresh the ISO table

If you followed Option 1 and it still fails you may have an old version of the information in the isoimages table. Remove that entry and insert the data again:

```bash
$ mysql -u rvd_user -p ravada -e "DELETE FROM iso_images WHERE id='_ID_'"
```

Insert the data from the SQL file installed with the package:

```bash
$ mysql -u rvd_user -p ravada -f /usr/share/doc/ravada/sql/data/insert_iso_images.sql
```

It will report duplicated entry errors, but the removed row should be inserted again.

3.26.5 Create base of a Virtual Machine

Go to Admin tools -> Virtual Machines

1st Base

If you have configured your Virtual Machine, now you can do the Base:

- Select the Base checkbox.

The Virtual Machine will be published if you select the Public checkbox.

2nd base or more

In this case, you have a previous Base and you’ve made some changes at the machine. Now you must prepare a Base again.

Steps:

1. Remove all clones of this Virtual Machine.
2. Select the Base checkbox to prepare base.

3.27 Swap Partition

Though installing the Operating System in a Virtual Machine may be the same as in real machines, carefully planning the swap partition of the virtual machines will save a lot of disk space. Follow those guidelines.

3.27.1 Swap Volume

Mark at the creation of the Virtual Machine that swap disk volume. The desired max size must be declared there. That way a different disk will be created with that purpose. This volume is different than regular data disk volumes: it will be created only at the start of the machine and it will be destroyed at shutdown. Also, this volume won’t keep incremental changes from the base, as data volumes do.

3.27.2 Partitioning

Later on we will address particular considerations for swap space in different operating systems. By now, keep in mind that the best practice is to keep a disk volume only for swap.
3.27.3 Linux

It is recommended to keep the swapping as less possible. If possible remove the swap partitions and the swap configuration in /etc/fstab.

Some software on Linux requires some swap to run. If so, set the swappiness to the minimum this way:

```
$ sudo sysctl vm.swappiness=1
```

To make this change permanent add it to the file: /etc/sysctl.conf

3.28 Troubleshooting frequent problems

3.28.1 Could not access KVM kernel module:

The system shows this message on trying to start a virtual Machine:

```
Could not access KVM kernel module: Permission denied failed to initialize KVM:
 → Permission denied
```

That means the host has no virtual capabilities or are disabled. Try running:

```
$ sudo tail -f /var/log/syslog
$ sudo modprobe kvm-intel
```

If it shows a message like this it means the BIOS Virt feature must be enabled:

```
kvm: disabled by bios
```

or try: kvm-ok command

```
kvm-ok
INFO: /dev/kvm does not exist
HINT: sudo modprobe kvm_intel
INFO: Your CPU supports KVM extensions
INFO: KVM (vmx) is disabled by your BIOS
HINT: Enter your BIOS setup and enable Virtualization Technology (VT),
and then hard poweroff/poweron your system
KVM acceleration can NOT be used
```

3.28.2 Dealing with permissions

The system may deny access to some directories.

On Screenshots (requires review)

That problem showed up in Vanilla Linux 4.10.

When running the screenshot command it returns:

```
failed to open file '/var/cache/libvirt/qemu/qemu.screendump.31DvW9': Permission
 → denied
```
Apparmor

At the file: /etc/apparmor.d/usr.lib.libvirt.virt-aa-helper
/var/cache/libvirt/qemu/ rw,
/var/cache/libvirt/qemu/** rw,

3.28.3 Error with MySQL version < 5.6

For example the following message:

```
DBD::mysql::db do failed: Invalid default value for 'date_send' at /usr/share/perl5/Ravada.pm line 276.
```

DEFAULT CURRENT_TIMESTAMP support for a DATETIME (datatype) was added in MySQL 5.6.
Upgrade your MySQL server or change: datetime for timestamp

date_send datetime default now(),

More information about.

3.28.4 Spice-Warning Error in certificate chain verification

```
(/usr/bin/remote-viewer:2657): Spice-Warning **: openssl_verify.c:429:openssl_verify:
 Error in certificate chain verification: self signed certificate in certificate.

```

spicec looks for %APPDATA%spicec/spice_truststore.pem / $HOME/.spicec/spice_truststore.pem. This needs to be identical to the ca-cert.pem on the server, i.e. the ca used to sign the server certificate. The client will use this to authenticate the server.

3.28.5 Network is already in use

If running VMs crash with that message:

```
libvirt error code: 1, message: internal error: Network is already in use by interface
```

You are probably running Ravada inside a virtual machine or you are using the private network that KVM uses for another interface. This is likely to happen when running Ravada in a Nested Virtual environment.

Solution: Change the KVM network definition. Edit the file /etc/libvirt/qemu/networks/default.xml and replace all the 192.168.122 network instances by another one, ie: 192.168.123.

```
sudo virsh net-edit default
<ip address='192.168.122.1' netmask='255.255.255.0'>
   <dhcp>
      <range start='192.168.122.2' end='192.168.122.254'/>
   </dhcp>
</ip>
```

Then reboot the whole system.

3.28. Troubleshooting frequent problems
3.28.6 Copy & paste integration does not work

Make sure that the VM has a Spice communication channel (com.redhat.spice.0) and that the guest additions have been installed.

The Spice channel can be added through virt-manager’s Add Hardware wizard or editing the XML:

```
<channel type='spicevmc'>
  <target type='virtio' name='com.redhat.spice.0'/>
  <address type='virtio-serial' controller='0' bus='0' port='1'/>
</channel>
```

Linux guests must install the spice-vdagent package, while Windows guests require this installer (source)

3.28.7 Resizing the viewer window does not change the guest display resolution

This feature requires the Spice communication channel and the guest additions. See above for instructions.

3.28.8 Windows 10 performance issues

Thanks to @rlunardo

- Windows10 Enterprise ISO image (Home/Professional/Enterprise) before April 2017: if you install Enterprise version, it does not reach the end of installation. Issue posted on 30/10/2017. The Professional version does complete the installation. Recent Enterprise ISO image release completes the installation also.
- Windows 10 tuning after installation: There are several web site where we can find informations and solutions to solve CPU, RAM, Disk overload on Windows 10. Here some links:
 - https://youtu.be/iHzEp8a8w10

3.28.9 Problems with the time of the VM guest

You create a VM and you set the time correctly. After this VM becomes base and the time appears altered (-2h, +2h, ...)

This is due to the parameter:

```
<clock offset='utc'> vs <clock offset='localtime'>
```

You can modify XML file from the command:

```
# virsh edit <machine_name>
```

3.28.10 Content is empty after upgrade

If after upgrade you get an almost blank screen it is probably a matter of cached javascript or CSS. Type SHIFT+F5 or SHIFT+Reload button in your browser. You could also clean browser history so it gets refreshed the next time you access the Ravada frontend.
3.28.11 Error: Web Service connection failed

If you get this error on the frontend, carefully review this documentation:

It is very common to miss some step, so please take your time and restart all the services afterwards.

3.29 Upgrade Ravada

We try to make the upgrading procedure easy. Also if you are running a very ancient or legacy release, fear not! We did our best so everything is set up with minimal user intervention.

In order to upgrade Ravada, you have to do a few steps:

3.29.1 Steps for a clean update

Step 1

Download the deb package of the new version found at the UPC ETSETB repository.

Step 2

Install the deb package.

$ sudo dpkg -i <deb file>

On some upgrades may be required to install some dependencies. You will see because the packaging system will warn about it:

dpkg: dependency problems prevent configuration of ravada:
 ravada depends on libdatetime-perl; however:
 Package libdatetime-perl is not installed.

If so, install those dependencies automatically running:

$ sudo apt-get -f install

Step 3

Reconfigure systemd.

$ sudo systemctl daemon-reload

Step 4

Restart the services.

$ sudo systemctl restart rvd_back
$ sudo systemctl restart rvd_front
Step 5

Check the apache configuration

If you upgrade from older releases you may have to add some lines to the apache proxy configuration. Check the Apache proxy guide.

Problems upgrading

Problems may arise please take a look at our troubleshooting guide. If everything fails you may contact us for assistance.

3.30 Windows SPICE Clients

3.30.1 Download Virt Viewer

Windows clients requires the virt-viewer tool to connect to their Virtual Machine.

3.30.2 Fix Windows registry

If virt-viewer won’t start automatically after when viewing the virtual machine, add this to the Registry, or download spice.reg. (Thanks to @gmiranda).

```plaintext
Windows Registry Editor Version 5.00

[HKEY_CLASSES_ROOT\spice]
@="URL:spice"
"URL Protocol"=""

[HKEY_CLASSES_ROOT\spice\DefaultIcon]
@="C:\\Program Files\\VirtViewer v5.0-256\\bin\\remote-viewer.exe,1"

[HKEY_CLASSES_ROOT\spice\Extensions]

[HKEY_CLASSES_ROOT\spice\shell]
@="open"

[HKEY_CLASSES_ROOT\spice\shell\open]
@=""C:\\Program Files\\VirtViewer v5.0-256\\bin\\remote-viewer.exe"" "%1"
```

3.31 How to change the controller driver of a Windows VM to VirtIO

1. Add a new virtio disk (a small one, even 100mb will be enough. We will not be using it)
 - Use virt manager
 - or virsh edit
2. Boot the machine
3. Make sure Windows recognises the disk controller and has the drivers for it (the disk should be visible in diskmgmt.msc)

4. Set boot to fail safe mode
 - Launch an elevated command prompt
 - Type `bcdedit /set {current} safeboot minimal`

5. Shut down

6. Change the main disk to virtio

7. Boot. Now get into the admin prompt and disable failsafe mode.
 - Launch an elevated command prompt
 - Type `bcdedit /deletevalue {current} safeboot`

8. Reboot and make sure everything works.

9. Now you can shut down the machine and remove the small virtio disk

3.32 Virtual Machine Manual Migration

If you have several Ravada servers you may want to copy a virtual machine from one to another.

In this example we copy the base for a virtual machine called *Lubuntu-1704*.

3.32.1 Temporary space in destination

At the destination server, create a temporary directory so you can store the volumes when you copy them. This directory must belong to a user that can do ssh from origin to destination:

```
root@destination:~ # mkdir /var/lib/libvirt/images/tmp
root@destination:~ # chown frankie /var/lib/libvirt/images/tmp
```

3.32.2 Import the Base

Copy the Base definition

First copy the base definition file from server origin to destination. You need an user in the destination machine and ssh connection from each other.

```
root@origin:~ # virsh dumpxml Lubuntu1704 > Lubuntu1704.xml
root@origin:~ # scp Lubuntu1704.xml frankie@dst.domain:
```

Copy the volumes

The volumes have a backing file, you must find out what it is so you can copy to destination.
Move the volumes on destination

You just copied the data on a temporary directory available to the user. That must be copied to the actual storage pool as root. Make sure you don’t have similar volumes there because that procedure will overwrite them:

```
root@dst:~/frankie# cd /var/lib/libvirt/images/tmp
root@dst:/var/lib/libvirt/images/tmp# mv Lubuntu1704-* ../
root@dst:/var/lib/libvirt/images/tmp# chown root ../Lubuntu1704-*
```

Define the base on destination

Go to the destination server and define the virtual machine base with the XML config you copied before

```
root@dst:~# cd ~frankie/
root@dst:/home/frankie# virsh define Lubuntu1704.xml
Domain base defined from Lubuntu1704.xml
```

Import the base to Ravada on destination

Run this command and you should see the base on the Ravada web admin page.

```
root@dst:~# rvd_back --import-domain Lubuntu1704
```

3.32.3 Importing clones

Now if you want to import a clone too, first you have to ask the clone owner to start the machine on destination. Then you have to copy the volumes from origin and overwrite what has just been created on destination.

