
RapidSMS Documentation
Release 1.1.0

RapidSMS

Apr 04, 2019

Contents

1 RapidSMS Overview 1
1.1 RapidSMS at a glance . 2
1.2 This is just the surface . 2

2 Installing RapidSMS 3
2.1 Starting a New RapidSMS Project . 3

3 RapidSMS Tutorial 5
3.1 Outline . 5

4 Getting help 23

5 RapidSMS Architecture Overview 25
5.1 Introduction . 25
5.2 Applications . 26
5.3 Backends . 26
5.4 Router . 26

6 RapidSMS Applications 27
6.1 Application Structure . 28
6.2 Incoming Message Processing . 28
6.3 Outgoing Message Processing . 29
6.4 Router Events: start and stop . 29
6.5 Scheduling tasks . 29
6.6 Contrib and Community Applications . 29

7 RapidSMS Backends 31
7.1 Setting up RapidSMS with Kannel . 31
7.2 Setting up RapidSMS with Vumi . 38
7.3 The Database Backend . 41
7.4 Custom Backends . 41
7.5 Supplied Backends . 45
7.6 Configuration . 45

8 RapidSMS Routers 49
8.1 Messaging API . 49
8.2 BlockingRouter . 53

i

8.3 CeleryRouter . 56
8.4 DatabaseRouter . 57
8.5 Choosing a Router . 60
8.6 Applications and Backends . 61
8.7 Message Processing . 61

9 Using virtualenv 63

10 Settings 65
10.1 DB_ROUTER_DEFAULT_BATCH_SIZE . 65
10.2 DEFAULT_RESPONSE . 65
10.3 EXCLUDED_HANDLERS . 65
10.4 INSTALLED_BACKENDS . 66
10.5 INSTALLED_HANDLERS . 66
10.6 PROJECT_NAME . 66
10.7 RAPIDSMS_HANDLERS . 66
10.8 RAPIDSMS_HANDLERS_EXCLUDE_APPS . 67
10.9 RAPIDSMS_ROUTER . 67

11 Translation 69
11.1 Introduction . 69
11.2 Language specification . 69
11.3 Contact language setting . 70

12 Intro to Extensible Models 71
12.1 Initial Setup . 71
12.2 Extension Experiments . 72
12.3 Conclusions . 74

13 Front End 75
13.1 Introduction . 75
13.2 Base template . 75
13.3 Title . 76
13.4 Additional styles . 76
13.5 Additional javascript . 76
13.6 Page header . 76
13.7 Top menu . 76
13.8 Tables . 77
13.9 Forms . 78
13.10 Messages to Users . 78

14 Logging 79

15 Testing RapidSMS Applications 81
15.1 Prerequisites . 81
15.2 Testing Methods . 82

16 Using Celery for Scheduling Tasks 91
16.1 History . 91
16.2 Celery versions . 91
16.3 Introduction to Celery . 91
16.4 Installing celery locally . 92
16.5 Configuring Django for Celery . 92
16.6 Writing a task . 93
16.7 Scheduling it . 93

ii

16.8 Testing it . 94
16.9 An Example . 94
16.10 Troubleshooting . 95
16.11 Periodic Scheduling . 96
16.12 Hints and Tips . 98
16.13 Next Steps . 99
16.14 Using Celery in production . 99

17 Packaging your RapidSMS application for re-use 101

18 Provisioning Servers & Deploying Your Project 103
18.1 Outline . 104

19 Developing RapidSMS 113
19.1 Getting the code for development . 113
19.2 Submit a pull request . 115
19.3 Coding standards and best practices . 117
19.4 Writing documentation . 118
19.5 RapidSMS core test suite . 119
19.6 RapidSMS Release Checklist . 120

20 The RapidSMS Community 123
20.1 Joining the RapidSMS community . 123
20.2 Submitting changes back to the project . 124
20.3 Reviewing pull requests . 125
20.4 The RapidSMS core team . 126
20.5 Release process . 126

21 Contributed Applications 129
21.1 rapidsms.contrib.default . 129
21.2 rapidsms.contrib.echo . 130
21.3 rapidsms.contrib.handlers . 131
21.4 rapidsms.contrib.httptester . 136
21.5 rapidsms.contrib.messagelog . 137
21.6 rapidsms.contrib.messaging . 138
21.7 rapidsms.contrib.registration . 139

22 Release Notes 141
22.1 RapidSMS 1.2.0 release notes (under development) . 141
22.2 RapidSMS 1.1.0 release notes (under development) . 141
22.3 RapidSMS 1.0.0 release notes (current release) . 142
22.4 RapidSMS 0.22.0 release notes . 142
22.5 RapidSMS 0.21.1 release notes (current release) . 142
22.6 RapidSMS 0.21.0 release notes . 143
22.7 RapidSMS 0.20.0 release notes . 144
22.8 RapidSMS 0.19.0 release notes . 144
22.9 RapidSMS 0.18.0 release notes . 145
22.10 RapidSMS 0.17.0 release notes . 145
22.11 RapidSMS 0.16.0 release notes . 146
22.12 RapidSMS 0.15.0 release notes . 146
22.13 RapidSMS 0.14.0 release notes . 147
22.14 RapidSMS 0.13.0 release notes . 147
22.15 RapidSMS 0.12.0 release notes . 150
22.16 RapidSMS 0.11.1 release notes . 153
22.17 RapidSMS 0.11.0 release notes . 153

iii

22.18 RapidSMS 0.10.0 release notes . 154
22.19 Migrating your Project from RapidSMS 0.9.6 to 0.10.0 . 157
22.20 RapidSMS 0.9.6 release notes . 160
22.21 RapidSMS Roadmap . 161

23 RapidSMS internals 165
23.1 RapidSMS 1.0 Roadmap . 165
23.2 mHealth Interoperability Survey . 168
23.3 How to Make RapidSMS Tutorial Videos . 169

24 RapidSMS License 171
24.1 Contributor Licence Agreements (CLAs) . 171
24.2 History . 171

25 Indices and tables 175

Python Module Index 177

iv

CHAPTER 1

RapidSMS Overview

RapidSMS is a free and open-source framework for dynamic data collection, logistics coordination and communica-
tion, leveraging basic short message service (SMS) mobile phone technology. It can be used by anyone and because
one size does not fit all and no two projects are exactly the same, RapidSMS is easily customized to meet the specific
needs of the project and is scalable at an enterprise level. It is currently being utilized by large multilateral organi-
zations (such as the United Nations), development professionals (such as the Earth Institute at Columbia University),
and small NGOs and CBOs (such as Tostan).

RapidSMS is written in Python and Django and is a framework for building highly customized applications. While
there are increasingly more and more pre-configured applications being created for RapidSMS, most projects will
continue to benefit from applications designed specifically to meet the need and demands of their stakeholders.

1

http://python.org/
https://www.djangoproject.com/

RapidSMS Documentation, Release 1.1.0

1.1 RapidSMS at a glance

The goal of this section is to give you enough technical specifics to understand how RapidSMS works, but this isn’t
intended to be a tutorial or reference. When you’re ready to start a project, you can install RapidSMS and begin writing
your own custom applications.

As a quick example, here’s how we might create a simple application, written in Python, that replies ‘pong’ after
receiving the message ‘ping’:

1 from rapidsms.apps.base import AppBase
2

3 class PingPong(AppBase):
4

5 def handle(self, msg):
6 if msg.text == 'ping':
7 msg.respond('pong')
8 return True
9 return False

1.2 This is just the surface

This has been only a quick overview of RapidSMS’s functionality. The next obvious steps are for you to install
RapidSMS, read the tutorial, and join the community. Thanks for your interest!

2 Chapter 1. RapidSMS Overview

CHAPTER 2

Installing RapidSMS

Note: RapidSMS depends on the Django web framework. If you’re new to Django, we recommend reading through
the Django installation instructions before installing RapidSMS.

The recommended way to install RapidSMS is with Pip (since RapidSMS is available on PyPI):

pip install rapidsms

2.1 Starting a New RapidSMS Project

2.1.1 Installing the RapidSMS project template

If you’re starting a new RapidSMS project, you can use the RapidSMS project template. The template is a custom
project template.

To use the project template, first make sure you have the latest version of Django installed:

pip install django

Now you can use the startproject management command with the template option. You just need to specify
your project name at the end of the command:

django-admin.py startproject --template=https://github.com/rapidsms/rapidsms-project-
→˓template/zipball/release-0.21.1 --extension=py,rst my_project_name

This will create a new project using the name you specified. Inside your project, you’ll find a README.rst file with
instructions to setup your project.

3

https://www.djangoproject.com/
https://docs.djangoproject.com/en/dev/intro/install/
http://pip.openplans.org/
http://pypi.python.org/
https://github.com/rapidsms/rapidsms-project-template
https://docs.djangoproject.com/en/dev/ref/django-admin/#django-admin-startproject
https://docs.djangoproject.com/en/dev/ref/django-admin/#django-admin-startproject

RapidSMS Documentation, Release 1.1.0

2.1.2 Installing the latest development version

The latest development version is available in our Git repository. Get it using this shell command, which requires Git:

git clone https://github.com/rapidsms/rapidsms.git

You can also download a zipped archive of the development version.

4 Chapter 2. Installing RapidSMS

https://github.com/rapidsms/rapidsms
http://git-scm.com/
https://github.com/rapidsms/rapidsms/zipball/master

CHAPTER 3

RapidSMS Tutorial

This tutorial will walk you through the creation of a simple RapidSMS application.

RapidSMS builds on the Django web development framework. We assume that you are familiar with Django, at least
the material in the Django tutorial. If you haven’t worked through that before, please start there, then come back here
when you feel comfortable with the concepts there.

3.1 Outline

• RapidSMS Tutorial Part 1: Start a new RapidSMS project. Set up message tester. Write a minimal app that
responds to a message. Put it through its paces.

• RapidSMS Tutorial Part 2: Configure the default app with a custom response. Demonstrate keyword and pattern
handlers.

• RapidSMS Tutorial Part 3: Make a RapidSMS app that uses Django to store and update data.

• RapidSMS Tutorial Part 4: It’s probably time to actually send and receive messages to telephones. Tropo has free
development accounts and there’s a Tropo backend at https://github.com/caktus/rapidsms-tropo. Walk through
adding that to the project. Set up a Tropo development account. Demo the test app from step 2, this time using
real messages.

Start with RapidSMS Tutorial Part 1.

3.1.1 RapidSMS Tutorial Part 1

In this part of the tutorial, we will:

• start a new RapidSMS project

• set up message tester

• write a minimal application that responds to a message

• demonstrate our application

5

https://docs.djangoproject.com/en/dev/intro/tutorial01/
https://github.com/caktus/rapidsms-tropo

RapidSMS Documentation, Release 1.1.0

Start a project

We’re going to create a new Django project, using the RapidSMS project template at https://github.com/rapidsms/
rapidsms-project-template.

Install Django

But before we can do that, we need to have Django installed, so we can use the Django startproject command. So
we’ll start by creating the virtualenv we’ll use, activating it, and installing Django into it:

~ $ virtualenv rapidsms-tut-venv
Running virtualenv with interpreter /usr/bin/python2.7
New python executable in rapidsms-tut-venv/bin/python2.7
Also creating executable in rapidsms-tut-venv/bin/python
Installing distribute...
→˓..
→˓..done.
Installing pip................done.
~ $. rapidsms-tut-venv/bin/activate
(rapidsms-tut-venv)~ $ pip install Django
Downloading/unpacking Django
[...]
Successfully installed Django
Cleaning up...
(rapidsms-tut-venv)~ $

Start the project

Now we’ll use the Django startproject command, with the RapidSMS project template:

(rapidsms-tut-venv)~ $ django-admin.py startproject --template=https://github.com/
→˓rapidsms/rapidsms-project-template/zipball/master --extension=py,rst rapidsms_tut
(rapidsms-tut-venv)~ $ cd rapidsms_tut
(rapidsms-tut-venv)~/rapidsms_tut $ tree
.

manage.py
rapidsms_tut

__init__.py
settings.py
templates

rapidsms
_nav_bar.html

urls.py
wsgi.py

README.rst
requirements

base.txt

4 directories, 8 files
(rapidsms-tut-venv)~/rapidsms_tut $

6 Chapter 3. RapidSMS Tutorial

https://github.com/rapidsms/rapidsms-project-template
https://github.com/rapidsms/rapidsms-project-template
https://docs.djangoproject.com/en/dev/ref/django-admin/#startproject-projectname-destination
http://www.virtualenv.org/en/latest/index.html
https://docs.djangoproject.com/en/dev/ref/django-admin/#startproject-projectname-destination

RapidSMS Documentation, Release 1.1.0

Install dependencies

Install the dependencies:

(rapidsms-tut-venv)~/rapidsms_tut $ pip install -r requirements/base.txt
[... lots of output omitted ...]
Successfully installed RapidSMS South requests django-tables2 djappsettings django-
→˓selectable
Cleaning up...
(rapidsms-tut-venv)~/rapidsms_tut $

Remove some unneeded applications

The RapidSMS project template installs a number of applications by default. Let’s disable some to simplify things. In
rapidsms_tut/settings.py, comment out the following lines:

--- a/rapidsms_tut/settings.py
+++ b/rapidsms_tut/settings.py
@@ -202,7 +202,7 @@ INSTALLED_APPS = (

"rapidsms.contrib.messagelog",
"rapidsms.contrib.messaging",
"rapidsms.contrib.registration",

- "rapidsms.contrib.echo",
+ # "rapidsms.contrib.echo",

"rapidsms.contrib.default", # Must be last
)

@@ -215,6 +215,6 @@ INSTALLED_BACKENDS = {
LOGIN_REDIRECT_URL = '/'

RAPIDSMS_HANDLERS = (
- 'rapidsms.contrib.echo.handlers.echo.EchoHandler',
+ # 'rapidsms.contrib.echo.handlers.echo.EchoHandler',
+ # 'rapidsms.contrib.echo.handlers.ping.PingHandler',
)

Set up the database

The default settings in the RapidSMS project template use SQLite as the database. You should never use SQLite in
production, but we’ll leave it configured here for simplicity.

Initialize our database. First we use syncdb. Go ahead and create a superuser when prompted:

1 (rapidsms-tut-venv)~/rapidsms_tut $ python manage.py syncdb
2 Syncing...
3 Creating tables ...
4 Creating table auth_permission
5 Creating table auth_group_permissions
6 Creating table auth_group
7 Creating table auth_user_groups
8 Creating table auth_user_user_permissions
9 Creating table auth_user

10 Creating table django_content_type
11 Creating table django_session

(continues on next page)

3.1. Outline 7

https://docs.djangoproject.com/en/dev/ref/django-admin/#syncdb

RapidSMS Documentation, Release 1.1.0

(continued from previous page)

12 Creating table django_site
13 Creating table django_admin_log
14 Creating table south_migrationhistory
15

16 You just installed Django's auth system, which means you don't have any superusers
→˓defined.

17 Would you like to create one now? (yes/no): yes
18 Username (leave blank to use 'username'):
19 Email address: username@example.com
20 Password:
21 Password (again):
22 Superuser created successfully.
23 Installing custom SQL ...
24 Installing indexes ...
25 Installed 0 object(s) from 0 fixture(s)
26

27 Synced:
28 > django.contrib.auth
29 > django.contrib.contenttypes
30 > django.contrib.sessions
31 > django.contrib.sites
32 > django.contrib.messages
33 > django.contrib.staticfiles
34 > django.contrib.admin
35 > django_tables2
36 > selectable
37 > south
38 > rapidsms.contrib.handlers
39 > rapidsms.contrib.httptester
40

41 Not synced (use migrations):
42 - rapidsms
43 - rapidsms.backends.database
44 - rapidsms.contrib.messagelog
45 (use ./manage.py migrate to migrate these)
46 (rapidsms-tut-venv)~/rapidsms_tut $

Then we apply migrations using South’s migrate command:

(rapidsms-tut-venv)~/rapidsms_tut $ python manage.py migrate
Running migrations for rapidsms:
[...]
- Loading initial data for rapidsms.

Installed 0 object(s) from 0 fixture(s)
Running migrations for database:
[...]
- Loading initial data for database.

Installed 0 object(s) from 0 fixture(s)
Running migrations for messagelog:
[...]
- Loading initial data for messagelog.

Installed 0 object(s) from 0 fixture(s)
(rapidsms-tut-venv)~/rapidsms_tut $

8 Chapter 3. RapidSMS Tutorial

http://south.readthedocs.org/en/latest/
http://south.readthedocs.org/en/latest/commands.html#migrate

RapidSMS Documentation, Release 1.1.0

Start the server

We should now be ready to start our project. It won’t do much yet, but we can see if what we’ve done so far is working:

(rapidsms-tut-venv)~/rapidsms_tut $ python manage.py runserver
Validating models...

0 errors found
May 03, 2013 - 09:47:56
Django version 1.5.1, using settings 'rapidsms_tut.settings'
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

And if you go to http://127.0.0.1:8000/ with a local browser, you should see a prompt to login. Entering the userid
and password you used earlier to create a superuser should work and you’ll see RapidSMS’s “Installation Successful!”
page.

Message Tester

Let’s take a look at one of the contributed applications that is installed by default, Message Tester. There should be a
link to it at the top of the page, or you can just go to http://localhost:8000/httptester/.

With Message Tester, you can manually enter and send a message to your RapidSMS site as if it came from outside.
Let’s try it out. In the Phone Number field, change our phone number to “123456”. (The phone number doesn’t really
matter, but it’ll make your output match what we show here in the tutorial.) Then in the Single Message field, enter
“ping” and click the “Send” button.

On the right side of the page, Message Tester shows the messages sent and received, in reverse order (so the most
recent message is first). Here’s what you might see:

05/03/2013 9:54 a.m. 123456« Sorry, RapidSMS could not understand your message.
05/03/2013 9:54 a.m. 123456» ping

The “123456»” indicates that a message was sent from phone number 123456 to RapidSMS. The text of the message
was “ping”.

The “123456«” tells us that RapidSMS sent a message to phone number 123456. The content of that message was
“Sorry, RapidSMS could not understand your message.” That shouldn’t be too surprising, since we haven’t written an
application yet. But then, where did the “Sorry” message come from? That comes from RapidSMS’s default handler,
which we’ll learn more about later.

(If instead of the “Sorry” message, you get a response of “pong”, that just means you missed the step above of
commenting out a few lines in settings.py that the RapidSMS project template installs by default. If you go back
and make that change, restart your app, and try again, it should work.)

A minimal application

The Applications Overview shows a trivial RapidSMS application:

1 from rapidsms.apps.base import AppBase
2

3 class PingPong(AppBase):
4

5 def handle(self, msg):
6 if msg.text == 'ping':

(continues on next page)

3.1. Outline 9

http://127.0.0.1:8000/
http://localhost:8000/httptester/
http://rapidsms.readthedocs.org/en/latest/topics/contrib/default.html

RapidSMS Documentation, Release 1.1.0

(continued from previous page)

7 msg.respond('pong')
8 return True
9 return False

Let’s see how we would add that to our project.

A RapidSMS app must first be a Django app, so let’s create an empty Django app. We’ll call it tut:

(rapidsms-tut-venv)~/rapidsms_tut $ python manage.py startapp tut
(rapidsms-tut-venv)~/rapidsms_tut $ tree tut
tut

__init__.py
models.py
tests.py
views.py

0 directories, 4 files
(rapidsms-tut-venv)~/rapidsms_tut $

Now we need to add our app to Django’s INSTALLED_APPS setting:

INSTALLED_APPS = (
[...]
RapidSMS
"tut",

[...]
"rapidsms.contrib.default", # Must be last

)

Our RapidSMS app class must be in a file named app.py in our Django application’s directory, so create a file
rapidsms_tut/tut/app.py and paste the code from above. Here’s what it should look like when you’re done:

(rapidsms-tut-venv)~/rapidsms_tut $ cat tut/app.py
from rapidsms.apps.base import AppBase

class PingPong(AppBase):

def handle(self, msg):
if msg.text == 'ping':

msg.respond('pong')
return True

return False
(rapidsms-tut-venv)~/rapidsms_tut $

Try our application

Now, let’s start our project again and try it out. Start Django as before, go to the Message Tester app, and send a
message containing “ping” (exactly, it must be all lower-case). Instead of “RapidSMS could not understand your
message”, this time your app responds “pong”:

05/03/2013 10:49 a.m. 123456« pong
05/03/2013 10:49 a.m. 123456» ping

You can find a brief explanation of how this app works in the Applications Overview.

Continue with RapidSMS Tutorial Part 2.

10 Chapter 3. RapidSMS Tutorial

https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS

RapidSMS Documentation, Release 1.1.0

3.1.2 RapidSMS Tutorial Part 2

We’ll continue the tutorial by introducing the RapidSMS default app. Then we’ll show how using RapidSMS handlers
can handle parsing incoming messages for you.

Default Application

In part 1, we saw the default application doing its work, responding to messages that no other application had handled.
It’s a good idea to keep the default application at the end of INSTALLED_APPS so that it can give some response
when your application doesn’t recognize a message. Otherwise your users will get no response and won’t know there
was a problem. Or worse, the default application will respond to the message before your app sees it, confusing the
user.

You can change the response used by the default application by changing DEFAULT_RESPONSE. For example, if
you’ve implemented a HELP command in your project, you might change the default response to:

DEFAULT_RESPONSE = "Sorry, %(project_name)s could not \
understand your message. Send HELP to get a list of \
valid commands."

Of course, you could also just send the help in the default response.

“Handling” a Message

We said the default application would respond if no other application had handled the message, but how does
RapidSMS know that an application has “handled” the message?

One way is for an application’s handle method to return True. That tells RapidSMS that the application has handled
the message and no other applications need to try to handle it too. On the other hand, if the application returns
False, RapidSMS will continue passing the message to applications in its list until one returns True or it runs out
of applications.

That’s why the default application should be kept at the end of the INSTALLED_APPS, because we don’t want
RapidSMS to call the default application until it has tried every other one, and RapidSMS calls the applications in the
order of INSTALLED_APPS.

RapidSMS Handlers

There are a few very common cases for RapidSMS, such as looking for messages starting with a particular word, or
messages that match a particular pattern. Instead of writing that code over and over yourself, you can use RapidSMS
handlers.

Using handlers has three steps:

1. Write one or more subclasses of handler classes.

2. Add “rapidsms.contrib.handlers” to INSTALLED_APPS.

3. Add the full classnames of each of your new classes to RAPIDSMS_HANDLERS.

By the way, RapidSMS handlers are just implemented as another app, rapidsms.contrib.handlers. Which
shows what you can do with a RapidSMS app.

3.1. Outline 11

https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS

RapidSMS Documentation, Release 1.1.0

Keyword Handlers

We mentioned earlier that you might want to implement a HELP command for your users. We can do that using a
Keyword Handler.

You’ll write a class that subclasses KeywordHandler. Your keyword will be “help” (it’s not case sensitive). If
someone sends just “HELP”, we’ll respond with a message telling them how to get more help. If someone sends
“HELP something”, we’ll give them more specific help if we can, and otherwise send the same response we would to
a bare “HELP”.

Create a file myhandlers.py with the following content:

myhandlers.py

from rapidsms.contrib.handlers import KeywordHandler

help_text = {
'aaa': 'Help for aaa',
'bbb': 'Help for bbb',
'ccc': 'Help for ccc',

}

class HelpHandler(KeywordHandler):
keyword = "help"

def help(self):
"""Invoked if someone just sends `HELP`. We also call this
from `handle` if we don't recognize the arguments to HELP.
"""
self.respond("Allowed commands are AAA, BBB, and CCC. Send "

"HELP <command> for more help on a specific command.")

def handle(self, text):
"""Invoked if someone sends `HELP <any text>`"""
text = text.strip().lower()
if text == 'aaa':

self.respond(help_text['aaa'])
elif text == 'bbb':

self.respond(help_text['bbb'])
elif text == 'ccc':

self.respond(help_text['ccc'])
else:

self.help()

Now, add “rapidsms.contrib.handlers” to INSTALLED_APPS:

INSTALLED_APPS = [
...
"rapidsms.contrib.handlers",
...

]

and add your new class to RAPIDSMS_HANDLERS:

RAPIDSMS_HANDLERS = [
...
"myhandlers.HelpHandler",

(continues on next page)

12 Chapter 3. RapidSMS Tutorial

https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS

RapidSMS Documentation, Release 1.1.0

(continued from previous page)

...
]

Now, if you start RapidSMS and send a message “HELP”, you should get this response:

Allowed commands are AAA, BBB, and CCC. Send HELP <command> for more help on a
→˓specific command.

and if you send “HELP AAA”, you should get whatever help is available for AAA.

Handlers Must Handle

Warning: When a handler is called for a message, the handler must handle the message itself, because no other
handlers or apps will be called. Since this handler matched the message, RapidSMS expects that this handler will
take care of the message. If you need more flexibility, you’ll need to write a normal RapidSMS application.

Pattern Handlers

A Pattern Handler is like a keyword handler, but with two differences:

1. The pattern can match any part of the message, not just the beginning

2. Groups can be used in the regular expression to help parse the message. Whatever matches the groups is passed
to your handler.

Note: Be careful when deciding to use a pattern handler. Your regular expression needs to be flexible enough to cope
with any message someone might send that you want your handler to handle.

Here’s an example from the PatternHandler documentation. You can send a message like “5 plus 3” and it will
respond “5+3 = 8”. Note that you cannot send “5 + 3” or “5plus3” or “5 plus 3 “; none of those match this simple
regular expression, so this handler won’t be invoked.

Add this code to your myhandlers.py file:

from rapidsms.contrib.handlers import PatternHandler

class SumHandler(PatternHandler):
pattern = r'^(\d+) plus (\d+)$'

def handle(self, a, b):
a, b = int(a), int(b)
total = a + b

self.respond(
"%d+%d = %d" %
(a, b, total))

>>> SumHandler.test("1 plus 2")
['1+2 = 3']

and add the new class to RAPIDSMS_HANDLERS:

3.1. Outline 13

RapidSMS Documentation, Release 1.1.0

RAPIDSMS_HANDLERS = [
...
"myhandlers.HelpHandler",
"myhandlers.SumHandler",
...

]

Restart your app, and try sending some messages. 1 plus 2 should get a response of 1+2 = 3. 1+2 should get
the default response, because it doesn’t match any of the patterns or keywords of your defined handlers, and no other
RapidSMS app is going to process the message.

Continue with RapidSMS Tutorial Part 3.

3.1.3 RapidSMS Tutorial Part 3

So far, nothing we’ve done really requires Django. Let’s create a RapidSMS application that uses Django’s abilities to
store data.

We’ll create an extremely simple voting application. It will understand two messages: VOTE <choice> will add a
vote for the specified choice, and RESULTS will respond with the current number of votes for each choice.

(Please notice that this application is more appropriate for a group to choose a place to go to lunch than for anything
serious. It makes no attempt whatsoever to enforce any of the controls a real election would need.)

Create the application

Create a new Django application. Let’s call it “voting”:

$ python manage.py startapp voting

The models

This application is so simple that we’ll only need one model. We’ll call it Choice, and there will be one instance for
each possible choice. Each record will contain the name of the choice and the number of votes for it so far.

voting/models.py
from django.db import models

class Choice(models.Model):
name = models.CharField(max_length=40, unique=True)
votes = models.IntegerField(default=0)

Application Design

Even a simple application like this can demonstrate an important design principle for RapidSMS applications.

Instead of adding to a candidate’s vote count each time a vote arrived, we could instead have created a Vote model and
stored a record of each vote. That seems like a little simpler way to handle an incoming vote.

However, if we did that, whenever we needed the results we would have to query every record in our database to count
up the votes for each choice. There are SQL queries that can simplify doing that, but the database still has to look at
every record. And the next time we wanted the results, we’d have to do that again.

We’re better off doing a little more processing on each message, if that can save us a lot of work later on.

14 Chapter 3. RapidSMS Tutorial

RapidSMS Documentation, Release 1.1.0

Admin

We’ll want to use the Django admin to set up our choices. Typically you would need to make a few simple changes to
your project’s urls.py, but the RapidSMS project template has already done that for us. So all we need to do is add
admin.py to our application:

voting/admin.py
from django.contrib import admin

from .models import Choice

admin.site.register(Choice)

The results handler

Let’s start with the simpler message to handle, RESULTS. This is easily implemented as a RapidSMS keyword handler.
Let’s create a file handlers.py to contain our handlers, and write a handler that responds with the current votes.

voting/handlers.py

from rapidsms.contrib.handlers import KeywordHandler

from .models import Choice

class ResultsHandler(KeywordHandler):
keyword = "results"

def help(self):
"""help() gets invoked when we get the ``results`` message
with no arguments"""
Build the response message, one part per choice
parts = []
for choice in Choice.objects.all():

part = "%s: %d" % (choice.name, choice.votes)
parts.append(part)

Combine the parts into the response, with a semicolon after each
msg = "; ".join(parts)
Respond
self.respond(msg)

def handle(self, text):
"""This gets called if any arguments are given along with
``RESULTS``, but we don't care; just call help() as if they
passed no arguments"""
self.help()

If the choices are “Moe”, “Larry”, and “Curly”, the response to a RESULTS message might look like Moe: 27;
Larry: 15; Curly: 98.

The vote handler

The VOTE message is slightly more work. If we receive VOTE xxxx where xxx is one of the choices (case-
insensitive), we want to increment the votes for choice xxx and respond telling the user that their vote has been

3.1. Outline 15

RapidSMS Documentation, Release 1.1.0

counted. If we receive any other message starting with VOTE, we’ll respond with some help to tell them how the
command works and what the choices are.

voting/handlers.py (continued)
from django.db.models import F

class VoteHandler(KeywordHandler):
keyword = "vote"

def help(self):
"""Respond with the valid commands. Example response:
``Valid commands: VOTE <Moe|Larry|Curly>``
"""
choices = "|".join(Choice.objects.values_list('name', flat=True))
self.respond("Valid commands: VOTE <%s>" % choices)

def handle(self, text):
text = text.strip()
look for a choice that matches the attempted vote
try:

choice = Choice.objects.get(name__iexact=text)
except Choice.DoesNotExist:

Send help
self.help()

else:
Count the vote. Use update to do it in a single query
to avoid race conditions.
Choice.objects.filter(name__iexact=text).update(votes=F('votes')+1)
self.respond("Your vote for %s has been counted" % text)

Settings

We need to add our Django app to INSTALLED_APPS and our handlers to RAPIDSMS_HANDLERS:

1 INSTALLED_APPS = (
2 [...]
3 # RapidSMS
4 "voting",
5 [...]
6 "rapidsms.contrib.default", # Must be last
7)
8

9 RAPIDSMS_HANDLERS = [
10 [...]
11 "voting.handlers.ResultsHandler",
12 "voting.handlers.VoteHandler",
13 [...]
14]

Update database

We’ve added a new model, so we need to update our database to include it:

$ python manage.py syncdb
Syncing...

(continues on next page)

16 Chapter 3. RapidSMS Tutorial

https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS

RapidSMS Documentation, Release 1.1.0

(continued from previous page)

Creating tables ...
Creating table voting_choice
[... rest of output omitted ...]

Create some choices

Now it’s time to start our application and create some choices to vote for.

$ python manage.py runserver
Validating models...

0 errors found
May 07, 2013 - 08:28:44
Django version 1.5.1, using settings 'rapidsms_tut.settings'
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Go to http://127.0.0.1:8000/admin/voting/choice/, login as the superuser you created in part 1 of the tutorial, and you
should be able to add some choices.

Vote

Let’s start by checking that there are no votes. Go to the message tester application (http://127.0.0.1:8000/httptester/)
and send the message RESULTS. You should see a response showing no votes, something like this:

05/07/2013 8:30 a.m. 349911« Moe: 0; Larry: 0; Curly: 0
05/07/2013 8:30 a.m. 349911» RESULTS

(Recall that the messages are shown in reverse order.)

Now let’s cast a vote. Send VOTE Moe and you should see something like:

05/07/2013 8:32 a.m. 349911« Your vote for Moe has been counted
05/07/2013 8:32 a.m. 349911» VOTE Moe

and if you check the results again:

05/07/2013 8:33 a.m. 349911« Moe: 1; Larry: 0; Curly: 0
05/07/2013 8:33 a.m. 349911» RESULTS

Continue with RapidSMS Tutorial Part 4.

3.1.4 RapidSMS Tutorial Part 4

In this part of the tutorial, we’ll show one way to move beyond the message tester to send and receive text messages
with real phones.

We won’t be creating any new RapidSMS apps in this part. Instead, we’ll update our settings so that our existing apps
can send and receive actual text messages.

3.1. Outline 17

http://127.0.0.1:8000/admin/voting/choice/
http://127.0.0.1:8000/httptester/

RapidSMS Documentation, Release 1.1.0

Online Providers

A common way to connect your RapidSMS application to the telephone system is to use an online service. Typically
such a service will provide an HTTP interface that lets you send messages, and a phone number that can receive
messages. When a message is received, the service will deliver it to your application via HTTP request as well.

There are other options, such as physical devices that connect to your computer. You can get an idea of some of the
options by looking at the RapidSMS Backends documentation.

Network considerations

For an online provider to deliver messages to your site, the provider has to be able to connect to your site. If your site
is not going to be accessible on the public Internet, you’ll have to find an alternative way to send and receive messages.

Even if your site will be on the Internet, you might be doing your development behind a firewall, where your provider
cannot connect to your development system. This can make testing your site difficult.

If you can’t use a test system that’s accessible on the Internet, and you want to receive messages on your development
system, you’ll have to get an externally visible port forwarded to the port on your development system that your site
is running on.

With some providers, you can at least send outgoing messages from behind a firewall without having to arrange for
incoming connections to work. Unfortunately, the one we’re going to use as an example isn’t one of them. It has other
advantages though.

Tropo

For this example we’ll use Tropo. There’s a Tropo RapidSMS backend we can use, and if you’re in the United States,
you can get a free developer account that includes a phone number and enough free messages to try out the service.
Tropo also has service in the rest of North America and western Europe, though the free developer account is not
available. If you’re outside Tropo’s service area, you’ll have to use another provider, but hopefully this tutorial will
still show you the basics of how using an online provider works.

Before we continue, we should mention one peculiarity of Tropo’s web API (Application Programming Interface).
All of these web providers will make HTTP requests to your application in order to deliver incoming messages to
you. Tropo also has to make a request to your application when you want to send a message. For that to work, your
application has to make a call first to Tropo, asking Tropo to call your app, so that then you can send a message. The
Tropo backend for RapidSMS handles all that for you, so you don’t need to worry about in when things are working,
but that’ll be good to know if you need to debug it when it’s not working.

Get an account

To create a Tropo account, go to https://www.tropo.com/account/register.jsp and fill in the form.

Create an app at Tropo

Go to https://www.tropo.com/applications/ and create a new WebAPI application. We’ll refer to this application from
here on as your Tropo app, to distinguish it from your RapidSMS apps.

Configure it as follows:

Tropo WebAPI Application Name: Anything you like; this only appears on the Tropo site and is not needed in your
RapidSMS app.

18 Chapter 3. RapidSMS Tutorial

https://www.tropo.com/
https://pypi.python.org/pypi/rapidsms-tropo/
https://www.tropo.com/account/register.jsp
https://www.tropo.com/applications/

RapidSMS Documentation, Release 1.1.0

What URL powers voice calls to your app? We don’t need this, but it cannot be blank. We recommend just copying
the messaging URL you enter into the next field.

What URL powers SMS/messaging calls to your app? This is a URL that Tropo will make requests to when inter-
acting with your RapidSMS app, as we mentioned before. You can use something like https://yourhost.
example.com/tropo. This needs to correspond to a URL configuration in your RapidSMS app. We’ll talk
more about this when we get to configuration.

Phone Numbers: You’ll need a Voice & Messaging phone number. Your app will receive text messages at this
number, and will use this number as the source number when sending messages. Click Add a new phone
number to add a number. After adding this number, make a note of it.

You can ignore the other phone numbers.

Outbound tokens:

Voice: You can ignore this token.

Messaging: Click on this token string to display a popup window where you can copy the entire token. Save it
for later. Click the close button in the upper right of the window.

Click the Update Application button to save your settings.

Install the backend

Add the Tropo RapidSMS backend to your requirements by editing requirements/base.txt:

Django>=1.5,<1.6
RapidSMS==0.14.0
South==0.7.6
rapidsms-tropo>=0.2.0

Then use pip to install it:

$ pip install -r requirements/base.txt

That will pull in rapidsms-tropo, along with its dependencies.

Configure RapidSMS and the backend

You’ll need to add or change a few settings in your application.

INSTALLED_APPS: Add “rtropo” to INSTALLED_APPS.

INSTALLED_BACKENDS: Add a new entry to INSTALLED_BACKENDS for the Tropo backend to talk to your
Tropo account. It will look something like this:

INSTALLED_BACKENDS = {
...,
"my-tropo-backend": {

"ENGINE": "rtropo.outgoing.TropoBackend",
'config': {

Your Tropo application's outbound token for messaging
'messaging_token': '(some long hex string)',
Your Tropo application's voice/messaging phone number (including

→˓country code)
'number': '+1-555-555-1212',

},

(continues on next page)

3.1. Outline 19

https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS

RapidSMS Documentation, Release 1.1.0

(continued from previous page)

},
}

URLs: Tropo will be making HTTP requests to your RapidSMS site, so you’ll need to configure a URL for it to call.
Edit your site’s top-level urls.py file, and add a URL definition for the messaging URL that you configured in
your Tropo app on the Tropo site. It should call the Tropo backend’s view for receiving messages (rtropo.
views.message_received), and pass the name of the backend you used in INSTALLED_BACKENDS.
The URL pattern should match the URL you configured at Tropo. For example, if you configured the URL
https://yourhost.example.com/tropo/ in your Tropo app, then configure a Django URL like this:

from rtropo.views import message_received

urlpatterns = patterns('',
...,
url(r'^tropo/',

message_received,
kwargs={'backend_name': 'my-tropo-backend'}),

...
)

Try it out

Start your site. Get out your cell phone, and send a text message to your phone number at Tropo. Send “ping” and you
should get back “pong”, if the application we added in part 1 is still configured.

Troubleshooting

If you don’t get a response, first check your application’s logs for errors and if you find any, follow them up. If you
don’t find any, or you fix them and try again and still don’t get a response, then you’ll want to methodically work
through the steps your message and its response have to take and check things out.

Did Tropo get your text?

Tropo has an excellent debugging tool. When you’re logged in to their site, you’ll see a link near the top right,
“Application Debugger”. Follow that link and you’ll see a window which will show voluminous logging information.

The window starts out empty, so once you have it open, send a new message to your Tropo number and see what shows
up. If nothing does, then Tropo didn’t get your message. Go back to your application settings on the Tropo site and
check the phone number again, then double-check you’re not misdialing it when you send the message.

Did Tropo call your site?

We should be able to tell from the logs in the Tropo application debugger what Tropo did with the message. The
window automatically scrolls to the end, so scroll back up to the top. Then start scanning the log messages.

Hopefully after 10 or 20 messages have gone by, you’ll see something like this:

#TROPO#: Found hostedCloudDnsApplicationInfo [_url=https://hostname.example.com/tropo/,
_type=tropo-web, _account=NNNNN, _userName=XXXXXX, _appId=NNNNN, _odf=cusd, _servi-
ceId=NNNNNN, _platform=NNN][endpoint=NNNNNNNNN]

That tells you that Tropo matched the incoming message to your application. Double-check the URL there.

20 Chapter 3. RapidSMS Tutorial

RapidSMS Documentation, Release 1.1.0

Was Tropo’s call to your site successful?

Keep scanning down the logs, paying particular attention to lines with your URL in them, and you should eventually
find Tropo sending a request to your application. It might look like this:

#TROPO#: Sending TropoML Payload on Tropo-Thread-3b43948e921da539a358747c389567a8
[url=http://host.example.com/tropo/]: {“session”:{“id”:”3b43948e921da539a358747c389567a8”,”accountId”:”NNNNN”,”timestamp”:”2013-
05-17T15:44:08.724Z”,”userType”:”HUMAN”,”initialText”:”MYMESSAGE”,”callId”:”(hex
string)”,”to”:{“id”:”15555551212”,”name”:null,”channel”:”TEXT”,”network”:”SMS”},”from”:{“id”:”15555551212”,”name”:null,”channel”:”TEXT”,”network”:”SMS”},”headers”:{(a
whole lot of SIP headers omitted here}}}

If the application failed to handle the request, that might be followed shortly by something like this:

#TROPO#: Received non-2XX status code on Tropo-Thread-163cd6755723938b4b19003576b16212
[url=http://home.example.com/tropo/, code=500]

That indicates that the request got a response status code of 500 from your app. If you see this, you’ll have to go back
to your app and add more logging or find another way to determine what’s going wrong when Tropo calls your app.

What you’d like to see instead would be a log message like this:

#TROPO#: Received new TropoML document on Tropo-Thread-5312f2c74f36e1421622564e18c1c297:
{“tropo”: [{“hangup”: {}}]}

That shows the rapidsms-tropo backend responded to Tropo with a little Tropo program, as it should.

Did your site call Tropo back?

In order to send a response, your site has to make a call to Tropo, then Tropo calls your site back, and finally your
site responds to that request with the command to send the response message. (This convoluted workflow seems to
be unique to Tropo; with most other providers, your site just calls the provider and sends the command to send a
message.)

This will all show up in the debug log as well. To confuse the issue, this flow might overlap with the previous flow -
your site might call Tropo while still in the middle of handling the request from Tropo. However, you can distinguish
the two calls by looking at the SessionID column in the debugger. The first part of that is just the line number in the
log window, but the second part identifies the session, and will be different on the messages associated with a different
call.

Here’s a message indicating your site has called Tropo:

#TROPO#: HTTPDriver.doGet(): action = create

And further down with the same session ID, you should see another message showing Tropo calling your app again:

#TROPO#: Sending TropoML Payload on Tropo-Thread-5acf02a5867a557bd6b31212f47a5c56
[url=http://home.example.com:9123/tropo/]: {“session”:{“id”:”5acf02a5867a557bd6b31212f47a5c56”,”accountId”:”NNNNN”,”timestamp”:”2013-
05-17T16:54:54.307Z”,”userType”:”NONE”,”initialText”:null,”callId”:null,”parameters”:{(contents
omitted)}}}

Keep looking for the same session ID to see if this was successful. Eventually you should see something like:

#TROPO#: Received new TropoML document on Tropo-Thread-5acf02a5867a557bd6b31212f47a5c56:
{“tropo”: [{“message”: {“to”: “15555551212”, “say”: {“value”: “Sorry, RapidSMS could not understand
your message.”}, “from”: “+15555551212”, “network”: “SMS”, “channel”: “TEXT”}}]}

This is the rapidsms-tropo backend telling Tropo to send a message “Sorry, RapidSMS could not understand your
message.”.

3.1. Outline 21

RapidSMS Documentation, Release 1.1.0

Did Tropo send the response message?

Continue following the log messages for the same session. Searching for the text of the response message might be
helpful. You’re looking for a log message showing Tropo delivering the message externally. It might look like this:

#MRCP#: (o)ANNOUNCE rtsp://10.6.69.204:10074/synthesizer/ RTSP/1.0rnCseq: 3rnSes-
sion: 1368809694451-15745b70-b9b143c0-00000585rnContent-Type: application/mrcprnContent-
Length: 397rnrnSPEAK 141650001 MRCP/1.0rnKill-On-Barge-In: falsernSpeech-
Language: imrnVendor-Specific-Parameters: IMified-Network=SMS;IMified-
From=+15555551212;IMified-Bot-Key=88A17A15-CCC1-404B-806434AD47E4B442;IMified-
User=tel:+15555551212rnContent-Type: application/synthesis+ssmlrnContent-Length:
103rnrn<?xml version=”1.0” encoding=”UTF-8”?><speak>Sorry, RapidSMS could
not understand your message.</speak> #[1368809694451-15745b70-b9b143c0-
00000585][10.6.69.204:10074][10.6.69.204:59469][4602a1bcfe5482f8b25066886e8a7496][456902][77104]

Most of that we can ignore, bug we should see our phone numbers and the text message. After that, we should see
another log message showing the response, hopefully successful:

#MRCP#: (i)RTSP/1.0 200 OKrnSession: 1368809694451-15745b70-b9b143c0-
00000585rnCseq: 3rnContent-Type: application/mrcprnContent-Length: 38rnrnM-
RCP/1.0 141650001 200 IN-PROGRESSrnrn #[1368809694451-15745b70-b9b143c0-
00000585][10.6.69.204:10074][10.6.69.204:59469][4602a1bcfe5482f8b25066886e8a7496][456902][77104]

Again, we can ignore most of that, but “200 OK” is a good sign.

Next steps

Continue reading the documentation. There’s a lot of useful information. Some of it you might want to skim for now,
but it’ll give you an idea of what RapidSMS can do, and where to look for more details when you’re ready to try new
things.

22 Chapter 3. RapidSMS Tutorial

rtsp://10.6.69.204:10074/synthesizer/

CHAPTER 4

Getting help

If you need help while using RapidSMS, there are several ways you can get it.

• Ask on the #rapidsms IRC channel on Freenode. You can use the webchat client for this too. The #rapidsms IRC
channel, like most IRC channels, is pretty informal. You don’t need to ask whether it’s okay to ask a question -
just ask it.

• Ask on the rapidsms mailing list. This list is used to ask and answer questions, help work through bugs, and
discuss general RapidSMS topics.

Note that there’s a second mailing list, rapidsms-dev. You’re welcome to join both, but rapidsms-dev
is intended for discussing development of RapidSMS itself (changing the RapidSMS code), while rapidsms
is to talk about using RapidSMS, writing apps that use RapidSMS, etc.

23

irc://irc.freenode.net/rapidsms
http://webchat.freenode.net?channels=rapidsms
http://groups.google.com/group/rapidsms

RapidSMS Documentation, Release 1.1.0

24 Chapter 4. Getting help

CHAPTER 5

RapidSMS Architecture Overview

You can also view the full-sized version.

5.1 Introduction

RapidSMS is divided into a few core components:

• Applications

• Backends

25

https://raw.github.com/rapidsms/rapidsms/master/docs/_static/rapidsms-architecture.png

RapidSMS Documentation, Release 1.1.0

• Router

If you are new to RapidSMS most likely you will want to develop Applications.

5.2 Applications

RapidSMS applications, or “apps”, perform one or more of the following functions:

• Performs your business logic

• Handles and responds to messages

• Extends the data model

• Creates a web interface with Django views and templates

For example, a registration application may provide a messaging protocol for users to register themselves into the
system. In general, you’ll probably be writing applications more than anything else. Please see the application
documentation for more information.

RapidSMS represents the entities it communicates with using Contacts, which you’ll also want to understand before
writing applications.

5.3 Backends

Backends receive messages from external sources and deliver messages from applications to external sources. Example
backends include:

• Using Kannel to communicate to a GSM modem connected over USB or Serial

• Using Twilio or Clickatell to send and receive SMS messages over HTTP

Please see the backend documentation for more information.

5.4 Router

The router is the message processing component of RapidSMS. It provides the infrastructure to receive incoming, send
outgoing messages, and gluing together your applications and backends. RapidSMS provides several built-in routers
to use based on the needs of your application.

Please see the router documentation for more information.

26 Chapter 5. RapidSMS Architecture Overview

http://en.wikipedia.org/wiki/GSM
http://www.twilio.com/
http://www.clickatell.com/

CHAPTER 6

RapidSMS Applications

RapidSMS applications are Django apps which contain custom logic for processing incoming and outgoing messages.
When the router receives an incoming or outgoing message, it triggers a series of phases through which its associated
applications can process the message. Any number of RapidSMS applications can be used in a project.

Each RapidSMS application defines a class that extends from rapidsms.apps.base.AppBase, kept in the
app.py submodule of a Django app. The Django app also contains models, views, and methods required by the
application.

As an example, we might create a simple application that replies ‘pong’ after receiving the message ‘ping’:

1 # In pingpongapp/app.py
2

3 from rapidsms.apps.base import AppBase
4

5

6 class PingPong(AppBase):
7

8 def handle(self, msg):
9 if msg.text == 'ping':

10 msg.respond('pong')
11 return True
12 return False

After associating the PingPong application with the router, new incoming and outgoing messages received by the
router are passed through the application for processing. All incoming ‘ping’ messages will receive a ‘pong’ reply. In
general, the send and receive methods in the messaging api abstract the logic needed for passing messages to the
router.

Application and router behavior in RapidSMS are intertwined. In this section, we focus on the behavior specific to
applications, with references to some key areas where this behavior is tied to the router. For more information about
routing messages through applications, see the router documentation.

27

RapidSMS Documentation, Release 1.1.0

6.1 Application Structure

A RapidSMS application is contained in a Django app. Each application defines a class that extends from rapidsms.
apps.base.AppBase, kept in the app.py submodule of the Django app.

The router maintains a collection of associated applications through which to route incoming and outgoing mes-
sages. Application discovery is managed through the BaseRouter.add_app method. The default router,
BlockingRouter, loads applications upon initialization by calling BaseRouter.add_app on each app listed
in the optional apps argument or in INSTALLED_APPS.

6.2 Incoming Message Processing

Note: See also the router documentation on incoming message processing.

The router receives each incoming message through its incoming method. In BaseRouter.
receive_incoming, the message is passed sequentially to the router’s associated applications in each of five
processing phases. Applications provide the code to execute each phase. The router provides hooks which allow an
application to filter out a message, skip phases, or stop further processing.

Important: The order in which the router chooses applications to process messages is extremely important, because
each application will have the opportunity to block subsequent applications from processing a message.

The logic for each phase is defined in a method of the same name in the AppBase class. By default, no action is
taken at any phase. Each subclass may choose to override any of the default methods to use custom logic on incoming
messages.

1. filter - Optionally abort further processing of the incoming message. The filter phase is executed before any
other processing or modification of the incoming message. If an application returns True from this phase, the
message is filtered out and no further processing will be done by any application (not even cleanup).

Example: An application that filters out spam messages:

1 from rapidsms.apps.base import AppBase
2

3 class SpamFilter(AppBase):
4

5 def filter(self, msg):
6 """Filter out spam messages."""
7 if msg.text == "Congratulations, you've won a free iPod!":
8 return True # This message is probably spam and should not be
9 # processed any more.

10 return False

2. parse - Modify message in a way that is globally useful. This phase is used to modify the incoming message
in a way that could be useful to other applications. All messages that aren’t filtered go through the parse phase
of every application. No INSERTs or UPDATEs should be done during this phase.

Example: An application adds metadata about phone number registration to each message.

3. handle - Respond to the incoming message. The router passes incoming messages through the handle phase
of each application until one of them returns True. All subsequent apps will not handle the message.

28 Chapter 6. RapidSMS Applications

https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS

RapidSMS Documentation, Release 1.1.0

It is considered best practice to return True during the handle phase if the application responds to or otherwise
alters the message. Although an application may return False in order to allow other applications to handle
the message, remember that the default phase will execute if no application returns True during handle.

As mentioned above, the order in which the router chooses to send messages to applications is very important.
For example, you may wish to have ‘keyword’ applications (which look for a specific trigger word) handle a
message before more general applications that use a regex to match possible text.

4. default - Execute a default action if no application returns True during the handle phase. For example, an
application might want to provide additional help text or a generic response if no other application has handled
the message. The application can return True from this method in order to prevent the remaining applications
from executing their default stage.

5. cleanup - Clean up work from previous phases.

6.3 Outgoing Message Processing

Note: See also the router documentation on outgoing message processing.

The router receives each outgoing message through its outgoing method. Messages are processed in a manner
similar to incoming messages, except only one phase, outgoing, is defined. In BaseRouter.send_outgoing,
the message is processed sequentially by the router’s associated applications. However, the applications are called in
reverse order with respect to the order they are called in BaseRouter.receive_incoming, so the first applica-
tion called to process an incoming message is the last application that is called to process an outgoing message. If any
application returns False during the outgoing phase, all further processing of the message will be aborted.

The logic for the outgoing phase is defined in a method of the same name in the AppBase class. By default, no action
is taken during this phase. Each subclass may choose to override the default method to use custom logic on outgoing
messages.

6.4 Router Events: start and stop

For historical reasons, each application can provide start-up and shut-down logic in the start and stop methods,
respectively. These methods are called from BaseRouter when the router is started or stopped. However, this
behavior has never been enforced. A “stopped” router can still receive messages and will route them to applications,
even “stopped” applications. As we move toward v1.0, we expect to remove these methods from BaseApp.

6.5 Scheduling tasks

If your application needs to run tasks asynchronously, either on-demand or on a schedule, you can of course use any
mechanism that works in Django. The RapidSMS project recommends using Celery, and there are some advantages
to using Celery in RapidSMS applications compared to other schedulers. See Using Celery for Scheduling Tasks

6.6 Contrib and Community Applications

There are many existing RapidSMS applications. The applications in rapidsms.contrib are maintained by
core developers and provide broad-reaching functionality that will be useful to many developers. We also provide
a directory of community-maintained RapidSMS applications that may be useful in your project.

6.3. Outgoing Message Processing 29

RapidSMS Documentation, Release 1.1.0

6.6.1 RapidSMS Apps

One day soon, all usable RapidSMS apps will be found or linked to from the following repositories:

• http://github.com/rapidsms/rapidsms-contrib-apps-dev (optional apps, restricted committers)

• http://github.com/rapidsms/rapidsms-community-apps-dev (optional apps, open committers)

• http://github.com/nyaruka/rapidsms-xforms (interactive form builder)

Community Apps

This is a list of apps that are known to be currently in development, but exist in other repositories on github:

• An application describing common models for the health domain: http://github.com/unicefuganda/
rapidsms-healthmodels

• Gelvin and KSam’s Generic Django app for using the Entity-Attribute-Value design pattern: http://github.com/
mvpdev/django-eav

• Nic’s xforms app, A way of building data collection forms on the fly, exposing them to both an SMS parser and
any ODK client: http://github.com/nyaruka/rapidsms-xforms

• Nic’s app for processing messages in the http thread: http://github.com/nyaruka/rapidsms-httprouter

• Caktus’ app for processing messages in an http process with Celery: http://github.com/caktus/
rapidsms-threadless-router

• An app for creating simple-question, simple-response (i.e. trainingless) SMS campaigns: http://github.com/
unicefuganda/rapidsms-polls

• An app for asking a series of questions (for example, to register a user in the system with various contact
information): http://github.com/unicefuganda/rapidsms-script

• An alternative to djtables, this app lets you build list admin views, maps, charts, and customizable dashboards
from * generic view templates: http://github.com/unicefuganda/rapidsms-generic

All of these are in various states of development, however most have been in production for some time. If you have an
interest in contributing to any of these apps, please post to the google group!

30 Chapter 6. RapidSMS Applications

http://github.com/rapidsms/rapidsms-contrib-apps-dev
http://github.com/rapidsms/rapidsms-community-apps-dev
http://github.com/nyaruka/rapidsms-xforms
http://github.com/unicefuganda/rapidsms-healthmodels
http://github.com/unicefuganda/rapidsms-healthmodels
http://github.com/mvpdev/django-eav
http://github.com/mvpdev/django-eav
http://github.com/nyaruka/rapidsms-xforms
http://github.com/nyaruka/rapidsms-httprouter
http://github.com/caktus/rapidsms-threadless-router
http://github.com/caktus/rapidsms-threadless-router
http://github.com/unicefuganda/rapidsms-polls
http://github.com/unicefuganda/rapidsms-polls
http://github.com/unicefuganda/rapidsms-script
http://github.com/unicefuganda/rapidsms-generic

CHAPTER 7

RapidSMS Backends

Backends define how RapidSMS communicates with the outside world. The router uses backends to send and receive
messages and all text messages will eventually pass through a backend. They handle a two-way messaging protocol:

• Incoming messages: Messages received by RapidSMS from an external source. All incoming messages are
received over HTTP and processed by a Django view. Once received, backends will pass messages to the router
for processing.

• Outgoing messages: Messages sent by RapidSMS to an external source. The router will pass messages to
backends once processed. RapidSMS sends messages over HTTP.

7.1 Setting up RapidSMS with Kannel

Kannel is a free and open source SMS gateway that can be configured for use with RapidSMS. While in-depth Kannel
configuration is outside the scope of this documentation, it’s possible to configure Kannel to connect directly to USB
or serial GSM modems as well as third party HTTP or SMPP gateways. For more information about the connections
Kannel supports (what Kannel calls an “SMS Center” or “SMSC”), see the in-depth Kannel user guide and refer to
“Chapter 6. Setting up a SMS Gateway”.

The following guide will help you setup Kannel on Ubuntu to talk to a single GSM modem and RapidSMS installation.

7.1.1 Installing Kannel

A kannel package is included with Ubuntu, so installation is very easy:

sudo apt-get install kannel

By default in Ubuntu, Kannel starts a WAP gateway but does not start the SMS gateway. To change this behavior, first
stop Kannel:

sudo service kannel stop

31

http://www.kannel.org/
http://www.kannel.org/userguide.shtml

RapidSMS Documentation, Release 1.1.0

Now, edit /etc/default/kannel and uncomment the line starting with START_SMSBOX. If you won’t be using
the WAP gateway (if you don’t know what that is you probably won’t be), you can also disable it by commenting out
START_WAPBOX=1. Note: Simply setting START_WAPBOX=0 will not disable it; you must comment out the line:

sudo vim /etc/default/kannel # or use your favorite editor

Finally, start Kannel again (note it will say “Starting WAP gateway” even if it’s only starting the SMS gateway):

sudo service kannel start

You can check that it’s running by looking at ps ax | grep kannel. You should see something like this:

2446 ? Ss 0:00 /usr/sbin/run_kannel_box --pidfile /var/run/kannel/kannel_
→˓bearerbox.pid --no-extra-args /usr/sbin/bearerbox -v 4 -- /etc/kannel/kannel.conf
2447 ? Sl 0:00 /usr/sbin/bearerbox -v 4 -- /etc/kannel/kannel.conf
2460 ? Ss 0:00 /usr/sbin/run_kannel_box --pidfile /var/run/kannel/kannel_
→˓smsbox.pid --no-extra-args /usr/sbin/smsbox -v 4 -- /etc/kannel/kannel.conf

7.1.2 Setting up the fake SMSC for testing

Kannel includes support for a Fake SMSC which can be useful during setup for testing both Kannel and RapidSMS.
The relevant utility is included in the kannel-extras package:

sudo apt-get install kannel-extras

To make things simpler, we’ll first setup Kannel and RapidSMS to work with a Fake SMSC, and then attempt to
connect it to a USB modem.

Configuring Kannel for the first time

The easiest way to get Kannel working with RapidSMS is to start with a sample Kannel configuration. To get started,
copy and paste the following into /etc/kannel/kannel.conf, replacing everything currently in the file (make
a backup first if you’d like):

CONFIGURATION FOR USING SMS KANNEL WITH RAPIDSMS
#
For any modifications to this file, see Kannel User Guide
If that does not help, see Kannel web page (http://www.kannel.org) and
various online help and mailing list archives
#
Notes on those who base their configuration on this:
1) check security issues! (allowed IPs, passwords and ports)
2) groups cannot have empty rows inside them!
3) read the user guide

include = "/etc/kannel/modems.conf"

#---
CORE
#
There is only one core group and it sets all basic settings
of the bearerbox (and system). You should take extra notes on
configuration variables like 'store-file' (or 'store-dir'),
'admin-allow-ip' and 'access.log'

(continues on next page)

32 Chapter 7. RapidSMS Backends

RapidSMS Documentation, Release 1.1.0

(continued from previous page)

group = core
admin-port = 13000
smsbox-port = 13001
admin-password = CHANGE-ME
status-password = CHANGE-ME
admin-deny-ip = "*.*.*.*"
admin-allow-ip = "127.0.0.1"
box-deny-ip = "*.*.*.*"
box-allow-ip = "127.0.0.1"
log-file = "/var/log/kannel/bearerbox.log"
log-level = 0

#---
SMSC CONNECTIONS
#
SMSC connections are created in bearerbox and they handle SMSC specific
protocol and message relying. You need these to actually receive and send
messages to handset, but can use GSM modems as virtual SMSCs

Here is a sample SMSC for use with the /usr/lib/kannel/test/fakesmsc command

group = smsc
smsc = fake
smsc-id = FAKE
port = 10000
connect-allow-ip = 127.0.0.1

#---
SMSBOX SETUP
#
Smsbox(es) do higher-level SMS handling after they have been received from
SMS centers by bearerbox, or before they are given to bearerbox for delivery

group = smsbox
bearerbox-host = 127.0.0.1
sendsms-port = 13013
sendsms-chars = "0123456789 +-"
log-file = "/var/log/kannel/smsbox.log"
log-level = 0
access-log = "/var/log/kannel/smsbox-access.log"
reply-couldnotfetch = "Your message could not be processed at this time. Please try
→˓again later. (err=couldnotfetch)"
reply-requestfailed = "Your message could not be processed at this time. Please try
→˓again later. (err=requestfailed)"
reply-couldnotrepresent = "Your message could not be processed at this time. Please
→˓try again later. (err=couldnotrepresent)"
http-request-retry = 3
http-queue-delay = 10

SEND-SMS USERS
#
These users are used when Kannel smsbox sendsms interface is used to
send PUSH sms messages, i.e. calling URL like
http://kannel.machine:13013/cgi-bin/sendsms?username=tester&password=foobar...

This is the username and password that RapidSMS uses to deliver SMSes to
(continues on next page)

7.1. Setting up RapidSMS with Kannel 33

RapidSMS Documentation, Release 1.1.0

(continued from previous page)

Kannel. It must also set the 'smsc' variable in the query string, so that
Kannel knows which SMSC to use to route the message.

group = sendsms-user
username = rapidsms
password = CHANGE-ME
user-deny-ip = "*.*.*.*"
user-allow-ip = "127.0.0.1;"

#---
SERVICES
#
These are 'responses' to sms PULL messages, i.e. messages arriving from
handsets. The response is based on message content. Only one sms-service is
applied, using the first one to match.

The 'ping-kannel' service let's you check to see if Kannel is running,
even if RapidSMS is offline for some reason.

group = sms-service
keyword = ping-kannel
text = "Kannel is online and responding to messages."

There should be always a 'default' service. This service is used when no
other 'sms-service' is applied. These relay incoming messages from any
configured SMSCs to the appropriate HTTP backend URLs in RapidSMS.
By setting 'accepted-smsc', we are assured that messages are routed to
the appropriate backend in RapidSMS.

group = sms-service
keyword = default
catch-all = yes
accepted-smsc = FAKE
don't send a reply here (it'll come through sendsms):
max-messages = 0
get-url = http://127.0.0.1:8000/backend/kannel-fake-smsc/?id=%p&text=%a&charset=%C&
→˓coding=%c

You’ll notice the file includes a file called modems.conf at the top. You can copy this file from where Ubuntu
installed it as follows:

sudo cp /usr/share/doc/kannel/examples/modems.conf /etc/kannel/

Next, restart Kannel to reload the new configuration:

sudo service kannel restart

When you look at the process list (ps ax | grep kannel), you should see a 4th process for the smsbox now
started, like so:

3231 ? Ss 0:00 /usr/sbin/run_kannel_box --pidfile /var/run/kannel/kannel_
→˓bearerbox.pid --no-extra-args /usr/sbin/bearerbox -v 4 -- /etc/kannel/kannel.conf
3232 ? Sl 0:00 /usr/sbin/bearerbox -v 4 -- /etc/kannel/kannel.conf
3243 ? Ss 0:00 /usr/sbin/run_kannel_box --pidfile /var/run/kannel/kannel_
→˓smsbox.pid --no-extra-args /usr/sbin/smsbox -v 4 -- /etc/kannel/kannel.conf
3245 ? Sl 0:00 /usr/sbin/smsbox -v 4 -- /etc/kannel/kannel.conf

34 Chapter 7. RapidSMS Backends

RapidSMS Documentation, Release 1.1.0

You can further test that Kannel is running by using the fake SMSC (used only for testing) to use the “ping-kannel”
service that we included in the Kannel configuration above:

/usr/lib/kannel/test/fakesmsc -m 1 "123 789 text ping-kannel"

On the last line of the output you should see the message that was sent by the ping-kannel service, e.g.:

INFO: Got message 1: <789 123 text Kannel is online and responding to messages.>

Press Control-C to kill the fakesmsc command and return to the prompt.

Adding a backend for the fake SMSC to RapidSMS

Now that Kannel is installed and configured correctly, adding support for the Kannel backend to your existing
RapidSMS project is not difficult. To begin, simply add the following to your existing INSTALLED_BACKENDS
configuration in your settings.py file:

INSTALLED_BACKENDS = {
...
other backends, if any
"kannel-fake-smsc" : {

"ENGINE": "rapidsms.backends.kannel.KannelBackend",
"sendsms_url": "http://127.0.0.1:13013/cgi-bin/sendsms",
"sendsms_params": {"smsc": "FAKE",

"from": "123", # not set automatically by SMSC
"username": "rapidsms",
"password": "CHANGE-ME"}, # or set in localsettings.py

"coding": 0,
"charset": "ascii",
"encode_errors": "ignore", # strip out unknown (unicode) characters

},
}

Changed in version 0.10.0: "host" and "port" should no longer be included in the backend configuration.

Next, you need to add an endpoint to your urls.py for the newly created backend. You can do this like so:

from django.conf.urls.defaults import *
from rapidsms.backends.kannel.views import KannelBackendView

urlpatterns = patterns('',
...
url(r"^backend/kannel-fake-smsc/$",

KannelBackendView.as_view(backend_name="kannel-fake-smsc")),
)

You can make the Django URL pattern whatever you like, but the convention is to make it backend/ followed by
the name of your backend (from the settings file) and a final /.

Now, you should be able to start RapidSMS like so:

./manage.py runserver

And test connection using the echo app in RapidSMS (if installed in your project):

/usr/lib/kannel/test/fakesmsc -m 1 "123 789 text echo hi"

You should see the message get echoed back to you on the last line:

7.1. Setting up RapidSMS with Kannel 35

RapidSMS Documentation, Release 1.1.0

INFO: Got message 1: <123 123 text hi>

7.1.3 Adding support for a GSM Modem SMSC

This section assumes that you’ve already installed, configured, and setup Kannel to use the Fake SMSC as described
above. Once you have Kannel and RapidSMS configured, adding support for additional SMSCs (such as a GSM
modem) is fairly easy. It also assumes that you already have a GSM modem connected to your computer, and that you
know the device location (e.g., /dev/ttyUSB0) of that modem.

Adding the GSM modem to the Kannel configuration

Using the base configuration given above, add the following to the section titled “SMSC CONNECTIONS” in /etc/
kannel/kannel.conf, changing the device = /dev/ttyUSB0 line so that it points to the right device:

group = smsc
smsc = at
smsc-id = usb0-modem
my-number = 1234
modemtype = auto
device = /dev/ttyUSB0

Next, add the following sms-service at the end of the file, which will send incoming messages from the modem
to RapidSMS via HTTP:

group = sms-service
keyword = default
catch-all = yes
accepted-smsc = usb0-modem
don't send a reply here (it'll come through sendsms):
max-messages = 0
get-url = http://127.0.0.1:8000/backend/kannel-usb0-smsc/?id=%p&text=%a&charset=%C&
→˓coding=%c

Make sure to restart Kannel to reload the configuration:

sudo service kannel restart

Adding a backend for the GSM modem to RapidSMS

Finally, add a second Kannel backend to your settings.py which will setup the necessary router infrastructure to
send and receive messages via the USB modem you configured above in Kannel:

INSTALLED_BACKENDS = {
...
"kannel-usb0-smsc" : {

"ENGINE": "rapidsms.backends.kannel.KannelBackend",
"sendsms_url": "http://127.0.0.1:13013/cgi-bin/sendsms",
"sendsms_params": {"smsc": "usb0-modem",

"from": "+SIMphonenumber", # not set automatically by SMSC
"username": "rapidsms",
"password": "CHANGE-ME"}, # or set in localsettings.py

"coding": 0,

(continues on next page)

36 Chapter 7. RapidSMS Backends

RapidSMS Documentation, Release 1.1.0

(continued from previous page)

"charset": "ascii",
"encode_errors": "ignore", # strip out unknown (unicode) characters

},
}

Changed in version 0.10.0: "host" and "port" should no longer be included in the backend configuration.

Next, you need to add an endpoint to your urls.py for the newly created backend. You can do this like so:

from django.conf.urls.defaults import *
from rapidsms.backends.kannel.views import KannelBackendView

urlpatterns = patterns('',
...
url(r"^backend/kannel-usb0-smsc/$",

KannelBackendView.as_view(backend_name="kannel-usb0-smsc")),
)

Now, the next time you call ./manage.py runserver, Django should begin processing requests for both the
Kannel backends that you created (one for the fake SMSC and one for the GSM modem).

7.1.4 Delivery Report

RapidSMS can take advantage of Kannel’s SMS Delivery Report functionality. This is useful if you’d like to track
the status of a message after it’s been passed to Kannel for processing. Kannel will use a callback URL to notify us.
Enabling this feature will allow you to view delivery reports, for each message, in the Django admin.

1. Add rapidsms.backends.kannel to INSTALLED_APPS:

INSTALLED_APPS = (
Other apps here
"rapidsms.backends.kannel",

)

2. Add kannel/ URLs to your urlconf:

urlpatterns = patterns("",
...
url(r'^kannel/', include('rapidsms.backends.kannel.urls')),

)

3. Add the necessary database tables (omit --migrate if you’re not using South):

python manage.py syncdb --migrate

4. Update your Kannel backend settings with delivery_report_url. This is the URL Kannel will use to notify
RapidSMS. Kannel requires a full URL, including the protocol and authority, even if you’re only communicating
locally. RapidSMS will automatically append the necessary path and query string arguments, so you only need to
include the protocol and authority information, such as http://127.0.0.1:8000 or http://example.com.
Our example is local:

INSTALLED_BACKENDS = {
...
"kannel-usb0-smsc" : {

"ENGINE": "rapidsms.backends.kannel.KannelBackend",

(continues on next page)

7.1. Setting up RapidSMS with Kannel 37

http://kannel.org/download/1.5.0/userguide-1.5.0/userguide.html#DELIVERY-REPORTS

RapidSMS Documentation, Release 1.1.0

(continued from previous page)

"sendsms_url": "http://127.0.0.1:13013/cgi-bin/sendsms",
"sendsms_params": {"smsc": "usb0-modem",

"from": "+SIMphonenumber", # not set automatically by SMSC
"username": "rapidsms",
"password": "CHANGE-ME"}, # or set in localsettings.py

"coding": 0,
"charset": "ascii",
"encode_errors": "ignore", # strip out unknown (unicode) characters
"delivery_report_url": "http://127.0.0.1:8000",

},
}

You can view delivery reports in the Django admin.

7.1.5 Troubleshooting

For help troubleshooting, please carefully review the relevant log files in /var/log/kannel as well as the output of
the ./manage.py runserver command. For additional help configuring Kannel, review the Kannel user guide
or subscribe to the Kannel users mailing list.

7.2 Setting up RapidSMS with Vumi

Vumi is a free and open source super scalable messaging platform written in Python. Vumi can connect to third party
gateways via protocols like HTTP and SMPP. Please read Vumi’s documentation for additional information.

The following guide will help you setup Vumi on Ubuntu to talk to a SMPP simulator and RapidSMS installation.

7.2.1 Using an SMPP simulator

For local development, it’s easy to setup an SMPP simulator for testing purposes. Vumi suggests using SMPPSim.
SMPPSim is a testing utility which mimics the behavior of the Short Message Peer to Peer Protocol (SMPP) based
Short Message Service Center (SMSC).

Note: SMPPSim requires Java. Please install Java before proceeding with these instructions.

To download SMPPSim, run the following commands:

wget http://www.seleniumsoftware.com/downloads/SMPPSim.tar.gz
tar zxf SMPPSim.tar.gz

SMPPSim runs on port 80 by default. Let’s set this to a higher port to make it easier to run without superuser privileges.
Open conf/smppsim.props and change the HTTP_PORT line to:

HTTP_PORT=8080

You can use the provided shell scripts to start SMPPSim:

chmod +x startsmppsim.sh
./startsmppsim.sh

38 Chapter 7. RapidSMS Backends

http://www.kannel.org/userguide.shtml
http://www.kannel.org/lists.shtml
http://vumi.org/
http://vumi.readthedocs.org/en/latest/
http://www.seleniumsoftware.com/user-guide.htm#intro

RapidSMS Documentation, Release 1.1.0

Now visit http://localhost:8080 to use SMPPSim’s web interface. You’ll use this interface to create mobile-originated
(MO) messages to send to Vumi.

7.2.2 Installing and setting up Vumi for the first time

Note: As of this writing, the RapidSMS/Vumi integration is planned for merge into an official Vumi release, but
currently resides in the develop Vumi branch. When complete, we will update this documentation accordingly.

Clone the Vumi GitHub repository:

git clone git@github.com:praekelt/vumi.git
cd vumi
git checkout develop

Install Vumi’s Python dependencies:

pip install -r requirements.pip

Setup the proper RabbitMQ user/vhost using the provided utility script:

sudo ./utils/rabbitmq.setup.sh

Create config/rapidsms.yaml using the following configuration:

smpp_transport:
transport_name: "transport"
system_id: smppclient1 # username
password: password # password
host: localhost # the host to connect to
port: 2775 # the port to connect to

rapidsms_relay:
transport_name: 'transport'
rapidsms_url: "http://127.0.0.1:8000/backend/vumi-fake-smsc/"
web_path: "/send/"
web_port: 9000
send_to:

default:
transport_name: 'transport'
from_addr: '1234' # not set automatically by SMSC

workers:
smpp_transport: vumi.transports.smpp.SmppTransport
rapidsms_relay: vumi.application.rapidsms_relay.RapidSMSRelay

This configures a Vumi SmppTransport to communicate to SMPPSim and a Vumi RapidSMSRelay to commu-
nicate to RapidSMS. While not required for this setup, you’ll need to set from_addr to your phone number if using
a real SMSC.

Now we can start Vumi using our config file:

twistd -n start_worker --worker-class vumi.multiworker.MultiWorker --config config/
→˓rapidsms.yaml

7.2. Setting up RapidSMS with Vumi 39

http://localhost:8080
https://github.com/praekelt/vumi

RapidSMS Documentation, Release 1.1.0

7.2.3 Adding a backend for the fake SMSC to RapidSMS

Now that Vumi is installed and configured correctly, adding support for the Vumi backend to your existing RapidSMS
project is not difficult. To begin, simply add the following to your existing INSTALLED_BACKENDS:

INSTALLED_BACKENDS = {
...
other backends, if any
"vumi-fake-smsc": {

"ENGINE": "rapidsms.backends.vumi.VumiBackend",
"sendsms_url": "http://127.0.0.1:9000/send/",

},
}

Next, you need to add an endpoint to your urls.py for the newly created backend. You can do this like so:

from django.conf.urls.defaults import *
from rapidsms.backends.vumi.views import VumiBackendView

urlpatterns = patterns('',
...
url(r"^backend/vumi-fake-smsc/$",

VumiBackendView.as_view(backend_name="vumi-fake-smsc")),
)

You can make the Django URL pattern whatever you like, but the convention is to make it backend/ followed by
the name of your backend (from the settings file) and a final /.

Now, you should be able to start RapidSMS like so:

./manage.py runserver

That’s it! Now you can use SMPPSim to send mobile-originated (MO) messages through Vumi to RapidSMS.

7.2.4 Authentication

Vumi can be protected with basic authentication. To enable it on the Vumi side, create a passwords directive in the
rapidsms_relay configuration:

rapidsms_relay:
transport_name: 'transport'
rapidsms_url: "http://127.0.0.1:8000/backend/vumi-fake-smsc/"
web_path: "/send/"
web_port: 9000
send_to:

default:
transport_name: 'transport'
from_addr: '1234' # not set automatically by SMSC

vumi_username: 'username'
vumi_password: 'password'

Then you can update INSTALLED_BACKENDS with sendsms_user and sendsms_pass:

INSTALLED_BACKENDS = {
"vumi-fake-smsc": {

"ENGINE": "rapidsms.backends.vumi.VumiBackend",

(continues on next page)

40 Chapter 7. RapidSMS Backends

RapidSMS Documentation, Release 1.1.0

(continued from previous page)

"sendsms_url": "http://127.0.0.1:9000/send/",
"sendsms_user": "username",
"sendsms_pass": "password",

},
}

7.3 The Database Backend

The database backend has a special purpose, and is primarily used for testing. When the router sends an outgoing
message via the database backend, instead of sending a text message, the database backend stores the message in a
database table.