Create a clone

The owner of the original clone must create a clone in destination using Ravada. That will create a basic virtual machine with the same name owned by the correct user. Stop the domain on destination:

```
root@dst:~# virsh shutdown Lubuntu1704-juan-ramon
```

Make sure it is stopped

```
root@dst:~# virsh dominfo Lubuntu1704-juan-ramon
```
Copy the clone volumes

Find out what are the clone volume files, and copy them to the temporary space in destination:

```
root@origin:~# virsh dumpxml Lubuntu1704-juan-ramon | grep "source file" | grep -v "ro."
<source file="/var/lib/libvirt/images/Lubuntu1704-juan-ramon-vda-kg.qcow2"/>
root@origin:~# rsync -av /var/lib/libvirt/images/Lubuntu1704-juan-ramon-vda-kg.qcow2 __frankie@dst:/var/lib/libvirt/images/tmp/
```

Start the clone on destination

First move the volumes to the right place, notice in destination the volumes have different names.

```
root@dst:~# virsh dumpxml Lubuntu1704-juan-ramon | grep source
<source file="/var/lib/libvirt/images/Lubuntu1704-juan-ramon-vda-nz.qcow2"/>
root@dst:~# cd /var/lib/libvirt/images/tmp/
root@dst:/var/lib/libvirt/images/tmp# mv Lubuntu1704-juan-ramon-vda-jz.qcow2 ../Lubuntu1704-juan-ramon-vda-nz.qcow2
root@dst:~# chown root /var/lib/libvirt/images/Lubuntu1704-juan-ramon-*
```

Hopefully then you can start the clone. It is a delicate procedure that must be followed carefully, please consider helping with this document if you have any suggestions.

3.33 Kiosk Mode

Kiosk (or anonymous) allows any user, not logged in, to create a volatile virtual machine. Once this machine is shut down, it is destroyed automatically.

3.33.1 Setting

This kiosk mode must be defined for some bases in some networks.

Note: Unfortunately kiosk mode configuration has not been added to the frontend. Anyway it can be set only from within the database.

Follow these steps carefully.

3.33.2 Backup the Database

As we are going to change the database, any mistake can be fatal. Backup before. If you want to have the data handy do it right now:

```
# mysqldump -u root -p ravada domains > domains.sql
# mysqldump -u root -p ravada networks > networks.sql
```
3.33.3 Define a Network

You can allow kiosk mode from any network, but you can define a new network where this mode is allowed.

```sql
# mysql -u root -p ravada
mysql> insert into networks (name, address) values ('classroom','10.0.68.0/24');
```

3.33.4 Find the ids

You must find what is the id of the network and the virtual machine where kiosk mode is enabled. This domain must be a base and allowed public access.

```sql
mysql> select id,name from domains where name='blablabla' and is_base=1 and is_public=1;
```

```
+----+-------------------+
| id | name              |
+----+-------------------+
| 22 | blablabla         |
```

```sql
mysql> select id,name from networks;
```

```
+----+-----------+
| id | name      |
+----+-----------+
| 1  | localnet  |
| 4  | all       |
| 6  | classroom |
```

3.33.5 Allow anonymous mode

```sql
mysql> insert into domains_network(id_domain, id_network,anonymous) VALUES(33, 6, 1);
```

3.33.6 Access

Access now to the anonymous section in your ravada web server. http://your.ip:8081/anonymous

You should see there the base of the virtual machine you allowed before.

3.34 How to do a volatile Virtual Machine

This means that the virtual machine will be removed when shutdown.

Note: If you enable this option in a base machine, the clones that are created thereafter will be volatile. The VMs cloned so far, if they existed, are not affected.

3.34.1 Enable/disable this option

You can enable or disable this option from the VM settings in the options tab.
3.35 Ravada Cluster

3.35.1 Adding support for multiple Ravada nodes

Description

From release 0.4 we have clustering support for Ravada. This allows the administrator to add more physical hosts so virtual machines are balanced and distributed among all them.

This feature is currently in alpha stage. It works but the management forms are ugly and we need to test it more.

Nodes

A node is a Ravada backend server that runs the virtual machines. With the current implementation it is required a main master node and secondary nodes can be added later. The master node, also known as local node should be a rock solid server. It will also run some of the virtual machines as they get balanced among all the nodes. Having fault tolerance master node is beyond the scope of this document, but we expect to add a new document for examples of how to achieve it in the future. Contributions welcome.
Secondary nodes are disposable physical hosts. It is our goal to allow these nodes be up and down at the administrator will and that they could be easily added to a cluster. Ravada should be able to cope with sudden death of those nodes, though it is better if they are disabled and shut down nicely from the Ravada node administration frontend.

Storage

Shared storage is not necessary. The base volumes will be synced across the nodes by Ravada itself. When bases are created, the administrator can configure on which nodes will be available for the virtual machines.

All the master and nodes must have the same storage pools configuration.

New node

Requirements

To add a new node to a Ravada cluster you have to install a minimal Linux operating system with these packages. Some distributions have different package names.

- openssh-server
- libvirt-bin or libvirt-daemon
- libvirt-daemon-system
- libvirt-clients
- qemu-kvm

It is possible to have nodes with heterogeneous operative systems: different Ubuntus, Debians, even RedHats or Fedora can be added, though it should be easier if all of them are similar or identical if possible.

Configuration

The master ravada node needs to access to the secondary nodes through SSH. So password-less access must be configured between them. This is an example of configuring in Debian and Ubuntu servers. Other flavours of Linux should be quite the same.

Before you start

Most of the usual mistakes come from not running the commands from the root user. Follow the guide carefully and double check you are following the instructions exactly. When you see a code like this it means it must run from the root user in the master node:

```
root@master:~#
```

This means you must run as the root user in the node.

```
root@node:~#
```

To become root user you must either login as such or run `sudo` to become root:

```
frankie@master:~ sudo bash
```
Configure Node

First, temporary allow root access with ssh to the remote node.

```
root@node:~# vi /etc/ssh/sshd_config
PermitRootLogin yes
```

Then set a root password and restart ssh service. Warning: only do this if you haven’t already set a password for the root user in this host. If you are using an Ubuntu server you probably haven’t, but debian based distributions usually set the root user on install.

```
root@node:~# passwd
Enter new UNIX password: *******
root@node:~# systemctl restart ssh
```

Configure Master

Check you can access with root from master to node:

```
root@master:~# ssh node
```

You may already have a public/private key created in the master node. Check if there are id*pub files in /root/.ssh directory. Create the keys otherwise:

```
frankie@master:~ sudo bash
root@master:~# ls /root/.ssh/id*pub || ssh-keygen
```

Now you must copy the public ssh key from master to node:

```
root@master:~# ssh-copy-id -i /root/.ssh/id_rsa.pub node
```

Check it works:

```
root@master:~# ssh node
```

Now you can restore the PermitRootLogin entry to the former state in the file /etc/ssh/sshd_config at node.

```
PermitRootLogin prohibit-password
```

Security

It is advisable have a firewall configured in the node. Access restrictions should be enforced carefully. Only allow ssh login from the master server and other operational hosts from your network.

Networking and Firewall

For the master node to start the other nodes it must have some open ports.

Master

Master must be able to send packets on udp port 9 and tcp and udp port 7
Nodes

Nodes must accept packets on udp port 9 and tcp and udp port 7

Operation

Add nodes in the new section Admin Tools - Nodes

Allow a base to create clones in nodes checking them in the machine management section, at the Base tab.

```
Virtual Machine Ubuntu Settings
```

Now try to create multiple clones from a base, they should get balanced among all the nodes including the master one.

TroubleShooting

libvirt error code: 38, message: End of file while reading data: nc: unix connect failed: No such file or directory

It means you didn’t install libvirt in the node. Fix it this way:

```
root@node:~# apt-get install libvirt-bin
```

Balance algorithm

How does Ravada decides which node will handle the next virtual machine?

We may choose a different algorithm in the future, or even allow a setting to change it. Right now it goes that way:

The list of nodes gets sorted by the number of virtual machines running. If there is a tie, the node with more free memory is chosen.

We have an extra step for speeding things up, when checking the nodes status, if one has less than 2 virtual machines running, and it has free available memory, it is picked.

There is a drawback we have yet to fix: if many virtual machines are started at the same time, some may probably go to the same node. This is because a lot of work is done in parallel.

If you think this could be improved we are open to suggestions.
TODO

We already know we have to improve:

- administration forms in the web front
- check if nodes storage gets filled
- documentation

This is a new feature, we are currently testing. Feedback welcome through our Telegram public forum http://t.me/ravadavdi or github issues.

3.36 How to make a virtual machine disk sparse

When someone had deleted files to reduce the virtual machine img size, you need to do some actions in the server to return this free space to the server.

3.36.1 Steps

1. Install libguestfs-tools

   ```
   $ apt install libguestfs-tools
   ```

2. Check the real size of the virtual machine size

   ```
   $ qemu-img info file.qcow2
   ```
 The output will be something that contains this information:

   ```
   disk size: 10G
   ```

3. Make a backup copy of the img file

   ```
   $ cp -p file.qcow2 /another/directory/file.backup.qcow2
   ```

4. Now use virt-sparsify

   ```
   $ virt-sparsify --in-place file.qcow2
   ```

5. Check if the virtual img size has been reduced

   ```
   $ qemu-img info file.qcow2
   ```
 The output now shows that the size has decreased:

   ```
   disk size: 5G
   ```

6. Check if the virtual machine works.

7. If the virtual machine works, then remove the img file backup.

Extended information about to reduce image size.

3.37 Server Hardware

So you want to buy a brand new server to run virtual machines on it. Here are some advices to achieve maximum performance and how to save some money.
3.37.1 Shared Storage

If you are planning to build a large cluster of Ravada nodes you may go to an expensive shared storage infrastructure. Be aware this can be a big deployment that can give access to thousands of users, but it will be expensive and you may have some performance issues.

See this doc about Clustering Hardware recommendations

Ravada is easy to grow, so try first a single server setup and you can add more later.

3.37.2 Initial Hardware Setup

Memory

RAM is the main issue. Multiply the number of concurrent workstations by the amount of memory each one requires and that is the total RAM the server must have. However, recent virtualization improvements allow you to overcommit the memory.

Network

For remote virtual desktops it is enough to have 1 GB ethernet cards. If you are planning on having many video intensive workstations at the same time it would be good to have 10 GB network cards on the host.

Disk Drives

You will need to store 3 different kind of data in the server:

- Operative System
- Bases volumes
- Clones volumes

Operative System Disk drives

The Operative System partitions like root, /usr and /var are critical so the server keeps running. But performance is not the main issue. Buy two or three small hard disk drives. Create RAID1 or RAID5 and define these partitions there. In our experience RAID1 is more than enough, if you can afford it, buy 3 disk drives: 2 in the RAID and the third one as a spare.

There is no much space requirement for the operative system. 50 GB should be than enough. If you buy larger disks you may create a partition to store some virtual machines volumes.

Bases Volumes

With Ravada virtual machines usually are cloned from a base. This base is prepared in advance with all the software the users need. All the machines will read information from the base volumes so it is a good idea to store this data in SSD disk drives.

This kind of disks are expensive, so you likely would want to buy only one or two small disk drives for the base volumes.

RAID5 is usually slow so it is not advised. If you want to have redundancy configure a RAID1 with 2 SSD disk drives for the base volumes. It would usually be mounted at /var/lib/libvirt/images
If you want to save some money do not use RAID for the base volumes. In our experience, top hardware vendor brand disk drives are reliable. You may get more space if you buy 2 SSD drives and create two different partitions. In this case you will have base volumes stored in /var/lib/libvirt/images.1 and /va/lib/libvirt/images.2.

Be aware that without RAID there is a downtime risk. If one of the disk drives fail the information it contains may be lost and a backup must be restored in a new replacement drive. But it is uncommon to have both disk drives failed at once, so you can restore the data in the other volume and carry on while the replacement arrives.

Clones Volumes

Clones volumes are incremental information stored on top of base volumes. Usually this data doesn’t require as much performance. So it is not a bad idea to save some money here and store the clones volumes in large mechanical disk drives. Anyway if you can afford it buy fast disks for a better user experience.

Configuration Examples

Really cheap server

- Operative System: 2 x Hard Disk Drives 100 GB in RAID1
- Volumes: 1 x Solid State Disk drives

Budget performance server

- Operative System: 2 x HDD 100 GB in RAID1
- Bases Volumes: 1 x SSD 500 GB
- Clones Volumes: 1 x HDD 1 TB

From this example you can grow as long as your budget allows it. Having more drives may give you more space. If you need high availability 24x7 you have to duplicate the volumes disk drives and set RAID1.