The database backend is currently only used with httptester and with the unit test harness. Generally, you will not use
the database backend in production deployments.

7.3.1 Configuring

To configure the database backend:

1. Add its class to the INSTALLED_BACKENDS setting:

INSTALLED_BACKENDS = {
...
"my-db-backend": {

"ENGINE": "rapidsms.backends.database.DatabaseBackend",
},
...

}

2. Add its app to INSTALLED_APPS:

INSTALLED_APPS = [
...
'rapidsms.backends.database',
...

]

3. Create its database table:

./manage.py syncdb

If you’re using South, you should run migrations:

./manage.py migrate

No URLs need to be configured, since the database backend cannot receive messages from outside RapidSMS.

7.4 Custom Backends

You can create a custom backend if the supplied backends don’t suffice. Since backends handle both inbound and out-
bound communication, the following section is divided into Incoming Messages and Outgoing Messages, respectively.

7.3. The Database Backend 41

https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://south.readthedocs.org/en/latest/

RapidSMS Documentation, Release 1.1.0

The built-in Vumi and Kannel backends use the methods described below, so you can review the source code to see
actual implementation examples.

For a more general backend overview, please see RapidSMS Backends.

7.4.1 Incoming Messages

HTTP Backend

RapidSMS provides a base suite of HTTP views and forms to help simplify backend creation in rapidsms.
backends.http. These are useful for standardizing incoming message handling. They can be extended for use in
your own backends. The HTTP Backend powers both the Vumi and Kannel backends.

You can, of course, simply write your own Django views to handle incoming messages if the supplied classes do not
provide enough flexibility.

Incoming message life cycle

Typically, when RapidSMS receives a message over HTTP, it’s processed in the following way:

1. Data from a text message is received by Django over an HTTP request.

2. The HTTP request is routed through a Backend URL.

3. This backend view takes the HTTP request and passes it into a backend form.

4. This backend form cleans the message data and checks its validity.

5. If the message is valid, message data is sent to the router for processing via rapidsms.router.
receive().

6. An HTTP response is sent to the HTTP request sender with an HTTP status code to indicate that the message
was received and passed to the router for processing successfully or that there was an error.

The HTTP response from a backend view does not necessarily indicate that the resulting messages were sent by the
router, only that the incoming message was added to the queue for processing.

GenericHttpBackendView

class rapidsms.backends.http.views.GenericHttpBackendView(**kwargs)
Simple view that allows customization of accepted paramters.

http_method_names = ['get', 'post']
Accepts GET and POST by default.

params = {}
Dictionary that defines mappings to identity and text.

The simplest type of custom backend is an HTTP backend that needs to accept parameters other than identity and
text. To create such a custom backend, one can subclass the GenericHttpBackendView as follows:

from rapidsms.backends.http.views import GenericHttpBackendView

class MyBackendView(GenericHttpBackendView):
params = {

'identity_name': 'phone',

(continues on next page)

42 Chapter 7. RapidSMS Backends

https://github.com/rapidsms/rapidsms/tree/master/rapidsms/backends

RapidSMS Documentation, Release 1.1.0

(continued from previous page)

'text_name': 'message',
}

The params dictionary contains key value pairs that map internal names to the keys used in requests to the backend.
In the above example, an HTTP request would provide phone and message parameters.

An URL pattern for this backend might look like:

from project_name.app_name.views import MyBackendView

urlpatterns = patterns('',
url(r'^backends/mybackend/$',

MyBackendView.as_view(backend_name='mybackend')),
)

A request to this backend might look like the following:

>>> import urllib
>>> import urllib2
>>> data = urllib.urlencode({'phone': '1112223333', 'message': 'ping'})
>>> request = urllib2.urlopen('http://localhost:8000/backends/mybackend/', data)
>>> request.code
200
>>> request.read()
'OK'

Custom Validation

Another custom backend might necessitate handling more parameters in the request, or validating the incoming data
differently. A convenient way to do this validation with Django is with forms:

from .forms import ExtraParamsHttpBackendForm
from rapidsms.backends.http.views import GenericHttpBackendView

class ExtraParamsHttpBackendView(GenericHttpBackendView):
form_class = ExtraParamsHttpBackendForm

This example application would have the following forms definition:

from django import forms
from rapidsms.backends.http.forms import BaseHttpForm

class ExtraParamsHttpBackendForm(BaseHttpForm):
extra = forms.TextField()

def get_incoming_data(self):
fields = self.cleaned_data.copy()
return {'identity': self.cleaned_data['identity_name'],

'text': self.cleaned_data['text_name'],
'extra': self.cleaned_data['extra']}

This uses RapidSMS’s BaseHttpForm:

class rapidsms.backends.http.forms.BaseHttpForm(*args, **kwargs)
Helper form for validating incoming messages.

7.4. Custom Backends 43

RapidSMS Documentation, Release 1.1.0

Parameters backend_name – (Optional) name of the backend

get_incoming_data()
Return a dictionary containing the connection and text for this message, based on the field names passed
to __init__().

Must be implemented by subclasses.

lookup_connections(identities)
Simple wrapper to ease connection lookup on child forms.

Data coming into this backend would require an extra parameter, which would be passed onto the message queue.

Alternatively, here’s an example of a backend form with custom validation:

from django import forms
from rapidsms.backends.http.forms import BaseHttpForm

MY_NUMBER = '1231231234'

class OnlyTextMeHttpBackendForm(BaseHttpForm):

def clean_text_name():
text_name = self.cleaned_data.get('text_name')
if text_name != MY_NUMBER:

raise forms.ValidationError(
'SMS received from number other than {0}'.format(MY_NUMBER)

)
return text_name

7.4.2 Outgoing Messages

BackendBase

Similar to HTTP Backend for incoming messages, BackendBase provides the foundation for outbound functionality.
All backends will typically extend this base class. This class will be passed the configuration dictionary defined in
Backend Settings.

class rapidsms.backends.base.BackendBase(router, name, **kwargs)
Base class for outbound backend functionality.

configure(**kwargs)
Configuration parameters from INSTALLED_BACKENDS will be passed here after the router is instanti-
ated. You can override this method to parse your configuration.

classmethod find(module_name)
Helper function to import backend classes.

Parameters module_name – Dotted Python path to backend class name

Returns Imported class object

model
The model attribute is the RapidSMS model instance with this backend name. A new backend will auto-
matically be created if one doesn’t exist upon accessing this attribute.

send(id_, text, identities, context=None)
Backend sending logic. The router will call this method for each outbound message. This method must be
overridden by sub-classes. Backends typically initiate HTTP requests from within this method.

44 Chapter 7. RapidSMS Backends

RapidSMS Documentation, Release 1.1.0

If multiple identities are provided, the message is intended for all recipients.

Any exceptions raised here will be captured and logged by the router. If messages to some identities failed
while others succeeded, you can provide that information back to the router by adding a list of the identities
which failed in a failed_identities parameter on the exception. If you do provide that parameter,
then the router should assume that all identities not listed in failed_identities were successfully
sent.

Example

def send(self, id_, text, identities, context):
failures = []
for identity in identities:

result = send_my_message(identity, text, context)
if result == 'failed':

failures.append(identity)
if failures:

msg = '%d messages failed.' % len(failures)
raise MessageSendingError(msg, failed_identities=failures)

Parameters

• id_ – Message ID

• text – Message text

• identities – List of identities

• context – Optional dictionary with extra context provided by router to backend

7.5 Supplied Backends

RapidSMS includes several backends in core for you to use:

• Kannel backend

• Vumi backend

• HTTP backend

• Database backend

However, many other backends exist in the RapidSMS community and can be installed for use in your own project. If
you can’t find a backend that’s suitable for your needs, you can write a custom backend.

7.6 Configuration

The instructions below describe how backend configuration works in the general sense. Backends will provide their
own installation instructions. If you want to install a specific backend, please follow the backend-specific documenta-
tion.

All backends will require the following basic configuration:

7.5. Supplied Backends 45

RapidSMS Documentation, Release 1.1.0

7.6.1 INSTALLED_BACKENDS

First, you’ll need to add your backend to INSTALLED_BACKENDS. This setting is a key/value pairing of backend
name to a configuration dictionary. For example:

INSTALLED_BACKENDS = {
"my-backend1": {

"ENGINE": "path.to.BackendClass",
"example-configuration-option": "Yes",

},
"my-backend2": {

"ENGINE": "path.to.OtherBackendClass",
"use-special-method": True,

},
}

This examples defines two backends named my-backend1 and my-backend2. The backend name can be any-
thing, but it will be used by the router and for matching up with Backend URLs. The only required configuration
option is ENGINE, which is the dotted Python path to the backend class. Additional configuration can be supplied to
backends.

7.6.2 URLs

Backends communicate over HTTP and Django uses views to process HTTP requests, so all backends require a Django
URL endpoint and view to handle incoming messages. For example:

from django.conf.urls import patterns, url
from path.to.backend1 import ExampleBackendView
from path.to.backend2 import OtherBackendView

urlpatterns = patterns('',
url(r"^backend/my-backend1/$",

ExampleBackendView.as_view(backend_name="my-backend1")),
url(r"^backend/my-backend2/$",

OtherBackendView.as_view(backend_name="my-backend2")),
)

This example defines two URLs, one for each backend. You can make the Django URL pattern whatever you like, but
the convention is to make it backend/ followed by the matching backend name from INSTALLED_BACKENDS
and a final /. You must also supply the same backend name to the backend view via the backend_name keyword
argument. This example defines two backends named my-backend1 and my-backend2, matching our example
INSTALLED_BACKENDS above.

Example URL Configuration

If you learn by example, you can follow these steps and test invoking a received message with a few lines of Python.
This example is intended to serve as a simple example of configuring INSTALLED_BACKENDS and Backend URLs.

1. Include the following in urls.py:

from rapidsms.backends.http.views import GenericHttpBackendView

urlpatterns = patterns('',
url(r'^backends/http-backend/$',

(continues on next page)

46 Chapter 7. RapidSMS Backends

RapidSMS Documentation, Release 1.1.0

(continued from previous page)

GenericHttpBackendView.as_view(backend_name='http-backend')),
)

2. Include the following in settings.py:

INSTALLED_BACKENDS = {
"http-backend": {

"ENGINE": "rapidsms.contrib.httptester.backend.HttpTesterCacheBackend",
},

}

3. Now in a Python shell:

>>> import urllib
>>> import urllib2
>>> data = urllib.urlencode({'identity': '1112223333', 'text': 'echo hello'})
>>> request = urllib2.urlopen('http://localhost:8000/backends/http-backend/',
→˓data)
>>> request.code
200
>>> request.read()
'OK'

7.6. Configuration 47

RapidSMS Documentation, Release 1.1.0

48 Chapter 7. RapidSMS Backends

CHAPTER 8

RapidSMS Routers

The router is the message processing component of RapidSMS. It provides the infrastructure and defines the workflow
to receive, process and send text messages. Each RapidSMS project can use only one router, which should be chosen
based on the needs of the project.

The basics:

• You may use any router, but only one router can be used per project.

• Each router contains a collection of installed apps and backends.

• All routers will trigger a set of phases for message processing.

Application and router behavior in RapidSMS are intertwined. In this section, we focus on the behavior specific to
the router, with references to some key areas where this behavior is tied to applications. For more information about
processing messages in applications, see the applications documentation.

8.1 Messaging API

A clean, simple API is provided to send and receive messages in RapidSMS. For most cases, you’ll just need to use
the send and receive functions outlined below.

8.1.1 Receiving Messages

rapidsms.router.receive(text, connection, **kwargs)
Creates an incoming message and passes it to the router for processing.

Parameters

• text – text message

• connection – RapidSMS Connection object

• kwargs – Extra kwargs to pass to IncomingMessage constructor

49

RapidSMS Documentation, Release 1.1.0

Returns IncomingMessage object constructed by router. A returned message object does not
indicate that router processing has finished or even started, as this depends on the router defined
in RAPIDSMS_ROUTER.

Return type IncomingMessage

To receive a message, you can use the receive function, which will automatically create an IncomingMessage
and pass it to your router to be processed. Typically, backends will make the most use of receive, but it can be used
anywhere within your application to route an incoming message (such as from a Django view).

Here’s an example using receive:

from rapidsms.router import receive
receive("echo hello", connection)

This sends a message to the router saying echo hello was received from a Connection object. You can find
more examples of receive in the official RapidSMS backends.

class rapidsms.messages.incoming.IncomingMessage(*args, **kwargs)
Bases: rapidsms.messages.base.MessageBase

Inbound message that provides an API to handle responses.

respond(text, **kwargs)
Respond to this message, sending the given text to the connections that this message came from.

Responses are saved, and sent after incoming processing phases are complete.

Arbitrary arguments are passed along to the send() method.

Parameters

• text (str) – The text of the message

• connections (list of Connection) – (optional) send to a different set of connections
than were in the incoming message.

• in_response_to (MessageBase) – (optional) the message being responded to.

Returns dictionary with the arguments that will be passed to rapidsms.router.send()
to send this response.

responses = None
list of messages created by IncomingMessage.respond()

8.1.2 Sending Messages

rapidsms.router.send(text, connections, **kwargs)
Creates an outgoing message and passes it to the router to be processed and sent via the respective backend.

Arbitrary arguments are passed along to new_outgoing_message().

Parameters

• text – text message

• connections – list or QuerySet of RapidSMS Connection objects

• kwargs – Extra kwargs to pass to OutgoingMessage constructor

Returns message constructed by router. A returned message object does not indicate that
router processing has finished or even started, as this depends on the router defined in
RAPIDSMS_ROUTER.

50 Chapter 8. RapidSMS Routers

https://github.com/rapidsms/rapidsms/tree/master/rapidsms/backends
https://docs.python.org/3/library/stdtypes.html#str

RapidSMS Documentation, Release 1.1.0

Return type OutgoingMessage

It’s just as easy to send a message using RapidSMS. You can send a message from anywhere within your application.
Here’s an example using send:

from rapidsms.router import send
send("hello", connections)

This sends hello to each identity and backend associated with the connections object. You can find more
examples of send in the official RapidSMS backends.

class rapidsms.messages.outgoing.OutgoingMessage(*args, **kwargs)
Bases: rapidsms.messages.base.MessageBase

Outbound message that can easily be sent to the router.

extra_backend_context()
Specific metadata to be included when passed to backends.

send()
Send the message. Equivalent to rapidsms.router.send(text, connections).

8.1.3 MessageBase

Both incoming and outgoing message classes inherit from a common class, MessageBase.

class rapidsms.messages.base.MessageBase(connections=None, text=None, id_=None,
in_response_to=None, fields=None, connec-
tion=None)

Basic message representation with text and connection(s).

connection
The first Connection - deprecated.

connections = None
The connections this message was received from or sent to. A list of Connection

contact
The first connection’s Contact - deprecated

fields = None
fields can be used to pass along arbitrary metadata

static generate_id()
Create a random unique ID for this message object.

handled = None
a message can be marked “handled” by any app, which will short-circuit the default phase in the router.

id = None
a unique ID for this message

in_response_to = None
link back to original message if this is a response

peer
Return the identity (eg. a phone number, email address, irc nickname) on the other end of this message.
But you shouldn’t use this method. It only seems to encourage people to ignore the distinction between
backends and identities, and create fields like “mobile_number”, which is all kinds of wrong. deprecated

processed = None
a message is considered “unprocessed” until rapidsms has dispatched it to all apps.

8.1. Messaging API 51

https://github.com/rapidsms/rapidsms/tree/master/rapidsms/backends

RapidSMS Documentation, Release 1.1.0

raw_text = None
save original text for future reference

text = None
the message

8.1.4 ErrorMessage

There’s also an ErrorMessage class that can be used when sending error messages.

class rapidsms.messages.error.ErrorMessage(*args, **kwargs)
Bases: rapidsms.messages.outgoing.OutgoingMessage

8.1.5 Contacts

RapidSMS represents entities that it can communicate with using a Contact object. Each Contact has a name. A
Contact could represent a person, an organization, or any other entity that might have a phone, email account, etc.

class rapidsms.models.Contact(*args, **kwargs)
Bases: rapidsms.models.ContactBase

This model represents a person with a name

Most of a Contact is represented in the ContactBase class:

class rapidsms.models.ContactBase(*args, **kwargs)

created_on
when the contact was created

default_connection
Return the default connection for this person. Currently this arbitrarily returns the first connection.

is_anonymous
Return True if the individual has no name

language
The contact’s preferred language. the spec: http://www.w3.org/International/articles/language-tags/
Overview reference: http://www.iana.org/assignments/language-subtag-registry

modified_on
when the contact was last modified

name
The individual’s name (optional)

8.1.6 Connections

RapidSMS might be able to communicate with an entity represented by a Contact in multiple ways. The entity could
have several phone numbers, email addresses, etc.

RapidSMS uses a Connection to represent each way of communicating with a Contact. Each Connection specifies a
backend to use, and how the entity is identified on that backend. The identifier is called an identity, and depending
on the backend, it could be a phone number, email address, or something else. Most RapidSMS code should not make
any assumptions about the format of identities.

52 Chapter 8. RapidSMS Routers

http://www.w3.org/International/articles/language-tags/Overview
http://www.w3.org/International/articles/language-tags/Overview
http://www.iana.org/assignments/language-subtag-registry

RapidSMS Documentation, Release 1.1.0

class rapidsms.models.Connection(*args, **kwargs)
Bases: rapidsms.models.ConnectionBase

This model pairs a Backend object with an identity unique to it (eg. a phone number, email address, or IRC
nick), so RapidSMS developers need not worry about which backend a messge originated from.

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

Most of a Connection is represented in the ConnectionBase class:

class rapidsms.models.ConnectionBase(*args, **kwargs)

backend
foreign key to this connection’s BackendBase

contact
(optional) associated Contact

created_on
when this connection was created

identity
unique identifier for this connection on this backend (e.g. phone number, email address, IRC nick, etc.)

modified_on
when this connection was last modified

8.1.7 Connection Lookup

rapidsms.router.lookup_connections(backend, identities)
Find connections associated with backend and identities. A new connection object will be created for every
backend/identity pair not found.

Parameters

• backend – backend name (as a string) or BackendBase object

• identities – list of identities to find associated with the backend

Returns List of Connection objects

Since most of the time you’ll need to find connections for a backend and phone number, RapidSMS has a helper func-
tion, lookup_connections, to do the lookup for you. Additionally, if the backend and phone number connection
doesn’t exist, it’ll be created automatically. Here’s an example of lookup_connections:

from rapidsms.router import send, lookup_connections
connections = lookup_connections(backend="example-backend",

identities=['1112223333'])
send("hello", connections=connections)

8.2 BlockingRouter

New in version 0.10.0.

8.2. BlockingRouter 53

https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned

RapidSMS Documentation, Release 1.1.0

The BlockingRouter is the most basic and easy to use router included with RapidSMS. For this reason it is also the
default router. As its name suggests, BlockingRouter handles messages synchronously (within the main HTTP
thread), waiting for application and backend processing to complete before continuing. This is acceptable for many
scenarios, but will be less efficient if your project needs to handle many inbound and outbound messages.

8.2.1 Installation

Set RAPIDSMS_ROUTER to use BlockingRouter:

RAPIDSMS_ROUTER = "rapidsms.router.blocking.BlockingRouter"

That’s it!

8.2.2 How it works

By default, BlockingRouter automatically adds apps and backends defined in your settings file via
INSTALLED_APPS and INSTALLED_BACKENDS. If you instantiate a BlockingRouter, you can see the avail-
able apps and backends:

>>> from rapidsms.router.blocking import BlockingRouter
>>> router = BlockingRouter()
>>> router.apps
[<app: handlers>, <app: default>, <app: messagelog>]
>>> router.backends
{'message_tester': <backend: message_tester>}

In this scenario, these settings were used:

INSTALLED_APPS = [
trimmed to only show the relevant apps
"rapidsms.contrib.handlers",
"rapidsms.contrib.default",
"rapidsms.contrib.messagelog",

]

INSTALLED_BACKENDS = {
"message_tester": {

"ENGINE": "rapidsms.contrib.httptester.backend.HttpTesterCacheBackend",
},

}

8.2.3 Implementation

BlockingRouter is the default router, but it is also the base router for all RapidSMS routers. CeleryRouter
and DatabaseRouter extend BlockingRouter and override necessary functionality. A subset of its methods
are outlined below:

class rapidsms.router.blocking.BlockingRouter(*args, **kwargs)
Base RapidSMS router implementation.

add_app(module_name)
Add RapidSMS app to router. Installed apps will be notified of incoming and outgoing messages. If
module_name is a Django app, the method looks in app_name.app for an AppBase subclass to use.

Parameters module_name – AppBase object or dotted path to RapidSMS app.

54 Chapter 8. RapidSMS Routers

https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS

RapidSMS Documentation, Release 1.1.0

Returns AppBase object if found, otherwise None.

add_backend(name, module_name, config=None)
Add RapidSMS backend to router. Installed backends will be used to send outgoing messages.

Parameters

• name – Name of backend.

• module_name – BackendBase object or dotted path to backend class.

Returns BackendBase object if found, otherwise a ValueError exception will be raised.

get_app(module_name)
Access installed app by name.

Parameters module_name – Dotted path to RapidSMS app.

Returns AppBase object if found, otherwise None.

incoming_phases = ('filter', 'parse', 'handle', 'default', 'cleanup')
Incoming router phases processed in the order in which they’re defined.

new_incoming_message(text, connections, class_=<class ’rapidsms.messages.incoming.IncomingMessage’>,
**kwargs)

Create and return a new incoming message. Called by send. Overridable by child-routers.

Parameters

• text – Message text

• connections – List or QuerySet of Connection objects

• class – Message class to instaniate

Returns IncomingMessage object.

new_outgoing_message(text, connections, class_=<class ’rapidsms.messages.outgoing.OutgoingMessage’>,
**kwargs)

Create and return a new outgoing message. Called by receive. Overridable by child-routers.

Parameters

• text – Message text

• connections – List or QuerySet of Connection objects

• class – Message class to instaniate

Returns OutgoingMessage object.

outgoing_phases = ('outgoing',)
Outgoing router phases processed in the order in which they’re defined.

receive_incoming(msg)
All inbound messages will be routed through receive_incoming by send. receive_incoming
is typically overridden in child routers to customize incoming message handling.

Parameters msg – IncomingMessage object

send_outgoing(msg)
All outbound messages will be routed through send_outgoing by receive. send_outgoing is
typically overridden in child routers to customize outgoing message handling.

Parameters msg – OutgoingMessage object

class rapidsms.router.blocking.router.BlockingRouter
is the full name for rapidsms.router.blocking.BlockingRouter.

8.2. BlockingRouter 55

RapidSMS Documentation, Release 1.1.0

8.3 CeleryRouter

New in version 0.10.0.

CeleryRouter uses Celery to queue incoming and outgoing messages.

BlockingRouter processes messages synchronously in the main HTTP thread. This is fine for most scenarios, but
in some cases you may wish to process messages outside of the HTTP request/response cycle to be more efficient.
CeleryRouter is a custom router that allows you to queue messages for background processing. It’s designed for
projects that require high message volumes and greater concurrency.

8.3.1 Installation

Note: CeleryRouter depends on django-celery 3.0+. Please follow the setup instructions in Scheduling Tasks
with Celery before proceeding.

Add rapidsms.router.celery to INSTALLED_APPS, then import djcelery and invoke setup_loader():

INSTALLED_APPS = (
Other apps here
"rapidsms.router.celery"

)
import djcelery
djcelery.setup_loader()

This will register Celery tasks in rapidsms.router.celery.tasks.

Set RAPIDSMS_ROUTER to use CeleryRouter:

RAPIDSMS_ROUTER = "rapidsms.router.celery.CeleryRouter"

That’s it!

8.3.2 Celery workers

Finally, you’ll need to run the celery worker command (in a separate shell from runserver) to begin consuming
queued tasks:

python manage.py celery worker -lDEBUG

Now your messages will be handled asynchronously with CeleryRouter.

8.3.3 Configuration

Eager backends

Sometimes your project may require the use of a synchronous backend. If this is the case, you can configure specific
backends to utilize Celery’s eager functionality with the router.celery.eager backend setting. For example,
here’s how you can force the httptester backend to be eager:

56 Chapter 8. RapidSMS Routers

http://www.celeryproject.org/
http://pypi.python.org/pypi/django-celery

RapidSMS Documentation, Release 1.1.0

INSTALLED_BACKENDS = {
"message_tester": {

"ENGINE": "rapidsms.contrib.httptester.backend",
"router.celery.eager": True,

},
}

Using this setting means that the task will be executed in the current process, and not by an asynchronous worker.
Please see the Celery documentation for more information on calling tasks.

Logging

Note: Please see the Django logging documentation for further information regarding general logging configuration.

All logging specific to CeleryRouter is handled through the rapidsms.router.celery name. For example,
if you have a file handler defined, you can capture all messages using the following configuration:

LOGGING_CONFIG = {
'rapidsms.router.celery': {

'handlers': ['file'],
'level': 'DEBUG',

},
}

8.4 DatabaseRouter

New in version 0.13.0.

DatabaseRouter provides the following functionality:

• All inbound and outbound messages are stored in the database.

• Inbound and outbound messages are processed asynchronously with Celery.

• Outbound messages are automatically split into batches for sending.

• Use of Django’s bulk create to optimize database inserts.

• Messages that fail to send will use Celery’s retry mechanism.

Similar to CeleryRouter, DatabaseRouter is designed for projects that require high messages volumes.

8.4.1 How it works

• Before doing any processing, an inbound message is loaded into the Message and Transmission models.
A celery task is then queued to process the message asynchronously.

• The celery task reconstructs the message object, fires up the router, and passes it off for inbound processing.

• Any replies are loaded into the Message and Transmission models.

• The router then divides the outbound messages by backend and queues tasks for sending chunks of messages to
their respective backends.

• As tasks complete, the status of the messages are updated in the database, including any errors that occurred.

8.4. DatabaseRouter 57

http://docs.celeryproject.org/en/latest/userguide/calling.html
https://docs.djangoproject.com/en/dev/topics/logging/
http://www.celeryproject.org/
https://docs.djangoproject.com/en/dev/ref/models/querysets/#bulk-create
http://docs.celeryproject.org/en/latest/userguide/tasks.html#retrying

RapidSMS Documentation, Release 1.1.0

8.4.2 Installation

Note: DatabaseRouter depends on django-celery 3.0+. Please follow the django-celery setup instructions before
proceeding.

Add rapidsms.router.db to INSTALLED_APPS, then import djcelery and invoke setup_loader():

INSTALLED_APPS = (
Other apps here
"rapidsms.router.db",

)
import djcelery
djcelery.setup_loader()

This will register Celery tasks in rapidsms.router.db.tasks.

Set RAPIDSMS_ROUTER to use DatabaseRouter:

RAPIDSMS_ROUTER = "rapidsms.router.db.DatabaseRouter"

Run syncdb to create the necessary database tables:

python manage.py syncdb

That’s it!

8.4.3 Configuration

The database router has one optional setting, DB_ROUTER_DEFAULT_BATCH_SIZE, to change the default maxi-
mum size of a batch of messages from 200.

Celery workers

Finally, you’ll need to run the celery worker command (in a separate shell from runserver) to begin consuming
queued tasks:

python manage.py celery worker --loglevel=info

Now your messages will be handled asynchronously with DatabaseRouter.

8.4.4 Database models

DatabaseRouter utilizes two database models, Message and Transmission.

Message

The Message model contains the context of a text message. For every associated Connection, a Message has an
associated Transmission.

class rapidsms.router.db.models.Message(id, status, date, updated, sent, delivered, direction,
text, external_id, in_response_to)

58 Chapter 8. RapidSMS Routers

http://pypi.python.org/pypi/django-celery
http://docs.celeryproject.org/en/latest/django/first-steps-with-django.html

RapidSMS Documentation, Release 1.1.0

exception DoesNotExist

exception MultipleObjectsReturned

date
Required. Date/time when message was created.

delivered
Date/time when all associated transmissions were delivered (requires backend functionality).

direction
Required. Either 'I' or 'O'.

external_id
Optional. ID of message as defined by the associated backend.

in_response_to
Optional. Foreign key to Message that generated this reply.

sent
Date/time when all associated transmissions were sent.

status
Required. See Message status values.

text
Required. Message text.

updated
Required. Last date/time the message was updated.

Transmission

A Transmission represents the instance of a particular Message and Connection.

class rapidsms.router.db.models.Transmission(id, message, connection, status, date, up-
dated, sent, delivered)

exception DoesNotExist

exception MultipleObjectsReturned

connection
Required. Foreign key to associated Connection.

date
Required. Date/time when transmission was created.

delivered
Date/time when transmission was delivered (requires backend functionality).

message
Required. Foreign key to associated Message.

sent
Date/time when transmission was sent.

status
Required. See Message status values.

updated
Required. Last date/time when transmission was updated.

8.4. DatabaseRouter 59

RapidSMS Documentation, Release 1.1.0

Message status values

Message and Transmission objects can have the following status values:

• Inbound values:

– Q - Queued: Message is queued and awaiting processing

– R - Received: Message has been processed and responses are queued

– E - Errored: An error occurred during processing

• Outbound values:

– Q - Queued: Message is queued and awaiting processing

– P - Processing: Message is sending

– S - Sent: All associated transmissions have been sent

– D - Delivered: All associated transmissions have been delivered (requires backend functionality)

– E - Errored: An error occurred during processing

8.5 Choosing a Router

Each RapidSMS project can use only one router, which should be chosen based on the needs of the project. The path
to your chosen router must go in the RAPIDSMS_ROUTER setting:

RAPIDSMS_ROUTER = 'path.to.your.RouterClass'

The default router is rapidsms.router.blocking.BlockingRouter.

The choice of router is an important decision that will affect your message processing performance. For example,
some routers are easy to set up but will struggle with large message volumes. More complex routers may process
messages more efficiently, but require more work to set up.

8.5.1 Supplied Routers

RapidSMS includes several routers for you to use:

• BlockingRouter - Default router that processes messages synchronously within the HTTP thread.

• CeleryRouter - Celery-enabled router that processes messages asynchronously.

• DatabaseRouter - Database, Celery-enabled router that queues messages in the database for asynchronous
processing.

Here are some characteristics of the supplied routers. B is the blocking router, C is the Celery router, and D is the
database router.

B C D Characteristic
n n y Stores messages in database
n y y Requires Celery
y n n Delays in one operation can block all other operations
n n y Can recover and retry failed sends
n n y Keeps a record of which messages have been sent and whether the send was successful

If you can’t find a router that’s suitable for your needs, you can write a custom router.

60 Chapter 8. RapidSMS Routers

RapidSMS Documentation, Release 1.1.0

8.5.2 Using a custom router

While RapidSMS includes support for a number of routers out-of-the-box, sometimes you may want to use a cus-
tomized router. To use a custom router with RapidSMS, use the dotted Python path to the router class for the
RAPIDSMS_ROUTER setting, like so:

RAPIDSMS_ROUTER = 'path.to.RouterClass'

If you’re building your own router, you can use the standard routers as reference implementations. All routers should
extend from BlockingRouter.

8.6 Applications and Backends

While the router provides the foundation for messaging processing, applications and backends actually perform the
message processing:

• Applications: The router maintains a collection of related applications through which it routes incoming and
outgoing messages. Applications are defined in INSTALLED_APPS and loaded, by default, when the router is
instantiated via add_app.

• Backends: The router also maintains a collection of related backends to send outgoing messages. Back-
ends are defined in INSTALLED_BACKENDS and loaded, by default, when the router is instantiated via
add_backend.

8.7 Message Processing

The Messaging API defines send and receive to route messages through the router. Messages are processed via a
series of phases, depending on direction. These phases are outlined below.

8.7.1 Incoming Messages

Note: See also the application documentation on incoming message processing.

Incoming messages are processed in five phases. Each application provides code for executing the phases. The router
method defines hooks which allow an application to filter out a message, skip phases, or stop further processing.

1. filter - Optionally abort all further processing of the incoming message (including cleanup).

2. parse - Modify the message in a way that is globally useful.

3. handle - Respond to the incoming message.

4. default - Execute a default action if no application returns true during the handle phase.

5. cleanup - Clean up work from previous phases.

The order in which the router chooses applications to process messages is extremely important, because each applica-
tion will have the opportunity to block subsequent applications from processing a message. receive_incoming
processes messages in the order they are listed in INSTALLED_APPS.

8.6. Applications and Backends 61

https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS

RapidSMS Documentation, Release 1.1.0

8.7.2 Outgoing Messages

Note: See also the application documentation on outgoing message processing.

send_outgoing processes messages sequentially, in the order they are listed in INSTALLED_APPS. However,
the applications are called in reverse order, so the first application called to process an incoming message is the last
application that is called to process an outgoing message. If any application returns False during the outgoing phase,
all further processing of the message will be aborted.

62 Chapter 8. RapidSMS Routers

https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS

CHAPTER 9

Using virtualenv

We highly recommend using virtualenv and virtualenvwrapper to work on RapidSMS. These tools provide isolated
Python environments, which are more practical than installing packages system wide. They also allow installing
packages without administrator privileges.

1. Install virtualenv and virtualenvwrapper. Use pip to install the latest version (and upgrade if you have an
older copy):

sudo pip install --upgrade virtualenv
sudo pip install --upgrade virtualenvwrapper

Then follow the virtualenvwrapper install docs to setup your shell properly.

2. Create a new virtual environment for RapidSMS. Now we’ll create a new virtual environment to isolate our
development:

mkvirtualenv --distribute --no-site-packages rapidsms

3. Remember to activate your virtualenv. If you restart or need to return to your virtualenv at any point, you can
easily reactivate it:

workon rapidsms

63

http://www.virtualenv.org/en/latest/index.html
http://virtualenvwrapper.readthedocs.org/en/latest/
http://virtualenvwrapper.readthedocs.org/en/latest/install.html

RapidSMS Documentation, Release 1.1.0

64 Chapter 9. Using virtualenv

CHAPTER 10

Settings

Here is a full list of available settings, and their default values, for RapidSMS and its contrib apps.

10.1 DB_ROUTER_DEFAULT_BATCH_SIZE

App rapidsms.router.db

Default 200

The default maximum batch size when the database router is sending messages in bulk.

10.2 DEFAULT_RESPONSE

App rapidsms.contrib.default

Default 'Sorry, %(project_name)s could not understand your message.'

The default response to an IncomingMessage that is not handled by any other application. To include
PROJECT_NAME, use '%(project_name)s' in the string.

10.3 EXCLUDED_HANDLERS

App rapidsms.contrib.handlers

Default []

Deprecated since version 0.15.0: See RAPIDSMS_HANDLERS instead.

The rapidsms.contrib.handlers application will not load any handler in a module that is in this list. The module name of
each handler is compared to the value in this list using prefix matching. For more information, see Handler Discovery.

65

RapidSMS Documentation, Release 1.1.0

10.4 INSTALLED_BACKENDS

Default not set

This setting is a dictionary that allows you to configure backends for use in your project. There is no default value
as the needs of individual projects vary widely. This setting mimics the structure of the Django DATABASES setting,
with the following general format:

INSTALLED_BACKENDS = {
'backend1_name': {

'ENGINE': 'path.to.backend1.BackendClass',
},
'backend2_name': {

'ENGINE': 'path.to.backend2.BackendClass',
},

}

Each backend dictionary requires only the ‘ENGINE’ key, which defines the Python path to the backend. Other
key-value pairs can be used to configure backend-specific options.

Example configuration:

INSTALLED_BACKENDS = {
"message_tester": {

"ENGINE": "rapidsms.contrib.httptester.backend.HttpTesterCacheBackend",
},

}

10.5 INSTALLED_HANDLERS

App rapidsms.contrib.handlers

Default None

Deprecated since version 0.15.0: See RAPIDSMS_HANDLERS instead.

If this setting is not None, the rapidsms.contrib.handlers application will only load handlers in modules that are in
this list. The module name of each handler is compared to each value in this list using prefix matching. For more
information see Handler Discovery.

10.6 PROJECT_NAME

Default 'RapidSMS'

The name of your project. This is used by some applications such as rapidsms.contrib.default to customize message
responses.

10.7 RAPIDSMS_HANDLERS

New in version 0.15.0.

App rapidsms.contrib.handlers

66 Chapter 10. Settings

https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-DATABASES

RapidSMS Documentation, Release 1.1.0

Default []

A list of names of the handler classes that should be loaded. For more information see Handler Discovery.

If this is set, it overrides the older, deprecated behavior of loading all handlers, modified by INSTALLED_HANDLERS,
EXCLUDED_HANDLERS, and RAPIDSMS_HANDLERS_EXCLUDE_APPS.

10.8 RAPIDSMS_HANDLERS_EXCLUDE_APPS

App rapidsms.contrib.handlers

Default []

Deprecated since version 0.15.0: See RAPIDSMS_HANDLERS instead.

The rapidsms.contrib.handlers application will not load handlers from any Django app included in this list. For more
information see Handler Discovery.

10.9 RAPIDSMS_ROUTER

New in version 0.10.0.

Default 'rapidsms.router.blocking.BlockingRouter'

The router is used to handle incoming and outgoing messages. For the list of available routers see RapidSMS Routers.

10.8. RAPIDSMS_HANDLERS_EXCLUDE_APPS 67

RapidSMS Documentation, Release 1.1.0

68 Chapter 10. Settings

CHAPTER 11

Translation

RapidSMS uses Django’s internationalization (i18n) architecture to allow you to make your project or application
translatable. This documentation assumes you’re already familiar with this architecture. If you’re not, we recommend
reviewing Django’s translation documentation before proceeding.

This page will start with a brief review of Django translation, then move on to RapidSMS translation.

11.1 Introduction

You can specify a translation string by using the function ugettext. The convention is to import this as a shorter
alias, _, to save typing. In this example, the text "Welcome to RapidSMS." is marked as a translation string:

from django.utils.translation import ugettext as _

def do_something():
output = _("Welcome to RapidSMS.")

By default, Django will attempt to translate this string based on your LANGUAGE_CODE setting.

RapidSMS will not automatically attempt to translate routed messages. This is an intential decision to require appli-
cation developers to explicity initiate the message translation process. You can use the methods below to translate
messages.

11.2 Language specification

To set a specific language, you can use Django’s translation.override context manager:

from django.utils import translation
from django.utils.translation import ugettext as _

def do_something():

(continues on next page)

69

https://docs.djangoproject.com/en/dev/topics/i18n/translation/
https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-LANGUAGE_CODE

RapidSMS Documentation, Release 1.1.0

(continued from previous page)

with translation.override("es"): # Spanish
message1 = _("Welcome to RapidSMS.")

with translation.override("fr"): # French
message2 = _("Welcome to RapidSMS.")

11.3 Contact language setting

Every RapidSMS Contact has an associated language field. This field is used to specify the contact’s language
preference. You can use this field to send messages in the correct language.

11.3.1 Message responses

It’s quite common to use msg.respond() within your application to respond to messages. To send a response in
the contact’s preferred language, you can use translation.override with their language:

from django.utils import translation
from django.utils.translation import ugettext as _
from rapidsms.apps.base import AppBase

class HelloApp(AppBase):

def handle(self, msg):
if msg.text == "hello":

with translation.override(msg.connection.contact.language):
msg.respond(_('hello'))

return True

This example will attempt respond with "hello" in the contact’s preferred language.

11.3.2 Sending messages

To ease translating messages to multiple connections, RapidSMS provides a utility function, group_connections,
to divide connections into groups by their contact’s language setting.

This example illustrates how you could attempt to say hello in the correct language(s) without needing to inspect each
connection manually:

from django.utils import translation
from django.utils.translation import ugettext as _
from rapidsms.utils import translation as trans_helpers
from rapidsms.router import send

def say_hello_to_everyone():
connections = Connection.objects.all()
for lang, conns in trans_helpers.group_connections(connections):

with translation.override(lang):
send(_('hello'), conns)

70 Chapter 11. Translation

CHAPTER 12

Intro to Extensible Models

Note: Extensible models will be removed in a future version of RapidSMS. We do not recommend using them in any
new code.

This is a brief summary of some sandbox work to better understand Extensible Models. This is “not” a page on how to
make extensible models, the Contact model in the rapid core is a fine example of that. This is intended to be a detailed
example of how to set up your folder structure and stay sane while extending an Extensible Model.

12.1 Initial Setup

For this sandbox we’ll be extending the Contact model in three separate apps, to see what exactly happens at the DB
level. I started with a clean install of rapid, and then created three apps with creative names:

$ python manage.py startapp testextensions_main
$ python manage.py startapp testextensions_clash

The folder structure for each of these is the same:

testextensions_main/models.py
testextensions_main/extensions
testextensions_main/extensions/rapidsms
testextensions_main/extensions/rapidsms/contact.py
testextensions_main/extensions/rapidsms/__init__.py
testextensions_main/extensions/__init__.py
testextensions_main/tests.py
testextensions_main/views.py
testextensions_main/__init__.py

These are all fairly dumb apps for the sake of this example, so only contact.py has any pertinent content:

71

RapidSMS Documentation, Release 1.1.0

from django.db import models

class TestContact(models.Model):
is_used = models.BooleanField(default=True)

class Meta:
abstract = True

The folder structure here is very important: we’re extending the Contact model, within the rapidsms app. So the
modeule where our extension class exists “must” be myapp/extensions/rapidsms/contact.py. The name of the class
itself, TestContact, is unimportant, however it “must” be abstract. Any abstract models within this module will have
their attributes added to the base Contact class.

In testextensions_clash, I used the same exact TestContact model (it also has a boolean is_used attribute).

Initially, I started with a clean install of rapidsms, without any of these sample apps in the INSTALLED_APPS under
settings. I did this to demonstrate how one might add a new app to an already-running instance, pulling in new
extensions to an existing model.

12.2 Extension Experiments

Firstly, installing south and placing all the Extensible Models under version control makes it easy to automatically add
columns as you pull in new apps that extend them (if you aren’t using it already).

$ easy_install south

You will likely want to change the place where the ‘migrations’ folder exists within your project (http://south.aeracode.
org/docs/settings.html#setting-south-migration-modules), otherwise it’ll place them directly with in rapidsms/lib
(probably not a Good Idea). In my settings.py, I added:

SOUTH_MIGRATION_MODULES = {
'rapidsms': 'testextensions_main.migrations',

}

Now we place rapidsms under migration control, but this command doesn’t create any tables.

$ python manage.py schemamigration rapidsms --initial
+ Added model rapidsms.Backend
+ Added model rapidsms.App
+ Added model rapidsms.Contact
+ Added model rapidsms.Connection

Created 0001_initial.py. You can now apply this migration with: ./manage.py migrate
→˓rapidsms

This creates all tables except the core rapidsms tables:

$ python manage.py syncdb
Creating table ...
...
Synced:
> south
> rapidsms.contrib.handlers
> django.contrib.sites
> django.contrib.auth
> django.contrib.admin

(continues on next page)

72 Chapter 12. Intro to Extensible Models

http://south.aeracode.org/docs/settings.html#setting-south-migration-modules
http://south.aeracode.org/docs/settings.html#setting-south-migration-modules

RapidSMS Documentation, Release 1.1.0

(continued from previous page)

> django.contrib.sessions
> django.contrib.contenttypes
> rapidsms.contrib.locations
> rapidsms.contrib.messagelog
> testextensions_clash

Not synced (use migrations):
- rapidsms

The following creates the rapidsms tables (migration-controlled):

$ python manage.py migrate
- Migrating forwards to 0001_initial.
> rapidsms:0001_initial

We’ll now have a rapidsms_contact table with the following structure:

CREATE TABLE "rapidsms_contact" (
"id" integer NOT NULL PRIMARY KEY,
"name" varchar(100) NOT NULL,
"language" varchar(6) NOT NULL

);

Now we can demonstrate a few things, the first of which is how to pull in a new app with extensions and automatically
update the contact db. At this point, I added my app, testextensions_main to the INSTALLED_APPS in settings.py:

$ python manage.py schemamigration rapidsms --auto

+ Added field is_used on rapidsms.Contact
Created 0002_auto__add_field_contact_is_used.py. You can now apply this migration
→˓with: ./manage.py migrate rapidsms

$ python manage.py migrate rapidsms

- Migrating forwards to 0002_auto__add_field_contact_is_used.
> rapidsms:0002_auto__add_field_contact_is_used

Steps 6 and 7 auto-magically added my additional column to the contacts table!

CREATE TABLE "rapidsms_contact" (
"is_used" bool NOT NULL DEFAULT True,
"id" integer PRIMARY KEY,
"language" varchar(6),
"name" varchar(100));

For anyone more knowledgeable of the way ExtensibleBase works, this may not be as big a deal, but for me the
implications were pretty exciting. . . provided that one keeps the extensible models under migration control, you can
add new apps after your initial deployment, extending these models with more and more columns as you go. . .

As a final demonstration, just to show one (unsurprising) limitation of extensible models is that two apps cannot extend
the same model with a column of the same name. Let’s add testextensions_clash to the INSTALLED_APPS to see
what happens:

$ python manage.py schemamigration rapidsms --auto

Nothing seems to have changed.

12.2. Extension Experiments 73

RapidSMS Documentation, Release 1.1.0

Hmmm. . . interesting! We have two extensions that are both wanting to add the same column, and south sees them as
having no problems. It merges these two concepts together (which could be desired or a really Bad Thing, depending
on what you’re wanting).

Blow away the database, remove south support, and just trying syncing the db the regular way, with both _main and
_clash apps installed:

$ python manage.py syncdb
Syncing...
Creating table south_migrationhistory
Creating table rapidsms_backend
Creating table rapidsms_app
Creating table rapidsms_contact
Traceback (most recent call last):
......