High Availability and performance server

- Operative System: 2 x HDD 100 GB in RAID1
- Bases Volumes: 2 x SSD 500 GB in RAID1
- Clones Volumes: 2 x HDD 1 TB in RAID1

3.37.3 Growing and Scaling

Ravada is easy to grow. Start with a tight budget, but try to buy the faster drives you can afford.

When more users start virtual machines at the same time the server may run out of memory. Adding more RAM will give you more concurrent users.

If you run out of disk space you can buy more disk drives and add more storage pools. You can configure some bases go to one storage, others to another. If you buy more storage it can be defined the new clones will be created in new partitions.

Ravada does scale: A cluster can be created from a main server and nodes can be added to it. You can use older hardware, even PCs. Ravada will automatically balance virtual machines and start in the less used nodes. You don’t need shared storage in the clusters, but if you use it start up and clone times will be much faster.
3.37.4 Backup

Borg backup is a good free choice, its main advantage is it has good deduplication features.

3.38 Cluster Hardware

3.38.1 Shared Storage

If you are planning to build a large cluster of Ravada nodes you may go to an expensive shared storage infrastructure. Be aware this can be a big deployment that can give access to thousands of users, but it will be expensive and you may have some perfomance issues.

Ravada is easy to grow, so try first a single Server setup and you can add more later.

3.38.2 Recommendations

This document needs more detailed information, for starters:

- Shared Storage with 10 GB or Fiber networking
- All Flash or mixed storage
- Two network switches for data channels

3.39 Ravada CLI

There are some things you can do from the CLI with Ravada.

This document is a work in progress. If you are interested in documenting more any feature let us know.

3.39.1 Help

$ sudo rvd_back --help

3.39.2 LDAP

You can execute some LDAP actions from the command line.

Test LDAP connection

If you wonder if Ravada is able to access correctly to your LDAP server use the --test-ldap flag. First it will try to connect, then you can type an username and password to confirm it is a valid user.

```sh
$ sudo rvd_back --test-ldap
Connection to LDAP ok
login: jimmy.mcnulty
password: whatever
LOGIN OK bind
```
Create LDAP user

Add a new entry in your LDAP server. Warning the password will be shown in the clear.

```
$ sudo rvd_back --add-user-ldap jimmy.mcnulty
```

Create LDAP group

Add a new group in your LDAP server. These are POSIX groups with member uids inside.

```
$ sudo rvd_back --add-group-ldap staff
```

Add users to LDAP groups

Once you have users and groups in your LDAP server you can easily add member entries to a group. *Warning*: the user must have logged in at least once.

A list of known LDAP groups will be shown. If the user is already member of a group it will be flagged with a *YES*. Type the name of the new group you want the user to belong to:

```
$ sudo rvd_back --add-user-group jimmy.mcnulty
$ - staff:
$ - cops: YES
$ - students:
$ - teachers:
$ Add user to LDAP group: teachers
```

3.40 Intel GPU Virtualisation (GVT-g)

3.40.1 Status

At the time of writing, there is no explicit support for GVT-g in Ravada. On the other hand, a Ravada VM can be configured using libvirt.

Please note that this is a very active topic and the instructions outlined here might not work in your environment. You may want to read the official Intel GVT Wiki first.

This guide will focus on GVT-g using the dmabuf approach.

3.40.2 Requirements

- An Intel desktop CPU with an iGPU that supports GVT-g. Check the setup guide.
- A properly configured kernel along with a recent version of qemu. We were successful with Ubuntu 19.10.

3.40.3 Outline

This approach creates a unique PCIe device that cannot be shared between VM instances. It is then assigned as managed device to a virtual machine (similarly to a passthrough GPU). The virtual machine must have a primary video device (qxl or cirrus) with a lower PCIe ID than the managed device (the supplied sample XML configuration already satisfies this).
During the first boot, 2 displays will be available through SPICE (remote-viewer), one for each video device where the second one is likely a black screen. Once the OS is loaded, the second one should start displaying something. It then time to check that Intel drivers are properly installed and disable the first display in the OS and power off.

The final step is to change the first video device from qxl (or cirrus) to none, using virt-manager or virsh-edit. A sample XML configuration is also provided for this.

Please note that Intel GPUs do not support automatic display resizing, unlike QXL.

3.40.4 Configuration

Kernel

Make sure that you're booting the kernel with the following parameters:

```
GRUB_CMDLINE_LINUX="i915.enable_gvt=1
kvm.ignore_msrs=1 intel_iommu=igfx_off drm.debug=0"
```

Create a virtual GPU

You need to generate a unique identifier for each virtual GPU. Note that we were only able to create a single GPU, although in the official tutorial 3 are created.

Mind that you may have to alter the following command depending on your hardware.

```
# uuid
# fff6f017-3417-4ad3-b05e-17ae3e1a4615
#
# echo "fff6f017-3417-4ad3-b05e-17ae3e1a4615" > "/sys/bus/pci/devices/0000:00:02.0/mdev_supported_type"
```

Assign the GPU to a VM

The following XML configuration can be used to install and configure the guest OS.

```
Listing 1: pre.xml

```
<vcpu pin vcpu='5' cpuset='5'/>
<vcpu pin vcpu='6' cpuset='6'/>
<vcpu pin vcpu='7' cpuset='7'/>
</cputune>
<os>
 <type arch='x86_64' machine='pc-q35-3.1'>hvm</type>
 <bootmenu enable='no'/>
</os>
<features>
 <acpi/>
 <apic/>
 <hyperv>
 <relaxed state='on'/>
 <vapic state='on'/>
 <spinlocks state='on' retries='8191'/>
 <vpindex state='on'/>
 <sync state='on'/>
 <stimer state='on'/>
 <frequencies state='on'/>
 </hyperv>
 <vmport state='off'/>
 <ioapic driver='kvm'/>
</features>
<cpu mode='host-passthrough' check='partial'>
 <topology sockets='1' cores='4' threads='2'/>
 <cache mode='passthrough'/>
</cpu>
<clock offset='localtime'>
 <timer name='rtc' tickpolicy='catchup'/>
 <timer name='pit' tickpolicy='delay'/>
 <timer name='hypervclock' present='yes'/>
</clock>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>destroy</on_crash>
<pm>
 <suspend-to-mem enabled='no'/>
 <suspend-to-disk enabled='no'/>
</pm>
<devices>
 <emulator>/usr/bin/kvm</emulator>
 <disk type='file' device='disk'>
 <driver name='qemu' type='qcow2' cache='directsync' io='native'/>
 <source file='/var/lib/libvirt/images.2/win10-gvt.qcow2'/>
 <target dev='sda' bus='scsi'/>
 <boot order='1'/>
 <address type='drive' controller='0' bus='0' target='0' unit='1'/>
 </disk>
 <disk type='file' device='cdrom'>
 <driver name='qemu' type='raw'/>
 <source file='/var/lib/libvirt/images.2/Win10_Spanish_x64.iso'/>
 <target dev='sdb' bus='scsi'/>
 <readonly/>
 <boot order='2'/>
 <address type='drive' controller='0' bus='0' target='0' unit='2'/>
 </disk>
</devices>

3.40. Intel GPU Virtualisation (GVT-g)
<disk type='file' device='cdrom'>
 <driver name='qemu' type='raw'/>
 <source file='/var/lib/libvirt/images.2/virtio-win-0.1.173.iso'/>
 <target dev='sdc' bus='sata'/>
 <readonly/>
 <boot order='3'/>
 <address type='drive' controller='0' bus='0' unit='2'/>
</disk>

<controller type='usb' index='0' model='qemu-xhci' ports='15'>
 <driver iommu='on' ata='on'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x00' function='0x0'/>
</controller>

<controller type='pci' index='0' model='pcie-root'/>
 <driver iommu='on' ata='on'/>
 <address type='pci' domain='0x0000' bus='0x03' slot='0x00' function='0x0'/>
</controller>

<controller type='pci' index='1' model='pcie-root-port'>
 <model name='pcie-root-port'/>
 <target chassis='1' port='0x10'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0' multifunction='on'/>
</controller>

<controller type='pci' index='2' model='pcie-root-port'>
 <model name='pcie-root-port'/>
 <target chassis='2' port='0x11'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x1'/>
</controller>

<controller type='pci' index='3' model='pcie-root-port'>
 <model name='pcie-root-port'/>
 <target chassis='3' port='0x12'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x2'/>
</controller>

<controller type='pci' index='4' model='pcie-root-port'>
 <model name='pcie-root-port'/>
 <target chassis='4' port='0x13'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x3'/>
</controller>

<controller type='pci' index='5' model='pcie-root-port'>
 <model name='pcie-root-port'/>
 <target chassis='5' port='0x14'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x4'/>
</controller>

<controller type='pci' index='6' model='pcie-root-port'>
 <model name='pcie-root-port'/>
 <target chassis='6' port='0x8'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x0' multifunction='on'/>
</controller>

<controller type='pci' index='7' model='pcie-root-port'>
 <model name='pcie-root-port'/>
 <target chassis='7' port='0x9'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/>
</controller>

<controller type='pci' index='8' model='pcie-root-port'>
 <model name='pcie-root-port'/>
 <target chassis='8' port='0xa'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x2'/>
</controller>
<controller type='pci' index='9' model='pcie-root-port'>
 <model name='pcie-root-port'/>
 <target chassis='9' port='0xb'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x3'/>
</controller>

<controller type='pci' index='10' model='pcie-root-port'>
 <model name='pcie-root-port'/>
 <target chassis='10' port='0xc'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x4'/>
</controller>

<controller type='pci' index='11' model='pcie-to-pci-bridge'>
 <model name='pcie-pci-bridge'/>
 <address type='pci' domain='0x0000' bus='0x08' slot='0x00' function='0x0'/>
</controller>

<controller type='pci' index='12' model='pcie-root-port'>
 <model name='pcie-root-port'/>
 <target chassis='12' port='0xd'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x5'/>
</controller>

<controller type='virtio-serial' index='0'>
 <address type='pci' domain='0x0000' bus='0x05' slot='0x00' function='0x0'/>
</controller>

<controller type='sata' index='0'>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x1f' function='0x2'/>
</controller>

<interface type='network'>
 <mac address='52:54:00:9c:ec:40'/>
 <source network='default'/>
 <model type='virtio'/>
 <driver name='vhost' iommu='on' ats='on'/>
 <address type='pci' domain='0x0000' bus='0x01' slot='0x00' function='0x0'/>
</interface>

<channel type='spicevmc'>
 <target type='virtio' name='com.redhat.spice.0'/>
 <address type='virtio-serial' controller='0' bus='0' port='1'/>
</channel>

<channel type='spiceport'>
 <source channel='org.spice-space.webdav.0'/>
 <target type='virtio' name='org.spice-space.webdav.0'/>
 <address type='virtio-serial' controller='0' bus='0' port='2'/>
</channel>

<channel type='unix'>
 <target type='virtio' name='org.qemu.guest_agent.0'/>
 <address type='virtio-serial' controller='0' bus='0' port='3'/>
</channel>

<channel type='unix'>
 <target type='virtio' name='org.libguestfs.channel.0'/>
 <address type='virtio-serial' controller='0' bus='0' port='4'/>
</channel>

<input type='mouse' bus='ps2'/>
<input type='keyboard' bus='ps2'/>
<input type='tablet' bus='virtio'>
 <address type='pci' domain='0x0000' bus='0x07' slot='0x00' function='0x0'/>
</input>

<graphics type='spice' autoport='yes' listen='147.83.68.172'>
 <listen type='address' address='147.83.68.172'/>
</graphics>

(continues on next page)
There are a few very important elements here:

- The document namespace (`xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'`). If this attribute is not set, libvirt will probably refuse to understand the XML file.
- A QXL video adapter. Its PCI device (0:0:3:0) is lower than the virtual gpu (mdev, 0:0:4:0), making it the first display adapter.
- The Spice protocol has GL disabled, but a rendernode attribute is set.
- There is an extra graphics node, egl-headless. That will allow us to use GPU acceleration and send it via Spice.
- A hostdev node for the virtual GPU that we created earlier on.
• Some extra parameters for qemu. These are required because libvirt does not implements these options in the XML definition, at least right now.