File "/home/david/Projects/CoreDevRapid/env/lib/python2.6/site-packages/Django-1.2.1-
→˓py2.6.egg/django/db/backends/sqlite3/base.py", line 200, in execute
return Database.Cursor.execute(self, query, params)
django.db.utils.DatabaseError: duplicate column name: is_used

```

In this case the clash is identified and in fact impossible to create.

12.3 Conclusions

South provides an easy way to add new attributes to ExtensibleModels, within an already-deploayed instance of
RapidSMS.

Depending on your needs, south-managed migrations and regular syncdb offer different behaviors for attribute clashes
with extensible models used by two separate apps. In either case, if two groups within the community are working on
apps that extend the same model (and that both use one another’s apps), they should probably be coordinating regularly
when adding attributes, to be sure there are no clashes, and to determine which attributes should be brought into the
base class.

74 Chapter 12. Intro to Extensible Models



CHAPTER 13

Front End

13.1 Introduction

RapidSMS provides an optional framework for making the applications on your site have a common look and feel.

Starting with release 0.12.0, the framework uses Twitter Bootstrap, v2.2.2.

This document is intended to describe how the contrib apps use Bootstrap, and how you might use it in your own apps.

13.2 Base template

Your templates should extend base.html, either directly or indirectly. That will load Bootstrap and set up the
common page structure for RapidSMS apps.

The simplest way to provide content for your page is to override {% block content %}. That block is rendered
inside of a Bootstrap fluid row like this:

<div class="row-fluid content">
{% block content %}{% endblock %}

</div>

You can then divide your page into columns using Bootstrap span classes:

{% block content %}
<div class="span6"> Left side </div>
<div class="span6"> Right side </div>

{% endblock %}

See the Bootstrap documentation for more things you can do inside a fluid row to affect the layout.

75

http://bootstrapdocs.com/v2.2.2/docs/index.html
http://bootstrapdocs.com/v2.2.2/docs/scaffolding.html#fluidGridSystem


RapidSMS Documentation, Release 1.1.0

13.3 Title

Set the page title with {% block title %}:

{% block title %}Send a Text Message{% endblock title %}

13.4 Additional styles

If you have a page that needs additional stylesheets, you can override {% block extra_stylesheets %}:

{% block extra_stylesheets %}
<link type="text/css" rel="stylesheet"

href="{{ STATIC_URL }}my-app/stylesheets/my-app.css" />
{% endblock %}

13.5 Additional javascript

Additional javascript can be added by overriding {% extra_javascript %}:

{% block extra_javascript %}
<script src="{{ STATIC_URL }}my-app/js/my-app.js"

type="text/javascript"></script>
{% endblock %}

13.6 Page header

To display a header at the top of the page in the same style as other apps, use the page-header class and <h1>. If
you need to divide the page into columns after that, you can include a div and then put your span divs inside that to
keep everything organized:

{% block content %}
<div class="page-header">
<h1>My Application Page Header</h1>

</div>
<div>
<div class="span6"> Left side </div>
<div class="span6"> Right side </div>

</div>
{% endblock %}

13.7 Top menu

The menu at the top of the page is a Bootstrap navigation bar.

Your site can configure the links that appear between the RapidSMS logo and the login/logout link by overriding
the rapidsms/_nav_bar.html template. You can do this by creating a file with this path from the top of your
project: templates/rapidsms/_nav_bar.html.

76 Chapter 13. Front End

http://bootstrapdocs.com/v2.2.2/docs/components.html#navbar


RapidSMS Documentation, Release 1.1.0

Your template will be included in the base page template. It should contain <li> elements for each link. Example:

{% load url from future %}
<li><a href="{% url 'app1' %}">App1</a></li>
<li><a href="{% url 'app2' %}">App2</a></li>
<li><a href="{% url 'app3' %}">App3</a></li>

Note: Keep these links short. If the links take up too much room on the page, they will wrap in the header, forcing
the bottom of the page header down and overlapping part of the page.

13.7.1 Login/Logout links

The login or logout link can be removed or replaced by overriding the login_link block. Here’s the default value:

{% block login_link %}
<li>

{% block auth %}
{% if user.is_authenticated %}
<a href="{% url 'rapidsms-logout' %}">
{% trans "Log out" %} {{ user.username }}

</a>
{% else %}
<a href="{% url 'rapidsms-login' %}">{% trans "Log in" %}</a>

{% endif %}
{% endblock auth %}

</li>
{% endblock %}

13.7.2 Admin link

Similarly, a link to the Django admin is shown for staff users who are logged in. Change that by overriding the
admin_link block. Here’s the default value:

{% block admin_link %}
{% if user.is_staff %}
<li>

<a href="{% url 'admin:index' %}">{% trans "Admin" %}</a>
</li>

{% endif %}
{% endblock %}

13.8 Tables

To include tables in a page, the django_tables2 package works well. Look at the rapidsms.contrib.messagelog app for
an example. Note particularly how the view overrides the default template used by django_tables2 to use one that
takes advantage of Bootstrap styling.

13.8. Tables 77

http://django-tables2.readthedocs.org/en/latest/


RapidSMS Documentation, Release 1.1.0

13.9 Forms

Bootstrap can make forms look nice too. RapidSMS’s form tags have been updated to work well with Bootstrap. The
render_form tag will render your form’s data fields correctly for Bootstrap. Then all you have to do is add any
submit buttons you need, properly marked up. See the Bootstrap documentation for full details, but here’s an example
from another contrib app, rapidsms.contrib.httptester:

{% extends "base.html" %}
{% load forms_tags %}
...
{% block content %}
<div class="page-header">

<h1>Message Tester</h1>
</div>

<div>
<div class="span4">
<div>
<form action="" method="post" enctype="multipart/form-data">

{% render_form message_form %}
{% csrf_token %}

<div class="form-actions">
<button type="submit" class="btn btn-primary" id="send-btn" name="send-

→˓btn">Send</button>
<label for="send-btn">Send single or multiple messages</label>
...

</div>
</form>

</div>
</div>
<div class="span8">
...
</div>

</div>
{% endblock %}

13.10 Messages to Users

New in version 0.15.0.

If you use the Django messages framework to send messages to your users, the base template will display them nicely
above the page content.

78 Chapter 13. Front End

http://bootstrapdocs.com/v2.2.2/docs/base-css.html#forms
https://docs.djangoproject.com/en/dev/ref/contrib/messages/


CHAPTER 14

Logging

It’s good practice to log a message using Python logging whenever an error or exception occurs. There are a myriad
of tools administrators can then use to send the information where they want it, send email alerts, analyze trends, etc.

If you want to log in your app, just:

import logging
logger = logging.getLogger(__name__)

and use:

logger.debug("msg")
logger.critical("msg")
logger.exception("msg")
# etc.

All RapidSMS core logging can now be captured using the 'rapidsms' root logger. (There’s not a lot of logging
from the core yet, but pull requests are welcome.)

For example, if you wanted messages from the RapidSMS core to be written to a file “/path/rapidsms.log”, you could
define a new handler in the LOGGING setting in Django:

LOGGING = {
...
'handlers': {

...
'rapidsms_file': {

'level': 'DEBUG',
'class': 'logging.FileHandler',
'filename': '/path/rapidsms.log',

},
...

},
...

}

79

https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-LOGGING


RapidSMS Documentation, Release 1.1.0

Setting level to DEBUG means all messages of level DEBUG and lower will be passed through (that’s all of them).
Then this handler will write those messages to the file /path/rapidsms.log. They’ll be formatted by the default
formatter.

Then configure the rapidsms logger to send messages to that handler:

LOGGING = {
...
'loggers': {

'rapidsms': {
'handlers': ['rapidsms_file'],
'propagate': True,
'level': 'DEBUG',

},
},
...

}

Setting level to DEBUG means all messages of level DEBUG and lower will be passed through (that’s all of them).

The logger name rapidsms means any logger to a name that matches that (rapidsms, rapidsms.models, etc)
will be passed to this handler to handle.

Setting propagate to True means the same messages will be passed to other handlers if they also match. (This
handler does not consume the messages.)

If you created your project with the latest Rapidsms project template and haven’t changed the settings, all rapidsms
logging will be written to rapidsms.log in your project directory.

80 Chapter 14. Logging



CHAPTER 15

Testing RapidSMS Applications

Automated testing is an extremely useful tool and, therefore, we recommend writing tests for all RapidSMS applica-
tions and projects. Tests provide a way to repeatedly ensure that your code functions as expected and that new code
doesn’t break existing functionality.

This document outlines the tools and best practices for writing RapidSMS tests.

15.1 Prerequisites

A RapidSMS test is written using standard Python and Django testing utilities. If you’re unfamiliar with these con-
cepts, please take a moment to read through the following links:

• Python’s unittest module

• Django’s Testing documentation, including:

– Writing tests

– Running tests

– Testing tools

Additionally, since much of RapidSMS is Django-powered, these docs will not cover testing standard Django aspects
(views, models, etc.), but rather focus on the areas unique to RapidSMS itself, specifically messaging and the router.

15.1.1 What To Test

Let’s start with an example. Say you’ve written a quiz application, QuizMe, that will send a question if you text the
letter q to RapidSMS:

You: q
RapidSMS: What color is the ocean? Answer with 'q ocean <answer>'
You: q ocean red
RapidSMS: Please try again!

(continues on next page)

81

http://docs.python.org/library/unittest.html
https://docs.djangoproject.com/en/dev/topics/testing/
https://docs.djangoproject.com/en/dev/topics/testing/#writing-tests
https://docs.djangoproject.com/en/dev/topics/testing/#running-tests
https://docs.djangoproject.com/en/dev/topics/testing/#testing-tools


RapidSMS Documentation, Release 1.1.0

(continued from previous page)

You: q ocean blue
RapidSMS: Correct!

Additionally, if no questions exist, the application will inform you:

You: q
RapidSMS: No questions exist.

While the application is conceptually simple, determining what and how to test can be a daunting task. To start, let’s
look a few areas that we could test:

• Message parsing. How does the application know the difference between q and q ocean blue? Will it be
confused by other input, like q ocean blue or quality?

• Workflow. What happens when there aren’t any questions in the database?

• Logic testing. Is the answer correct?

How to test these aspects is another question. Generally speaking, it’s best practice, and conceptually the easiest, to
test the smallest units of your code. For example, say you have a function to test if an answer is correct:

class QuizMeApp(AppBase):

def check_answer(self, question, answer_text):
"""Return if guess is correct or not"""

guess = answer_text.lower()
answer = question.correct_answer.lower()
return guess == answer

Writing a test that uses check_answer directly will verify the correctness of that function alone. With that test
written, you can write higher level tests knowing that check_answer is covered and will only fail if the logic
changes inside of it.

The following sections describe the various methods and tools to use for testing your RapidSMS applications.

15.2 Testing Methods

15.2.1 General Testing

RapidSMS provides a suite of test harness tools. Below you’ll find a collection of django.test.TestCase
extensions to make testing your RapidSMS applications easier.

RapidTest

The RapidTest class provides a simple test environment to analyze sent and received messages. You can inspect
messages processed by the router and, if needed, see if messages were delivered to a special backend, mockbackend.
Let’s take a look at a simple example:

from rapidsms.tests.harness import RapidTest

class QuizMeStackTest(RapidTest):

def test_no_questions(self):

(continues on next page)

82 Chapter 15. Testing RapidSMS Applications

https://django.readthedocs.io/en/latest/topics/testing/tools.html#django.test.TestCase


RapidSMS Documentation, Release 1.1.0

(continued from previous page)

"""Outbox should contain message explaining no questions exist"""
self.receive('q', self.lookup_connections('1112223333')[0])
self.assertEqual(self.outbound[0].text, 'No questions exist.')

In this example, we want to make sure that texting q into our application will return the proper message if no questions
exist in our database. We use receive to communicate to the router and lookup_connections to create a
connection object to bundle with the message. Our app will respond with a special message, No questions
exist, if the database isn’t populated, so we inspect the outbound property to see if it contains the proper message
text. That’s it! With just a few lines we were able to send a message through the entire routing stack and verify the
functionality of our application.

class rapidsms.tests.harness.RapidTest(methodName=’runTest’)
Inherits from TestRouterMixin, LoginMixin, TestCase.

Database Interaction

RapidTest provides flexible means to check application state, including the database. Here’s an example of a test
that examines the database after receiving a message:

from rapidsms.tests.harness import RapidTest
from quizme.models import Question, Answer

class QuizMeGeneralTest(RapidTest):

def test_question_answer(self):
"""Outbox should contain question promt and answer should be recorded in

→˓database"""

Question.objects.create(short_name='ocean',
text="What color is the ocean?",
correct_answer='Blue')

msg = self.receive('q ocean blue', self.lookup_connections('1112223333')[0])
# user should receive "correct" response
self.assertEqual(self.outbound[0].text, 'Correct!')
# answer from this interaction should be stored in database
answer = Answer.objects.all()[0]
self.assertTrue(answer.correct)
self.assertEqual(msg.connection, answer.connection)

15.2.2 Application Logic

If you have application logic that doesn’t depend on message processing directly, you can always test it independently
of the router API. RapidSMS applications are just Python classes, so you can construct your app inside of your test
suite. For example:

from django.test import TestCase
from rapidsms.router.test import TestRouter
from quizme.app import QuizMeApp

class QuizMeLogicTest(TestCase):

def setUp(self):
# construct the app we want to test with the TestRouter

(continues on next page)

15.2. Testing Methods 83

https://django.readthedocs.io/en/latest/topics/testing/tools.html#django.test.TestCase


RapidSMS Documentation, Release 1.1.0

(continued from previous page)

self.app = QuizMeApp(TestRouter())

def test_inquiry(self):
"""Messages with only the letter "q" are quiz messages"""

self.assertTrue(self.app.is_quiz("q"))

def test_inquiry_whitespace(self):
"""Message inquiry whitespace shouldn't matter"""

self.assertTrue(self.app.is_quiz(" q "))

def test_inquiry_skip(self):
"""Only messages starting with the letter q should be considered"""

self.assertFalse(self.app.is_quiz("quantity"))
self.assertFalse(self.app.is_quiz("quality 50"))

This example tests the logic of QuizMeApp.is_quiz, which is used to determine whether or not the text message
is related to the quiz application. The app is constructed with TestRouter and tests is_quiz with various types
of input.

This method is useful for testing specific, low-level components of your application. Since the routing architecture
isn’t loaded, these tests will also execute very quickly.

15.2.3 Scripted Tests

You can write high-level integration tests for your applications by using the TestScript framework. TestScript
allows you to write message scripts (akin to a movie script), similar to our example in the What To Test section above:

You: q
RapidSMS: What color is the ocean? Answer with 'q ocean <answer>'
You: q ocean blue
RapidSMS: Correct!

The main difference is the syntax:

1112223333 > q
1112223333 < What color is the ocean? Answer with 'q ocean <answer>'
1112223333 > q ocean blue
1112223333 < Correct!

The script is interpreted like so:

• number > message-text

– Represents an incoming message from number whose contents is message-text

• number < message-text

– Represents an outoing message sent to number whose contents is message-text

The entire script is parsed and executed against the RapidSMS router.

84 Chapter 15. Testing RapidSMS Applications



RapidSMS Documentation, Release 1.1.0

Example

To use this functionality in your test suite, you simply need to extend from TestScript or TestScriptMixin
to get access to runScript():

from rapidsms.tests.harness import TestScript
from quizme.app import QuizMeApp
from quizme.models import Question

class QuizMeScriptTest(TestScript):
apps = (QuizMeApp,)

def test_correct_script(self):
"""Test full script with correct answer"""

Question.objects.create(short_name='ocean',
text="What color is the ocean?",
correct_answer='Blue')

self.runScript("""
1112223333 > q
1112223333 < What color is the ocean? Answer with 'q ocean <answer>'
1112223333 > q ocean blue
1112223333 < Correct!

""")

This example uses runScript to execute the interaction against the RapidSMS router. apps must be defined at the
class level to tell the test suite which apps the router should load. In this case, only one app was required, QuizMeApp.

This test method is particularly useful when executing high-level integration tests across multiple RapidSMS applica-
tions. However, you’re limited to the test script. If you need more fined grained access, like checking the state of the
database in the middle of a script, you should use General Testing.

class rapidsms.tests.harness.TestScript(methodName=’runTest’)
Inherits from TestScriptMixin, TransactionTestCase.

class rapidsms.tests.harness.TestScriptMixin
The scripted.TestScript class subclasses unittest.TestCase and allows you to define unit tests for your RapidSMS
apps in the form of a ‘conversational’ script:

from myapp.app import App as MyApp
from rapidsms.tests.scripted import TestScript

class TestMyApp (TestScript):
apps = (MyApp,)
testRegister = """

8005551212 > register as someuser
8005551212 < Registered new user 'someuser' for 8005551212!

"""

testDirectMessage = """
8005551212 > tell anotheruser what's up??
8005550000 < someuser said "what's up??"

"""

This TestMyApp class would then work exactly as any other unittest.TestCase subclass (so you could, for ex-
ample, call unittest.main()).

Inherits from TestRouterMixin.

15.2. Testing Methods 85

https://django.readthedocs.io/en/latest/topics/testing/tools.html#django.test.TransactionTestCase


RapidSMS Documentation, Release 1.1.0

runScript(script)
Run a test script.

Parameters script (str) – A multi-line test script. See TestScriptMixin.

class rapidsms.tests.harness.scripted.TestScriptMixin
Full name of rapidsms.tests.harness.TestScriptMixin.

15.2.4 Test Helpers

Below you’ll find a list of mixin classes to help ease unit testing. Most of these mixin classes are used by the RapidSMS
test classes for convenience, but you can also use these test helpers independently if needed.

CreateDataMixin

The CreateDataMixin class can be used with standard TestCase classes to make it easier to create common
RapidSMS models and objects. For example:

from django.test import TestCase
from rapidsms.tests.harness import CreateDataMixin

class ExampleTest(CreateDataMixin, TestCase):

def test_my_app_function(self):
contact1 = self.create_contact()
contact2 = self.create_contact({'name': 'John Doe'})
connection = self.create_connection({'contact': contact1})
text = self.random_string()
# ...

class rapidsms.tests.harness.CreateDataMixin
Base test mixin class that provides helper functions to create data.

No superclasses.

create_backend(data={})
Create and return RapidSMS backend object. A random name will be created if not specified in data
attribute.

Parameters data – Optional dictionary of field name/value pairs to pass to the object’s
create method.

create_connection(data={})
Create and return RapidSMS connection object. A random identity and backend will be created if
not specified in data attribute.

Parameters data – Optional dictionary of field name/value pairs to pass to the object’s
create method.

create_contact(data={})
Create and return RapidSMS contact object. A random name will be created if not specified in data
attribute.

Parameters data – Optional dictionary of field name/value pairs to pass to the object’s
create method.

create_incoming_message(data={})
Create and return RapidSMS IncomingMessage object.

86 Chapter 15. Testing RapidSMS Applications

https://docs.python.org/3/library/stdtypes.html#str


RapidSMS Documentation, Release 1.1.0

create_outgoing_message(data={}, backend=None)
Create and return RapidSMS OutgoingMessage object. A random template will be created if not spec-
ified in data attribute.

Parameters data – Optional dictionary of field name/value pairs to pass to
OutgoingMessage.__init__.

random_string(length=255, extra_chars=”)
Generate a random string of characters.

Parameters

• length – Length of generated string.

• extra_chars – Additional characters to include in generated string.

random_unicode_string(max_length=255)
Generate a random string of unicode characters.

Parameters length – Length of generated string.

class rapidsms.tests.harness.base.CreateDataMixin
Full name for rapidsms.tests.harness.CreateDataMixin.

CustomRouterMixin

The CustomRouterMixin class allows you to override the RAPIDSMS_ROUTER and INSTALLED_BACKENDS
settings. For example:

from django.test import TestCase
from rapidsms.tests.harness import CustomRouterMixin

class ExampleTest(CustomRouterMixin, TestCase)):

router_class = 'path.to.router'
backends = {'my-backend': {'ENGINE': 'path.to.backend'}}

def test_sample(self):
# this test will use specified router and backends
pass

class rapidsms.tests.harness.CustomRouterMixin
Inheritable TestCase-like object that allows Router customization.

Inherits from CreateDataMixin.

backends = {}
Dictionary to override INSTALLED_BACKENDS during testing. Defaults to {}.

get_router()
get_router() API wrapper.

handlers = None
List to override RAPIDSMS_HANDLERS with, or if None, leave RAPIDSMS_HANDLERS alone

lookup_connections(backend, identities)
lookup_connections() API wrapper.

receive(text, connection, **kwargs)
A wrapper around the receive API. See Receiving Messages.

15.2. Testing Methods 87



RapidSMS Documentation, Release 1.1.0

router_class = 'rapidsms.router.blocking.BlockingRouter'
String to override RAPIDSMS_ROUTER during testing. Defaults to 'rapidsms.router.
blocking.BlockingRouter'.

send(text, connections, **kwargs)
A wrapper around the send API. See Sending Messages.

class rapidsms.tests.harness.router.CustomRouterMixin
Full name for rapidsms.tests.harness.CustomRouterMixin.

TestRouterMixin

TestRouterMixin extends CustomRouterMixin and arranges for tests to use the rapidsms.router.test.
TestRouter.

class rapidsms.tests.harness.TestRouterMixin
Test extension that uses TestRouter

Inherits from CustomRouterMixin.

apps
A list of app classes to load, rather than INSTALLED_APPS, when the router is initialized.

clear_sent_messages()
Manually empty the outbox of mockbackend.

disable_phases = False
If disable_phases is True, messages will not be processed through the router phases. This is useful if you’re
not interested in testing application logic. For example, backends may use this flag to ensure messages are
sent to the router, but don’t want the message to be processed.

inbound
The list of message objects received by the router.

lookup_connections(identities, backend=’mockbackend’)
A wrapper around the lookup_connections API. See Connection Lookup.

outbound
The list of message objects sent by the router.

sent_messages
The list of message objects sent to mockbackend.

class rapidsms.tests.harness.router.TestRouterMixin
Full name for rapidsms.tests.harness.TestRouterMixin.

TestRouter

The TestRouter can be used in tests. It saves all messages for later inspection by the test.

class rapidsms.router.test.TestRouter(*args, **kwargs)
Router that saves inbound/outbound messages for future inspection.

Inherits from BlockingRouter.

inbound = None
List of all the inbound messages

outbound = None
List of all the outbound messages

88 Chapter 15. Testing RapidSMS Applications



RapidSMS Documentation, Release 1.1.0

receive_incoming(msg)
Save all inbound messages locally for test inspection

send_outgoing(msg)
Save all outbound messages locally for test inspection

DatabaseBackendMixin

The DatabaseBackendMixin helps tests to use the DatabaseBackend.

class rapidsms.tests.harness.DatabaseBackendMixin
Arrange for test to use the DatabaseBackend, and add a .sent_messages attribute that will have the list of
all messages sent.

Inherits from CustomRouterMixin.

lookup_connections(identities, backend=’mockbackend’)
lookup_connections wrapper to use mockbackend by default

sent_messages
Messages passed to backend.

LoginMixin

class rapidsms.tests.harness.LoginMixin
Helpers for creating users and logging in

login()
If not already set, creates self.username and self.password, otherwise uses the existing values. If there’s
not already a user with that username, creates one. Sets self.user to that user. Logs the user in.

class rapidsms.tests.harness.base.LoginMixin
Full name for rapidsms.tests.harness.LoginMixin.

Django TestCase

Some of these classes inherit from:

class django.test.testcases.TestCase

which is the full name for django.test.TestCase.

15.2. Testing Methods 89

https://django.readthedocs.io/en/latest/topics/testing/tools.html#django.test.TestCase


RapidSMS Documentation, Release 1.1.0

90 Chapter 15. Testing RapidSMS Applications



CHAPTER 16

Using Celery for Scheduling Tasks

You can use any scheduling mechanism supported by Django, but there are some advantages to using Celery. It’s
supported, scales well, and works well with Django. Given its wide use, there are lots of resources to help learn and
use it. And once learned, that knowledge is likely to be useful on other projects.

You will also need to follow the setup instructions here if you are using RapidSMS’s CeleryRouter.

16.1 History

After discussion, rapidsms.contrib.scheduler was removed in RapidSMS 0.12.0 in favor of adopting a
wider Django community standard, Celery. Celery provides all the functionality of the previous built-in scheduler, but
has the advantage of providing a more general solution for asynchronous task execution. Please see the 0.12.0 Release
Notes for more details.

16.2 Celery versions

This documentation applies to Celery 3.0.x. Earlier or later versions of Celery might behave differently.

16.3 Introduction to Celery

The purpose of Celery is to allow you to run some code later, or regularly according to a schedule.

Why might this be useful? Here are a couple of common cases.

First, suppose a web request has come in from a user, who is waiting for the request to complete so a new page can
load in their browser. Based on their request, you have some code to run that’s going to take a while (longer than the
person might want to wait for a web page), but you don’t really need to run that code before responding to the web
request. You can use Celery to have your long-running code called later, and go ahead and respond immediately to the
web request.

91

http://celeryproject.org/
https://groups.google.com/forum/#!topic/rapidsms-dev/7yQvOXrl_zc


RapidSMS Documentation, Release 1.1.0

This is common if you need to access a remote server to handle the request. Your app has no control over how long
the remote server will take to respond, or the remote server might be down.

Another common situation is wanting to run some code regularly. For example, maybe every hour you want to look
up the latest weather report and store the data. You can write a task to do that work, then ask Celery to run it every
hour. The task runs and puts the data in the database, and then your Web application has access to the latest weather
report.

A task is just a Python function. You can think of scheduling a task as a time-delayed call to the function. For example,
you might ask Celery to call your function task1 with arguments (1, 3, 3) after five minutes. Or you could have
your function batchjob called every night at midnight.

We’ll set up Celery so that your tasks run in pretty much the same environment as the rest of your application’s code,
so they can access the same database and Django settings. There are a few differences to keep in mind, but we’ll cover
those later.

When a task is ready to be run, Celery puts it on a queue, a list of tasks that are ready to be run. You can have many
queues, but we’ll assume a single queue here for simplicity.

Putting a task on a queue just adds it to a to-do list, so to speak. In order for the task to be executed, some other
process, called a worker, has to be watching that queue for tasks. When it sees tasks on the queue, it’ll pull off the first
and execute it, then go back to wait for more. You can have many workers, possibly on many different servers, but
we’ll assume a single worker for now.

We’ll talk more later about the queue, the workers, and another important process that we haven’t mentioned yet, but
that’s enough for now, let’s do some work.

16.4 Installing celery locally

Installing celery for local use with Django is trivial - just install django-celery:

$ pip install django-celery

16.5 Configuring Django for Celery

To get started, we’ll just get Celery configured to use with runserver. For the Celery broker, which we will explain
more about later, we’ll use a Django database broker implementation. For now, you just need to know that Celery
needs a broker and we can get by using Django itself during development.

In your Django settings.py file:

1. Add these lines:

1 import djcelery
2 djcelery.setup_loader()
3 BROKER_URL = 'django://'

The first two lines are always needed. Line 3 configures Celery to use its Django broker.

2. Add djcelery and kombu.transport.django to INSTALLED_APPS:

INSTALLED_APPS = (
...
'djcelery',
'kombu.transport.django',

(continues on next page)

92 Chapter 16. Using Celery for Scheduling Tasks

http://docs.celeryproject.org/en/latest/userguide/tasks.html
http://docs.celeryproject.org/en/latest/getting-started/introduction.html#what-is-a-task-queue
http://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
http://pypi.python.org/pypi/django-celery
http://docs.celeryproject.org/en/latest/getting-started/first-steps-with-celery.html#choosing-a-broker
http://docs.celeryproject.org/en/latest/getting-started/brokers/django.html


RapidSMS Documentation, Release 1.1.0

(continued from previous page)

...
)

djcelery is always needed. kombu.transport.django is the Django-based broker, for use mainly during development.

3. Create celery’s database tables. If using South for schema migrations:

$ python manage.py migrate

Otherwise:

$ python manage.py syncdb

16.6 Writing a task

As mentioned before, a task can just be a Python function. However, Celery does need to know about it. That’s pretty
easy when using Celery with Django. Just add a tasks.py file to your application, put your tasks in that file, and
decorate them. Here’s a trivial tasks.py:

from celery import task

@task()
def add(x, y):

return x + y

When djcelery.setup_loader() runs from your settings file, Celery will look through your
INSTALLED_APPS for tasks.py modules, find the functions marked as tasks, and register them for use as tasks.

Marking a function as a task doesn’t prevent calling it normally. You can still call it: z = add(1, 2) and it will
work exactly as before. Marking it as a task just gives you additional ways to call it.

16.7 Scheduling it

Let’s start with the simple case we mentioned above. We want to run our task soon, we just don’t want it to hold up
our current thread. We can do that by just adding .delay to the name of our task:

from myapp.tasks import add

add.delay(2, 2)

Celery will add the task to its queue (“call myapp.tasks.add(2, 2)”) and return immediately. As soon as an idle worker
sees it at the head of the queue, the worker will remove it from the queue, then execute it:

import myapp.tasks.add

myapp.tasks.add(2, 2)

Import names

It’s important that your task is always imported and refered to using the same package name. For example, depending
on how your Python path is set up, it might be possible to refer to it as either myproject.myapp.tasks.add or

16.6. Writing a task 93

http://south.readthedocs.org/en/latest/
http://docs.celeryproject.org/en/latest/django/first-steps-with-django.html#defining-and-calling-tasks
http://docs.celeryproject.org/en/latest/userguide/tasks.html#task-naming-relative-imports


RapidSMS Documentation, Release 1.1.0

myapp.tasks.add. Or from myapp.views, you might import it as .tasks.add. But Celery has no way of
knowing those are all the same task.

djcelery.setup_loader() will register your task using the package name of your app in INSTALLED_APPS,
plus .tasks.functionname. Be sure when you schedule your task, you also import it using that same name, or
very confusing bugs can occur.

16.8 Testing it

16.8.1 Start a worker

As we’ve already mentioned, a separate process, the worker, has to be running to actually execute your Celery tasks.
Here’s how we can start a worker for our development needs.

First, open a new shell or window. In that shell, set up the same Django development environment - activate your
virtual environment, or add things to your Python path, whatever you do so that you could use runserver to run
your project.

Now you can start a worker in that shell:

$ python manage.py celery worker --loglevel=info

The worker will run in that window, and send output there.

16.8.2 Run your task

Back in your first window, start a Django shell and run your task:

$ python manage.py shell
>>> from myapp.tasks import add
>>> add.delay(2, 2)

You should see output in the worker window indicating that the worker has run the task:

[2013-01-21 08:47:08,076: INFO/MainProcess] Got task from broker: myapp.tasks.
→˓add[e080e047-b2a2-43a7-af74-d7d9d98b02fc]
[2013-01-21 08:47:08,299: INFO/MainProcess] Task myapp.tasks.add[e080e047-b2a2-43a7-
→˓af74-d7d9d98b02fc] succeeded in 0.183349132538s: 4

16.9 An Example

Earlier we mentioned using Celery to avoid delaying responding to a web request. Here’s a simplified Django view
that uses that technique:

# views.py

def view(request):
form = SomeForm(request.POST)
if form.is_valid():

data = form.cleaned_data
# Schedule a task to process the data later

(continues on next page)

94 Chapter 16. Using Celery for Scheduling Tasks

http://docs.celeryproject.org/en/latest/userguide/workers.html
http://docs.celeryproject.org/en/latest/django/first-steps-with-django.html#starting-the-worker-process


RapidSMS Documentation, Release 1.1.0

(continued from previous page)

do_something_with_form_data.delay(data)
return render_to_response(...)

# tasks.py

@task
def do_something_with_form_data(data):

call_slow_web_service(data['user'], data['text'], ...)

16.10 Troubleshooting

It can be frustrating trying to get Celery tasks working, because multiple parts have to be present and communicating
with each other. Many of the usual tips still apply:

• Get the simplest possible configuration working first.

• Use the python debugger and print statements to see what’s going on.

• Turn up logging levels (e.g. --loglevel debug on the worker) to get more insight.

There are also some tools that are unique to Celery.

16.10.1 Eager scheduling

In your Django settings, you can add:

CELERY_ALWAYS_EAGER = True

and Celery will bypass the entire scheduling mechanism and call your code directly.

In other words, with CELERY_ALWAYS_EAGER = True, these two statements run just the same:

add.delay(2, 2)
add(2, 2)

You can use this to get your core logic working before introducing the complication of Celery scheduling.

16.10.2 Peek at the Queue

As long as you’re using Django itself as your broker for development, your queue is stored in a Django database. That
means you can look at it easily. Add a few lines to admin.py in your application:

from kombu.transport.django import models as kombu_models
site.register(kombu_models.Message)

Now you can go to /admin/django/message/ to see if there are items on the queue. Each message is a request
from Celery for a worker to run a task. The contents of the message are rather inscrutable, but just knowing if your
task got queued can sometimes be useful. The messages tend to stay in the database, so seeing a lot of messages there
doesn’t mean your tasks aren’t getting executed.

16.10. Troubleshooting 95

http://docs.celeryproject.org/en/latest/configuration.html?highlight=eager#std:setting-CELERY_ALWAYS_EAGER


RapidSMS Documentation, Release 1.1.0

16.10.3 Check the results

Anytime you schedule a task, Celery returns an AsyncResult object. You can save that object, and then use it later to
see if the task has been executed, whether it was successful, and what the result was.

result = add.delay(2, 2)
...
if result.ready():

print "Task has run"
if result.successful():

print "Result was: %s" % result.result
else:

if isinstance(result.result, Exception):
print "Task failed due to raising an exception"
raise result.result

else:
print "Task failed without raising exception"

else:
print "Task has not yet run"

16.11 Periodic Scheduling

Another common case is running a task on a regular schedule. Celery implements this using another process, cel-
erybeat. Celerybeat runs continually, and whenever it’s time for a scheduled task to run, celerybeat queues it for
execution.

For obvious reasons, only one celerybeat process should be running (unlike workers, where you can run as many as
you want and need).

Starting celerybeat is similar to starting a worker. Start another window, set up your Django environment, then:

$ python manage.py celery beat

There are several ways to tell celery to run a task on a schedule. We’re going to look at storing the schedules in a
Django database table. This allows you to easily change the schedules, even while Django and Celery are running.

Add this setting:

CELERYBEAT_SCHEDULER = 'djcelery.schedulers.DatabaseScheduler'

You can now add schedules by opening the Django admin and going to /admin/djcelery/periodictask/. Here’s what
adding a new periodic task looks like:

96 Chapter 16. Using Celery for Scheduling Tasks

http://docs.celeryproject.org/en/latest/reference/celery.result.html#celery.result.AsyncResult
http://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html
http://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html
http://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html#using-custom-scheduler-classes
http://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html#using-custom-scheduler-classes
/admin/djcelery/periodictask/


RapidSMS Documentation, Release 1.1.0

Name Any name that will help you identify this scheduled task later.

Task (registered) This should give a choice of any of your defined tasks, as long as you’ve started Django
at least once after adding them to your code. If you don’t see the task you want here, it’s better to
figure out why and fix it than use the next field.

Task (custom) You can enter the full name of a task here (e.g. myapp.tasks.add), but it’s better to
use the registered tasks field just above this.

Enabled You can uncheck this if you don’t want your task to actually run for some reason, for example
to disable it temporarily.

Interval Use this if you want your task to run repeatedly with a certain delay in between. You’ll probably
need to use the green “+” to define a new schedule. This is pretty simple, e.g. to run every 5 minutes,
set “Every” to 5 and “Period” to minutes.

Crontab Use crontab, instead of Interval, if you want your task to run at specific times. Use the green
“+” and fill in the minute, hour, day of week, day of month, and day of year. You can use “*” in any
field in place of a specific value, but be careful - if you use “*” in the Minute field, your task will
run every minute of the hour(s) selected by the other fields. Examples: to run every morning at 7:30
am, set Minute to “30”, Hour to “7”, and the remaining fields to “*”.

Arguments If you need to pass arguments to your task, you can open this section and set *args and
**kwargs.

Execution Options Advanced settings that we won’t go into here.

16.11. Periodic Scheduling 97

http://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html#crontab-schedules


RapidSMS Documentation, Release 1.1.0

16.11.1 Default schedules

If you want some of your tasks to have default schedules, and not have to rely on someone setting them up in the
database after installing your app, you can use Django fixtures to provide your schedules as initial data for your app.

• Set up the schedules you want in your database.

• Dump the schedules in json format:

$ python manage.py dumpdata djcelery --indent=2 --exclude=djcelery.taskmeta >filename.
→˓json

• Create a fixtures directory inside your app

• If you never want to edit the schedules again, you can copy your json file to initial_data.json in your
fixtures directory. Django will load it every time syncdb is run, and you’ll either get errors or lose your changes
if you’ve edited the schedules in your database. (You can still add new schedules, you just don’t want to change
the ones that came from your initial data fixture.)

• If you just want to use these as the initial schedules, name your file something else, and load it when setting up
a site to use your app:

$ python manage.py loaddata <your-app-label/fixtures/your-filename.json

16.12 Hints and Tips

16.12.1 Don’t pass model objects to tasks

Since tasks don’t run immediately, by the time a task runs and looks at a model object that was passed to it, the
corresponding record in the database might have changed. If the task then does something to the model object and
saves it, those changes in the database are overwritten by older data.

It’s almost always safer to save the object, pass the record’s key, and look up the object again in the task:

myobject.save()
mytask.delay(myobject.pk)

...

@task
def mytask(pk):

myobject = MyModel.objects.get(pk=pk)
...

16.12.2 Schedule tasks in other tasks

It’s perfectly all right to schedule one task while executing another. This is a good way to make sure the second task
doesn’t run until the first task has done some necessary work first.

16.12.3 Don’t wait for one task in another

If a task waits for another task, the first task’s worker is blocked and cannot do any more work until the wait finishes.
This is likely to lead to a deadlock, sooner or later.

98 Chapter 16. Using Celery for Scheduling Tasks

https://docs.djangoproject.com/en/dev/howto/initial-data/#providing-initial-data-with-fixtures


RapidSMS Documentation, Release 1.1.0

If you’re in Task A and want to schedule Task B, and after Task B completes, do some more work, it’s better to create
a Task C to do that work, and have Task B schedule Task C when it’s done.

16.13 Next Steps

Once you understand the basics, parts of the Celery User’s Guide are good reading. I recommend these chapters to
start with; the others are either not relevant to Django users or more advanced:

• Tasks

• Periodic Tasks

16.14 Using Celery in production

The Celery configuration described here is for convenience in development, and should never be used in production.

The most important change to make in production is to stop using kombu.transport.django as the broker, and switch
to RabbitMQ or something equivalent that is robust and scalable.

16.13. Next Steps 99

http://docs.celeryproject.org/en/latest/userguide/tasks.html
http://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html
http://www.rabbitmq.com


RapidSMS Documentation, Release 1.1.0

100 Chapter 16. Using Celery for Scheduling Tasks



CHAPTER 17

Packaging your RapidSMS application for re-use

If you’d like others to be able to use your application, you’ll want to package it and publish it on PyPI.

You will package and publish your RapidSMS application in the same way you would any other Django application.
Django provides excellent documentation on packaging your Django app, so we won’t try to write the same thing here.

We recommend using at least the following classifiers on your package:

Framework :: Django
Intended Audience :: Developers
Programming Language :: Python
Topic :: Communications
Topic :: Software Development :: Libraries :: Python Modules

Depending on your project, also consider:

Operating System :: OS Independent
Topic :: Internet :: WWW/HTTP :: Dynamic Content
Environment :: Web Environment

You’ll also need to give your package a license that allows others to use it. RapidSMS uses the BSD license and we
recommend it if you don’t have a strong preference for another license.

101

http://guide.python-distribute.org/contributing.html#pypi-info
https://docs.djangoproject.com/en/dev/intro/reusable-apps/
http://opensource.org/licenses/BSD-3-Clause


RapidSMS Documentation, Release 1.1.0

102 Chapter 17. Packaging your RapidSMS application for re-use



CHAPTER 18

Provisioning Servers & Deploying Your Project

Provisioning are the steps required to prepare a server for a RapidSMS project installation. Deployment is the process
of continually syncing code to a production environment as changes are made and tested in a development environment.

RapidSMS projects can easily be installed in many ways. Provisioning & Deployment are a large topics, contain
many right answers and are largely dependent on your application requirements. Our goal is not to provide the
best solution or a configuration that will work on any project. We only want to provide you with the proper
resources to make the best decisions.

Document sane defaults. While there are many installation methods, there’s a common denominator of best practices
that all production RapidSMS sites should follow (don’t use DEBUG = True). We will document a concise list
of best practices.

Example templates. There are many options to consider: a bare metal server, cloud VM, platform as a service (PaaS).
We don’t want to bless any single particular method, but we believe that linking to sample configurations for a
small subset of these will provide a solid foundation and starting point for deploying your own application.

We can look at the overall production installation process in four parts:

• Deciding where to run your application - Planning for a Provisioning & Deployment.

• Preparing the server(s) to run your application - Provisioning.

• Deployiong and updating your application to the server(s) - Deploying your Application.

• Scaling up when your server can’t handle the traffic anymore - Scaling.

When deploying RapidSMS, you might also need to consider Gateways and Telecom Operators.

Note: Even if you don’t read anything else, the main things are:

• Stop using runserver and switch over to Apache or your real server of choice.

• Use a real database (not SQLite)

• Turn off DEBUG!

• Follow the guidelines in What to Provision.

103

https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-DEBUG


RapidSMS Documentation, Release 1.1.0

You can find community-contributed examples on the GitHub wiki.

18.1 Outline

18.1.1 Planning for a Provisioning & Deployment

There are three major types of hosting: application physical servers, hosted virtual machines, and platform as a
service providers. Though running and maintaining a physical server has become less common recently, there are still
RapidSMS installation situations where this is the best options. For example, there are times when a physical cellular
modem is the best solution for sending and receiving SMS messages in a region. In this case, it can make sense to
have a physical server plugged into a modem where the modem has service.

Low Cost Simplicity Physical Modem Customizable Portability
Physical Server X X X
Hosted VM X X
PaaS X

Shared and dedicated virtual machines (VMs) are becoming more and more common. In this hosting environment,
the server and network configuration and maintenance are the responsibility of the hosting company. Maintaining a
physical computer means worrying about RAM and hard drive failures, but this is not the case with VMs. Beyond
this, many VM providers are providing APIs which make it possible to programmatically create a new server with an
API request to the VM hosting provider. Once the VM has started, you are still responsible for installing an operating
system and configuring all of the various software packages and services.

Further along on the spectrum of hosting providers are Platform as a Service (PaaS) providers. These providers not
only provide an API for turning on a new server, but their servers come fully configured out of the box with a number
of running services or access to shared services. For example, you will not need to install and configure your own web
server, database server, or queue server. Each provider has its own simple web site and command line tool that help
you create new services and deploy your application either from a software repository or your development system.
Typically in this environment, you pay per service rather than per server.

As you travel up the spectrum from physical server to PaaS you typically get less maintenance at the cost of a higher
price and reduced flexibility in your configuration. Furthermore, when you start using a PaaS, your deployment
workflows will become specific to that PaaS. That is, the command line tools that you use to deploy your application
will only work with that single provider. This reduces the portability of your configuration and locks you into one
provider. Also, the reduced flexibility means that you won’t have total control over the versions of software installed
on your server and won’t be able to install custom services. PaaS providers are typically more expensive than VM
providers since they provide an extra layer of abstractions above the bare virtual hardware. But, if your application
can be supported by a PaaS provider, it means not having to worry about security upgrades and initial installation for
services.

18.1.2 Running on a Virtual Machine

Running RapidSMS projects on a virtual machine from a provider on the Internet is a popular choice. You get complete
control over the system as if you were using your own hardware, but don’t have to worry about any hardware-related
problems like disk failures, providing reliable power, getting a good network connection, etc.

104 Chapter 18. Provisioning Servers & Deploying Your Project

https://github.com/rapidsms/rapidsms/wiki/Deployment-Examples


RapidSMS Documentation, Release 1.1.0

Using a VM over the Internet

The experience is similar with most VM providers. After setting up an account, you can create a new VM and select
which of a number of installed operating system images it is created with. The provider will (in essence) install that
operating system, configure the system to communicate over their network, and set up a way for you to login to the
system.

Typically for our purposes, you’d install a server Linux image, with command line access only. Once you’re logged
in, you can do anything on the system that you could do while logged into your own hardware with a command line
interface.

It’s always possible to make a mistake when changing the system configuration and end up not able to login over
the network anymore. The better providers give you an alternate way to get into your system so you can correct that
yourself. With other providers, you might have to make a support request and wait for someone to fix it manually,
perhaps with an additional charge.

Choosing a provider

There are many providers of VMs on the Internet. Amazon is probably the biggest. Others like Linode and Rackspace
are also popular.

There are two main considerations when choosing a VM provider, reliability and connectivity/location. Reliability is
the most important - if your system isn’t running, whether it is well-connected to the Internet is moot. Some providers
publish uptime statistics or offer service level guarantees, or you could just go with one of the biggest, best-known
providers.

Location is another criterion. If your users are accessing your app over the web, they’ll likely get better response times
if the server is at least on the same continent as they are (though not always).

Cost is always a factor, but it should not be the overriding criterion. There are some very low-priced VM providers,
but typically they run many more VMs on the same hardware so that performance is poor, and they offer poor or no
service.

Here are a few of the most popular VM providers:

• Amazon EC2 has nine regions: US East (Northern Virginia), US West (Oregon), US West (Northern California),
EU (Ireland), Asia Pacific (Singapore), Asia Pacific (Tokyo), Asia Pacific (Sydney), South America (Sao Paulo),
and AWS GovCloud.

• Linode has six data centers: Tokyo, London, Newark, Atlanta, Dallas, and Fremont.

• Rackspace doesn’t appear to have information on their web site about their locations.

18.1.3 Running on a PaaS Provider

In choosing to run a project on a PaaS provider, you are choosing simplicitiy over ability to easily customize and
transfer your installation. Each of these companies provide a custom command line tool for automatically configuring
and deploying an application.

Choosing a provider

There are a number of PaaS providers who support Django web applications. Most of these will work fine for sup-
porting RapidSMS. It is important to consider the availability and cost of extra services since you will be relying on
the services provided out of the box and there is little room for customization.

It should also be noted that there have been a number of PaaS solutions that are no longer operating businesses. Since
there is less portability, it is important to consider the longevity of the provider when finalizing a decision. Also, with

18.1. Outline 105

http://aws.amazon.com/ec2/
http://aws.amazon.com/about-aws/globalinfrastructure/
http://www.linode.com/tour/
http://www.rackspace.com/cloud/servers/overview_b/


RapidSMS Documentation, Release 1.1.0

respect to portability, since you are choosing to invest in a single company’s tools, the documentation and support that
are provided by the company must be vetted before deciding to go down a particular path.

Finally, another important consideration to take into account is the command line tool provided by the PaaS provider
itself. With a virtual machine, for example, you can choose from a number of tools to put on top of the VM to help
provision a new instance while with PaaS, you are locked in to the tools decided on by the provider.

Here’s a short list of popular PaaS providers that support Django:

• Heroku

• gondor.io

• dotCloud

Examples

The RapidSMS wiki has a page with links to examples of how people provision and deploy RapidSMS applications.

18.1.4 Provisioning

Provisioning is making sure the systems where you’re going to run your RapidSMS site are ready to deploy to. After
a system is installed, typically you need to create users, grant permissions, and install and configure tools such as a
database, a web server, a cache, a message broker, etc.

Another way to look at it is that provisioning is things you only need to do once per system, like installing a database
server, while deploying includes the things you have to do separately for each app or site you deploy, like creating a
virtual environment for it.

You might also look at provisioning as all the things you have to do for yourself if you’re not using a PaaS to host your
site.

Above all else, you want your provisioning to be repeatable. Use tools to automate it so that you don’t waste a lot
of time tracking down problems that turn out to be the result of a missing package on one server, or an incorrect
configuration, or incorrect file permission, and so forth.

Having automated provisioning can also be very useful to be able to easily provision new systems. For example, you
can set up a new test system, or add another staging server, or another production server.

We’re going to look at two aspects of provisioning:

• Ways to Provision

• What to Provision

18.1.5 Ways to Provision

Manual provisioning

You can provision manually, installing things as you discover you need them, and tweaking the configuration until
things work. This is often how people’s development systems end up getting provisioned.

If you take careful notes as you provision manually, then the next time you have to do it, you can follow the notes and
do it much more quickly and with fewer errors. You can also share the notes so your co-workers can benefit.

106 Chapter 18. Provisioning Servers & Deploying Your Project

https://devcenter.heroku.com/articles/django
https://gondor.io/support/django/setup/
http://docs.dotcloud.com/tutorials/python/django/
https://github.com/rapidsms/rapidsms/wiki/Deployment-Examples


RapidSMS Documentation, Release 1.1.0

Scripting

The next step is putting the provisioning commands into a script of some kind. Typically this is when you have to start
worrying more about what platform you’re working on. For example, the commands to install packages on Debian-
based Linuxes are different from those on Redhat or Gentoo-based Linuxes, so your script either needs to assume
some base platform, or it suddenly gets a lot more complicated.

At this level, you can use tools like Fabric to help organize your provisioning commands into tasks and execute them
remotely. However, Fabric does not help with issues of provisioning like how to install a package or create a user.

For an example of this, you might look at the Django project template offered by Caktus. Its fabfile, with the help of
Argyle, does provisioning on Ubuntu systems. You can see explicit commands to do things like create symbolic links
and change ownership of files.

Provisioning tools

After doing that for a while, you’ll probably wish there were some tools you could use to save you from having to
understand every detail of setting up your system, and how administering your Ubuntu system is different from a
Redhat system.

You might start with something like Blueprint. It takes a different approach than most of the other tools we’ll mention.
With Blueprint, instead of writing a specification for what provisioning needs to be done, you run a Blueprint tool on
a system that you’ve provisioned already and it records the state of the system: which packages have been added to
the defaults, which configuration files have been changed or added and what their contents are, etc.

Then Blueprint provides multiple ways to recreate that provisioned system, including generating a shell script that will
do it, or exporting a set of configuration files for several other provisioning tools such as Puppet and Chef. There’s a
lot of flexibility and room to finetune how Blueprint works; this is just the surface.

Beyond Blueprint there are tools like Chef, Puppet, or SaltStack. These provide full languages in which to specify
how many systems should be configured, and tools to apply and maintain the configurations. The cost of this power,
of course, is complexity. Getting one of these provisioning tools installed and learning to use it will require a large
investment of time.

Examples

The RapidSMS wiki has a page with links to examples of how people provision and deploy RapidSMS applications.

Recommendations on Implementing Provisioning

Unfortunately, there’s no simple solution to implementing repeatable provisioning. Provisioning is a very complicated
task.

Tools can help, but you still need a pretty detailed knowledge of system administration to make it work right.

One consideration is how large your problem is. For people who have to manage more than a dozen or so systems, a
full-featured tool like Chef or Puppet is essential, and the time spent learning it thoroughly will be repaid many times
over.

If you only have a few Django apps, and they’re fairly conventional in terms of provisioning requirements, you should
consider a PaaS. They handle the provisioning for you. The monthly bills will be higher, but your costs in time spent
getting provisioning working and keeping it working will be much lower.

If your needs fall somewhere in the middle, or funding isn’t available for a PaaS, then you’ll need to consider your
needs and your level of expertise, try out some of the available approaches, and make the best decision you can. The
RapidSMS mailing list is a good resource; you can present your situation there and ask for advice.

18.1. Outline 107

http://docs.fabfile.org/en/latest/index.html
https://github.com/caktus/django-project-template/blob/master/fabfile.py
https://pypi.python.org/pypi/argyle/
http://devstructure.com/blueprint/
https://puppetlabs.com/
http://www.opscode.com/chef/
http://www.opscode.com/chef/
https://puppetlabs.com/
http://saltstack.com/
https://github.com/rapidsms/rapidsms/wiki/Deployment-Examples
http://www.opscode.com/chef/
https://puppetlabs.com/
http://groups.google.com/group/rapidsms


RapidSMS Documentation, Release 1.1.0

18.1.6 What to Provision

A Good Basic Setup

One of the intimidating things about deploying a Django application is the number of decisions that need to be made.

Here are a recommended set of choices for deploying Django apps. Most of these choices have alternatives, and some
are decided for you if you’re using a PaaS, but in the absence of a reason to use an alternative, these should work
reasonably well in most cases.

Operating System Ubuntu LTS server: Ubuntu because it’s stable, it’s free, and it’s popular among developers, so
any Django or Python software is likely to work well on it. LTS because of the long support guarantee, and
server since we don’t need costly graphical desktop environments on our servers.

Django version The latest released version: because it will be supported by security fixes for the longest time, com-
pared to any older version, and Django has a history of putting out pretty stable releases. (Maybe wait a couple
of weeks after a new release to see if there’s a .1 release.)

Database PostgreSQL: because it and MySQL are the most popular free databases, so it’s well supported, and MySQL
is lacking some features. For example, MySQL cannot perform schema changes in transactions, so if a schema
migration fails in the middle, your data could be left in an indeterminate state.

Sometimes there are reasons to use another database than PostgreSQL. Just be sure not to use SQLite, even
though it’s very easy to set up. It’s not suited for production use.

Web server Apache or nginx: both work well as front ends for Django applications.

It is important to have a web server handle incoming requests, rather than having them go directly to the Django
application, for a couple of reasons:

• Web servers are designed to efficiently process the load of incoming requests, and deal with the wide
variety of web clients. That lets the WSGI server focus on hosting the Django application.

• The Django application should never be used to serve static files in production. If the static files are not
being served by another system, the web server is used to either serve the static files, or proxy the requests
to something other than the Django application.

WSGI server mod_wsgi with Apache, or gunicorn: Either of these work well.

The WSGI server provides a Python process to run your Django application.

mod_wsgi can be convenient if you are already be using Apache on the server for static files. Gunicorn is easier
to configure and run.

In any case, never use runserver in production. It is not secure, and performs poorly.

Message queue server RabbitMQ: because it’s stable and popular. Redis is also commonly used as a message queue
server.

Schema migration South: because it’s really the only choice available for schema migrations in Django.

RapidSMS Router DatabaseRouter: because it has the most features.

Asynchronous task scheduler Celery: see Using Celery for Scheduling Tasks.

Application settings Applications settings should be shared between different environments as much as possible.
Keeping settings files available to all developers through your version control system keeps all of the developers
on the same page and allows new developers to get started on your project quickly. The Django Book covers
managing settings.py files between environments within projects.

108 Chapter 18. Provisioning Servers & Deploying Your Project

http://www.ubuntu.com/business/server
https://www.djangoproject.com/download/
http://www.postgresql.org/
http://httpd.apache.org
http://nginx.org
http://code.google.com/p/modwsgi/
http://httpd.apache.org
http://gunicorn.org/
http://code.google.com/p/modwsgi/
http://www.rabbitmq.com/
http://redis.io
http://south.readthedocs.org/en/latest/
http://www.celeryproject.org/
http://www.djangobook.com/en/2.0/chapter12.html#using-different-settings-for-production


RapidSMS Documentation, Release 1.1.0

Server Setup Recommendations

These are some recommendations for setting up your server.

Fail2ban install to detect and block some intrusion attempts

Firewall Block any incoming traffic that isn’t needed by your application or server. Ubuntu provides the ufw tool
which makes this easy.

Logwatch Logwatch will check your system logs daily and email you a daily report. This is helpful for spotting
unusual activity.

Automatic security updates You can set up Ubuntu to automatically install security-related updates.

ntp use ntp to keep system clock up to date

18.1.7 Deploying your Application

RapidSMS can easily be deployed in many ways. Deployment is a large topic, contains many right answers and is
largely dependent on your application requirements. Our goal is not to provide the best solution or a configuration that
will work on any application. We only want to provide you with the proper resources to make the best decisions.

Typical Deployment Steps

In order to deploy, you need to accomplish a number of things.

Initially:

• Establish a virtual environment

• Install Python dependencies

• Install project code

• Establish settings specific for that server (secret keys, passwords, location of database, etc.)

• Sync database

• Collect static files

• Start processes (web server, workers, etc)

On each deploy:

• Update Python dependencies

• Update project code

• Apply migrations to database

• Collect static files

• Restart processes

You might also want to:

• Backup or download the database

• Restore or upload the database

• Backup/restore user-uploaded files

18.1. Outline 109

http://www.fail2ban.org/wiki/index.php/Main_Page
https://help.ubuntu.com/community/UFW
https://help.ubuntu.com/community/Logwatch
https://help.ubuntu.com/community/AutomaticSecurityUpdates


RapidSMS Documentation, Release 1.1.0

Different environments

The options for accomplishing these things depend in part on the server environment.

Non-PaaS

The Django documentation provides some advice about how to run a Django application like RapidSMS in production.

One approach you’ll often see when deploying to your own hardware or to a virtual machine is using Fabric to
implement deploy commands that a developer can use. A developer might type fab staging deploy to update
the code on the staging server, or fab production setup_server to provision the production server. To
help you write these commands, Fabric provides a library of methods for running commands on your remote server,
uploading files, etc.

PaaS

If you’re using a PaaS, your provider takes care of setting up your application on their servers, and will provide tools
and documentation about how to deploy your application.

Examples

The RapidSMS wiki has a page with links to examples of how people provision and deploy RapidSMS applications.

18.1.8 Scaling

If your application is successful, you might find that your single server cannot keep up anymore. Responses might
become slow, or operations might just not complete.

There are many steps you can take to scale up your implementation so that it can handle more traffic.

Rather than going into any more detail here, we’d like to direct you to the Scaling section of the Deployment chapter
of the Django Book, which you can read online. This section walks you step-by-step through the changes you can
make as your traffic grows in order to keep up.

18.1.9 Gateways and Telecom Operators

Before setting up your SMS service, consider a few questions:

• Do you have technical staff and just want to try out an SMS service on a trial basis? Or do you want something
robust from the start? This will determine whether you begin your exploration with a tethered phone/GSM
modem or start looking immediately at SMS gateways.

• Do you need to offer your service via a) a shortcode, or b) is a regular phone number sufficient? If you want a
shortcode, which mobile operators do you need to support? Do you need or expect your service to expand to
multiple countries? Acquiring a shortcode is a time-consuming process, which needs to be persued individually
with each operator in each country.

• If a longcode is sufficient, do you need to minimize cost to your end users? This determines whether you need
to support a local number or whether you can work with international SMS gateways and international numbers.

To implement an SMS service, you can take the following approaches:

110 Chapter 18. Provisioning Servers & Deploying Your Project

https://docs.djangoproject.com/en/dev/howto/deployment/
http://docs.fabfile.org/en/latest/index.html
https://github.com/rapidsms/rapidsms/wiki/Deployment-Examples
http://www.djangobook.com/en/2.0/chapter12.html#scaling


RapidSMS Documentation, Release 1.1.0

Set up a GSM Modem

This can be as simple as tethering a mobile phone to a laptop. More commonly, you’ll purchase a dedicated GSM
modem (which has better performance than a regular mobile phone) and attach it to a server somewhere. In the modem
you’ll place a local GSM-enabled SIM card, run the application on your server, and you’re done.

Pros:

• Easy and fast to setup

Cons:

• Not a good long-term solution. Managing a GSM modem requires more knowledge than just managing tradi-
tional servers on a network, and most small or non-technical organizations will not have the capacity to ensure
99% uptime. This may be a viable solution for a larger organization that already hosts its own web servers and
has dedicated technical staff.

• Shortcode not possible

Local SMS Gateway

If you can find a reliable SMS gateway locally, this may be your best option, as they can provide local numbers,
facilitate the acquisition of local short codes, and ideally provide competitive prices. Whether this is easy varies from
country to ountry. In many countries, it is difficult and time-consuming to find a local provider who is timely and
reliable.

Pro:

• Typically local gateways are in the best position to facilitate acquisition of local shortcodes among multiple
mobile operators

International SMS Gateway

There are many reputable international SMS gateways, although their service and availability within a particular
country can vary greatly and should always be tested before launch.

Pros:

• Can provide strong technical infrastructre and volume discounts

Cons:

• Texting an international number is more expensive for end users

• Sending text messages internationally can be expensive

• Shortcodes not possible

Host a local SIM with an international SMS gateway

One common solution we use is to take a local SIM card from a given country, enable roaming, and then ship it to an
international SMS gateway. This gives us many benefits of the above two solutions without the drawbacks.

Pros:

• Users can text a local number cheaply

• Can provide strong technical infrastructre and volume discounts

Cons:

18.1. Outline 111



RapidSMS Documentation, Release 1.1.0

• Depends on the roaming infrastructure for a given network

• Shortcode not possible

Partnering with a Telecom Operator

Most SMS services are offered through third-party SMS gateways, whose business involves making it easier for third
parties to offer services via SMS. Although it is rare, from time to time an organization can be lucky enough to form
a strong partnership directly with a telecom operator.

Pros:

• Can tap in directly to local telecom infrastructure. Less chance of messages being lost.

• Strong partnership with telco can result in other significant benefits, such as discounts, additional services, and
better accounting/reporting.

Cons:

• Telcos tend to be larger, often international organizations, and like any such organization, can move very slowly.

• Most SMS services are not large enough to warrant the attention of large telcos.

• If a shortcode is needed, still need to negotiate these with other telcos, either directly or through a gateway
service.

Terminology

Gateway: A gateway is a web service which provides access to particular services. A website can interface with an
SMS gateway over the internet in order to send and recieve SMS.

112 Chapter 18. Provisioning Servers & Deploying Your Project



CHAPTER 19

Developing RapidSMS

RapidSMS is an open source project. That means you can get the source code and change it to suit yourself. You can
offer your changes back to the project. You can help fix bugs, write new features, and even help run the project.

This section of the documentation is about working on RapidSMS. There are technical details, and some of the stan-
dards we follow for this code.

See The RapidSMS Community for more about how our development community works.

• Getting the code for development

• Submit a pull request

• Coding standards and best practices

• Writing documentation

• RapidSMS core test suite

• RapidSMS Release Checklist

19.1 Getting the code for development

Here’s how you can get the RapidSMS source code and make changes to it.

19.1.1 Git

The RapidSMS project uses Git to manage its source code. If you’re not familiar with Git already, you’ll find it useful
knowledge for more than working on RapidSMS. Git is an incredibly popular source control tool, and there is a huge
amount of documentation on the net ranging from introductory tutorials to in-depth reference material.

19.1.2 Clone the repository

Clone the RapidSMS source repository from Github:

113

http://opensource.org/
http://git-scm.com/


RapidSMS Documentation, Release 1.1.0

$ git clone git://github.com/rapidsms/rapidsms.git
Cloning into 'rapidsms'...
remote: Counting objects: 25262, done.
remote: Compressing objects: 100% (8696/8696), done.
remote: Total 25262 (delta 15920), reused 24482 (delta 15498)
Receiving objects: 100% (25262/25262), 5.20 MiB | 1.09 MiB/s, done.
Resolving deltas: 100% (15920/15920), done.

You’ll now have a new rapidsms subdirectory containing the code.

19.1.3 Environment

Install virtualenv and virtualenvwrapper (see Using virtualenv).

Change into the rapidsms directory:

$ cd rapidsms
$

Create a virtual environment to work in and activate it:

$ mkvirtualenv --no-site-packages rapidsms
...
$

19.1.4 Master branch

The default branch in the RapidSMS repository is develop, because that’s the branch used when working on new
features for an upcoming release, and so most developers use it a lot.

But let’s switch to the stable branch, master, for now, so we can run the tests and verify that we have things set up
right.

$ git checkout master
Branch master set up to track remote branch master from origin.
Switched to a new branch 'master'
$

19.1.5 Requirements

Install RapidSMS’s requirements using distribute’s develop command:

$ python setup.py develop
[lots of output omitted]
$

19.1.6 Tests

Verify that everything is okay by running RapidSMS’s tests.

114 Chapter 19. Developing RapidSMS

http://packages.python.org/distribute/setuptools.html#develop-deploy-the-project-source-in-development-mode


RapidSMS Documentation, Release 1.1.0

$ tox
[lots of output omitted]
____________________________________________ summary _________________________________
→˓____________
py26-1.4.X: commands succeeded
py26-1.5.X: commands succeeded
py26-trunk: commands succeeded
py27-1.4.X: commands succeeded
py27-1.5.X: commands succeeded
py27-trunk: commands succeeded
congratulations :)

$

This takes a while the first time – over 8 minutes on my computer. But after that, the environments are already set up
and it’ll run much faster. On my computer, subsequent tests take less than 30 seconds.

The code on the RapidSMS master branch should always pass the tests. If anything fails, review these instructions,
and if they still fail, ask on IRC or the rapidsms-dev mailing list.

19.1.7 Work on a branch

When you’re ready to start making changes, you’ll want to create a new branch. You have a choice to base your branch
on the master or develop branch. The tip of the master branch is always the latest released code. It’s stable, but
does not include any changes currently under development for the next release.

The develop branch contains changes that are ready for the next release. It should also be pretty stable, because all
changes are developed on other branches and not merged into develop until they appear to be ready, but there’s a bit
more chance of there being something broken in develop.

It’s probably a good idea to base your branch on develop if possible, because if you work from master, there might
be changes already in develop that your work won’t take into account.

19.2 Submit a pull request

To ask for a change you’ve made in your own RapidSMS repository to be merged into the official repository, you make
a pull request.

If you’re already familiar with Github and pull requests, here’s all you need to know:

1. Sign a Contributor License Agreement.

2. Open a pull request against the develop branch of the RapidSMS repository (https://github.com/rapidsms/
rapidsms).

Otherwise, here are the details.

19.2.1 Branch

Work on a branch from the develop branch. RapidSMS uses the Git Flow system to manage branches and releases. If
you’re using the gitflow tool, you can start your branch with:

$ git flow feature start NAME
Switched to a new branch 'feature/NAME'

(continues on next page)

19.2. Submit a pull request 115

https://github.com/rapidsms/rapidsms
https://github.com/rapidsms/rapidsms
http://nvie.com/posts/a-successful-git-branching-model/
https://github.com/nvie/gitflow


RapidSMS Documentation, Release 1.1.0

(continued from previous page)

Summary of actions:
- A new branch 'feature/NAME' was created, based on 'develop'
- You are now on branch 'feature/NAME'

Now, start committing on your feature. When done, use:

git flow feature finish NAME

$

If you’re not using the gitflow tool, create a new branch from develop and switch to it:

$ git branch feature/NAME develop
$ git checkout feature/NAME
Switched to branch 'feature/NAME'
$

19.2.2 Github

You’ll need a Github account to proceed. They’re free.

19.2.3 Fork the repository

Once you have a Github account, login, then go to the RapidSMS repository on Github and create a fork by clicking
the Fork button near the top right of the page.

19.2.4 Add a remote

We’ll assume you already have a local clone of the repository that you’ve been working in, so all you need to do is add
a new remote definition pointing to your new fork. You might choose to name your new remote definition using your
Github username, to keep it distinguished from the remote pointing at the official repository.

$ git remote add username git@github.com:username/rapidsms.git
$ git remote -v
username git@github.com:username/rapidsms.git (fetch)
username git@github.com:username/rapidsms.git (push)
origin git://github.com/rapidsms/rapidsms.git (fetch)
origin git://github.com/rapidsms/rapidsms.git (push)
$

19.2.5 Push your change to your own repository

Your change needs to be on Github before you can open a pull request against the RapidSMS code. Unless you have
RapidSMS commit privileges, you’ll need to upload your change to your own fork of the repository.

Assuming your branch name is feature/NAME:

$ git push -u username feature/NAME
Total 0 (delta 0), reused 0 (delta 0)
To git@github.com:username/rapidsms.git

(continues on next page)

116 Chapter 19. Developing RapidSMS

https://github.com
https://github.com/rapidsms/rapidsms


RapidSMS Documentation, Release 1.1.0

(continued from previous page)

* [new branch] feature/NAME -> feature/NAME
Branch feature/NAME set up to track remote branch feature/NAME from username.
$

19.2.6 Open a pull request

Go to your fork of the RapidSMS repository on the Github web site (https://github.com/username/rapidsms/).

Click the Pull request button near the top center of the page.

Check the settings:

base repo rapidsms/rapidsms

base branch develop

head repo username/rapidsms (your repo)

head branch feature/NAME (your branch)

Enter an informative name and description for your pull request. By default, Github will try to pull these from your
commit messages, but often you can improve them.

Your pull request description is your chance to convince people that your change is worthwhile and will benefit
RapidSMS. Here are some things to consider addressing:

• why is this change needed

• why will this be useful to general RapidSMS users (not just you)

• what change was made

• why that change was made, as opposed to some other way of achieving the same ends

• what testing has been done

• whether this change has already been used in real RapidSMS applications

• etc.

Switch to the Files Changed tab and check that the changes shown are what you expect. If not, go back and check
that you’ve committed the changes you intended on your branch, that you pushed it to your repo, and that the pull
request settings are correct for your repo and branch.

When everything looks right, switch back to the New Pull Request tab and click the green Send pull
request button in the lower right, below the description box.

19.3 Coding standards and best practices

We follow these practices when developing RapidSMS code:

1. Work on a branch off the develop branch.

2. Follow PEP8 style conventions. Use 4 spaces instead of tabs.

• To learn more about writing ‘pythonic’ code, check out The Hitchhiker’s Guide To Python’s Code Style
guide

• Tip: Configure your development environment for python to make your life a bit easier.

3. Run the PEP 8 adherence tool.

19.3. Coding standards and best practices 117

https://github.com/username/rapidsms/
http://www.python.org/dev/peps/pep-0008/
http://docs.python-guide.org/en/latest/writing/style.html
http://docs.python-guide.org/en/latest/writing/style.html
http://docs.python-guide.org/en/latest/dev/env.html


RapidSMS Documentation, Release 1.1.0

4. Use CapitalizedCase for class names, underscored_words for method names.

5. Code using os.path must be Windows and ‘NIX friendly. For example, don’t use backslashes (\) as path
separators.

6. Be sure every class and method has docstrings.

7. Use Python logging whenever an error or exception occurs. Optionally include debug-level logging.

8. Write a test which shows that the bug was fixed or that the feature works as expected.

9. Run the RapidSMS core test suite to make sure nothing unexpected broke. We only accept pull requests with
passing tests.

10. Write new or update existing documentation to describe the changes you made.

11. Add the change to the release notes document for the next release. The release notes should focus on the effects
on existing users, particularly if it will require them to make changes.

12. Submit a pull request and get reviews before merging your changes, even if you have authority to merge the
changes yourself.

13. Sign the Contributor License Agreement.

19.4 Writing documentation

We believe RapidSMS needs to treat our documentation like we treat our code. It’s what you’re reading now and is
generally the first point of contact for new developers. We value great, well-written documentation and aim to improve
it as often as possible. And we’re always looking for help with documentation!

19.4.1 Getting the raw documentation

The official documentation is available on Read the Docs. This is the compiled HTML version. However, we edit it
as a collection of text files for maximum flexibility. These files live in the top-level docs/ directory of a RapidSMS
release. If you’d like to start contributing to our docs, get the development version of RapidSMS from the source code
repository (see Installing the latest development version).

19.4.2 Using Sphinx

Before building the documentation, you must have a version of RapidSMS installed. See the Installing the latest
development version guide for instructions on installing RapidSMS.

We use the Sphinx documentation system (based on docutils). To build the documentation locally, you’ll need to
install Sphinx:

pip install Sphinx

Then, building the HTML is easy. Just run make from the docs directory:

make html

(or make.bat html on Windows)

To get started contributing, you’ll want to read the reStructuredText Primer. After that, you’ll want to read about the
Sphinx-specific markup that’s used to manage metadata, indexing, and cross-references.

118 Chapter 19. Developing RapidSMS

http://docs.python-guide.org/en/latest/writing/documentation.html#code-documentation-advice
http://docs.python-guide.org/en/latest/writing/tests.html
https://github.com/rapidsms/rapidsms/tree/develop/docs/releases
https://help.github.com/articles/using-pull-requests
http://rapidsms.readthedocs.org/
http://sphinx.pocoo.org/
http://docutils.sourceforge.net/
http://sphinx.pocoo.org/rest.html#rst-primer
http://sphinx.pocoo.org/markup/index.html#sphinxmarkup


RapidSMS Documentation, Release 1.1.0

19.4.3 Documentation starting points

Typically, documentation changes come in two forms:

• General improvements: typo corrections, error fixes and better explanations through clearer writing and more
examples.

• New features: documentation of features that have been added to the framework since the last release.

If you’re interested in helping out, a good starting point is with the documentation label on the GitHub issue tracker.

19.5 RapidSMS core test suite

We expect all new and changed code to include tests for the new or changed behavior. Having as complete a set of
tests as possible is important so we can have confidence that when we make a change in one place, we haven’t broken
something else.

RapidSMS provides several configuration options and entry points for continuous integration. The unit tests can be
run in the current python environment or automated to run in several environments and can include coverage reports.

19.5.1 Quickstart

The easiest way to run the unit tests in a new install is to run the following from the project root:

pip install tox
tox

The settings found in the /tests/default.py module are intended as the default settings file for running tests. This will
also build the docs, run flake8, look for missing migrations, and run coverage.

19.5.2 PEP 8 Style Guidelines Adherence

RapidSMS adheres to the Python PEP 8 style guidelines for all Python source outside of the docs/ directory. As
such, please check your code against the PEP 8 specification by using the flake8 linting tool in your RapidSMS
directory before submitting patches for review:

flake8

Note that the tox command above also will do this.

19.5.3 Testing multiple environments

RapidSMS uses Tox to run the test suite in a variety of environments. You can test all environments together or specific
ones:

tox # all environments
tox -e py34-dj19 # only test using Python 3.4 and Django 1.9

See the tox.ini file for a list of the available environments.

You can also add additional environments or change other parts of the configuration in your local copy of the tox.ini
by following the tox configuration specification docs.

19.5. RapidSMS core test suite 119

https://github.com/rapidsms/rapidsms/issues?labels=documentation&page=1&state=open
http://www.python.org/dev/peps/pep-0008/
http://tox.readthedocs.org/en/latest/index.html
http://tox.readthedocs.org/en/latest/config.html


RapidSMS Documentation, Release 1.1.0

19.6 RapidSMS Release Checklist

This is a checklist for releasing a new version of RapidSMS.

This is intended for someone who has been designated the Release Manager, the person responsible for making an
official release of RapidSMS.

For a higher-level overview of the whole release cycle, see the Release Process.

19.6.1 Git branches

RapidSMS uses the Git Flow process for development. The two branches of concern at release time are:

• master - always has the most recently released code. Each release is tagged vX.X.X.

• develop - contains the code under development for the next release

So technically, what makes a new release is merging develop to master and tagging it. Of course, we don’t want
to do that until we’re ready.

19.6.2 Required permissions

You’ll need the following authorizations to make a release:

Github push to the rapidsms repository

PyPI push updates to the rapidsms package

Read the Docs change the configuration for RapidSMS

If you need any of these authorizations:

• create any of the accounts you don’t have

• send an email to rapidsms-dev@googlegroups.com and ask for someone to give you the needed authorizations.
Be sure to include your userid for each account.

19.6.3 Release checks

All the following checks should be verified before continuing:

• master merged to develop to be sure any hotfixes are included

• Version number in rapidsms/__init__.py updated

• Next version number in rapidsms/docs/conf.py updated

• New release labeled as current in rapidsms/docs/releases in index.rst, this-release.rst,
and roadmap.rst

• Previous release not labeled as current in rapidsms/docs/releases in index.rst, prev-release.
rst, and roadmap.rst.

• Create a release-X.X.X branch (based off master) in the RapidSMS project template repository. Make
sure to update README.rst as well.

• Update project template command line in intro/install/index.rst to point to the RapidSMS project
template release branch.

• All git issues for this release’s milestone have been resolved. (closed or moved to another milestone)

120 Chapter 19. Developing RapidSMS

http://nvie.com/posts/a-successful-git-branching-model/
https://github.com/rapidsms/rapidsms
https://pypi.python.org/pypi/RapidSMS
mailto:rapidsms-dev@googlegroups.com
https://github.com/rapidsms/rapidsms-project-template/


RapidSMS Documentation, Release 1.1.0

• All tests pass against the develop branch. Look for a passing build on Travis of the tip commit on the
develop branch.

• A distribution tarball can be built with python setup.py sdist, it can be installed with pip, has the right
version, and works when installed. (SUGGEST HOW TO TEST AN INSTALLED RAPIDSMS)

19.6.4 Release steps

Take these steps to release the new version:

• Make a fresh clone of the repo:

git clone git@github.com:rapidsms/rapidsms.git
cd rapidsms

• Checkout master:

git checkout master

• Merge develop into master:

git merge develop

• Run the tests locally. (This assumes you have tox on your path. Create a new virtualenv and install it if needed.)
The tests must pass before proceeding.

tox

• Create a new tag:

git tag -a vX.X.X

• Push the merged master branch and tag to github:

git push origin master --tags

• While Travis is testing the pushed branch, compose a release announcement.

Here’s a template that can be used for release announcements. You can copy the summary from the release notes:

Subject: RapidSMS X.X.X Released

I’m excited to announce the release of RapidSMS X.X.X! Here’s a quick summary:

• Major change or feature 1: one-line explanation

• Major change or feature 2: one-line explanation

• . . .

You can find the full list of changes and upgrade guide in the RapidSMS X.X.X Release Notes.

I’d like to give special thanks to Tom, Dick, and Harry for their work on this release. [EXPAND ON
THAT].

More help is always welcome. If you’re interested, you can read the contributing guide.

The next release will be Y.Y.Y and will focus on FILL IN MAJOR GOALS FOR Y.Y.Y.

As always, if you have any questions or issues, please feel free to post them to this list or ask in the
#rapidsms IRC channel on Freenode. Bugs can be reported on Github.

19.6. RapidSMS Release Checklist 121

https://travis-ci.org/rapidsms/rapidsms/
https://rapidsms.readthedocs.org/en/vX.X.X/releases/X.X.X.html
https://rapidsms.readthedocs.org/en/vX.X.X/releases/X.X.X.html
http://rapidsms.readthedocs.org/en/vX.X.X/internals/contributing/index.html
http://freenode.net/
https://github.com/rapidsms/rapidsms


RapidSMS Documentation, Release 1.1.0

• Verify that Travis tests have passed for the pushed master

• Push the new version to PyPI:

python setup.py sdist upload

• Add the new version to the tags that Read the Docs should build

• Email the release announcement to rapidsms@googlegroups.com and rapidsms-dev@googlegroups.com

19.6.5 Start Next Release

Back on the develop branch, we can now start on the next release:

• Merge master to develop to make sure we’re starting from the same code that’s currently released (there
might have been merge conflicts or something during the release process).

• Update the version in rapidsms/__init__.py and the next version in rapidsms/docs/conf.py.

• Start a new release notes document in rapidsms/docs/release. Use the previous release’s document as
a template. Be sure to label it at the top as under development.

• Update rapidsms/docs/release/index.rst to mark the next release as under development.

• Create a new Github milestone with the next release number, e.g. “v0.15.0”, so that developers can start targeting
work for the next release.

Now we can start merging features intended for the next release. Review Git Flow for more about how to use git
branches while developing.

122 Chapter 19. Developing RapidSMS

http://docs.python.org/3/distutils/packageindex.html
mailto:rapidsms@googlegroups.com
mailto:rapidsms-dev@googlegroups.com
http://nvie.com/posts/a-successful-git-branching-model/


CHAPTER 20

The RapidSMS Community

The RapidSMS community is everyone who helps make RapidSMS what it is.

This section of the documentation is about the RapidSMS community, and how it works.

See Developing RapidSMS for technical information about making changes to RapidSMS.

When working with the RapidSMS community, it’ll help to remember a few things:

• At the other end of each email address is another person.

• Most of the people in the community contribute because they want to help, not because it’s their job.

So - be polite, give each other the benefit of the doubt, and try to communicate clearly but be ready to try another
approach if your point doesn’t seem to be getting across.

• Joining the RapidSMS community

• Submitting changes back to the project

• Reviewing pull requests

• The RapidSMS core team

• Release process

20.1 Joining the RapidSMS community

We’re always excited to welcome new volunteers to the RapidSMS project. As it keeps growing, we need more people
to help others and contribute back to the community. As soon as you learn RapidSMS, you can contribute in many
ways:

• Join the rapidsms mailing list and answer questions. This users list, the primary RapidSMS mailing list, is used
to ask and answer questions, help work through bugs, and discuss general RapidSMS topics.

• Join the rapidsms-dev mailing list. This list is used to discuss RapidSMS core and active country projects. This
ranges from new RapidSMS features to large scale RapidSMS deployments in Zambia. If you’re interested in
any of this, please join the conversation!

123

http://groups.google.com/group/rapidsms
http://groups.google.com/group/rapidsms-dev


RapidSMS Documentation, Release 1.1.0

• Join the #rapidsms IRC channel on Freenode and answer questions. By explaining RapidSMS to other users,
you’re going to learn a lot about the framework yourself. You can use the webchat client for this too.

And, of course, you can help out by working on RapidSMS.

• Report bugs in our ticket tracker.

• Follow our Coding standards and best practices.

• Open pull requests for features and bug fixes against the develop branch. We use the Gitflow model for our
development. See Submitting changes back to the project for more on this.

• Comment on open issues and pull requests. Try the changes yourself and report on how well they work in the
issue or pull request. See Reviewing pull requests for more on this.

• Try the develop branch and report any problems, especially if recent changes break your own application.

• Improve the RapidSMS documentation (what you’re reading now!).

• Participate on the rapidsms-dev mailing list.

20.2 Submitting changes back to the project

Here’s how you can offer your changes back to the RapidSMS project, so others can benefit from them.

(If you’re a member of The RapidSMS core team, you should still follow this process.)

20.2.1 See if there’s support for your change

1. Check for open issues or open a fresh issue in the ticket tracker to start a discussion around a feature idea or a
bug. Send a message to the rapidsms-dev mailing list to request feedback.

2. If you’re working on a large patch, we highly recommend creating a wiki page under the RapidSMS GitHub
account. Use the wiki page to outline the motivation behind the patch and to document decisions made on the
rapidsms-dev mailing list.

Router decoupling and HTTP message processing, Bulk Messaging API, and Scheduling are good examples.

20.2.2 Develop your change

Write the code for your change.

Follow the RapidSMS Coding standards and best practices.

20.2.3 Sign the CLA

Before your work can be accepted into the project, you’ll have to sign a Contributor License Agreement.

20.2.4 Ask for it to be added

To ask the project to merge your changes into the official repository, Submit a pull request.

124 Chapter 20. The RapidSMS Community

irc://irc.freenode.net/rapidsms
http://webchat.freenode.net?channels=rapidsms
https://github.com/rapidsms/rapidsms/issues?state=open
http://nvie.com/posts/a-successful-git-branching-model/
http://groups.google.com/group/rapidsms-dev
https://github.com/rapidsms/rapidsms/issues?state=open
http://groups.google.com/group/rapidsms-dev
https://github.com/rapidsms/rapidsms/wiki/_pages
http://groups.google.com/group/rapidsms-dev
https://github.com/rapidsms/rapidsms/wiki/Router-decoupling-and-HTTP-message-processing
https://github.com/rapidsms/rapidsms/wiki/Bulk-Messaging-API
https://github.com/rapidsms/rapidsms/wiki/Scheduling


RapidSMS Documentation, Release 1.1.0

20.2.5 Now what?

What you’d like to happen is for someone with privileges on the RapidSMS repository to merge your changes into the
develop branch, so that they’ll be included in the next RapidSMS release.

Typically before that, there will be one or more rounds of people making comments on your changes or asking ques-
tions to try to improve the code.

If you don’t hear anything after a few days, it’s okay to ask on the rapidsms-dev mailing list for someone to look
at your pull request. Everyone is busy and sometimes a reminder is helpful.

Just remember that if you want your change included, you’ll need to take responsibility to convince people that it’s
worthwhile. And sometimes perfectly good changes are not included in the project because they don’t appear to be
useful to enough users. Every time code is added, it’s a cost to the project because it has to be maintained from then
on.

You can always continue using the change in your fork, even if it’s not included in the main project.

20.2.6 Core team members

If you’re a member of The RapidSMS core team, there are a few small changes to the process.

You can merge your own changes, but if possible, you should first get another core team member to agree with them.
Ask them to add a “ship it” comment to the pull request. After that, you can merge your changes.

It’s also your prerogative to merge your own changes if no one has commented after a few days. Just keep in mind that
whatever changes you make will contribute to your own standing in the community.

20.3 Reviewing pull requests

Everyone is welcome to comment on pull requests. If you’re deeply familiar with the RapidSMS code, you might spot
a fundamental problem. But if not, you still can look for smaller-scale bugs, typos, style issues, better algorithms, etc.

The Coding standards and best practices are a good checklist when reviewing pull requests. All pull requests are
expected to comply with our coding standards.

Check out the code from the pull request’s branch and try running it locally. Make sure the tests pass on your system;
it might be different from the submitter’s system. Try other things; even if all the tests pass, there might be things we
forgot to write a test for, or couldn’t.

See if your own app still works when using the modified RapidSMS. Sometimes different apps use RapidSMS in
different ways.

If you are on The RapidSMS core team, you’re encouraged to review pull requests and if they look acceptable, merge
them to the develop branch. Or if the submitter is another core team member, add a ship it! comment and let
them do the merging.

In any case, please try to be polite in your comments, and give the submitter the benefit of the doubt. Before clicking
to submit your comment, think about how you would feel if someone made that comment about your code.

One good policy when writing review comments is to always refer to the code, never to the submitter. Remember that
what we’re reviewing is the code, not the person. For example, instead of saying “you didn’t check for None”, you
might instead say “the method is missing a check for None”.

20.3. Reviewing pull requests 125



RapidSMS Documentation, Release 1.1.0

20.4 The RapidSMS core team

The RapidSMS team is fairly loosely organized. The core team is basically anyone who has permission to merge
into the official repository.

The only real prerequisite to joining the core team is showing that you’d be a useful member of the team. So, start by
contributing. After you’ve done this for a while, someone on the core team might decide to give you access. If not,
feel free to ask on the rapidsms-dev list, where by this time you should be well known anyway.

You can view the current core team on the RapidSMS GitHub project page.

There are some distinguished roles on the team. Note that any person can play multiple roles.

20.4.1 Core Dev

A core dev is a community member who has commit rights to the GitHub repository. They’ve usually been active for
some time, have a track record of submitting quality pull requests and help review outstanding PRs.

20.4.2 Release Manager

A release manager is a member of the core dev team who performs each release when feature development is complete.
They collaborate with the Release Champion on the Release process, provide final QA before each release, and actually
perform the final release process steps to publish the new release.