You can now import it to libvirt using

```
# virsh define win10_gvt_preinstall.xml
```

You should now modify the VM definition accordingly to your hardware and preferences (cpus, disk images and so), and boot it. Mouse support might be funny and wonky, but Windows can be installed using the keyboard solely.

In Windows it seems you need to disable the non-Intel video adapter and make the second display (Intel) the primary one.

Make sure the guest OS has the required drivers for the Intel GPU before proceeding further.

Disable the non-intel video adapter

With the VM powered off, change the video adapter type from `qxl` to `none`. You can use `virt-manager` or `virsh-edit`.

Make sure that the xml definition now looks like:

```
<video>
  <model type='none'/>
</video>
```

And that’s it!

3.41 Adding Custom Messages

You can add a custor header and text at the login screen.

3.41.1 Configuration

Configure the file `rvd_front.conf` like this:

```
{
    login_header => 'Login',
    login_message => 'Login to Start a Machine'
}
```

3.42 Create a custom login template

If you need custom login template create one and save it in `/usr/share/ravada/templates/main/custom`, e.g. `custom_login.html.ep`

3.42.1 Configuration

Add your template in `/etc/rvd_front.conf`

Warning: Check that `rvd_front.conf` exists. If you work on a Development release you have an example here `/etc/rvd_front.conf.example`.
Warning: Do not include the extension file .html.ep in the path. E.g. custom_login.html.ep -> custom_login

,login_custom => 'main/custom/custom_login'

3.42.2 Path for CSS, js and images

If CSS, js or images are needed save in: public/css/custom, public/js/custom or public/img/custom respectively.

Note: Make sure your CSS, JS or images in custom template refers to those paths.

3.42.3 Restart frontend

Finally restart rvd_front:

$ sudo systemctl restart rvd_front

3.43 Create a custom footer template

If you need custom footer template create one and save it in /usr/share/ravada/templates/main/custom/, e.g. custom/custom_footer.html.ep

3.43.1 Configuration

Add your template in /etc/rdv_front.conf

Warning: Check that rvd_front.conf exists. If you work on a Development release you have an example here /etc/rdv_front.conf.example.

Warning: Do not include the extension file .html.ep in the path. E.g. custom_footer.html.ep -> custom_footer

,footer => 'main/custom/custom_footer'

3.43.2 Path for CSS, js and images

If CSS, js or images are needed save in: public/css/custom, public/js/custom or public/img/custom respectively.

Note: Make sure your CSS, JS or images in custom template refers to those paths.
3.43.3 Restart frontend

Finally restart rvd_front:

```
$ sudo systemctl restart rvd_front
```

3.44 Disable Spice Password

When the users start a virtual machine, a password is defined for the spice connection. This can be disabled for a given network.

Unfortunately this settings must be configured directly through SQL commands. There is still no GUI section for this.

3.44.1 Define the network

Define a network with no password setting the requires_password field to 0:

```
mysql -u root -p ravada
mysql> insert into networks (name, address, requires_password) values ('classroom','10.0.68.0/24', 0);
```

3.44.2 Applying settings

This settings applies on starting a new virtual machine. So running virtual machines will keep the former settings. Shutting them down and up will trigger the new configuration.

3.44.3 Default setting

Any other network requires password as defined by the ‘0.0.0.0/0’ network setting.

3.44.4 Why is that ?

Ravada opens SPICE connections and manages iptables to make sure no one can connect to another user’s virtual machine. This is also enforced through the password setting. Please consider disabling it only in controlled, seat-unique ip environments.

3.45 Ravada advanced settings

3.45.1 Display IP

On a server with 2 IPs, the configuration file allows the administrator define which one is used for the display. Add the entry `display_ip` to `/etc/ravada.conf` with the public address of the server.

```
display_ip: public.display.ip
```
3.45.2 NAT

The Ravada server can be behind a NAT environment.

```
| Server  1.1.1.1 | 2.2.2.2 |
```

Configure this option in `/etc/ravada.conf`

```
display_ip: 1.1.1.1
nat_ip: 2.2.2.2
```

3.45.3 Auto Start

Virtual machines can be configured to start automatically when the physical host boots.

You can enable the auto start column at the frontend configuration file at `/etc/rvd_front.conf`. Reboot the frontend with `systemctl restart rvd_front` to display the changes.

```
/etc/rvd_front.conf
{
  admin => {
    autostart => 1
  }
};
```

3.45.4 Choosing Storage Pool

Default Storage Pool

When creating virtual machines, Ravada chooses the storage pool with more free space available. If you want to force another, change the settings updating the table `vms` in the database like this.

First check the id field of the Virtual Manager in the table `vms`, then set a `default_storage` pool this way:

```
mysql -u rvd_user -p ravada
mysql> select * from vms;
+----+---------------+-----------------+
| id | name | default_storage |
+----+---------------+-----------------+
| 1 | KVM_localhost |                 |
+----+---------------+-----------------+
mysql> UPDATE vms set default_storage='pool2' where id=1;
```
Then restart rvd_back running `systemctl restart rvd_back`.

Specific Storage Pools

Specific storages for bases and clones can be defined. This way you can use small and fast disk drives for bases and big but slower disks for clones.

Warning: If you set base and clone storages here, the default storage setting is ignored.

Add and define the storage pools as described in the `add kvm storage pool` manual. Then change the values in the database directly.

First check the id field of the Virtual Manager in the table `vms`, then set a `base_storage` or `clone_storage` pools this way:

```
root@ravada:~# virsh pool-list
```

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Autostart</th>
</tr>
</thead>
<tbody>
<tr>
<td>pool_ssd</td>
<td>active</td>
<td>yes</td>
</tr>
<tr>
<td>pool_sata</td>
<td>active</td>
<td>yes</td>
</tr>
</tbody>
</table>

```
mysql -u rvd_user -p ravada
mysql> select * from vms;
```

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>default_storage</th>
<th>base_Storage</th>
<th>clone_storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KVM_localhost</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
mysql> UPDATE vms set base_storage='pool_ssd' where id=1;
mysql> UPDATE vms set clone_storage='pool_sata' where id=1;
```

Warning: These change will apply to new virtual machines. Old virtual machines have already the disk volumes defined and can’t be easily changed.

3.45.5 Chek free memory (from v0.3)

Before start the domain, free memory of the Virtual Manager can be checked. This feature is only available in the development release.

First check the id field of the Virtual Manager in the table `vms`, then set the minimum of free available memory. In this example we require a minimum of 2 GB free:

```
mysql -u rvd_user -p ravada
mysql> select * from vms;
mysql> update vms set min_free_memory=2000000 where id=*id*;
```

3.46 New documentation

We build documentation and host it in Read the Docs.

All documentation files are stored only in `gh-pages` branch, with the following directory structure:
Documentation is created using reStructuredText, is an easy-to-read, what-you-see-is-what-you-get plaintext markup syntax and parser system.

3.46.1 Procedure

1. Consider the editing style of existing pages.
2. Edit a doc page or create a new one in gh-pages branch.
3. Insert in index.rst according to the section.

Note: Documentation web is updated automatically, thanks to Read the Docs.

3.46.2 Sidebar

The organization of the sidebar is configured in the index.rst. If you create a new documentation page remember to include in the section more according to the content. Add the directory and the name of rst file, e.g.:

```
new_documentation.rst in docs/ will be docs/new_documentation somewhere in the index.rst
```

3.46.3 Convert POD files

Install libpod-pom-view-restructured-perl in your computer.

3.46.4 Step-by-step contributing to docs

So you want to contribute a documentation fix or new entry. Follow these 10 steps carefully.

1. Create a git account at GitHub.com if you don’t already have one.
2. Go to the Ravada github repository.
3. Create your own project copy clicking the fork button at the top right of the page
4. Configure your git account in your PC:

```
git config --global user.email "user@domain.com"
git config --global user.name "Your real name"
```

4. Download your copy git clone https://github.com/YOUR_GITHUB_ACCOUNT/ravada
5. Change to the github pages branch: cd ravada ; git checkout gh-pages
6. Edit the file inside the docs/docs/ directory
7. If it is a new file run git add new_file.rst
8. Commit changes. It will ask for a one line description: git commit -a
9. Send the changes to github: `git push`

10. Go to GitHub.com and do a Pull Request. Make sure it is from the gh-pages branch

3.47 Configure LDAP Authentication

Ravada can use LDAP as the authentication engine.

3.47.1 Configuration

The configuration file is `/etc/ravada.conf`. The format is YML, make sure you edit this file with spaces, no tabs.

Add a section `ldap` like this:

```yaml
ldap:
  server: 192.168.1.44
  port: 389 # or 636 for secure connections
  secure: 0 # defaults to 1 if port is 636
  base: dc=domain,dc=com
  admin_user:
    dn: cn=admin.user,dc=domain,dc=com
    password: secretpassword
```

The `_secure_` setting is optional. It defaults to 0 for port 389 (ldap) and to 1 for port 636 (ldaps). It can be enabled so secure connections can be forced for other ports.

The LDAP admin user can be a low level account with minimal privileges.

Another optional setting can be used to force the authentication method. By default Ravada tries first to bind to the LDAP as the user. If that fails then it tries to match the encrypted password. You can force the method with:

```yaml
auth: all # defaults to all, can be all, bind, match
```

Notice matching authentication may be a security risk so bind is recommended.

3.47.2 Example: All users

All the users in the LDAP can have access to ravada:

```yaml
ldap:
  server: 192.168.1.44
  port: 636
  base: dc=domain,dc=com
  admin_user:
    dn: cn=admin.user,dc=domain,dc=com
    password: secretpassword
```
3.47.3 Example: Group of users

Allow only a group of users to access ravada:

```plaintext
ldap:
  server: 192.168.1.44
  port: 636
  base: ou=users,ou=groupname,dc=upc,dc=edu
  admin_user:
    dn: cn=admin.user,dc=domain,dc=com
    password: secretpassword
```

3.47.4 Advanced Options

There are other options you can add to ldap:

- `field`: searches users using this field
- `ravada_posix_group`: allows only this group to access ravada
- `sslversion`: force the connection to LDAP with this SSL version: choose one of sslv2, sslv3, sslv23, tlsv1
- `filter`: filter attributes for the LDAP search

3.47.5 Example: Field

Add a new parameter field to search users with. In this example we search users with the `cn` attribute.

```plaintext
ldap:
  server: 192.168.1.44
  port: 636
  base: ou=users,ou=groupname,dc=upc,dc=edu
  field: cn
  admin_user:
    dn: cn=admin.user,dc=domain,dc=com
    password: secretpassword
```

3.47.6 Example: Posix Group

If you have all your users under a main OU (e.g. `ou=users, dc=domain, dc=com`), you can use Posix Groups (https://ldapwiki.com/wiki/PosixGroup) to create a list of users that can access to your Ravada instance, using their `memberUid` attribute. This allows you grant or remove access to ravada to some users without modify your LDAP structure.

```plaintext
ldap:
  server: 192.168.1.44
  port: 636
  base: ou=users,ou=groupname,dc=upc,dc=edu
  ravada_posix_group: cn=ravada,ou=groups,dc=domain,dc=com
  admin_user:
    dn: cn=admin.user,dc=domain,dc=com
    password: secretpassword
```

In the example, `cn=ravada,ou=groups,dc=domain,dc=com` is a Posix Group in your LDAP server. It should contain the `memberUid`’s of the users allowed to access to Ravada:
3.47.7 Example: Attribute Filter

In this example, only the users that have pass a filter can login:

```
ldap:
  server: 192.168.1.44
  port: 636
  base: dc=domain,dc=com
  filter: campus=North
  admin_user:
    dn: cn=admin.user,dc=domain,dc=com
    password: secretpassword
```

3.48 Authentication with Active Directory

This feature is experimental and only can be used if you have a development release of Ravada.

3.48.1 Install Modules

```
$ sudo apt-get install libtest-spelling-perl
$ sudo apt-get install cpanminus
$ sudo cpanm Auth::ActiveDirectory
```

3.48.2 Configure Ravada

Add this entries to the file /etc/ravada.conf. The tag `ActiveDirectory` must be at first level without indentations, the other tags must be space-indented. The port is optional.

```
ActiveDirectory:
  host: thehost
  port: 389
  domain: thedomain
  principal: whatever it is, it must be set
```

3.48.3 Run

Restart the rvd_front service and try to login

3.48.4 Admin Users

Admin users must be set from the management tool once they have logged in.
3.48.5 Todo

- Admin users: how to find if an user is admin? Maybe some kind of LDAP group?
- Create users
- Create groups
- Remove users
- Remove groups

3.49 Set access restrictions to Virtual Machines

When a base is set as public, all the users have access to create clones by default. If you want to set access restrictions to base you can filter by LDAP attributes.

3.49.1 Access restrictions

Restrictions can be defined given a base and the value of an LDAP attribute. For example, you could set that only users who have the attribute “typology” as “teacher” are allowed to clone a virtual machine. Or you could deny “student” users access to another base.

3.49.2 Configuration

Actually there is a form to configure the access restrictions in the works. Until it is done you have to set this directly in the database.

Grant access

To grant access add an entry in the table access_ldap_attribute with the id of the base, the name of the attribute, the value of the attribute. The optional field allowed can be used to deny access to a virtual machine.

To remove a grant delete the row from the table access_ldap_attribute.

3.49.3 Examples

Example 1: grant access

Grant access to a virtual machine, only to those users that have typology = teacher.

First you need to know the id of the base virtual machine.

```
mysql> select id, name from domains where name = 'mymachine';
```

```
+-------+--------------------------+
<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>mymachine</td>
</tr>
</tbody>
</table>
```

Then add the restriction:

```
mysql> insert into access_ldap_attribute (id_domain, attribute, value) VALUES(88, 'typology', 'teacher');
```
Example 2: deny access

Deny access to a virtual machine, to those users that have typology = student.

First you need to know the id of the base virtual machine.

```
mysql> select id,name from domains where name = 'mymachine2';
+------+--------------------------+
<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>mymachine2</td>
</tr>
</tbody>
</table>
```

Then add the restriction:

```
mysql> insert into access_ldap_attribute (id_domain, attribute, value, allowed)
VALUES(89,'typology','student',0);
```

Example 3: remove an access restriction

We have some a restriction to deny access to students we want to remove because we want everybody access to that virtual machine:

```
mysql> select * from access_ldap_attribute;
+----+-----------+-----------+---------+---------+
<table>
<thead>
<tr>
<th>id</th>
<th>id_domain</th>
<th>attribute</th>
<th>value</th>
<th>allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>88</td>
<td>typology</td>
<td>teacher</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>89</td>
<td>typology</td>
<td>student</td>
<td>0</td>
</tr>
</tbody>
</table>
mysql> delete from access_ldap_attribute where id=3;
```

3.50 Test Active Directory

This document is a guide to test Active Directory features from Ravada source.

If you want to test the active directory you must create 2 files: one for the ravada configuration parameters, and another one with AD user and password to test.

3.50.1 Ravada Conf

Create a file: `t/etc/ravada_ad.conf` with these contents:

```
ActiveDirectory:
    host: thehost
    port: 389
    domain: thedomain
    principal: theprincipalwhatever it is
```

3.50.2 Auth data

It is required a valid user and password to test AD. Put them in the file `t/etc/test_ad_data.conf`
name: theusername
password: thepassword

3.50.3 Run the tests

From the source root directory run:

$ perl Makefile.PL
$ make && prove -b t/67_user_ad.t

3.51 Tuning Ravada

Some additional settings to improve your Ravada installation.

3.51.1 IP Conflict

When there are machines that have been hibernated long ago, their ip address may conflict with other that have just been created. That is because the IP addresses have a short life span by default.

Warning: TODO Make IP addresses last forever changing the settings of dnsmasq.

3.52 Server Monitoring

From VM settings tab you can see the VM system overview:
And for admin role you can see the server:

Server monitoring is disabled for default. In order to support Ravada server monitoring, you have to do a few steps:

- install netdata on a ravada server
- and enable monitoring in `/etc/rvd_front.conf`
3.52.1 Install my-netdata.io

Follow these steps from my-netdata.io
or execute this on a terminal:

```
# bash <(curl -Ss https://my-netdata.io/kickstart-static64.sh)
```

Linux 64bit, pre-built static binary installation for any Linux distro, any kernel version - for Intel/AMD 64bit hosts.

3.52.2 Apache config for netdata with SSL

Enable SSL and proxy in apache:

```
# a2enmod proxy_http proxy ssl
# a2ensite default-ssl
```

In `/opt/netdata/etc/netdata/netdata.conf` add:

```
[web]
default port = 19998
```

In `/etc/apache2/ports.conf` add:

```
<IfModule ssl_module>
  Listen 443
  Listen 19999
</IfModule>
```

and adding a new virtualhost for port 19999 in `/etc/apache2/sites-available/default-ssl.conf`

```
<VirtualHost *:19999>
  ProxyRequests Off
  ProxyPreserveHost On
  ProxyPass / http://localhost:19998/ keepalive=On
  ProxyPassReverse / http://localhost:19998/
  ErrorLog ${APACHE_LOG_DIR}/error.log
  CustomLog ${APACHE_LOG_DIR}/access.log combined
  SSLEngine on
  SSLCertificateFile /etc/ssl/certs/server.crt
  SSLCertificateKeyFile /etc/ssl/private/server.key
  SSLCertificateChainFile /etc/ssl/certs/ca.crt
</VirtualHost>
```

Warning: Be careful with self-signed certificates. The browser needs to accept the certificate. We recommend the use of Let’s Encrypt or your trusted SSL provider.

Then restart netdata and apache:

```
# systemctl restart apache2
# systemctl restart netdata
```

Thanks to @jlopezramos for this contribution.
3.52.3 Enable monitoring

Monitoring is disabled by default. Add in /etc/rvd_front.conf file:

```
monitoring => 1
```

Restart rvd_front service:

```
# systemctl restart rvd_front.service
```

3.52.4 Tunning netdata

Disable mail alarms

Edit the file /opt/netdata/etc/netdata/health_alarm_notify.conf, /usr/lib/netdata/conf.d/health_alarm_notify.conf or /etc/netdata/health_alarm_notify.conf and set

```
SEND_MAIL="NO"
```

3.52.5 Monitoring Architecture

All servers have a local My-netdata installation, this lets us know what happens now. Metrics in real time, small story. The file of metrics is stored in the Graphite server, this allows us to obtain historical and archived data. And Grafana lets us know what happened in the past. Low detail metric, long history. Follow this link to known more about it.

3.52.6 Graphite backend

Edit the file /opt/netdata/etc/netdata/netdata.conf:

```
[backend]
    host tags =
    enabled = yes
    data source = average
    type = graphite
    destination = <GraphiteServer>
    prefix = netdata
    hostname = <hostname>
    update every = 10
    buffer on failures = 10
    timeout ms = 20000
    send names instead of ids = yes
    send charts matching = *
    send hosts matching = localhost *
```

3.52.7 Graphana

This dashboard makes our lives easier.
3.53 Guide button step-by-step

The guide button offers step-by-step help. You can see a taste in the following screenshots:

Guide button is disabled for default. In order to support you have to enable guide in `/etc/rvd_front.conf`

3.53.1 Enable guide

In `/etc/rvd_front.conf`:

```
guide => 1
```
Restart rvd_front service:

```
systemctl restart rvd_front.service
```

3.53.2 Custom guide

Add path in `/etc/rvd_front.conf`:

```
guide_custom => '/js/custom/custom_intro.js'
```

3.54 Local JS and CSS files instead CDN

Some users behind firewalls may experience rendering problems. By default we use CDN versions of the JavaScript and CSS libraries. In some specific cases it may be useful to have those libraries in the same server as the Ravada web frontend runs.

Since Ravada 0.5 release we package the required javascript and CSS files. You can enable the local copy setting the file `/etc/rvd_front.conf` in your host.

```
fallback => 1
```

and restart the `rvd_front.service` to apply changes.

```
# systemctl restart rvd_front.service
```

Refresh your browser cache and now Ravada use JS and CSS downloaded from your own server.

3.55 Exposing a Virtual Machine

By default the virtual machines are created inside a private internal network. This allows the user to reach internet but no connections from outside are allowed.

Some times we may want to install a server in the Virtual Machine and grant access to it. There are many ways to expose a Virtual Machine and allow access to it from outside. Here we describe a few: set a public IP address, redirect with IPTables and HTTP forwarding.

3.55.1 Setting a public IP

One way to expose the virtual machine is use a public IP instead the private used by default. To do so you have to manually edit the machine definition before creating the base. Change the network settings to `bridge`.

This setting gives the more exposure to the virtual machine, so firewalls and other security measures must be configured.

3.55.2 IPTables redirection

You can redirect a port from the host or a virtual machine acting as gateway to the internal address of the machine you want to expose.

This technique restricts which ports from the internal machine are exposed from outside.
3.55.3 HTTP Forwarding

HTTP forwarding can be configured in a web server in the host to access internal web services from outside.

3.55.4 Expose Ports

Ports from the virtual machine can be exposed to outside with this new feature introduced in release 0.5.

3.56 Exposing Ports from a Virtual Machine

Since release 0.5 ports from the internal virtual machine can be exposed to outside.

3.56.1 Requirements

Ports exposing works with Linux Kernel `iptables` so it requires the host to have it installed in properly configured.

The virtual machine must have a way to tell the host what is the internal IP to the host, so the `qemu guest agent <qemu_ga.html>` must be installed.

3.56.2 Configure Expose

From the virtual machine settings there is a new menu item `Ports`. There you can add new ports to be exposed.

There you must add the number of the internal port to be exposed and an optional name. If you set this port to `restricted` it will only be allowed to the remote client IP.

Fields

- `Port`: internal port in the virtual machine
- `Name`: optional short description of the service to expose
- `Restricted`: restrict the port to the remote client if set
3.56.3 Run

When the virtual machine gets started Ravada searches for a free port in the host to expose the port through.

In this example the user can connect to the IP 10.1.36.68 port 5954 to access the SSH server inside the virtual machine.
Ports redirection requires the internal IP of the virtual machine to be active. So it retries for a while trying to redirect until an IP is detected or it fails.

3.57 Install Alpine Linux

Alpine is a really small Linux distribution. It can be installed in a really tight disk drive with barely no RAM. It is good for testing purposes but it can also be used in production servers.

These are guidelines to install Alpine Linux inside a Ravada KVM Guest.

3.57.1 Base Guest

The guest should have more than 256 MB of RAM. If you are planning to run many services you should create the virtual machine with more memory. You can increase it later if you want to keep it slim.

At least 1GB disk drive is required. A swap partition should also be added when creating the virtual machine.

![Create Alpine Virtual Machine](image)

When the machine is created start it from Admin Tools menu, click on Virtual Machines to see a list. At the right there is a bunch of buttons. Click on **view** to start and access the virtual machine console.

3.57.2 Login

Once it boots login as **root** with no password.
3.57.3 Setup

Alpine Linux has a setup script that eases the installation process. These are the default settings we use in a Ravada-KVM Virtual Machine.

Start the setup typing:

```bash
# setup-alpine
```

Keyboard

First choose a keyboard layout and variant.

Hostname

Type a *hostname* for the virtual machine. If you call it with the same name when you created the machine before it would be easier for you:

Networking

The setup will detect a network interface, probably *eth0*. Accept this value. Also you should probably accept using *dhcpp* and answer *no* to *manual network configuration*, unless you know what you are doing.

Password

Type a new password for the *root* user.

Timezone

Select a timezone, the default UTC won’t do any harm when you are testing, but if you know the actual timezone, type it.
Proxy

If you are downloading packages through a proxy tell it now, you probably should keep it to none.

Mirror

Choose a mirror for Alpine to download packages from. Type f will check your connection and choose the best one, it may take a while.

SSH Server

Answer openssh when asked about an SSH server.

Partitioning

The setup script will ask the disk