20.4.3 Community Coordinator

A community coordinator is a core dev who helps organize the core team to identify future milestones and releases.
They are active on the mailing lists and help identify release champions for each new version.

20.4.4 Release Champion

A release champion is a core dev who is excited about the upcoming release, has expertise in the topic and wants to
lead development of the proposed features. They will organize tickets, delegate tasks to other willing core devs and
perform actual development themselves. Their job is expanded on in the Release process.

20.5 Release process

The process for a new RapidSMS release begins when a Release Champion is identified for it. The release champion’s
job is to organize and lead the work to get a new release out. Any of the work identified below could be done by
anyone, under the release champion’s leadership.

The release champion starts by creating a new Github milestone for the release, if there’s not one already. It will be
named something like “v0.15.0”.

There might already have been changes merged to the develop branch since the last release. The release champion
should find those closed issues and add the new milestone to them, so the new milestone will contain all the issues
that’ll be in the new release.

Then the release champion will look for existing issues, or create new ones, that they want to include in the new
release. They’ll add the new milestone to each of those issues.

126 Chapter 20. The RapidSMS Community

https://github.com/rapidsms?tab=members


RapidSMS Documentation, Release 1.1.0

The release champion should use the rapidsms-dev mailing list to inform everyone interested in the development
of RapidSMS of the progress of the release. In particular, they should solicit suggestions for issues that should be
included in the new release, and ask people to try out the develop branch as changes are merged.

The release champion and Release Manager collaborate when it’s time to ship the new release, with the release
manager responsible for final QA and the actual RapidSMS Release Checklist steps to publish a new release.

20.5. Release process 127



RapidSMS Documentation, Release 1.1.0

128 Chapter 20. The RapidSMS Community



CHAPTER 21

Contributed Applications

RapidSMS comes with a number of contributed applications.

21.1 rapidsms.contrib.default

The default contrib application allows your project to define a default response to an IncomingMessage that is not
handled by any other application. The response string is defined in DEFAULT_RESPONSE.

21.1.1 Installation

To use default, add "rapidsms.contrib.default" to the end of INSTALLED_APPS in your settings file:

INSTALLED_APPS = [
# Your other installed apps
...
"rapidsms.contrib.default" # must be last

]

21.1.2 Usage

The default application operates during the default message processing stage. It is very important that the router
loads this application last, both because all other applications should have the opportunity to handle the message
before falling back to this one, and because this application does not prevent the execution of the default stages of the
applications that come after it.

This application passes the value of PROJECT_NAME to the response string. To include the project name, use
%(project_name)s in the response string.

If DEFAULT_RESPONSE is None, the default application will not send a message.

By default, DEFAULT_RESPONSE is defined as:

129

https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS


RapidSMS Documentation, Release 1.1.0

DEFAULT_RESPONSE = "Sorry, %(project_name)s could not understand your message."

21.2 rapidsms.contrib.echo

The echo contrib application is a collection of two simple handlers that can assist you in remotely debugging your
RapidSMS project.

21.2.1 Installation

To use either of EchoHandler or PingHandler, you must add "rapidsms.contrib.handlers" to
INSTALLED_APPS in your settings file:

INSTALLED_APPS = [
...
"rapidsms.contrib.handlers",
...

]

Then add the handler classes you want to use to RAPIDSMS_HANDLERS:

RAPIDSMS_HANDLERS = [
...
"rapidsms.contrib.echo.handlers.echo.EchoHandler", # if you want EchoHandler
"rapidsms.contrib.echo.handlers.ping.PingHandler", # if you want PingHandler
...

]

See the handlers docs for more information about how handlers are loaded and called.

21.2.2 Usage

EchoHandler

EchoHandler is an extension of KeywordHandler which handles any message prefixed by “echo” by responding with
the remainder of the text. This handler is useful for remotely testing internationalization.

For example:

> echo
< To echo some text, send: ECHO <ANYTHING>
> echo hello
< hello

PingHandler

PingHandler is an extension of BaseHandler. It handles messages with the (precise) text “ping” by responding with
“pong”. Unlike many handlers, this one is case-sensitive and does not allow extra whitespace. This handler is useful
for remotely checking that the router is alive.

For example:

130 Chapter 21. Contributed Applications

https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS


RapidSMS Documentation, Release 1.1.0

> ping
< pong

21.3 rapidsms.contrib.handlers

The handlers contrib application provides three classes- BaseHandler, KeywordHandler, and PatternHandler- which
can be extended to help you create RapidSMS applications quickly.

21.3.1 Installation

To define and use handlers for your RapidSMS project, you will need to add "rapidsms.contrib.handlers"
to INSTALLED_APPS in your settings file:

INSTALLED_APPS = [
...
"rapidsms.contrib.handlers",
...

]

Then you’ll also need to set RAPIDSMS_HANDLERS. The application will load the handler classes listed in
RAPIDSMS_HANDLERS, as described in Handler Discovery.

RAPIDSMS_HANDLERS = [
"rapidsms.contrib.handlers.KeywordHandler",
"rapidsms.contrib.handlers.PatternHandler",

]

21.3.2 Usage

KeywordHandler

Many RapidSMS applications operate based on whether a message begins with a specific keyword. By subclassing
KeywordHandler, you can easily create a simple, keyword-based application:

from rapidsms.contrib.handlers import KeywordHandler

class LightHandler(KeywordHandler):
keyword = "light"

def help(self):
self.respond("Send LIGHT ON or LIGHT OFF.")

def handle(self, text):
if text.upper() == "ON":

self.respond("The light is now turned on.")

elif text.upper() == "OFF":
self.respond("Thanks for turning off the light!")

else:
self.help()

21.3. rapidsms.contrib.handlers 131

https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS


RapidSMS Documentation, Release 1.1.0

Your handler must define three things: keyword, help(), and handle(text). When a message is received that begins with
the keyword (case insensitive; leading whitespace is allowed), the remaining text is passed to the handle method of
the class. If no additional non-whitespace text is included with the message, help is called instead. For example:

> light
< Send LIGHT ON or LIGHT OFF.
> light on
< The light is now turned on.
> light off
< Thanks for turning off the light!
> light something else
< Send LIGHT ON or LIGHT OFF.

The handler also treats ,, :, and ; after the keyword the same as whitespace. For example:

> light
< Send LIGHT ON or LIGHT OFF.
> light:on
< The light is now turned on.
> light, off
< Thanks for turning off the light!
> light :,; on
< The light is now turned on.

Tip: Technically speaking, the incoming message text is compared to a regular expression pattern.

The most common use case is to look for a single exact-match keyword. However, one could also match multiple
keywords, for example keyword = "register|reg|join".

However, due to how we build the final regular expression, capturing matches using grouping in the keyword regular
expression won’t work. If you need that, use the PatternHandler.

All non-matching messages are silently ignored to allow other applications and handlers to catch them.

For example implementations of KeywordHandler, see

• rapidsms.contrib.echo.handlers.echo.EchoHandler

• rapidsms.contrib.registration.handlers.register.RegistrationHandler

• rapidsms.contrib.registration.handlers.language.LanguageHandler

Here’s documentation from the KeywordHandler class:

class rapidsms.contrib.handlers.KeywordHandler
This handler type can be subclassed to create simple keyword-based handlers. When a message is received, it is
checked against the mandatory keyword attribute (a regular expression) for a prefix match. For example:

>>> class AbcHandler(KeywordHandler):
... keyword = "abc"
...
... def help(self):
... self.respond("Here is some help.")
...
... def handle(self, text):
... self.respond("You said: %s." % text)

If the keyword is matched and followed by some text, the handle method is called:

132 Chapter 21. Contributed Applications

https://github.com/rapidsms/rapidsms/blob/master/rapidsms/contrib/echo/handlers/echo.py
https://github.com/rapidsms/rapidsms/blob/master/rapidsms/contrib/registration/handlers/register.py
https://github.com/rapidsms/rapidsms/blob/master/rapidsms/contrib/registration/handlers/language.py


RapidSMS Documentation, Release 1.1.0

>>> AbcHandler.test("abc waffles")
['You said: waffles.']

If just the keyword is matched, the help method is called:

>>> AbcHandler.test("abc")
['Here is some help.']

All other messages are silently ignored (as usual), to allow other apps or handlers to catch them.

handle(text)
Called when the keyword matches and text follows

Parameters text – The text that follows the keyword. Any whitespace between the keyword
and the text is not included.

help()
Called when the keyword matches but no text follows

keyword = None
A string specifying a regular expression matched against the beginning of the message. Not case sensitive.

PatternHandler

Note: Pattern-based handlers can work well for prototyping and simple use cases. For more complex parsing and
message handling, we recommend writing a RapidSMS application with a custom handle phase.

The PatternHandler class can be subclassed to create applications which respond to a message when a specific pattern
is matched:

from rapidsms.contrib.handlers import PatternHandler

class SumHandler(PatternHandler):
pattern = r"^(\d+) plus (\d+)$"

def handle(self, a, b):
a, b = int(a), int(b)
total = a + b
self.respond("%d + %d = %d" % (a, b, total))

Your handler must define pattern and handle(*args). The pattern is case-insensitive, but must otherwise be matched
precisely as written (for example, the handler pattern written above would not accept leading or trailing whitespace,
but the pattern r"^(\d+) plus (\d+)\s*$"would allow trailing whitespace). When the pattern is matched, the
handle method is called with the captures as arguments. As an example, the above handler could create the following
conversation:

> 1 plus 2
< 1 + 2 = 3

Like KeywordHandler, each PatternHandler silently ignores all non-matching messages to allow other handlers and
applications to catch them.

Here’s documentation from the PatternHandler class:

class rapidsms.contrib.handlers.PatternHandler
This handler type can be subclassed to create simple pattern-based handlers. This isn’t usually a good idea –

21.3. rapidsms.contrib.handlers 133



RapidSMS Documentation, Release 1.1.0

it’s cumbersome to write patterns with enough flexibility to be used in the real world – but it’s very handy for
prototyping, and can easily be upgraded later.

When a message is received, it is matched against the mandatory pattern attribute (a regular expression). If
the pattern is matched, the handle method is called with the captures as arguments. For example:

>>> class SumHandler(PatternHandler):
... pattern = r'^(\d+) plus (\d+)$'
...
... def handle(self, a, b):
... a, b = int(a), int(b)
... total = a + b
...
... self.respond(
... "%d+%d = %d" %
... (a, b, total))

>>> SumHandler.test("1 plus 2")
['1+2 = 3']

Note that the pattern must be matched precisely (excepting case sensitivity). For example, this would not work
because of the trailing whitespace:

>>> SumHandler.test("1 plus 2 ")
False

All non-matching messages are silently ignored, to allow other apps or handlers to catch them.

handle(*args)
Called when the message matches the pattern. Any matching groups are passed to it.

Parameters args – The matching groups from the regular expression.

pattern = None
A string specifying a regular expression that should match the message. Not case sensitive.

BaseHandler

All handlers, including the KeywordHandler and PatternHandler, are derived from the BaseHandler class. When
extending from BaseHandler, one must always override the class method dispatch, which should return True when
it handles a message.

All instances of BaseHandler have access to self.msg and self.router, as well as the methods self.respond and
self.respond_error (which respond to the instance’s message).

BaseHandler also defines the class method test, which creates a simple environment for testing a handler’s response
to a specific message text. If the handler ignores the message then False is returned. Otherwise a list containing the
text property of each OutgoingMessage response, in the order which they were sent, is returned. (Note: the list may
be empty.) For example:

>>> from rapidsms.contrib.echo.handlers.echo import EchoHandler
>>> EchoHandler.test("not applicable")
False
>>> EchoHandler.test("echo hello!")
["hello!"]

For an example implementation of a BaseHandler, see rapidsms.contrib.echo.handlers.ping.PingHandler.

134 Chapter 21. Contributed Applications

https://github.com/rapidsms/rapidsms/blob/master/rapidsms/contrib/echo/handlers/ping.py


RapidSMS Documentation, Release 1.1.0

21.3.3 Calling Handlers

When a message is received, the handlers application calls dispatch on each of the handlers it loaded during handlers
discovery.

The first handler to accept the message will block all others. The order in which the handlers are called is not guaran-
teed, so each handler should be as conservative as possible when choosing to respond to a message.

21.3.4 Handler Discovery

Changed in version 0.15.0.

Handlers may be any new-style Python class which extends from one of the core handler classes, e.g. BaseHandler,
PatternHandler, KeywordHandler, etc.

The Python package names of the handler classes to be loaded should be listed in RAPIDSMS_HANDLERS.

Example:

RAPIDSMS_HANDLERS = [
"rapidsms.contrib.handlers.KeywordHandler",
"rapidsms.contrib.handlers.PatternHandler",

]

Warning: The behavior described in the rest of this section is the old, deprecated behavior. If
RAPIDSMS_HANDLERS is set, the older settings are ignored.

Handlers may be defined in the handlers subdirectory of any Django app listed in INSTALLED_APPS. Each file in
the handlers subdirectory is expected to contain exactly one new-style Python class which extends from one of the
core handler classes.

Handler discovery, which occurs when the handlers application is loaded, can be configured using the following
project settings:

• RAPIDSMS_HANDLERS_EXCLUDE_APPS - The application will not load handlers from any Django app
included in this list.

• INSTALLED_HANDLERS - If this list is not None, the application will load only handlers in modules that are
included in this list.

• EXCLUDED_HANDLERS - The application will not load any handler in a module that is included in this list.

Note: Prefix matching is used to determine which handlers are described in INSTALLED_HANDLERS and
EXCLUDED_HANDLERS. The module name of each handler is compared to each value in these settings to see if
it starts with the value. For example, consider the rapidsms.contrib.echo application which contains the echo handler
and the ping handler:

• “rapidsms.contrib.echo.handlers.echo” would match only EchoHandler,

• “rapidsms.contrib.echo” would match both EchoHandler and PingHandler,

• “rapidsms.contrib” would match all handlers in any RapidSMS contrib application, including both in
rapidsms.contrib.echo.

21.3. rapidsms.contrib.handlers 135

https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS


RapidSMS Documentation, Release 1.1.0

21.4 rapidsms.contrib.httptester

The httptester contrib application allows sending fake messages to RapidSMS and seeing how RapidSMS responds.

21.4.1 Installation

To define and use Message Tester for your RapidSMS project, you will need to:

1. Add "rapidsms.contrib.httptester" and "rapidsms.backends.database" to
INSTALLED_APPS in your settings file:

INSTALLED_APPS = [
...
"rapidsms.backends.database",
"rapidsms.contrib.httptester",
...

]

2. Add httptester URLs to your urlconf:

urlpatterns = patterns("",
...
(r"^httptester/", include("rapidsms.contrib.httptester.urls")),
...

)

3. Add the Database backend to INSTALLED_BACKENDS with the name "message_tester":

INSTALLED_BACKENDS = {
...
"message_tester": {

"ENGINE": "rapidsms.backends.database.DatabaseBackend",
},
...

}

4. Create database tables for the DB backend models:

$ python manage.py syncdb

5. Add a link to the Message Tester view from your rapidsms/_nav_bar.html template:

{% load url from future %}
<li><a href="{% "httptester-index" %}">Message Tester</a></li>

21.4.2 Usage

With Message Tester installed, there will be a Message Tester tab in the RapidSMS web page header. Click on that tab
to bring up Message Tester.

Most of the controls for the Message Tester are in the left-side column.

The phone number field contains the phone number which will be used as the source number when you send test
messages. A random number will have been filled in for you, but you can change it to anything you want.

136 Chapter 21. Contributed Applications

https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS


RapidSMS Documentation, Release 1.1.0

You can send a single message by typing the message in the Single Message field and clicking Send. Or you can
send multiple messages by putting each message on one line of a text file, selecting that text file with the Choose File
button, and clicking Send.

The Log table on the right side of the page will show messages you send, and any messages that RapidSMS replies
with. For messages that you send, the left column will show the phone number the message came from, and a double
arrow pointing right, with the text of the message in the right column. For messages that RapidSMS sends, the left
column will show the phone number the message was sent to, and a double arrow pointing left, with the text of the
message again in the right column.

The Log table will always show the most recent messages. If there are more than will fit on a page, you can use the
paging controls at the bottom of the table to page back through the messages.

You can clear the log of messages for the current phone number by selecting the Clear checkbox and clicking Send,
or the entire log by selecting the Clear all checkbox and clicking Send.

21.5 rapidsms.contrib.messagelog

The messagelog contrib application maintains a database record of all messages sent and received by RapidSMS.

21.5.1 Installation

1. Add "rapidsms.contrib.messagelog" to INSTALLED_APPS in your settings file:

INSTALLED_APPS = [
...
"rapidsms.contrib.messagelog",
...

]

2. Add messagelog URLs to your urlconf:

urlpatterns = patterns("",
...
(r"^messagelog/", include("rapidsms.contrib.messagelog.urls")),
...

)

3. Create database tables for the messagelog models:

$ python manage.py syncdb

4. Optionally, add a link to the message log view from your rapidsms/_nav_bar.html template:

{% load url from future %}
<li><a href="{% url "message_log" %}">Message Log</a></li>

21.5.2 Usage

messagelog defines the Message database model, which stores key information about an IncomingMessage or Outgo-
ingMessage:

connection The RapidSMS Connection to which the message was sent.

21.5. rapidsms.contrib.messagelog 137

https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS


RapidSMS Documentation, Release 1.1.0

contact The RapidSMS Contact associated with the connection.

date When the message was sent.

text The text of the message.

direction Message.INCOMING or Message.OUTGOING.

Upon parsing an IncomingMessage, messagelog creates a Message object and sets the logger_msg property of the
IncomingMessage to be the Message object.

Upon processing an OutgoingMessage, messagelog creates a Message object and sets the logger_msg property of the
OutgoingMessage to be the Message object.

You can navigate to the message_log view to browse the full list of stored messages.

21.6 rapidsms.contrib.messaging

The messaging contrib application allows you to send messages to one or more recipients through a web interface.

21.6.1 Installation

1. The messaging contrib application depends on django-selectable to create a recipient multi-selector with auto-
complete on the front-end view. You can install django-selectable using pip:

pip install django-selectable

2. Add "rapidsms.contrib.messaging" and "selectable" (if not already present) to
INSTALLED_APPS in your settings file:

INSTALLED_APPS = [
...
"rapidsms.contrib.messaging",
"selectable",
...

]

3. Add URLs for messaging and selectable to your urlconf:

urlpatterns = ("",
...
(r"^messaging/", include("rapidsms.contrib.messaging.urls")),
(r"^selectable/", include("selectable.urls")),
...

)

21.6.2 Usage

The messaging front-end view displays a form through which you can write a text message and select its recipients.
The recipient selector uses autocomplete to search through all RapidSMS connections. You may select any number of
recipients to receive the message.

When sending a message, the messaging application calls rapidsms.router.send() with the message text and
recipient.default_connection for each recipient. If an error occurs, the message will not be sent to further recipients
but it may have already been sent to earlier recipients. The order in which messages will be sent is not guaranteed.

138 Chapter 21. Contributed Applications

http://django-selectable.readthedocs.org/
https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS


RapidSMS Documentation, Release 1.1.0

21.7 rapidsms.contrib.registration

The registration app provides a nice interface for creating, updating, and deleting RapidSMS contacts, both on the
web and via SMS messages. It is deliberately minimal, and outside of the core, so other apps can extend or replace it
where necessary.

21.7.1 Installation

1. registration depends on handlers, so first install handlers by adding "rapidsms.contrib.handers" to
INSTALLED_APPS in your settings file:

INSTALLED_APPS = [
...
"rapidsms.contrib.handlers",
...

]

2. Add "rapidsms.contrib.registration" to INSTALLED_APPS in your settings file:

INSTALLED_APPS = [
...
"rapidsms.contrib.handlers",
"rapidsms.contrib.registration",
...

]

3. Add URLs for registration to your urlconf:

urlpatterns = ("",
...
(r"^registration/", include("rapidsms.contrib.urls")),
...

)

4. Add registration’s handlers to RAPIDSMS_HANDLERS:

RAPIDSMS_HANDLERS = [
...,
"rapidsms.contrib.registration.handlers.language.LanguageHandler",
"rapidsms.contrib.registration.handlers.register.RegisterHandler",

]

5. (Optional) add registration link to the nav bar:

{% load url from future %}
<li><a href="{% url 'registration' %}">Registration</a></li>

21.7.2 Usage

The registration app provides both web and SMS interfaces.

Web

At the left of each page is a set of links:

21.7. rapidsms.contrib.registration 139

https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS


RapidSMS Documentation, Release 1.1.0

• List Contacts

• Add Contact

• Bulk Add Contacts

List Contacts is the front page. It displays a table with the contacts. You can click on a contact row to edit that contact.
You can edit the contact’s name, language, etc., and also edit their connections near the bottom. A blank connection
form is at the bottom; add a new connection by filling in the blank form’s Backend and Identity fields and saving. Each
existing connection has a Delete checkbox; delete a connection by checking its checkbox and saving. You can delete
a contact by clicking the Delete Contact button at the bottom.

Add Contact goes to a blank form for adding a new contact. It works just like the page for editing a contact.

Bulk Add Contacts allows creating many contacts at once by uploading a .CSV file with the data. There’s help on the
page showing the format that the file should have.

SMS Messages

Users can use SMS messages to register themselves or change their preferred language through the register app.

REGISTER

Users can create a contact for themselves along with a connection representing their backend and identity by sending
a text message of the form:

REGISTER <name>

They can also use REG or JOIN as synonyms for REGISTER.

LANGUAGE

After they have registered, users can choose their preferred language by sending a text message of the form:

LANGUAGE <code>

They can also use LANG as a synonym for LANGUAGE.

The <code> should be the international code for the language, e.g. pt-BR for Brazilian Portuguese or de for
German.

140 Chapter 21. Contributed Applications



CHAPTER 22

Release Notes

Release notes for the official RapidSMS releases. Each release note will tell you what’s new in each version, describe
any backwards-incompatible changes made, and provide, if needed, any upgrade instructions. Please see the RapidSMS
Roadmap for details on upcoming releases.

22.1 RapidSMS 1.2.0 release notes (under development)

Welcome to RapidSMS 1.2.0! These release notes cover the new features in 1.2.0 as well as some Backwards-
incompatible changes in RapidSMS 1.2.0 you’ll want to be aware of when upgrading from RapidSMS 1.1.0.

22.1.1 What’s New

•

22.1.2 Backwards-incompatible changes in RapidSMS 1.2.0

•

22.2 RapidSMS 1.1.0 release notes (under development)

Welcome to RapidSMS 1.1.0! These release notes cover the new features in 1.1.0 as well as some Backwards-
incompatible changes in RapidSMS 1.1.0 you’ll want to be aware of when upgrading from RapidSMS 1.0.0.

22.2.1 What’s New

• Added support for Django 2.0, 2.1 and 2.2.

141



RapidSMS Documentation, Release 1.1.0

22.2.2 Backwards-incompatible changes in RapidSMS 1.1.0

• None

22.3 RapidSMS 1.0.0 release notes (current release)

Welcome to RapidSMS 1.0.0! These release notes cover the new features in 1.0.0 as well as some Backwards-
incompatible changes in RapidSMS 1.0.0 you’ll want to be aware of when upgrading from RapidSMS 0.22.0.

22.3.1 What’s New

• Added support for Django 1.11.

22.3.2 Backwards-incompatible changes in RapidSMS 1.0.0

• Dropped support for Django 1.8, 1.9, and 1.10.

22.4 RapidSMS 0.22.0 release notes

Welcome to RapidSMS 0.22.0! These release notes cover the new features in 0.22.0 as well as some Backwards-
incompatible changes in RapidSMS 0.22.0 you’ll want to be aware of when upgrading from RapidSMS 0.21.0.

22.4.1 What’s New

• Added support for Django 1.9 and 1.10.

• Added support for Python 3.5.

Thanks to @fredcido and Raphael Merx (@raphaelmerx) for these improvements!

22.4.2 Backwards-incompatible changes in RapidSMS 0.22.0

• Dropped support for Django 1.6 and 1.7.

• Dropped support for Python 3.3.

• Removed contrib.locations app.

22.5 RapidSMS 0.21.1 release notes (current release)

Welcome to RapidSMS 0.21.1! These release notes cover the new features in 0.21.1.

22.5.1 What’s New

• Fix ‘missing migration’ in Python 3 issues #468

142 Chapter 22. Release Notes

https://github.com/rapidsms/rapidsms/issues/468


RapidSMS Documentation, Release 1.1.0

22.6 RapidSMS 0.21.0 release notes

Welcome to RapidSMS 0.21.0! These release notes cover the new features in 0.21.0 as well as some Backwards-
incompatible changes in RapidSMS 0.21.0 you’ll want to be aware of when upgrading from RapidSMS 0.20.0.

22.6.1 What’s New

• Fix ‘missing migration’ issues #459 and #460

• (Fixed #465) Allow backends to specify failed identities back to router.

• (Fixed #439) Allow newlines in KeywordHandler. [Thanks @knightsamar!]

22.6.2 Backwards-incompatible changes in RapidSMS 0.21.0

• The fix for #460 involves dropping a table which was inadvertently created by a complicated bug. The table
is the BackendMessage which should not have valuable data in it, and there is a migration included which
should copy any data to the proper table, but we recommend that you back up your database before making this
upgrade, especially if you have valuable data in the BackendMessage table.

• The fix for #465 slightly alters the API between Backends and Routers. Previously, there was only one way for
the Backend to communicate information about the status of outgoing messages back to the Router. It could
raise an exception. The problem is that it’s possible that the Backend was responsible for sending a message
to multiple identities and that some of those messages could be successful and some could fail. Routers that
automatically retry failures (only the DatabaseRouter, currently) had no way of knowing which identities
failed, so if they just retried all failures, then some identities would receive multiple messages. The fix for #465
allows Backends to add a failed_identities parameter to the exception, which allows the Router to retry
failures more intelligently.

What should you change? Changes are optional. Things should work as they did before without changes, but
the following changes may improve reliability:

– Router authors: Look at the DatabaseRouter for a working example of how to deal with
failed_identities. Basically, it calls Router.send_to_backend, catching any Exception
and looking for a failed_identities parameter. It then can retry only those identities.

– Backend authors: Backend.send should try sending messages to all identities, keeping a list of fail-
ures and returning that list in the exception. If there are no failures, then it should return None. Mak-
ing this change will allow specific Routers to behave more intelligently. See the new documentation for
Backend.send, which is copied below:

class rapidsms.backends.base.BackendBase(router, name, **kwargs)
Base class for outbound backend functionality.

send(id_, text, identities, context=None)
Backend sending logic. The router will call this method for each outbound message. This method
must be overridden by sub-classes. Backends typically initiate HTTP requests from within this
method.

If multiple identities are provided, the message is intended for all recipients.

Any exceptions raised here will be captured and logged by the router. If messages to some identi-
ties failed while others succeeded, you can provide that information back to the router by adding
a list of the identities which failed in a failed_identities parameter on the exception.
If you do provide that parameter, then the router should assume that all identities not listed in
failed_identities were successfully sent.

Example

22.6. RapidSMS 0.21.0 release notes 143

https://github.com/rapidsms/rapidsms/issues/459
https://github.com/rapidsms/rapidsms/issues/460
https://github.com/rapidsms/rapidsms/issues/465
https://github.com/rapidsms/rapidsms/issues/439
https://github.com/knightsamar


RapidSMS Documentation, Release 1.1.0

def send(self, id_, text, identities, context):
failures = []
for identity in identities:

result = send_my_message(identity, text, context)
if result == 'failed':

failures.append(identity)
if failures:

msg = '%d messages failed.' % len(failures)
raise MessageSendingError(msg, failed_identities=failures)

Parameters
* id_ – Message ID
* text – Message text
* identities – List of identities
* context – Optional dictionary with extra context provided by router to backend

22.7 RapidSMS 0.20.0 release notes

Welcome to RapidSMS 0.20.0! These release notes cover the new features in 0.20.0 as well as some Backwards-
incompatible changes in RapidSMS 0.20.0 you’ll want to be aware of when upgrading from RapidSMS 0.19.0.

22.7.1 What’s New

• Fix link in contributing guide. [Thanks @kevgathuku!]

• Python 3 and Django 1.8 support!

22.7.2 Backwards-incompatible changes in RapidSMS 0.20.0

• This release drops support for Django 1.4 and 1.5. The next release will likely drop support for Django 1.6, so
we encourage users to start upgrading their installations.

22.8 RapidSMS 0.19.0 release notes

Welcome to RapidSMS 0.19.0! These release notes cover the new features in 0.19.0 as well as some Backwards-
incompatible changes in RapidSMS 0.19.0 you’ll want to be aware of when upgrading from RapidSMS 0.18.0.

22.8.1 What’s New

• Minor typos and fixes.

• Allow from address configuration with Vumi

• Relax requirements. [Thanks @thedrow!]

22.8.2 Backwards-incompatible changes in RapidSMS 0.19.0

• None

144 Chapter 22. Release Notes

https://github.com/kevgathuku
https://github.com/thedrow


RapidSMS Documentation, Release 1.1.0

22.9 RapidSMS 0.18.0 release notes

Welcome to RapidSMS 0.18.0! These release notes cover the new features in 0.18.0 as well as some Backwards-
incompatible changes in RapidSMS 0.18.0 you’ll want to be aware of when upgrading from RapidSMS 0.17.0.

22.9.1 What’s New

• Multiple small documentation fixes [Thanks @jthurner!]

• Minor fix to tutorial

• Remove uses of the deprecated msg.connection attribute

• Allow editing of messages in Messagelog admin.

• Change BooleanField default to False [Thanks @shanx!]

• Full Flake8 compliance

• Django 1.7 support [Thanks to multiple contributors who provided PRs including @dpoirier, @johanneswilm,
@thedrow, and others.]

• Special thanks to Caktus Group for allowing and encouraging @vkurup to work on the Django 1.7 support
during their quarterly ShipIt days!

• Added Coveralls support.

22.9.2 Backwards-incompatible changes in RapidSMS 0.18.0

• Since Django 1.7 has it’s own migration framework, South is now deprecated. If you are still using Django <
1.7, you will need to upgrade South to version > 1.0, otherwise it will get confused by migration files which are
meant for Django 1.7, not for South. (The migrations directories now contain Django 1.7 migrations. South
migrations have been moved to a south_migrations directory, but older versions of South will not look in
that directory.)

22.10 RapidSMS 0.17.0 release notes

Welcome to RapidSMS 0.17.0! These release notes cover the new features in 0.17.0.

22.10.1 What’s New

• Fixed link to rapidsms-generic in Community Apps [Thanks @jthurner!]

• Include generated UUID in payload to Vumi [Thanks @vkurup!]

• Fixed router documentation to match returning False in Outgoing Message Processing will hault futher process-
ing [Thanks @vkurup!]

• Raise exceptions within CeleryRouter background tasks so they can be logged appropriately [Thanks @to-
biasmcnulty!]

22.9. RapidSMS 0.18.0 release notes 145

https://github.com/jthurner
https://github.com/shanx
https://github.com/dpoirier
https://github.com/johanneswilm
https://github.com/thedrow
https://github.com/vkurup/
https://coveralls.io/r/rapidsms
https://github.com/jthurner
https://github.com/vkurup
https://github.com/vkurup
https://github.com/tobiasmcnulty
https://github.com/tobiasmcnulty


RapidSMS Documentation, Release 1.1.0

22.11 RapidSMS 0.16.0 release notes

Welcome to RapidSMS 0.16.0! These release notes cover the new features in 0.16.0 as well as some Backwards-
incompatible changes in RapidSMS 0.16.0 you’ll want to be aware of when upgrading from RapidSMS 0.15.0.

22.11.1 What’s New

• Updated tox version to fix Travis CI builds

• Tox runs tests against Django 1.4, 1.5, and 1.6

• Allow 160 chars in messages in contrib.messages.

• (Fixed #422) The vumi backend no longer raises errors on empty incoming messages. [Thanks
@vkurup!]

• (Fixed #412) The DatabaseRouter now commits all transactions before adding background
tasks to the queue. [Thanks @dodumosu!]

• (Fixed #409) The DatabaseRouter will now properly group batched transmissions across mul-
tiple backends. [Thanks @takinbo!]

• (Fixed #411) base.html now uses the Django 1.4+ static template tag. [Thanks @wilsonkichoi!]

• Fixed a few typos in Part 1 of the Tutorial.

• Updated django-celery in tests/requirements/dev.txt to latest version (3.0.23) so
pytz installs correctly during testing and building the documentation.

22.11.2 Backwards-incompatible changes in RapidSMS 0.16.0

• Style files removed from base: icons.css, modules.css, splits.css, and tables.css. These are no longer used in
the new bootstrap-based pages, so they’ve been removed from the RapidSMS base style files and are no longer
loaded from the base template.

The old locations contrib app does still use them, so they’ve been moved into that app and that app’s base
template changed to load them from there.

If you have an app that’s still using any of these styles, and aren’t ready to convert your app to the new, bootstrap-
based look, it’s probably simplest for you to copy them from locations into your app and load them from
your app’s base template.

22.12 RapidSMS 0.15.0 release notes

Welcome to RapidSMS 0.15.0! These release notes cover the new features in 0.15.0.

22.12.1 What’s New

• The major changes for 0.15.0 include:

– Added a four-part RapidSMS Tutorial.

– Created a The RapidSMS Community section in the docs that provides an overview of the community,
including the core team.

– Added a Developing RapidSMS section that outlines how to contribute to the RapidSMS codebase.

146 Chapter 22. Release Notes

https://github.com/rapidsms/rapidsms/issues/422
https://github.com/vkurup
https://github.com/rapidsms/rapidsms/issues/412
https://github.com/dodumosu
https://github.com/rapidsms/rapidsms/issues/409
https://github.com/takinbo
https://github.com/rapidsms/rapidsms/issues/411
https://github.com/wilsonkichoi


RapidSMS Documentation, Release 1.1.0

• Messages to Users are displayed at the top of the page if you’re using the RapidSMS base template.

• RAPIDSMS_HANDLERS is a simpler way to control which handlers are loaded. INSTALLED_HANDLERS,
EXCLUDED_HANDLERS, and RAPIDSMS_HANDLERS_EXCLUDE_APPS are deprecated, and
INSTALLED_APPS are no longer searched automatically for handlers. For more information see Han-
dler Discovery.

• Added example of Submitting changes back to the project.

• Test class documentation now includes inheritance references. See rapidsms.tests.harness.
RapidTest for an example.

• Expanded documentation on Contacts.

• Added a documentation stub for packaging reusable apps.

• Updated README with latest Python dependencies.

22.13 RapidSMS 0.14.0 release notes

Welcome to RapidSMS 0.14.0! These release notes cover the new features in 0.14.0 as well as some Backwards-
incompatible changes in RapidSMS 0.14.0 you’ll want to be aware of when upgrading from RapidSMS 0.13.0.

22.13.1 What’s New

• New section in the documentation providing advice on Provisioning Servers & Deploying Your
Project.

• Added navigation links (next, previous, tables of contents) to the documentation and improved the
organization a bit.

• Documented the bundled version of Twitter Bootstrap.

• Updated Vumi docs to point to develop branch now that the RapidSMS changes have landed.

22.13.2 Backwards-incompatible changes in RapidSMS 0.14.0

• All views built-in to RapidSMS, including contrib apps, now require login.

• Removed bin/rapidsms-admin.py. It relied on the RapidSMS startproject management command which had
already been removed. For the recommended way to start a new RapidSMS project, see Installing the RapidSMS
project template.

22.14 RapidSMS 0.13.0 release notes

Welcome to RapidSMS 0.13.0! These release notes cover the new features 0.13.0 as well as some Backwards-
incompatible changes in RapidSMS 0.13.0 you’ll want to be aware of when upgrading from RapidSMS 0.12.0.

22.14.1 What’s New

• Added support for sending bulk messages. This involved the following changes:

– Modified MessageBase to accept multiple connections.

22.13. RapidSMS 0.14.0 release notes 147

https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS


RapidSMS Documentation, Release 1.1.0

– Updated rapidsms.router.send() to pass multiple connections (within a message object) to
the Router. The Messaging API already supported multiple connections, so the API did not change.

– Updated rapidsms.backends.base.BackendBase.send() signature to always expect
multiple connections and changed the signature to accept text and identities, rather than a
message object. Child classes must now override this function.

– Updated BlockingRouter to inspect outbound message connections, group by backend, and call
backend.send for each one.

• Added the database-powered DatabaseRouter. The DatabaseRouter stores all messages in the
database and keeps track of received/sent state of each message. This is useful for monitoring the sending
of large message volumes.

• Added a backend for Vumi.

• Cleaned up admin for Connection to load faster with database JOINs.

• Added delivery report functionality for Kannel.

• Combined the BaseRouter and BlockingRouter together. Now all base routing functionality is handled
by BlockingRouter.

• In order to better support customization of routers, messages now pass through receive_incoming and
process_incoming methods. This additional layer allows the CeleryRouter and DatabaseRouter
to more easily customize message processing.

• The Messaging API now asks the router to instantiate incoming and outgoing messages via the
new_incoming_message and new_outgoing_message methods. This allows the router to better cus-
tomize the message classes.

• Reworked the CeleryRouter to pass identifiers, rather than instantiated objects, to background tasks. This
avoids tasks possibly using outdated data when unpickling task arguments.

• Removed rapidsms.tests.harness.setting.

• Added requests as a dependency. Vumi and Kannel now use requests to construct HTTP requests. You’ll need
to run pip install requests or add requests to your requirements file.

• Added initial migrations for South support. South handles making incremental changes to database tables as
Django models change. To start using:

– Convert your apps to South

– Upgrade to RapidSMS 0.13.0

– Bring database up to the current model definitions:

python manage.py syncdb --all

– Tell South that everything is up to date:

python manage.py migrate --fake

Once South is set up, future upgrades of RapidSMS should just require manage.py migrate to update your
database tables.

• Deprecated rapidsms.log.mixin.LoggerMixin. Please update all logging to use the standard logging
module. That includes code that might use LoggerMixin indirectly by extending AppBase, BackendBase, or
BaseHandler. Search for code like self.error(...) or self.debug(...) and change to logger.
error(...) or logger.debug(...) after creating a logger object as above. You’ll want most logging to
look like this:

148 Chapter 22. Release Notes

http://docs.python-requests.org/en/latest/
http://docs.python-requests.org/en/latest/
http://south.readthedocs.org/en/latest/
http://south.readthedocs.org/en/latest/convertinganapp.html#converting-an-app


RapidSMS Documentation, Release 1.1.0

import logging
logger = logging.getLogger(__name__)
logger.info(...)
logger.debug(...)

• The HTTPTester contrib app has been changed to use the new Database backend instead of its own backend. The
HTTPTester backend has been removed. Please remove "rapidsms.contrib.httptester.backend"
from INSTALLED_BACKENDS and review the HTTPTester configuration.

• Added created_on and modified_on fields to the Contact and Connection models. On initial mi-
gration, any existing records will have those fields set to the current time.

22.14.2 Backwards-incompatible changes in RapidSMS 0.13.0

In the goal of improving the RapidSMS core, we have made a number of backwards- incompatible changes.

Backend configuration must point to a class

In previous versions of RapidSMS, you would define backends like so:

INSTALLED_BACKENDS = {
"kannel-fake-smsc" : {

"ENGINE": "rapidsms.backends.kannel",
}

}

Now, backends must specify the name of the class:

INSTALLED_BACKENDS = {
"kannel-fake-smsc" : {

"ENGINE": "rapidsms.backends.kannel.KannelBackend",
}

}

This change was made to be more explicit. This also simplifies the importing architecture.

Changed Backend.send signature

All exisitng backends must be updated to use the new signature. The router used to pass just a message object to
BackendBase.send. The signature has been updated to accept an id_, text, list of identities, and a
context dictionary. All backends will need to be updated to use this signature. Please see BackendBase.send
for more details.

Removed start/stop methods

We removed the left over start and stop methods for the router, backends, and apps. These were important for the
legacy, threaded router, but are no longer necessary with new-routing. If your apps and backends use these methods,
you’ll need to move the functionality to __init__.

22.14. RapidSMS 0.13.0 release notes 149



RapidSMS Documentation, Release 1.1.0

Removed Message translation functionality

Now that Message objects can contain multiple connections, the internal translation bits needed to change. Messages
can be sent to connections that specify different default languages. We removed all translation functionality from the
Message objects and require the developer to handle it explicitly.

The internationalization documentation has been updated.

Changed HTTPTester to use Database backend

The HTTPTester contrib app has been changed to use the new Database backend instead of its own backend. The
HTTPTester backend has been removed. Please remove "rapidsms.contrib.httptester.backend" from
INSTALLED_BACKENDS and review the HTTPTester configuration.

22.15 RapidSMS 0.12.0 release notes

Welcome to RapidSMS 0.12.0! These release notes cover the new features in 0.12.0 as well as some backwards
incompatible changes in 0.12.0 you’ll want to be aware of when upgrading from RapidSMS 0.11.0. Most RapidSMS
sites and applications will require some changes when upgrading to RapidSMS 0.12.0.

They key changes in 0.12.0 are:

• Twitter Bootstrap: The RapidSMS pages now use Twitter Bootstrap v2.2.2 for a more up-to-date and easily
extensible appearance. See Front End for more information.

• Contrib app updates: Most of the contrib apps have been updated to use more up-to-date Django practices and
to add documentation and tests. A few obsolete apps have been removed.

• Supporting Django 1.4+: RapidSMS is no longer compatible with any version of Django prior to 1.4. See the
Django 1.4 release notes for more information.

• Removed RAPIDSMS_TABS: Top level navigation is now managed with an inclusion template.

• Officially adopted Celery: Following the inclusion of CeleryRouter, we’ve removed rapidsms.
contrib.scheduler in favor of using Celery directly with RapidSMS. See Using Celery for Scheduling
Tasks for more information.

22.15.1 Updating to RapidSMS 0.12.0

You can follow these basic guidelines when upgrading from RapidSMS 0.11.0:

• Upgrade to at least Django 1.4

• If upgrading to Django 1.5:

• Verify urls.py files have been updated

• Verify url template tags in templates have been updated

• Set up rapidsms/_nav_bar.html to replace the RAPIDSMS_TABS setting

• Install django_tables2 and django-selectable via pip or add to your requirements file. See new
dependencies for more information.

• Add django_tables2 and selectable to INSTALLED_APPS.

• Remove references to removed apps.

150 Chapter 22. Release Notes

http://twitter.github.com/bootstrap/
https://docs.djangoproject.com/en/1.4/releases/1.4/


RapidSMS Documentation, Release 1.1.0

22.15.2 Backwards-incompatible changes in RapidSMS 0.12.0

In the goal of improving the RapidSMS core, we have made a number of backwards- incompatible changes.

Change to Twitter Bootstrap

With the change to Twitter Bootstrap, the organization of pages has changed. Simple apps might continue to work
okay, but any app that relied on the previous page structure to control styling or layout might need changes.

Dropped Django 1.3 support

We decided to drop Django 1.3 support to take advantage of the functionality offered in Django 1.4+, including
bulk_create and override_settings. Additionally, with the release of Django 1.5, Django 1.3 is no longer supported by
the Django developers.

Please read the Django 1.4 release notes for upgrade instructions, especially Backwards incompatible changes in 1.4.

Add Django 1.5 Support

RapidSMS 0.12.0 should work correctly with Django 1.5, and we encourage upgrading to Django 1.5 when possible.

Please read the Django 1.5 release notes for upgrade instructions, especially Backwards incompatible changes in 1.5.

We believe the most common changes affecting RapidSMS projects will be:

Removal of django.conf.urls.defaults

Make the following change to all of your urls.py:

-from django.conf.urls.defaults import *
+from django.conf.urls import patterns, url

Change to the url template tag

If any of your templates still use the old url template tag syntax, not quoting a literal url name, e.g.:

{% url url-name %}

for Django 1.5 they must be changed to quote the url name (or use a variable whose value is a url name):

{% url 'url-name' %}

If you wish to maintain compatibility with Django 1.4, you can add {% load url from future %} near the
top of your template, e.g.:

{% load url from future %}

{% url 'url-name' %}

which will turn on support for quoted url names in Django 1.4, and be harmless in later Django releases.

22.15. RapidSMS 0.12.0 release notes 151

https://docs.djangoproject.com/en/1.4/ref/models/querysets/#bulk-create
https://docs.djangoproject.com/en/1.4/topics/testing/#django.test.utils.override_settings
https://docs.djangoproject.com/en/1.4/releases/1.4/
https://docs.djangoproject.com/en/1.4/releases/1.4/#backwards-incompatible-changes-in-1-4
https://docs.djangoproject.com/en/1.5/releases/1.5/
https://docs.djangoproject.com/en/1.5/releases/1.5/#backwards-incompatible-changes-in-1-5


RapidSMS Documentation, Release 1.1.0

Removed stale contrib apps

The following contrib applications have been removed:

• rapidsms.contrib.ajax: Old API used for communicating with the legacy router and no longer needed.

• rapidsms.contrib.export: Horribly insecure database export feature.

• rapidsms.contrib.scheduler: We officially adopted Celery for scheduling and asynchronous task pro-
cessing. See Using Celery for Scheduling Tasks for more information.

If your project references these packages, you’ll need to update your code appropriately.

New dependencies

Some of the contrib apps now use django-tables2 in place of the RapidSMS paginator utility to provide paging in
tables. django-tables2 requires less code to set up for common cases, and also allows eventually removing paginator
from RapidSMS, so there’s one less component to maintain.

The only app still using djtables is the locations app.

The messaging app uses django-selectable to provide autocompletion in an input field. django-selectable is a well-
maintained, full-featured library for adding autocompletion in Django apps.

RAPIDSMS_TABS setting removed

The RAPIDSMS_TABS setting has been removed. This was used to configure the list of links displayed at the top of
each page when using the RapidSMS templates. It was not very amenable to customization.

Starting in 0.12.0, the configurable links at the top of the page are generated by including a template,
rapidsms/_nav_bar.html, which the RapidSMS project can override. Typically one would put list items there con-
taining links. For example:

{% load url from future %}
<li><a href="{% url 'message_log' %}">Message Log</a></li>
<li><a href="{% url 'registration' %}">Registration</a></li>
<li><a href="{% url 'messaging' %}">Messaging</a></li>
<li><a href="{% url 'httptester' %}">Message Tester</a></li>

Region tags removed

These were in the base template.

Moved Message direction constants to model

The constant rapidsms.contrib.messagelog.models.DIRECTION_CHOICES has been moved to the