```
Available disks are:
- vda
- vdb
Which disk(s) would you like to use? [none] vda
How would you like to use them? [?] sys
WARNING: Erase the above disk(s) and continue [y/N]: y
```

Now the setup process will install minimal applications to start the server.

Installing more software

You should at least install these applications:

`# apk add qemu-guest-agent acpi`

3.57.4 Shutdown and restart

Type these commands from the console to restart and shutdown the server:

`# reboot`
`# poweroff`

3.57.5 Advanced Settings

Add a swap partition

If you added a swap volume in the Ravada installation form you must define it later after the Alpine setup script.
Define de partition

The swap device will be probably in /dev/vdb, check first with df it is not mounted already. If it is not shown it is ok.

Using `fdisk` you should find an empty disk and you must create the partitions like this:

```
localhost:~# fdisk /dev/vdb
Command (m for help): n
Command action
  e  extended
  p  primary partition (1-4)
P
Partition number (1-4): 1
First cylinder (1-2080, default 1):
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-2080, default 2080): 2080
Using default value 2080
Command (m for help): w
The partition table has been altered.
Calling ioctl() to re-read partition table
```

Create the swap

```
# mkswap /dev/vdb1
```

Test it

Type this to start using the swap space:

```
# swapon -a
```

This command will check the memory utilization, at the bottom there should be now a swap entry:

```
# free

    total   used   free   shared  buffers  cached
Mem:  1031924  48896  983028     100  2884   10964
-/+ buffers/cache:  35048  996876
Swap:  1262140     0  1262140
```

Add it to the system

```
# echo "/dev/vdb1 swap swap defaults 0 0" >> /dev/fstab
```

Now the swap space is configured, after rebooting the system it should show typing the `free` command.

3.58 Install Windows 10

These are guidelines to install Windows 10 inside a Ravada KVM Guest.
3.58.1 Base Guest

The guest should have more than 3 GB of RAM. If you are planning to run many services you should create the virtual machine with more memory. You can increase it later if you want to keep it slim.

At least 30GB disk drive is required. A swap partition should also be added when creating the virtual machine.

When the machine is created start it from Admin Tools menu, click on Virtual Machines to see a list. At the right there is a bunch of buttons. Click on view to start and access the virtual machine console.

3.58.2 Setup

Follow the usual procedure to install Windows10.

When the installations it’s finished, you need to install:

- qemu-guest agent, see the instructions here: https://pve.proxmox.com/wiki/Qemu-guest-agent#Windows
- Windows guest tools - spice-guest-tools
- make sure that acpi service it’s activated.

3.58.3 Use a swap partition for pagefiles

By default the Windows pagefiles will go to the C: disk drive. That will make the clones partitions grow up too much and fill your host disk drive. It should go to the SWAP volume, problaby in your D: or E: drive.

In this link you can see how to move pagefiles to another disk:

3.59 How to extend a Ravada Windows guest’s disk space

More info: http://libguestfs.org/virt-resize.1.html#expanding-a-virtual-machine-disk
3.59.1 Expanding a Windows 10 guest

Here we will show how to expand the system partition of a Windows 10 host by 10 GB.

First, retrieve the path to the hard drive file that you want to resize. For a VM named Windows10Slim, we would do the following:

```
# virsh dumpxml Windows10Slim
```

Here is our image file:

```
<source file='/var/lib/libvirt/images-celarella1/Windows10Slim-vda-UrQ2.img'/>
```

As we want to expand a certain partition, the system one, we must find it first

```
# virt-filesystems --long --parts --blkdevs -h -a /var/lib/libvirt/images-celarella1/Windows10Slim-vda-UrQ2.img
```

The output will look like this:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>MBR</th>
<th>Size</th>
<th>Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/sda1</td>
<td>partition</td>
<td>-</td>
<td>500M</td>
<td>/dev/sda</td>
</tr>
<tr>
<td>/dev/sda2</td>
<td>partition</td>
<td>07</td>
<td>20G</td>
<td>/dev/sda</td>
</tr>
<tr>
<td>/dev/sda</td>
<td>device</td>
<td>-</td>
<td>20G</td>
<td>-</td>
</tr>
</tbody>
</table>

And that means we are going to resize /dev/sda2 in this example.

Use qemu-img to create a new qcow2 hard drive file. As we want to add 10 GB, the resulting disk will be a 30 GB file

```
# qemu-img create -f qcow2 -o preallocation=metadata /var/lib/libvirt/images.2/Windows10Slim-vda-UrQ3.img 30G
```
Now virt-resize will expand the image into the new file

```
# virt-resize --expand /dev/sda2 /var/lib/libvirt/images-celerral/Windows10Slim-vda-UrQ2.img /var/lib/libvirt/images.2/Windows10Slim-vda-UrQ3.img
```

With virsh we can point the VM to use the newly created image

```
# virsh edit Windows10Slim
```

Finally, fix permissions

```
# chown libvirt-qemu:kvm /var/lib/libvirt/images.2/Windows10Slim-vda-UrQ3.img
# chmod 600 /var/lib/libvirt/images.2/Windows10Slim-vda-UrQ3.img
```

3.60 How to extend a Ravada Linux guest’s disk space

Here we will show how to extend the system partition of a Linux host by 10 GB.

1. Shutdown the virtual machine

2. Consult the hard drive name of the Virtual Machine you want resize:

```
# virsh edit VirtualMachineName
```

Here is our image file:

```
<source file='/path_to_img_file/VirtualDiskImageName.img'/>
```

3. Use qemu-resize to increase the image size by 10GB:

```
# qemu-img resize /path_to_img_file/VirtualDiskImageName.img +10G
```

4. IMPORTANT. Do a backup before continue.

```
# cp VirtualDiskImageName.img ./VirtualDiskImageName.img.backup
```

5. Now start the Virtual Machine. Open a terminal and type:

```
$ sudo fdisk /dev/vda
```

Delete the partition

```
:: d
```

Create a new partition

```
:: n
```

Accept all by default and exit saving

```
:: w
```


7. When it starts in a terminal:

```
$ sudo resize2fs /dev/vda1
```

You can check if the disk was increased with the ‘df’ command.
3.61 How to enable KVM virsh console access

3.61.1 From Debian / Ubuntu guest

$ sudo systemctl enable serial-getty@ttyS0.service
$ sudo systemctl start serial-getty@ttyS0.service

3.61.2 From KVM server

virsh list

<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>freebsd</td>
<td>running</td>
</tr>
<tr>
<td>2</td>
<td>ubuntu-box1</td>
<td>running</td>
</tr>
<tr>
<td>3</td>
<td>ubuntu-box2</td>
<td>running</td>
</tr>
</tbody>
</table>

Type the following command from KVM host to login to the guest named ubuntu-box1

$ virsh console ubuntu-box1

OR

$ virsh console 2

Use CTRL + 5 to exit the console.

3.62 Reduce the image size after cloning a physical PC

Things to keep in mind when we have a cloned image of Windows from a physical PC.

Note: During these tasks, be aware that it affects the performance of the server. Avoid making them on a Ravada server in production.

3.62.1 Check the image format

In the following case you can see that it's RAW format. Although the extension of the file is qcow2 this obviously does not affect.

qemu-img info Win7.qcow2
image: Win7.qcow2
file format: raw
virtual size: 90G (96636764160 bytes)
disk size: 90G

3.62.2 STEPS TO FOLLOW

1. Convert from RAW (binary) to QCOW2:

qemu-img convert -p -f raw Win7.qcow2 -O qcow2 Win7-QCOW2.qcow2

Now verify that the image format is QCOW2, and it’s 26GB smaller.
qemu-img info Win7-QCOW2.qcow2
image: Win7-QCOW2.qcow2
file format: qcow2
virtual size: 90G (96636764160 bytes)
disk size: 64G
cluster_size: 65536
Format specific information:
 compat: 1.1
 lazy refcounts: false
 refcount bits: 16
 corrupt: false

2. The virt-sparsify command-line tool can be used to make a virtual machine disk (or any disk image) sparse. This is also known as thin-provisioning. Free disk space on the disk image is converted to free space on the host.

 # virt-sparsify -v Win7-QCOW2.qcow2 Win7-QCOW2-sparsi.qcow2

Note: The virtual machine must be shutdown before using virt-sparsify. In a worst case scenario, virt-sparsify may require up to twice the virtual size of the source disk image. One for the temporary copy and one for the destination image. If you use the --in-place option, large amounts of temporary space are not needed.

Disk size now is 60G, below you can see that reduce image size in 30GB.

qemu-img info Win7-QCOW2-sparsi.qcow2
image: Win7-QCOW2-sparsi.qcow2
file format: qcow2
virtual size: 90G (96636764160 bytes)
disk size: 60G
cluster_size: 65536
Format specific information:
 compat: 1.1
 lazy refcounts: false
 refcount bits: 16
 corrupt: false

More information about https://pve.proxmox.com/wiki/Shrink_Qcow2_Disk_Files#

Now it is advisable to let Windows do a CHKDSK, do not interrupt it. Finally, you need to install the Spice guest-tools. This improves features of the VM, such as the screen settings, it adjusts automatically, etc.

3.63 Qemu Guest Agent

3.63.1 Host Qemu Agent Prerequisites

Execute the following commands on your host:

$ sudo mkdir -p /var/lib/libvirt/qemu/channel/target
$ sudo chown -R libvirt-qemu:kvm /var/lib/libvirt/qemu/channel

And edit the file /etc/apparmor.d/abstractions/libvirt-qemu adding the following in the end:

$ /var/lib/libvirt/qemu/channel/target/* rw,

3.63.2 Guest Agent Installation (VM)

This installation must be done in your guest VM if you want to keep the correct time after hibernate.
Ubuntu and Debian

$ sudo apt install qemu-guest-agent

Fedora

$ dnf install qemu-guest-agent

RedHat and CentOS

$ yum install qemu-guest-agent

Windows

Follow the instructions provided by Linux KVM

3.63.3 For VM's older than this functionality

If you try to use this function on VM's created before this function was implemented you must do one thing to make it work, first open the machine xml:

$ virsh edit <name-or-id-of-your-machine>

And add the following inside the ‘devices’ section:

```xml
<channel type="unix">
  <source mode="bind"/>
  <target type="virtio" name="org.qemu.guest_agent.0"/>
</channel>
```

That's it, enjoy.

3.64 Set Hostname

The hostname of a virtual machine can be changed on startup. The name of the virtual domain is passed in a smbios string and can be used to rename.

3.64.1 Requirements

This feature is available from release 0.3.4 and requires libvirt-4.6.

Packages

- Ravada: 0.3.4
- libvirt: 4.6
Distributions

This feature has been reported to work with these Linux distributions. Any other distribution with libvirt 4.6 or bigger will work too. Please report if you successfully tested it.

Supported distributions:

- Ubuntu 18.10

3.64.2 Linux

The virtual machine name can be read with dmidecode

```bash
$ dmidecode | grep hostname | awk -F: ' print $3'
```

To set the hostname you must create a script that runs on startup, this one line should be enough for most cases:

```bash
$ hostname `dmidecode | grep hostname | awk -F: ' print $3'`
```

Some tools may read the hostname from the config file, set it like this:

```bash
$ dmidecode | grep hostname | awk -F: ' print $3' | sed -e 's/^ //' > /etc/hostname
```

systemd

If your system supports systemd this script will set the virtual machine name as the hostname on startup. Put the service file in `/lib/systemd/system/sethostname.service`:

```bash
[Install]
WantedBy=multi-user.target

[Unit]
Description=Set Hostname
After=systemd-hostnamed.target syslog.target

[Service]
Type=oneshot
ExecStart=/usr/local/bin/set_hostname.sh
```

This is the script that is launched by the service, it should be in `/usr/local/bin/set_hostname.sh` as specified in the previous file.

```bash
#!/bin/sh
date >> /var/log/set_hostname.log
hostname=`/usr/sbin/dmidecode | grep hostname | awk '{ print $4}'`
if [ ! -z "$hostname" ]; then
  /bin/hostname $hostname
  /bin/hostname > /etc/hostname
  echo "Found hostname $hostname in dmidecode" >> /var/log/set_hostname.log
else
  echo "Not found hostname in dmidecode" >> /var/log/set_hostname.log
  /usr/sbin/dmidecode >> /var/log/set_hostname.log
fi
```

Type this so the script is executed on startup:

```bash
$ sudo chmod +x /usr/local/bin/set_hostname.sh
$ sudo systemctl enable sethostname
```

Reboot and check if the hostname is applied. You should find a log file at `/var/log/set_hostname.log`.
rc.local

If you Linux system supports rc.local just add this lines to it and the hostname will be updated on boot:

```
hostname `dmidecode | grep hostname | awk -F: '{ print $3}'`
hostname > /etc/hostname
```

3.64.3 Windows

SMBios information is available in Windows too. The data is stored in the registry and also can be shown with a tool called WMI.

Contributed information would be appreciated.

3.65 Development Tools

We’re proud to program it in Perl based on TDD. Perl 5 is a highly capable, feature-rich programming language with over 30 years of development. More about why we love Perl…

We use Mojolicious, a real-time web framework. We use MySQL. It’s the world’s most popular open source database. With its proven performance, reliability, and ease-of-use.

We use a lot of powerful free source like GNU/Linux Ubuntu, KVM or Spice, among others. Responsive web made with Bootstrap and AngularJS.

We use Transifex to provide a cleaner and easy to use interface for translators. It’s meant for adapting applications and text to enable their usability in a particular cultural or linguistic market.

Then we build documentation and host it in Read the Docs for you.

3.66 Commit Rules

3.66.1 Main Branches

The main branches are master and develop as described here:

http://nvie.com/posts/a-successful-git-branching-model/

3.66.2 Issues

Please create a new branch for each issue. Also it would be a good idea to call the branch with the number of the issue and a short text, ie:

```
$ git checkout -b 77_crashonstart
```

3.66.3 Commit Message

We use conventional commits guideline as specified in https://conventionalcommits.org/ Each commit must be for a reason, and we should have an issue for that, so we decided to add the issue number in the footer.

Definition:
Example:

fix: active virtual machines can not be started

When a virtual machine is already active, do not try to start it and return

3.66.4 Show the branch in the message

Add the file prepare-commit-msg to the directory `.git/hooks/` with this content:

```bash
#!/bin/sh
#
# Automatically adds branch name and branch description to every commit message.
#
NAME=$(git branch | grep '*' | sed 's/* //')
DESCRIPTION=$(git config branch."$NAME".description)
TEXT=$(cat "$1" | sed '/^#.*/d')
if [ -n "$TEXT" ]
  then
echo "$NAME": "$(cat "$1" | sed '/^#.*/d')" >> "$1"
  if [ -n "$DESCRIPTION" ]
    then
echo "$DESCRIPTION" >> "$1"
    fi
  else
echo "Aborting commit due to empty commit message."
    exit 1
  fi
```

3.66.5 Testing

Before committing, make sure it passes all the tests. This should be run specially when changing the master and develop branches. Notice some tests require root access, so it must run with sudo.

```
$ perl Makefile.PL && make && sudo make test
```

If you want to run only one test:

```
$ perl Makefile.PL && make && sudo prove -b t/dir/file.t
```

Proper testing requires the Perl Module Test::SQL::Data, available here: https://github.com/frankiejol/Test-SQL-Data
3.66.6 Contribution Guide

Check our contribution guide for more information about this topic.
https://github.com/UPC/ravada/blob/master/CONTRIBUTING.md

3.67 Database Changes

When changing code for this project you may add, remove or modify columns in the SQL database. Those changes must be updated too in the sql directory.

3.67.1 SQL tables

Modify the SQL table definitions in the directory sql/mysql/.

3.67.2 Data

Some tables may require data, place them in the directory sql/data. The files must be called with the insert prefix to the table name. So if you create the new table domaindrivers you have to:

- Create a file at sql/mysql/domaindrivers.sql
- Optionally create a file at sql/data/insert_domaindrivers.sql with the insertions

3.67.3 SQLite

SQLite definitions are used for testing and are created from the MySQL files. Once the mysql file is created, add the new table name to the sql/mysql/Makefile and run make. It requires https://github.com/dumblob/mysql2sqlite

3.67.4 Runtime upgrade

When ravada runs, it can check if the table definition is accurate. Place the code following the examples at the function upgrade_tables in Ravada.pm

Example: To check if the table vms has the field vm_type:

```perl
$self->_upgrade_table('vms', 'vm_type', 'char(20) NOT NULL DEFAULT 'KVM'');
```

3.68 Editor configuration rules

If you work with Ravada code it will be easier for all of us if you follow a minimum configuration rules.

- expand tabs to spaces
- one tab are 4 spaces
3.68.1 Highlight unwanted spaces

Please, don’t remove unwanted spaces if aren’t yours. Highlight them with these tips: http://vim.wikia.com/wiki/Highlight_unwanted_spaces

To disable autoremove of trailing spaces in **Atom**: In Atom Preferences->Packages, select the whitespace package. In the whitespace package settings, disable “Remove Trailing Whitespace”.

3.68.2 Vim Example

Set those options in your `.vimrc` to match ours

```vim
set tabstop=4
set expandtab
"highlight unwanted spaces
highlight ExtraWhitespace ctermfg=red guifg=red
match ExtraWhitespace /\s\+$/
```

3.69 Local ISO server

3.69.1 ISO Web Server

It is pointless and resource consuming download each time the ISO files from the Internet. Set up a webserver in the main host and let the development virtual ravadas download them from there.

Copy the ISO files

Copy the `.iso` files to the directory `/var/www/html/iso`.

```bash
$ sudo mkdir /var/www/html/iso
$ sudo cp /var/lib/libvirt/images/*iso /var/www/html/iso
```

3.69.2 Apache

Install Apache

Install apache web server:

```bash
$ sudo apt-get install apache2
```

Config apache

Configure it so ISOs are downloaded from the storage pool, and only the local virtual network is able to access to it. Edit `/etc/apache2/sites-enabled/000-default.conf` and add:
<Location /iso>
 Options FollowSymLinks
 AllowOverride None
 Allow from localhost
 Allow from 192.168.122.0/24
 Deny from all
 Require all granted
 Options +Indexes
</Location>

Restart apache

$ sudo systemctl restart apache2

3.69.3 Change the ISO locations

In the table iso_images there is an entry that states where are located original ISO files, change it.

From localhost

If you want to access to the ISO files from localhost change the URL field to this:

$ mysql -u root -p ravada
mysql> update iso_images set url = 'http://127.0.0.1/iso/';

From Virtual Machines

If you install ravada in a virtual machine inside the host you have to change the URLs to the virtual address, it will probably be 192.168.1.1, check it is doing

$ ifconfig virbr0

$ mysql -u root -p ravada
mysql> update iso_images set url = 'http://192.168.122.1/iso/';

3.69.4 Try it

Remove the ISO from the storage and from the table

Remove from the VM storage pool

$ sudo rm /var/lib/libvirt/images/*iso

3.69. Local ISO server
Remove the device name from the table

First find out the id of the iso image, then remove it.

```
$ mysql -u root -p ravada
mysql> select id,name FROM iso_images;
mysql> update iso_images set device = null where id=9;
```

Restart rvd_back and reload the admin page and verify Ravada won’t download them from Internet the next time you try to install a new machine.

```
$ sudo ./bin/rvd_back.pl --debug
```

3.70 Steps to release

3.70.1 Create a branch

Name the branch following the guidelines of semantic versioning [http://semver.org/]:

MAJOR.MINOR.PATCH, increment the:

- MAJOR version when you make incompatible API changes,
- MINOR version when you add functionality in a backwards-compatible manner, and
- PATCH version when you make backwards-compatible bug fixes.

```
$ git checkout master
$ git checkout -b release/0.2.2
$ git push --set-upstream origin release/0.2.2
```

3.70.2 Draft

Draft the release

This step should be done at the very beginning of planning. If you already did it, skip it now.

At code -> releases draft a new release

- tag version : v0.2.2
- release title : v0.2.2

3.70.3 Create the milestone

At the issues section, create a milestone. Name it like the tag version: 0.2.2. There must be a way to link it to the tag, I just don’t know how.

3.70.4 Create issues

Assign issues to the milestone
3.70.5 Close

Close the milestone

Check the milestone has no open issues and close it.

3.70.6 Update the authors

$ git checkout 0.2.2
$ cd templates/bootstrap/
$./get_authors.sh

It will create a file `authors.html.ep`, review it and commit it.

$ git commit authors.html.ep
$ cd ../..

3.70.7 Update the release number

In Ravada.pm

Modify `lib/Ravada.pm` around line 5:

```perl
our $VERSION = '0.2.5';
```

3.70.8 Modify the Changelog

Check the last issues closed for this milestone and add them to the Changelog file:

$ git checkout release/0.2.2
$ gvim Changelog.md
$ git commit -a

3.70.9 Close the release

Make sure the target is the same as the branch, not the master. Close the release at:

- Close the Milestone
- Publish the Release

3.70.10 Release binary

Debian

Create the `debian` package.

$ fakeroot ./deb/debianize.pl
$ lintian ravada_0.8.1_all.deb
Upload the file to our repo and change the number at:

```
```

```
$ git checkout gh-pages
$ gvim docs/docs/INSTALL.md
$ gvim docs/docs/res/ravada_installer.sh
$ gvim index.html
$ git commit -a
$ git push
```

3.70.11 Install it

In a test machine, upgrade ravada following:

```
```

In a fresh machine, install it following the whole process:

```
```

3.70.12 Publish

- Tweet it
- Mail it in google group ravada@groups.google.com
- Change the release in branch master README.md

3.71 Run Ravada in development mode

Once it is installed, you have to run the two ravada daemons. One is the web frontend and the other one runs as root and manage the virtual machines.

3.71.1 Run scripts

Both rvd_front and rvd_back must run. It is a good practice run each one in a different terminal.

The web frontend runs with the morbo tool that comes with mojolicious. It auto reloads itself if it detects any change in the source code:

```
~/src/ravada$ PERL5LIB=./lib morbo ./script/rvd_front
```

The backend runs as root because it has to deal with the VM processes. It won’t reload automatically when there is a change, so it has to be restarted manually when the code is modified:

```
~/src/ravada$ sudo PERL5LIB=./lib ./script/rvd_back --debug
```

3.71.2 Stop system Ravada

You may have another copy of Ravada if you installed the package release. rvd_back will complain if it finds there is another daemon running. Stop it with:
3.71.3 Run in fish

If you use the fish shell you must run the scripts with these commands:
```
~/src/ravada$ set -x PERL5LIB ./lib ; morbo -v script/rvd_front
~/src/ravada$ sudo PERL5LIB=./lib script/rvd_back --debug
```

3.72 Testing environment

Previously install TEST::SQL::DATA module.

In project root run:
```
$ perl Makefile.PL
$ sudo make test
```
At the end, in “Test Summary Report” you can check the result.
If something goes wrong you see: Result: FAIL

3.72.1 Run a single test

```
$ make; sudo prove -l t/lxc/t
```

3.72.2 Advanced Features tests

LDAP

Install a local LDP server to run the LDAP tests.

Nodes

Install two virtual machines called ztest-1 and ztest-2 with these features:
- OS: Lubuntu 18.04
- Disk Size: 20 GB
- RAM: At least 4 GB

Follow the remote nodes configuration guide so those machines can be accessed from root in the test host. Also, KVM virtual packages are required. The easiest way is install a virtual machine and clone it twice. Both machines must answer to two IPs as defined in the configuration.

Place in t/etc/remote_vm.conf this config file:

```
ztest-1:
    vm:
        - KVM
        - Void
```
Base Test machine

Create a small virtual machine called z-test-base:
- OS: Debian Stretch 64 Bits
- Disk: size: 6 GB
- RAM: 1 GB

Configure the Set Hostname so it gets automatically changed on startup.

You can remove office packages and trim it down with virt-sparsify. Install openssh-server in base.

Allow root user from host test machine password-less ssh to the PCs.

When everything is set up prepare this machine as a base. When it is done you can run the tests and it will be used to create clones and check stuff on it.

3.73 How to create tests

We take great care on crafting a stable product. One of the main keys is creating automated tests to check everything works as expected.

As soon as a problem is found, the very first thing is to be able to reproduce it and then create a test case. Make this test fail, so when the code is fixed it should succeed.

3.73.1 Test Requirements

Tests run on an blank sqlite database that is an exact replica of the real mysql database used in production. The fields and data is the same but the data is empty. So you can run the tests in the same host when a real Ravada service is running.

To ease the process of creating this mock database it is required to install the module Test-SQL-Data.

3.73.2 Test Directory

Create a file in the directory t with the .t extension. There are subdirs there, try to put the file in one of them.

3.73.3 Test File Template

This is an empty tests that does nothing. It just loads a test environment with a blank sqlite database. Notice there is a cleaning of the test environment at the begin and end of the tests. This removes possible old leftovers from failed tests.
Let’s create a simple test that checks if a virtual machine is removed. So we edit a new file called 30_remove.t in the directory ravada/t.

```perl
#!perl
use strict;
use warnings;
use Test::More;
use Test::SQL::Data;

use lib 't/lib';
use Test::Ravada;

# create the mock database
my $test = Test::SQL::Data->new(config => 't/etc/sql.conf');

# init ravada for testing
init($test->connector);

# delete test

clean();

use_ok('Ravada');

clean();
done_testing();
```

3.73.4 Run

The prove command runs a test file, before you have to prepare the libraries and environment. Tests create remove and manage virtual machines. That requires root access to the system, so sudo should be used to run the tests.

The best thing is to run it this way:

```
$ cd ravada
$ perl Makefile.PL && make && sudo prove -b t/30_remove.t
```

```
t/user/30_grant_remove.t .. ok
All tests successful.
Files=1, Tests=1, 2 wallclock secs ( 0.02 usr 0.00 sys + 0.57 cusr 0.10 csys = 0.
˓→69 CPU)
Result: PASS
```

3.73.5 Trying the Virtual Managers

It is advisable to run the tests on all the virtual managers known to Ravada. To do so we add a loop that tries to load each of them.

Now the test file is like this:

```perl
#!perl
use strict;
use warnings;
```

(continues on next page)
use Test::More;
use Test::SQL::Data;

use lib 't/lib';
use Test::Ravada;

my $test = Test::SQL::Data->new(config => 't/etc/sql.conf');
init($test->connector);

Code

use_ok('Ravada');
for my $vm_name (vm_names()) {
 my $vm;
 eval { $vm = rvd_back->search_vm($vm_name) };
 SKIP: {
 my $msg = "SKIPPED test: No $vm_name VM found ";
 if ($vm && $vm_name =~ /kvm/i && $>) {
 $msg = "SKIPPED: Test must run as root";
 $vm = undef;
 }
 diag($msg) if !$vm;
 skip $msg if !$vm;
 diag("Testing remove on $vm_name");
 }
}
clean();
done_testing();

done;

We also have a mock virtual manager that does nothing but it is used to test generic virtual machines. It is called the Void VM and it only should be used for testing. So the output of running the test should be like this:

$ perl Makefile.PL && make && sudo prove -b t/30_remove.t
t/user/30_grant_remove.t .. 1/?
Testing remove on KVM
Testing remove on Void
t/user/30_grant_remove.t .. ok
All tests successful.

3.73.6 Test Example: check machine removal

Now the test is there, let's make it check something, like if a virtual machine has been removed.

#!/perl
use strict;
use warnings;
use Test::More;
use Test::SQL::Data;

use lib 't/lib';
use Test::Ravada;

my $test = Test::SQL::Data->new(config => 't/etc/sql.conf');
init($test->connector);

##
sub test_remove {
 my $vm = shift;
 my $domain = create_domain($vm->type);
 # $domain->remove(user_admin);
 my $domain2 = $vm->search_domain($domain->name);
 ok(!$domain2, "[".$domain->type."] expecting domain already removed");
}
##

clean();
use_ok('Ravada');

for my $vm_name (vm_names()) {
 my $vm;
 eval { $vm = rvd_back->search_vm($vm_name) };

 SKIP: {
 my $msg = "SKIPPED test: No $vm_name VM found ";
 if ($vm && $vm_name =~ /kvm/i && $>) {
 $msg = "SKIPPED: Test must run as root";
 $vm = undef;
 }
 diag($msg) if !$vm;
 skip $msg if !$vm;
 diag("Testing remove on $vm_name");
 test_remove($vm);
 }
}

clean();
done_testing();

Now let's run the test:

3.73. How to create tests
$ perl Makefile.PL && make && sudo prove -b t/30_remove.t
t/user/30_grant_remove.t .. 1/?
Texting remove on KVM
t/user/30_grant_remove.t .. 3/?
Failed test '[KVM] expecting domain already removed'
at t/user/30_grant_remove.t line 22.
Texting remove on Void

Failed test '[Void] expecting domain already removed'
at t/user/30_grant_remove.t line 22.
Looks like you failed 2 tests of 7.
t/user/30_grant_remove.t .. Dubious, test returned 2 (wstat 512, 0x200)
Failed 2/7 subtests

Test Summary Report

t/user/30_grant_remove.t (Wstat: 512 Tests: 7 Failed: 2)
 Failed tests: 4, 7

Whoah there! It looks like the test failed, of course, someone commented the line 19 that actually removes the machine. Uncomment it and run the tests again. It should return OK.

3.74 Translations

We use Transifex to provide a cleaner and easy to use interface for translators.

New entries must be added in the `en.po` file. Because it is the basis of the other language files.

Warning: Please don’t add new entries in other `.po` files directly. Use Transifex instead. If you want to collaborate, create an Issue and give you access as a translator of the language you want.

The language files are stored here in `lib/Ravada/I18N`.
Before uploading the changes check if there are repeated msgid. The `msguniq` command should not display any output lines.

```
$ msguniq --repeated en.po
```

3.75 Ravada Documentation

We have 2 kinds of documents for Ravada: MarkDown and reStructuredText.

3.75.1 MarkDown

MarkDown (md) files are the default for github documents. It is used for files stored in the code branches of Ravada. This is a guide for the github markdown flavour.

You can view it before commit with the MarkDown Preview Google Chrome extension

3.75.2 reStructuredText

reStructuredText (rst) files are used for the advanced documentation of Ravada that you can find in our readthedocs web site

You can read more about rst files at the docutils rst

The Google Chrome MarkDown Preview extension is supposed to render rst files too but it lacks some features like remote links. It is better to render those files with RestView.

3.76 Frontend Libraries

When upgrading frontend libraries they must be changed in three places: packages.json, scripts and fallback.

3.76.1 Packages.json

This file is a MANIFEST and is only used so we receive security alerts from github. Update it with latest updates of the libraries.

3.76.2 Scripts

Change scripts pointed in the files `templates/bootstrap/scripts.html.ep` and `templates/bootstrap/header.html.ep`

3.76.3 Fallback

Fallback mode can be set up when the libraries are stored in the same Ravada server. A copy of all the libraries is downloaded following the fallback guide.

Change the fallback files list in the file `etc/fallback.conf`

This file format is:
RavadaVDI

URL [optional directory/]
So the lines are like this. Notice the first one has the directory and the second line doesn’t need one.

etc/fallback.conf:

```
https://cdnjs.cloudflare.com/ajax/libs/morris.js/0.5.1/morris.css
morris.js/
https://use.fontawesome.com/releases/v5.10.1/fontawesome-free-5.10.1-web.zip
...`
```

Active the fallback, go to the ravada main source directory and fetch it to check it is working:

Enable Fallback

Set fallback to 1 in the file etc/rvd_front.conf, then restart the frontend.

Fetch the fallback

$ cd ravada
$./etc/get_fallback.pl

3.77 Hardening Spice security with TLS

TLS support allows to encrypt all/some of the channels Spice uses for its communication. A separate port is used for the encrypted channels.

3.77.1 Change libvirtd configuration

The certificate must be specified in libvirtd configuration file in /etc/libvirt/qemu.conf

Uncomment the lines: `spice_listen=“0.0.0.0”, spice_tls=1` and `spice_tls_x509_cert_dir="/etc/pki/libvirt-spice"

```
# SPICE is configured to listen on 127.0.0.1 by default.
# To make it listen on all public interfaces, uncomment
# this next option.
#
# NB, strong recommendation to enable TLS + x509 certificate
# verification when allowing public access
#
# spice_listen = "0.0.0.0"
# Enable use of TLS encryption on the SPICE server.
#
# It is necessary to setup CA and issue a server certificate
# before enabling this.
#
# spice_tls = 1
# Use of TLS requires that x509 certificates be issued. The
# default it to keep them in /etc/pki/libvirt-spice. This directory
# must contain
#
# ca-cert.pem - the CA master certificate
# server-cert.pem - the server certificate signed with ca-cert.pem
# server-key.pem - the server private key
```

(continues on next page)
3.77.2 Add path in Apparmor

You may want to add this path to Apparmor, in some Linux distributions it is not necessary, ie Ubuntu from 18.04.

Add /etc/pki/libvirt-spice/** r, in /etc/apparmor.d/abstractions/libvirt-qemu

access PKI infrastructure
/etc/pki/libvirt-vnc/** r,
/etc/pki/libvirt-spice/** r,

Note: Remember restart the services: systemctl restart apparmor.service & systemctl restart libvirtd.service

3.77.3 Create self signed certificate

Download and run the create_cert.sh script.

#!/bin/bash

SERVER_IP="$1"
if [-z "$SERVER_IP"]; then
 echo "Error, server ip required."
 echo " Usage: $0 ip"
 exit -1
fi

change the next line
SUBJECT="/C=IL/L=Raanana/O=Red Hat"

SERVER_KEY=server-key.pem
if [! -e ca-key.pem]; then
 openssl genrsa -aes256 -out ca-key.pem
fi
creating a key for our ca
if [! -e ca-key.pem]; then
 openssl genrsa -aes256 -out ca-key.pem
fi
creating a ca
if [! -e ca-cert.pem]; then
 openssl req -new -x509 -days 1095 -key ca-key.pem -out ca-cert.pem \
 -subj "$SUBJECT/CN=my CA"
fi
create server key
if [! -e $SERVER_KEY]; then
 openssl genrsa -out $SERVER_KEY
fi
create a certificate signing request (csr)

3.77. Hardening Spice security with TLS
if [! -e server-key.csr]; then
 openssl req -new -key $SERVER_KEY -out server-key.csr -subj "$SUBJECT/CN=$SERVER_IP"
fi

signing our server certificate with this ca
if [! -e server-cert.pem]; then
 openssl x509 -req -days 1095 -in server-key.csr -CA ca-cert.pem -CAkey ca-key.pem -set_serial 01 -out server-cert.pem
fi

now create a key that doesn't require a passphrase
openssl rsa -in $SERVER_KEY -out $SERVER_KEY.insecure
mv $SERVER_KEY $SERVER_KEY.secure
mv $SERVER_KEY.insecure $SERVER_KEY

copy *.pem file to /etc/pki/libvirt-spice
if [! -d "/etc/pki/libvirt-spice"]
 mkdir -p /etc/pki/libvirt-spice
fi
cp ./*.pem /etc/pki/libvirt-spice
chown :kvm /etc/pki/libvirt-spice/*pem
chmod g+rx /etc/pki/libvirt-spice/*pem

echo --host-subject
echo "your --host-subject is" `openssl x509 -noout -text -in server-cert.pem | grep Subject: | cut -f 10 -d " "`

Warning: Whatever method you use to generate the certificate and key files, the Common Name value used for the server and client certificates/keys must each differ from the Common Name value used for the CA certificate. Otherwise, the certificate and key files will not work for servers compiled using OpenSSL.

3.77.4 Disable Spice Password

More information about removing SPICE password for all the networks.