rapidsms.contrib.messagelog.models.Message model. You may also refer to Message.INCOMING
and Message.OUTGOING directly.

22.15.3 Test Coverage Report

With the addition of 26 tests, RapidSMS now has 136 automated unit tests with 82% (up from 72%) coverage.

152 Chapter 22. Release Notes

http://django-tables2.readthedocs.org/en/latest/
https://django-selectable.readthedocs.org/en/latest/


RapidSMS Documentation, Release 1.1.0

22.16 RapidSMS 0.11.1 release notes

Welcome to RapidSMS 0.11.1! These release notes cover the new features 0.11.1.

22.16.1 What’s New

• Fixed reference to settings.CONTEXT_PROCESSORS in the 0.10.0 migration guide.

• Added send stub to rapidsms.backends.base.BaseBackend.

• Fixed doc reference to Kannel backend path in INSTALLED_BACKENDS.

• Added documentation and tests for rapidsms.contrib.default, rapidsms.contrib.echo, and
rapidsms.contrib.handlers.

22.17 RapidSMS 0.11.0 release notes

Welcome to RapidSMS 0.11.0! These release notes cover the new features 0.11.0.

22.17.1 What’s New

• Use load url from future in templates to support Django 1.3-1.5. Thanks @miclovich!

• Moved the RapidSMS project template instructions to the main install page. See Installing the RapidSMS project
template. Thanks @lemanal!

• Cleaned up a lot of core to be PEP8. Added instructions for using the pep8 tool on the RapidSMS codebase.
See PEP 8 Style Guidelines Adherence. Thanks @lemanal!

• TravisCI builds now run coverage and pep8. Here’s an example from a recent build.

• Simplified testing with introduction of RapidTest class. See RapidTest. This includes:

– Add RapidTest and RapidTransactionTest base classes

– Modify get_router() to return an instantiated object rather than a class

– Update TestRouterMixin to patch RAPIDSMS_ROUTER directly with instantiated
TestRouter

– Remove global variables/state from TestRouter

– Clean up documentation to focus more on RapidTest and RapidTransactionTest classes

– Remove MockBackendRouter test class

– Update TestScript to use RapidTest

• Moved official RapidSMS version to rapidsms.__version__. Reference it directly from docs and
setup.py.

• Added coverage reports to core test suite. See RapidSMS core test suite.

• Moved rapidsms module to root level of repository.

• Added docs environment to tox setup.

• Documented django-celery 3.0+ dependency.

22.16. RapidSMS 0.11.1 release notes 153

https://github.com/miclovich
https://github.com/lemanal
https://github.com/lemanal
https://travis-ci.org/rapidsms/rapidsms
https://travis-ci.org/rapidsms/rapidsms/jobs/3896850


RapidSMS Documentation, Release 1.1.0

• Removed rapidsms.skeleton package and startproject command override See Installing the
RapidSMS project template to use the new project template.

• Removed runrouter management command.

• Fixed a few typos in the Messaging API docs.

22.18 RapidSMS 0.10.0 release notes

Welcome to RapidSMS 0.10.0!

These release notes cover the new features in 0.10.0, as well as some backwards-incompatible-changes you’ll want to
be aware of when upgrading from RapidSMS 0.9.6a or older versions. We also provide a migration guide to help you
port your 0.9.6 projects and apps to 0.10.0 to take advantage of the new features.

22.18.1 Overview

RapidSMS 0.10.0’s focus has mostly been on decoupling the RapidSMS route process in several key places to begin
processing all SMSes in normal HTTP requests. This also includes making it possible to swap the Router class that
RapidSMS uses via a setting in the settings file. The key changes are as follows:

• Improved documentation (what you’re reading now!)

• Improved test coverage and made it easier to test your RapidSMS apps.

• Added support for django.contrib.staticfiles.

• Removal of the bucket, email, irc, gsm, and smtp backends.

• Dividing the Router logic into BaseRouter and BlockingRouter classes, and the addition of a Celery-
powered router, CeleryRouter.

• Removal of the legacy persistent threaded router.

22.18.2 What’s new in RapidSMS 0.10.0

The major highlights of RapidSMS 0.10.0 are:

A new router

RapidSMS 0.10.0 supplies one built-in router, BlockingRouter. This is the default router that processes messages in
real time.

We also support creation of custom router classes. All routers should extend from the BaseRouter class.

Removal of threaded router

In 0.9.x, the RapidSMS router used Python’s threading module to encapsulate backends into independent threads.
Using this model, backends can operate independently from one another, blocking for I/O and waiting for external
service calls. Many of the original backends operated in this way. For example, rapidsms.backends.http
started a HTTP server to listen on a specified port and rapidsms.backends.gsm communicated directly with a
GSM modem. While this method provided RapidSMS with a routing architecture, the need for a non-threaded system
grew due to the following reasons:

• Thread interaction was complicated and not always intuitive.

154 Chapter 22. Release Notes

http://docs.python.org/library/threading.html
https://github.com/rapidsms/rapidsms/blob/a7a0fccffa582d5c3cd320bd659cd2bd95785a51/lib/rapidsms/backends/http.py
https://github.com/rapidsms/rapidsms/blob/a7a0fccffa582d5c3cd320bd659cd2bd95785a51/lib/rapidsms/backends/gsm.py


RapidSMS Documentation, Release 1.1.0

• If the route process died unexpectedly, all backends (and hence message processing) were brought offline.

• Automated testing was difficult and inefficient, because the router (and all its threads) needed to be
started/stopped for each test.

Added RAPIDSMS_ROUTER setting

RapidSMS now allows you to specify the primary router class to use by defining RAPIDSMS_ROUTER in settings.
This defaults to rapidsms.router.blocking.BlockingRouter, but you can change this in settings.py:

RAPIDSMS_ROUTER = 'myproject.router.MyRouter'

Added get_router() utility

A new utility function, get_router, provides the ability to retrieve the settings-defined router. This helper function
allows your app to remain router independent:

1 from rapidsms.router import get_router
2

3 def send(recipient, text):
4 router = get_router()()
5 router.handle_outgoing(text, recipient.default_connection)

Backends are Django apps

RapidSMS backends are now apps (rather than modules) in the rapidsms.backends directory. RapidSMS pro-
vides two built-in backend apps: http and kannel. We have completely removed all other backends from the
RapidSMS core.

We also support creation of custom backend apps. Backend classes should extend from the classes found in
rapidsms.backends.base.

Added MockBackendRouter class

MockBackendRouter is a unit test mix-in class that provides a mock backend to use with the BlockingRouter.
The following example from contrib.messaging illustrates how you can test that inbound messages route to the
mock backend outbox.

1 from django.test import TestCase
2 from rapidsms.tests.harness.base import MockBackendRouter
3

4 class MessagingTest(MockBackendRouter, TestCase):
5

6 def setUp(self):
7 self.contact = self.create_contact()
8 self.backend = self.create_backend({'name': 'mock'})
9 self.connection = self.create_connection({'backend': self.backend,

10 'contact': self.contact})
11

12 def test_ajax_send_view(self):
13 """
14 Test AJAX send view with valid data
15 """

(continues on next page)

22.18. RapidSMS 0.10.0 release notes 155



RapidSMS Documentation, Release 1.1.0

(continued from previous page)

16 data = {'text': 'hello!', 'recipients': [self.contact.id]}
17 response = self.client.post(reverse('send_message'), data)
18 self.assertEqual(response.status_code, 200)
19 self.assertEqual(self.outbox[0].text, data['text'])

Updated TestScript

Prior to 0.10.0, TestScript would instantiate the route process (with blocking backends) to allow for testing of the
entire routing stack. This was a useful function, but in practice was unstable and caused tests to hang indefinitely. In
0.10.0, TestScript has been updated to work with BlockingRouter, and it functions much in the same way as
before. Here’s an example testing the EchoApp:

1 class EchoTest(TestScript):
2 apps = (EchoApp,)
3

4 def testRunScript(self):
5 self.runScript("""
6 2345678901 > echo?
7 2345678901 < 2345678901: echo?
8 """)

22.18.3 Backwards-incompatible changes in RapidSMS 0.10.0

In the goal of improving the RapidSMS core, we have made a number of backwards-incompatible changes. If you
have apps written against RapidSMS 0.9.6 that you need to port, see our migration guide.

Supporting Django 1.3+

RapidSMS is no longer compatible with any version of Django prior to 1.3.

Static media handled by django.contrib.staticfiles

RapidSMS 0.10.0 supports out-of-the-box use of django.core.staticfiles (included by default in Django
1.3.x and above). The rapidsms.urls.static_media module has been removed in favor of using this app.
New projects generated using rapidsms-admin.py startproject are automatically configured to work with
staticfiles. See the migration guide for more information on upgrading existing projects.

Removal of backends

We removed several rarely-used or outdated backend packages from the core:

• rapidsms.backends.bucket

• rapidsms.backends.email

• rapidsms.backends.irc

• rapidsms.backends.gsm

• rapidsms.backends.smtp

156 Chapter 22. Release Notes



RapidSMS Documentation, Release 1.1.0

Removal of rapidsms.contrib.ajax app

The rapidsms.contrib.ajax app has been removed.

Removal of send_message

Prior to 0.10.0, rapidsms.contrib.messaging contained a utility function to send a message to the Router
process. This relied on the contrib.ajax’s call_router function to pass messages to the Router via the ajax
app running in the Router thread. send_message has been removed and you should now use rapidsms.router.
send (see Sending Messages). Using send_message will now raise an exception:

>>> from rapidsms.contrib.messaging.utils import send_message
>>> send_message(conn, "hello?")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "../rapidsms/lib/rapidsms/contrib/messaging/utils.py", line 2, in send_message
raise DeprecationWarning("rapidsms.contrib.messaging.utils is deprecated")

DeprecationWarning: rapidsms.contrib.messaging.utils is deprecated

Scheduler refactor

rapidsms.contrib.scheduler still exists, but is currently incompatible with 0.10.0. We plan to support the
scheduler in the next minor RapidSMS release.

22.19 Migrating your Project from RapidSMS 0.9.6 to 0.10.0

RapidSMS 0.10.0 breaks compatibility with 0.9.6 in some areas. This guide will help you port 0.9.6 projects and apps
to 0.10.0. We describe the changes that most users will need to make, as well as less-common compatibility issues to
look for if your code is still breaking.

Note: See the 0.10.0 release notes. That document explains the new features in RapidSMS more deeply; this porting
guide is more concerned with helping you quickly update your code.

22.19.1 Upgrade to Django>=1.3

RapidSMS 0.10.0 will only support Django 1.3 or newer.

• Django 1.3 release notes

• Django 1.4 release notes

22.19.2 Choose a router

The global router located at rapidsms.router.Router has been removed. All routers now extend from a new
base class, rapidsms.router.base.BaseRouter. RapidSMS 0.10.0 offers one built-in router option, as well
as support for third-party routers.

A new setting, RAPIDSMS_ROUTER, allows you to specify the primary router class to use. A new utility function,
rapidsms.router.get_router, retrieves the router defined in RAPIDSMS_ROUTER so that your project can
remain router-independent.

22.19. Migrating your Project from RapidSMS 0.9.6 to 0.10.0 157

https://docs.djangoproject.com/en/dev/releases/1.3/
https://docs.djangoproject.com/en/dev/releases/1.4/


RapidSMS Documentation, Release 1.1.0

BlockingRouter

rapidsms.router.blocking.BlockingRouter is the default value for RAPIDSMS_ROUTER. This router
processes messages within the HTTP request/response cycle and does not perform any additional queuing of mes-
sages. It simplifies testing and development, and also works well will Kannel or other message gateways for small- to
medium-sized RapidSMS sites. You may wish to specify the router in your settings file explicitly as follows:

RAPIDSMS_ROUTER = 'rapidsms.router.blocking.BlockingRouter'

Custom Router

BlockingRouter is sufficient for many applications, but applications handling hundreds of messages per second
or more may require custom routing logic. If you are running such an application, you might consider writing your
own router or finding a third-party router that fits your needs. All custom routers should extend from rapidsms.
router.base.BaseRouter.

22.19.3 Update old backends

RapidSMS backends are now apps (rather than modules) in the rapidsms.backends directory. You may not need
to update your imports the main backend classes live in the __init__.py file of their app.

RapidSMS provides two built-in backend apps: http and kannel. We have completely removed these backends
from the RapidSMS core:

• rapidsms.backends.bucket

• rapidsms.backends.email

• rapidsms.backends.gsm

• rapidsms.backends.irc

• rapidsms.backends.smtp

Upgrading to Kannel

If you used PyGSM or one of the other non-HTTP backends, you must update your code to use a different backend.
For many use cases, the kannel backend will be a good replacement for the gsm backend. For more information
about configuring RapidSMS to use Kannel, please see the Kannel backend documentation.

Other backends

If none of the new backends suit the needs of your project, you may write a custom backend app. Backend classes
should extend from the classes found in rapidsms.backends.base.

22.19.4 Remove rapidsms.contrib.ajax

We have removed the rapidsms.contrib.ajax app. You should update your settings, URL configuration, and
other project code to reflect this change.

1. Remove rapid.contrib.ajax from settings.INSTALLED_APPS.

2. Remove rapid.contrib.ajax from settings.TEST_EXCLUDED_APPS.

3. Remove ajax URLs from your URL configuration file.

158 Chapter 22. Release Notes



RapidSMS Documentation, Release 1.1.0

22.19.5 Remove calls to rapidsms.contrib.messaging.send_message

As the method rapidsms.contrib.messaging.send_message relied upon rapidsms.contrib.ajax
functionality, it has been deprecated and will raise a warning when used. All calls to send_message should be
replaced with calls to rapidsms.router.send (see Sending Messages).

22.19.6 Use django.contrib.staticfiles

The rapidsms.urls.static_media module has been removed from RapidSMS 0.10.0 in favor of using
django.core.staticfiles (which is included by default in Django 1.3.x and above). To upgrade your project,
take the following steps:

1. Add "django.contrib.staticfiles" to settings.INSTALLED_APPS.

2. Add "django.core.context_processors.static" to settings.
TEMPLATE_CONTEXT_PROCESSORS.

3. Remove references to rapidsms.urls.static_media from your URL configuration or other places
in your project. The location of static files should now be handled by the classes listed in settings.
STATICFILES_FINDERS. By default, RapidSMS requires these finders:

STATICFILES_FINDERS = (
"django.contrib.staticfiles.finders.FileSystemFinder",
"django.contrib.staticfiles.finders.AppDirectoriesFinder",

)

4. Define the URL prefix for static files in settings.STATIC_URL. This value should be distinct from
settings.MEDIA_URL.

5. Define the absolute path of the directory to which static files should be collected in settings.
STATIC_ROOT.

6. Each app should maintain its static media in the static/ subfolder. (If you have any other directories in
which static files are maintained, list them in settings.STATICFILES_DIRS.) We have adopted the con-
vention of keeping the app’s static files in a subfolder of static/ with the same name as the app. For exam-
ple, the static file located at myapp/static/myapp/stylesheets/myapp.css will be available at {{
STATIC_URL }}myapp/stylesheets/myapp.css.

7. Ensure that URLs to static files in your templates use {{ STATIC_URL }} rather than {{ MEDIA_URL }}
to locate static files.

22.19.7 Refactor stateful applications to use the database or cache

Some RapidSMS applications in the community may use the App instance (or module-level variables in Python)
to store persistent state information about the application. Now that routers are constructed and destroyed for every
incoming message, state information stored on apps will not persist between requests. Code that makes this assumption
should be refactored to use a database or cache to store data that need to persist between requests.

22.19.8 Scheduler refactor

rapidsms.contrib.scheduler is currently incompatible with v0.10.0. Until we release a compatible version,
we recommend investigating cron-style methods or using Celery’s periodic tasks.

22.19. Migrating your Project from RapidSMS 0.9.6 to 0.10.0 159

http://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html


RapidSMS Documentation, Release 1.1.0

22.19.9 Less-common changes

The following changes are smaller, more localized changes. They should only affect more advanced users, but it’s
probably worth reading through the list and checking your code for these things.

TestScript

Prior to 0.10.0, TestScript would instantiate the routing process (with blocking backends) to allow for testing of
the entire routing stack. In the new release, TestScript has been updated to work with BlockingRouter. In
most cases, the changes to the TestScript class should not affect how you write your test code.

22.20 RapidSMS 0.9.6 release notes

Welcome to RapidSMS 0.9.6!

22.20.1 Extensible Models

The ExtensibleModelBase class lets you define models that link to other models, creating a chain of inheritance. By
defining django models in:

<extending_app>/extensions/<app_to_extend>/<model_to_extend>.py

you can get new top-level properties on the <model_to_extend> object.

In order for your base model class to support this you must add the following line:

__metaclass__ = ExtensibleModelBase

Additionally the django models defined in the file should be declared abstract, since they won’t be instantiated.

See the Contact model in the rapidsms core for an example of a model that can be extended, and the contact.py file in
the locations/extensions/rapidsms contrib app folder for an example of it being extended. The end result of these two
classes is that a .location is available on instances of Contact models as a foreign key to the Location table.

22.20.2 Django App Settings

A handy little module that lets you define default settings within your django app and import them from a second
settings.py. There is a good README in the django-app-settings submodule, but from a practical use standpoint, all
you have to remember is to include a settings.py in your root app/ directory with any app-specific settings and import
your settings from rapidsms.conf instead of django.conf and everything should just work. It’s a good practice to use
app-specific prefixes for your settings to avoid conflicts.

22.20.3 The Webapp

The apps/webapp is gone, and lib/rapidsms _is_ the new webapp. If you are new to rapidsms, just remember that
lib/rapidsms is the app that is the main entry point to the webui, and that’s where the base urls and templates are
stored.

160 Chapter 22. Release Notes



RapidSMS Documentation, Release 1.1.0

22.20.4 Different Classes

(these are also described in the porting apps section below)

Reporter app’s commonly used Reporter, PersistantBackend, and PersistantConnection models are gone!

They have been replaced by rapidsms.model’s Contact, Backend, and Connection models (which are all persistent, so
app authors no longer need to worry about keeping track of such things).

lib/rapidsms/message.py’s Message is gone! Instead, there are MessageBase, IncomingMessage, and OutgoingMes-
sage classes in lib/rapidsms/messages/

rapidsms.app.App has been replaced by rapidsms.apps.base.AppBase

22.20.5 Porting apps to work with the latest RapidSMS code

Views

RapidSMS’s wrapper of Django’s render_to_response method is gone, so change the import line from:

from rapidsms.utils import render_to_response

to:

from django.template import RequestContext
from django.shortcuts import render_to_response

and change the render_to_response method calls from:

return render_to_response(req, "myapp/mytemplate.html")

to:

return render_to_response("myapp/mytemplate.html", context_
→˓instance=RequestContext(req))

Apps

rapidsms.app.App —> rapidsms.apps.base.AppBase

from reporters.models import Reporter, PersistantConnection —> from rapidsms.models import Contact, Connection

from rapidsms.message import Message —> from rapidsms.messages import IncomingMessage, OutgoingMessage

Handlers

from rapidsms.contrib.handlers import KeywordHandler —> from rapidsms.contrib.handlers.handlers.keyword im-
port KeywordHandler

22.21 RapidSMS Roadmap

Below you’ll find a rough outline of planned milestones and releases for RapidSMS. For a list of official releases,
please see the Release Notes.

22.21. RapidSMS Roadmap 161



RapidSMS Documentation, Release 1.1.0

22.21.1 v0.16.0

• Release date: November 6, 2013

• Misc. fixes

22.21.2 New RapidSMS website

• Expected release date: July, 2013

Goals

• Revamp RapidSMS website with new design

• Highlight high level stories of current installations with pictures and maps

• Provide a page to track 3rd party reusable apps and backends

• Blog syndication (community page)

• Migrate existing content to new platform

22.21.3 v0.15.0

• Tutorial and contributing docs

• Release date: June 1, 2013

• v0.15.0 GitHub Milestone

Goals

• Write a tutorial similar to the Django tutorial for beginners

• Finish development on outstanding core features and bugs

22.21.4 v0.14.0

• Scheduling and deployment

• Release date: April 30, 2013

• v0.14.0 GitHub Milestone

Goals

• Review and analyze cloud hosting providers

• Write comprehensive deployment documentation for chosen providers

• Provide instructions and scripts to deploy project in a few simple steps

22.21.5 v0.13.0

• Bulk messaging

• Release date: April 10, 2013

• v0.13.0 GitHub Milestone

Goals

162 Chapter 22. Release Notes

http://www.rapidsms.org/
https://github.com/rapidsms/rapidsms/issues?milestone=7&page=1&state=open
https://github.com/rapidsms/rapidsms/issues?milestone=6&page=1&state=open
https://github.com/rapidsms/rapidsms/issues?milestone=5&page=1&state=open


RapidSMS Documentation, Release 1.1.0

• Update scheduling architecture based on community proposal

• Load testing of message handling and routing functionality

• Identify bottlenecks and create plans for improving performance

• Write documentation for users intending to operate RapidSMS at scale

• Integrate 3rd party service providers like Vumi

• Implement the Bulk Messaging API

• Finalize and merge the Vumi backend pull request

22.21.6 v0.12.0

• Bootstrap and contrib update

• Release date: March 21, 2013

• v0.12.0 GitHub Milestone

Goals

• Use Twitter Bootstrap in core, based on the community proposal

• Update contrib applications to meet base standard as per this review

22.21.7 v0.11.0

• PEP8 and testing

• Release date: December 31, 2012

• RapidSMS 0.11.0 release notes

• v0.11.0 GitHub Milestone

Goals

• Update and simplify test harness

• Add coverage/PEP8 usage guide and documentation

22.21.8 v0.10.0

• New routing

• Date released: November 23, 2012

• RapidSMS 0.10.0 release notes

• v0.10.0 GitHub Milestone

Goals

• Introduce new-routing architecture

• Improve documentation

22.21. RapidSMS Roadmap 163

https://github.com/rapidsms/rapidsms/wiki/Scheduling
https://github.com/rapidsms/rapidsms/wiki/Bulk-Messaging-API
https://github.com/rapidsms/rapidsms/pull/230
https://github.com/rapidsms/rapidsms/issues?milestone=4&page=1&state=open
https://github.com/rapidsms/rapidsms/wiki/Twitter-Bootstrap
https://groups.google.com/forum/#!topic/rapidsms-dev/34AOL5S0Xr8
https://github.com/rapidsms/rapidsms/issues?milestone=2&page=1&state=open
https://github.com/rapidsms/rapidsms/issues?milestone=1


RapidSMS Documentation, Release 1.1.0

22.21.9 v0.9.6a

• Date released: October 19, 2010

• RapidSMS 0.9.6 release notes

164 Chapter 22. Release Notes



CHAPTER 23

RapidSMS internals

Documentation for people hacking on RapidSMS itself.

23.1 RapidSMS 1.0 Roadmap

This document describes the high level goals and schedule for releasing RapidSMS 1.0. It was originally created by
Colin Copeland and Tobias McNulty in collaboration with UNICEF Innovation. However, the document is open to
the greater RapidSMS community for discussion, comments, and other feedback.

23.1.1 Design Philosophies

• Encourage community involvement. New and long term RapidSMS users should feel welcomed in the com-
munity. Introductory materials, such as tutorials and how-to documentation, should be written to help beginners.
Standards and design patters should be in place to make the development environment more consistent.

• Be more Django-like. RapidSMS is, for the most part, a set of Django applications with a message processing
component. RapidSMS should be packaged like every other Django app and follow the communities best
practices.

• Improve test coverage. Every good Python package should provide a robust test suite for coverage and regres-
sion testing. New core code should always include tests before being merged into master.

• Write better documentation. The RapidSMS project should provide consistent and readable documentation.
The documentation should be written in a maintainable format (ReST) and we should aim to improve it as often
as possible.

• Batteries included. The bar needs to be raised for the contrib applications. RapidSMS should provide you with
enough tools out of the box to hit the ground running.

• Guidelines for maintenance and scaling. Deployment examples and best practices should be provided to ease
the transition to hosted environments.

165



RapidSMS Documentation, Release 1.1.0

23.1.2 Roadmap

Month Focus
July Develop roadmap and plan
August Improve test suite against core
September Improve and cleanup documentation
October Encourage ongoing developer participation in RapidSMS itself
November Clean up core and prepare for v1.0 release
December Provide community blessed way to package and distribute pluggable RapidSMS apps
January Optimize core for scaling
February Revamp RapidSMS website
March Build extensible implementations of key RapidSMS core / contrib apps
April Release 1.0
May Create and document RapidSMS deployment methods

Develop roadmap and plan

• Conduct assessment of RapidSMS code and community

• Begin developing community document outlining strategy and workplan for 1.0 release

• Survey 3rd-party integration points and discuss plan for core modification

• Delivery: End of month 1

Improve test suite against core

• Setup and maintain Jenkins CI for RapidSMS

• Set standard for test coverage

• Set the precedent for including unit tests both in projects and RapidSMS itself

• Delivery: End of month 2

Improve and cleanup documentation

• Write documentation for existing core functionality

• Installation instructions

• Configuration and deployment instructions

• Take down or redirect links to old documentation

• Delivery: End of month 3

Encourage ongoing developer participation in RapidSMS itself

• Define a structured way to contribute to RapidSMS and how to help out

• Designate roles (“Release manager”) & encourage individuals to champion features

• Organize RapidSMS development sprints

• Delivery: End of month 4

166 Chapter 23. RapidSMS internals



RapidSMS Documentation, Release 1.1.0

Clean up core and prepare for v1.0 release

• Push development of new router

• Cleanup and document built-in backends

• Determine release schedule that focuses on releasing early and often

• Set release date for 1.0 and create publicity for the release

• UNICEF Deliverables:

– Provide list of existing RapidSMS projects and apps

• Delivery: End of month 5

Provide community blessed way to package and distribute pluggable RapidSMS apps

• Identify existing apps and projects that would be good candidates for packaging

• Survey the community on the list for such apps

• Provide documentation for packaging apps and distributing to community

• Provide guidelines for making apps extensible

• Build small apps as examples using proposed packaging guidelines

• Provide support packaging using the provided examples, test coverage and documentation

• Identify overlap of different projects, e.g., two apps that do group management

• UNICEF Deliverables:

– Sign off on new website design and functionality

– Server for RapidSMS website

• Delivery: End of month 6

Optimize core for scaling

• Load testing of message handling and routing functionality

• Identify bottlenecks and create plans for improving performance

• Write documentation for users intending to operate RapidSMS at scale

• Work with Evan to integrate 3rd party service providers like Vumi

• Delivery: End of month 7

Revamp RapidSMS website

• Highlight high level stories of current installations with pictures and maps

• Provide a page to track 3rd party reusable apps and backends

• Blog syndication (community page)

• Migrate existing content to new platform

• Begin marketing new release

23.1. RapidSMS 1.0 Roadmap 167



RapidSMS Documentation, Release 1.1.0

• UNICEF Deliverables:

– Information gathering and content writing for featured case studies on website

• Delivery: End of month 8

Build extensible implementations of key RapidSMS core / contrib apps

• locations

• groups

• Delivery: End of month 9

Release 1.0

• Write a tutorial similar to the Django tutorial for beginners

• Finish documentation for new core features

• Write release notes for v1.0

• Finish development on outstanding core features and bugs

• Delivery: End of month 10

Create and document RapidSMS deployment methods

• Review and analyze cloud hosting providers

• Write comprehensive deployment documentation for chosen providers

• Provide instructions and scripts to deploy project in a few simple steps

• Delivery: End of month 11

23.2 mHealth Interoperability Survey

Stemming from our discussions at the Rwanda mHealth System Design Workshop, this brief survey outlines the
possible integration points between RapidSMS and various mHealth open source projects.

23.2.1 OpenMRS

Open Medical Record System (OpenMRS) is a software platform and a reference application which enables design of
a customized medical records system with no programming knowledge.

• OpenMRS website, OpenMRS Developers Portal

• Date created: 2004

• Architecture: Java/MySQL

• Features: Patient database with detailed visit history and metrics.

• RapidSMS Interoperability:

– API: Internal Java API?

168 Chapter 23. RapidSMS internals

http://openmrs.org/
http://openmrs.org/help/


RapidSMS Documentation, Release 1.1.0

– Patient backend? via MySQL?

23.2.2 Vumi/praekelt

A super-scalable conversation engine for the delivery of SMS.

• Vumi website, Vumi Developers Portal

• Architecture: Python

• Features: Message sending framework. Can write Vumi-level applications for deeper integration. Can be used
as a hosted service?

• RapidSMS Interoperability: support has been integrated into RapidSMS 0.13

23.2.3 DHIS

The District Health Information System (DHIS) 2 is a tool for collection, validation, analysis, and presentation of
aggregate statistical data, tailored (but not limited) to integrated health information management activities.

• DHIS website, DHIS Developers Portal

• Date created: 2008

• Architecture: Java frameworks, such as the Spring Framework, Hibernate, Struts2, Maven, and JUnit.

• Features: Data analysis and aggregation tool. Mapping features.

• RapidSMS Interoperability

– API: “Rich Web API” - REST?

– Probably easiest to push data to DHIS2.

– Idea: Django app to model DHIS2 data structures and push on demand.

23.2.4 MOTECH

The MOTECH Suite is a set of Open Source technology components from a consortium of partners who have recog-
nized that their complementary software efforts can address the core needs of mHealth.

• MOTECH website

• Date created: 2008

• Architecture: MOTECH is a modular, event driven system written in Java.

• Features: A framework with built in support for SMS registration, IVR, scheduled messages, reports.

• RapidSMS Interoperability

– REST API?

23.3 How to Make RapidSMS Tutorial Videos

This “how to” is for Linux users, primarily Ubuntu users. It will work in 10.4, Karmic Koala. The goal is to be able
to record your screen and voice, transcode it into a format that youtube understands and then upload your video to
youtube.

23.3. How to Make RapidSMS Tutorial Videos 169

http://www.vumi.org/
http://vumi.readthedocs.org/en/latest/index.html
http://www.dhis2.org/
http://www.dhis2.org/development
http://www.motechproject.org/


RapidSMS Documentation, Release 1.1.0

23.3.1 Recording Sound and Video

First you will need a piece of software to record your screen and voice. There are many of these but not all are very well
supported. recordMyDesktop works well and is simple and configurable. To get this you can go to the Applications
Menu>Ubuntu Software Center and type “gtk rec” gtk-recordMyDesktop will come up first and you can double click
on it to install. It will then be in your Applications Menu under “Sound & Video.”

Alternatively just type:

sudo apt-get install gtk-recordMyDesktop

There is a tutorial on how to install, use and configure recordMyDesktop here:

http://www.youtube.com/watch?v=HaAXW67SUgk

23.3.2 Turning your .ogv into .avi

Next you will want to take the .ogv format that recordMyDesktop creates and turn it into a format that youtube will
accept. There are many pieces of software that can do this and a good one to turn it into .avi is mencoder.

To install mencoder type:

sudo apt-get install mencoder

Once it is installed type (changing foo to the path and name of your video):

mencoder foo.ogv -o foo.avi -oac mp3lame -lameopts fast:preset=standard -ovc lavc -
→˓lavcopts vcodec=mpeg4:vbitrate=4000

There is a tutorial on how to convert using mencoder and then upload to youtube here:

http://www.youtube.com/watch?v=VuhYV0voL3M

23.3.3 Posting to youtube

Create a youtube account (or use your existing one) and follow the tutorial above or any of the billion other tutorials
on the internet to upload your video. Tag your video with both “rapidSMS” and “tutorial.” Then share the video with
the RapidSMS Developer user on youtube and post a message to the mailing list about your new video. It will get
favorited by the community and show up on the channel.

The youtube channel is here: http://www.youtube.com/user/rapidsmsdev

For access to the RapidSMSdev youtube account ask Merrick.

170 Chapter 23. RapidSMS internals

http://www.youtube.com/watch?v=HaAXW67SUgk
http://www.youtube.com/watch?v=VuhYV0voL3M
http://www.youtube.com/user/rapidsmsdev


CHAPTER 24

RapidSMS License

The RapidSMS code is licensed under BSD (see LICENSE). UNICEF acts as the holder of contributor’s agreements.
If you wish to contribute to the RapidSMS codebase as an individual or an organization, you will need to sign the
contributor’s agreement.

24.1 Contributor Licence Agreements (CLAs)

The license agreement is a legal document in which you state you are entitled to contribute the
code/documentation/translation to RapidSMS and are willing to have it used in distributions and derivative works.
This means that should there be any kind of legal issue in the future as to the origins and ownership of any particular
piece of code, UNICEF has the necessary forms on file from the contributor(s) saying they were permitted to make
this contribution.

This is a pure license agreement, not a copyright assignment. You still maintain the full copyright for your contribu-
tions. You are only providing a license to UNICEF to distribute your code without further restrictions. This is not the
case for all CLA’s, but it is the case for the one we are using.

• Sign Individual CLA | List of individual signers

• Sign Corporate CLA | List of corporate signers

24.2 History

The commit history and discussion around the license and agreements can be found below:

• rapidsms Google Group discussion

• Git commit with the change

Release: v1.1.0. (Installation, Release Notes)

Getting Started

• Overview

171

http://opensource.org/licenses/BSD-3-Clause
https://github.com/rapidsms/rapidsms/blob/master/LICENSE
http://www.unicef.org/
https://spreadsheets.google.com/viewform?formkey=dGtKTGU1bWkwU1ctOEpkdENhaVQ5YkE6MA
http://spreadsheets.google.com/pub?key=tkJLe5mi0SW-8JdtCaiT9bA&amp;output=html
https://spreadsheets.google.com/viewform?formkey=dGJPeFh5NTV6NlJjclg1cFRKUFVsQmc6MA
http://spreadsheets.google.com/pub?key=tbOxXy55z6RcrX5pTJPUlBg&amp;output=html
https://groups.google.com/d/topic/rapidsms/EUKwi5a6AQI/discussion
http://github.com/rapidsms/rapidsms/commit/c706c11


RapidSMS Documentation, Release 1.1.0

• Installation

• Tutorial

• Getting help

• Release notes and upgrading instructions

Architecture

• RapidSMS architecture overview

• Router: Overview | Messaging API | BlockingRouter | CeleryRouter | DatabaseRouter

• Applications: Overview | Community apps

• Backends: Overview | Kannel | Vumi | Database | Custom

The development process

• Virtual environments

• Settings

• Internationalization

• Extending core RapidSMS models

• Front end - Creating a web interface for your app

• Logging

• Testing

• Scheduling Tasks with Celery

• Packaging a RapidSMS application for re-use

Provisioning & Deploying Your Project

• Overview

• Planning

• Provisioning

• Deploying

• Scaling

The RapidSMS open-source project

• Developing RapidSMS

• The RapidSMS Community

• License - How RapidSMS is licensed

RapidSMS contrib applications

• default - Sends a pre-defined default response to messages that are not handled by any other application.

• echo - A collection of two simple handlers that can assist you in remote debugging.

• handlers - Extensible classes that help you create RapidSMS applications quickly.

• httptester - Helps you test your project by sending fake messages to RapidSMS to see how it responds.

• messagelog - Maintains a record of all messages sent and received by RapidSMS.

• messaging - Provides a web interface through which you can send messages to Contacts.

172 Chapter 24. RapidSMS License



RapidSMS Documentation, Release 1.1.0

• registration - Provides a web interface for creating, updating, and deleting RapidSMS contacts.

24.2. History 173



RapidSMS Documentation, Release 1.1.0

174 Chapter 24. RapidSMS License



CHAPTER 25

Indices and tables

• genindex

• modindex

• search

175



RapidSMS Documentation, Release 1.1.0

176 Chapter 25. Indices and tables



Python Module Index

r
rapidsms.apps, 27
rapidsms.apps.base, 27
rapidsms.backends, 31
rapidsms.contrib.default, 129
rapidsms.contrib.echo, 130
rapidsms.contrib.handlers, 131
rapidsms.contrib.httptester, 136
rapidsms.contrib.messagelog, 137
rapidsms.contrib.messaging, 138
rapidsms.contrib.registration, 139
rapidsms.router, 49
rapidsms.router.api, 49
rapidsms.router.base, 49
rapidsms.router.blocking, 49
rapidsms.router.celery, 55
rapidsms.router.db, 57
rapidsms.router.db.models, 58
rapidsms.utils.translation, 69

177



RapidSMS Documentation, Release 1.1.0

178 Python Module Index



Index

A
add_app() (rapidsms.router.blocking.BlockingRouter

method), 54
add_backend() (rapidsms.router.blocking.BlockingRouter

method), 55
apps (rapidsms.tests.harness.TestRouterMixin at-

tribute), 88

B
backend (rapidsms.models.ConnectionBase attribute),

53
BackendBase (class in rapidsms.backends.base), 44
backends (rapidsms.tests.harness.CustomRouterMixin

attribute), 87
BaseHttpForm (class in

rapidsms.backends.http.forms), 43
BlockingRouter

router, 53
BlockingRouter (class in rapidsms.router.blocking),

54

C
CeleryRouter

router, 55
clear_sent_messages()

(rapidsms.tests.harness.TestRouterMixin
method), 88

configure() (rapidsms.backends.base.BackendBase
method), 44

Connection (class in rapidsms.models), 52
connection (rapidsms.messages.base.MessageBase

attribute), 51
connection (rapidsms.router.db.models.Transmission

attribute), 59
Connection.DoesNotExist, 53
Connection.MultipleObjectsReturned, 53
ConnectionBase (class in rapidsms.models), 53
connections (rapidsms.messages.base.MessageBase

attribute), 51

Contact (class in rapidsms.models), 52
contact (rapidsms.messages.base.MessageBase

attribute), 51
contact (rapidsms.models.ConnectionBase attribute),

53
ContactBase (class in rapidsms.models), 52
create_backend() (rapidsms.tests.harness.CreateDataMixin

method), 86
create_connection()

(rapidsms.tests.harness.CreateDataMixin
method), 86

create_contact() (rapidsms.tests.harness.CreateDataMixin
method), 86

create_incoming_message()
(rapidsms.tests.harness.CreateDataMixin
method), 86

create_outgoing_message()
(rapidsms.tests.harness.CreateDataMixin
method), 86

created_on (rapidsms.models.ConnectionBase
attribute), 53

created_on (rapidsms.models.ContactBase attribute),
52

CreateDataMixin (class in rapidsms.tests.harness),
86

CustomRouterMixin (class in
rapidsms.tests.harness), 87

D
DatabaseBackendMixin (class in

rapidsms.tests.harness), 89
DatabaseRouter

router, 57
date (rapidsms.router.db.models.Message attribute), 59
date (rapidsms.router.db.models.Transmission at-

tribute), 59
DB_ROUTER_DEFAULT_BATCH_SIZE

setting, 65
default_connection

(rapidsms.models.ContactBase attribute),

179



RapidSMS Documentation, Release 1.1.0

52
DEFAULT_RESPONSE

setting, 65
delivered (rapidsms.router.db.models.Message

attribute), 59
delivered (rapidsms.router.db.models.Transmission

attribute), 59
direction (rapidsms.router.db.models.Message

attribute), 59
disable_phases (rapidsms.tests.harness.TestRouterMixin

attribute), 88
django.test.testcases.TestCase (built-in

class), 89

E
ErrorMessage (class in rapidsms.messages.error), 52
EXCLUDED_HANDLERS

setting, 65
external_id (rapidsms.router.db.models.Message at-

tribute), 59
extra_backend_context()

(rapidsms.messages.outgoing.OutgoingMessage
method), 51

F
fields (rapidsms.messages.base.MessageBase at-

tribute), 51
find() (rapidsms.backends.base.BackendBase class

method), 44

G
generate_id() (rapidsms.messages.base.MessageBase

static method), 51
GenericHttpBackendView (class in

rapidsms.backends.http.views), 42
get_app() (rapidsms.router.blocking.BlockingRouter

method), 55
get_incoming_data()

(rapidsms.backends.http.forms.BaseHttpForm
method), 44

get_router() (rapidsms.tests.harness.CustomRouterMixin
method), 87

H
handle() (rapidsms.contrib.handlers.KeywordHandler

method), 133
handle() (rapidsms.contrib.handlers.PatternHandler

method), 134
handled (rapidsms.messages.base.MessageBase

attribute), 51
handlers (rapidsms.tests.harness.CustomRouterMixin

attribute), 87
help() (rapidsms.contrib.handlers.KeywordHandler

method), 133

http_method_names
(rapidsms.backends.http.views.GenericHttpBackendView
attribute), 42

I
id (rapidsms.messages.base.MessageBase attribute), 51
identity (rapidsms.models.ConnectionBase at-

tribute), 53
in_response_to (rapidsms.messages.base.MessageBase

attribute), 51
in_response_to (rapidsms.router.db.models.Message

attribute), 59
inbound (rapidsms.router.test.TestRouter attribute), 88
inbound (rapidsms.tests.harness.TestRouterMixin at-

tribute), 88
incoming_phases (rapidsms.router.blocking.BlockingRouter

attribute), 55
IncomingMessage (class in

rapidsms.messages.incoming), 50
INSTALLED_BACKENDS

setting, 65
INSTALLED_HANDLERS

setting, 66
is_anonymous (rapidsms.models.ContactBase at-

tribute), 52

K
keyword (rapidsms.contrib.handlers.KeywordHandler

attribute), 133
KeywordHandler (class in

rapidsms.contrib.handlers), 132

L
language (rapidsms.models.ContactBase attribute), 52
login() (rapidsms.tests.harness.LoginMixin method),

89
LoginMixin (class in rapidsms.tests.harness), 89
lookup_connections() (in module

rapidsms.router), 53
lookup_connections()

(rapidsms.backends.http.forms.BaseHttpForm
method), 44

lookup_connections()
(rapidsms.tests.harness.CustomRouterMixin
method), 87

lookup_connections()
(rapidsms.tests.harness.DatabaseBackendMixin
method), 89

lookup_connections()
(rapidsms.tests.harness.TestRouterMixin
method), 88

M
Message (class in rapidsms.router.db.models), 58

180 Index



RapidSMS Documentation, Release 1.1.0

message (rapidsms.router.db.models.Transmission at-
tribute), 59

Message.DoesNotExist, 58
Message.MultipleObjectsReturned, 59
MessageBase (class in rapidsms.messages.base), 51
model (rapidsms.backends.base.BackendBase at-

tribute), 44
modified_on (rapidsms.models.ConnectionBase at-

tribute), 53
modified_on (rapidsms.models.ContactBase at-

tribute), 52

N
name (rapidsms.models.ContactBase attribute), 52
new_incoming_message()

(rapidsms.router.blocking.BlockingRouter
method), 55

new_outgoing_message()
(rapidsms.router.blocking.BlockingRouter
method), 55

O
outbound (rapidsms.router.test.TestRouter attribute),

88
outbound (rapidsms.tests.harness.TestRouterMixin at-

tribute), 88
outgoing_phases (rapidsms.router.blocking.BlockingRouter

attribute), 55
OutgoingMessage (class in

rapidsms.messages.outgoing), 51

P
params (rapidsms.backends.http.views.GenericHttpBackendView

attribute), 42
pattern (rapidsms.contrib.handlers.PatternHandler

attribute), 134
PatternHandler (class in

rapidsms.contrib.handlers), 133
peer (rapidsms.messages.base.MessageBase attribute),

51
processed (rapidsms.messages.base.MessageBase at-

tribute), 51
PROJECT_NAME

setting, 66

R
random_string() (rapidsms.tests.harness.CreateDataMixin

method), 87
random_unicode_string()

(rapidsms.tests.harness.CreateDataMixin
method), 87

rapidsms.apps (module), 27
rapidsms.apps.base (module), 27
rapidsms.backends (module), 31

rapidsms.contrib.default (module), 129
rapidsms.contrib.echo (module), 130
rapidsms.contrib.handlers (module), 131
rapidsms.contrib.httptester (module), 136
rapidsms.contrib.messagelog (module), 137
rapidsms.contrib.messaging (module), 138
rapidsms.contrib.registration (module),

139
rapidsms.router (module), 49
rapidsms.router.api (module), 49
rapidsms.router.base (module), 49
rapidsms.router.blocking (module), 49, 53
rapidsms.router.blocking.router.BlockingRouter

(class in rapidsms.router.blocking), 55
rapidsms.router.celery (module), 55
rapidsms.router.db (module), 57
rapidsms.router.db.models (module), 58
rapidsms.tests.harness.base.CreateDataMixin

(built-in class), 87
rapidsms.tests.harness.base.LoginMixin

(built-in class), 89
rapidsms.tests.harness.router.CustomRouterMixin

(built-in class), 88
rapidsms.tests.harness.router.TestRouterMixin

(built-in class), 88
rapidsms.tests.harness.scripted.TestScriptMixin

(built-in class), 86
rapidsms.utils.translation (module), 69
RAPIDSMS_HANDLERS

setting, 66
RAPIDSMS_HANDLERS_EXCLUDE_APPS

setting, 67
RAPIDSMS_ROUTER

setting, 67
RapidTest (class in rapidsms.tests.harness), 83
raw_text (rapidsms.messages.base.MessageBase at-

tribute), 52
receive() (in module rapidsms.router), 49
receive() (rapidsms.tests.harness.CustomRouterMixin

method), 87
receive_incoming()

(rapidsms.router.blocking.BlockingRouter
method), 55

receive_incoming()
(rapidsms.router.test.TestRouter method),
88

respond() (rapidsms.messages.incoming.IncomingMessage
method), 50

responses (rapidsms.messages.incoming.IncomingMessage
attribute), 50

router
BlockingRouter, 53
CeleryRouter, 55
DatabaseRouter, 57

Index 181



RapidSMS Documentation, Release 1.1.0

router_class (rapidsms.tests.harness.CustomRouterMixin
attribute), 87

runScript() (rapidsms.tests.harness.TestScriptMixin
method), 85

S
send() (in module rapidsms.router), 50
send() (rapidsms.backends.base.BackendBase

method), 44
send() (rapidsms.messages.outgoing.OutgoingMessage

method), 51
send() (rapidsms.tests.harness.CustomRouterMixin

method), 88
send_outgoing() (rapidsms.router.blocking.BlockingRouter

method), 55
send_outgoing() (rapidsms.router.test.TestRouter

method), 89
sent (rapidsms.router.db.models.Message attribute), 59
sent (rapidsms.router.db.models.Transmission at-

tribute), 59
sent_messages (rapidsms.tests.harness.DatabaseBackendMixin

attribute), 89
sent_messages (rapidsms.tests.harness.TestRouterMixin

attribute), 88
setting

DB_ROUTER_DEFAULT_BATCH_SIZE, 65
DEFAULT_RESPONSE, 65
EXCLUDED_HANDLERS, 65
INSTALLED_BACKENDS, 65
INSTALLED_HANDLERS, 66
PROJECT_NAME, 66
RAPIDSMS_HANDLERS, 66
RAPIDSMS_HANDLERS_EXCLUDE_APPS, 67
RAPIDSMS_ROUTER, 67

status (rapidsms.router.db.models.Message attribute),
59

status (rapidsms.router.db.models.Transmission
attribute), 59

T
TestRouter (class in rapidsms.router.test), 88
TestRouterMixin (class in rapidsms.tests.harness),

88
TestScript (class in rapidsms.tests.harness), 85
TestScriptMixin (class in rapidsms.tests.harness),

85
text (rapidsms.messages.base.MessageBase attribute),

52
text (rapidsms.router.db.models.Message attribute), 59
Transmission (class in rapidsms.router.db.models),

59
Transmission.DoesNotExist, 59
Transmission.MultipleObjectsReturned,

59

U
updated (rapidsms.router.db.models.Message at-

tribute), 59
updated (rapidsms.router.db.models.Transmission at-

tribute), 59

182 Index


	RapidSMS Overview
	RapidSMS at a glance
	This is just the surface

	Installing RapidSMS
	Starting a New RapidSMS Project

	RapidSMS Tutorial
	Outline

	Getting help
	RapidSMS Architecture Overview
	Introduction
	Applications
	Backends
	Router

	RapidSMS Applications
	Application Structure
	Incoming Message Processing
	Outgoing Message Processing
	Router Events: start and stop
	Scheduling tasks
	Contrib and Community Applications

	RapidSMS Backends
	Setting up RapidSMS with Kannel
	Setting up RapidSMS with Vumi
	The Database Backend
	Custom Backends
	Supplied Backends
	Configuration

	RapidSMS Routers
	Messaging API
	BlockingRouter
	CeleryRouter
	DatabaseRouter
	Choosing a Router
	Applications and Backends
	Message Processing

	Using virtualenv
	Settings
	DB_ROUTER_DEFAULT_BATCH_SIZE
	DEFAULT_RESPONSE
	EXCLUDED_HANDLERS
	INSTALLED_BACKENDS
	INSTALLED_HANDLERS
	PROJECT_NAME
	RAPIDSMS_HANDLERS
	RAPIDSMS_HANDLERS_EXCLUDE_APPS
	RAPIDSMS_ROUTER

	Translation
	Introduction
	Language specification
	Contact language setting

	Intro to Extensible Models
	Initial Setup
	Extension Experiments
	Conclusions

	Front End
	Introduction
	Base template
	Title
	Additional styles
	Additional javascript
	Page header
	Top menu
	Tables
	Forms
	Messages to Users

	Logging
	Testing RapidSMS Applications
	Prerequisites
	Testing Methods

	Using Celery for Scheduling Tasks
	History
	Celery versions
	Introduction to Celery
	Installing celery locally
	Configuring Django for Celery
	Writing a task
	Scheduling it
	Testing it
	An Example
	Troubleshooting
	Periodic Scheduling
	Hints and Tips
	Next Steps
	Using Celery in production

	Packaging your RapidSMS application for re-use
	Provisioning Servers & Deploying Your Project
	Outline

	Developing RapidSMS
	Getting the code for development
	Submit a pull request
	Coding standards and best practices
	Writing documentation
	RapidSMS core test suite
	RapidSMS Release Checklist

	The RapidSMS Community
	Joining the RapidSMS community
	Submitting changes back to the project
	Reviewing pull requests
	The RapidSMS core team
	Release process

	Contributed Applications
	rapidsms.contrib.default
	rapidsms.contrib.echo
	rapidsms.contrib.handlers
	rapidsms.contrib.httptester
	rapidsms.contrib.messagelog
	rapidsms.contrib.messaging
	rapidsms.contrib.registration

	Release Notes
	RapidSMS 1.2.0 release notes (under development)
	RapidSMS 1.1.0 release notes (under development)
	RapidSMS 1.0.0 release notes (current release)
	RapidSMS 0.22.0 release notes
	RapidSMS 0.21.1 release notes (current release)
	RapidSMS 0.21.0 release notes
	RapidSMS 0.20.0 release notes
	RapidSMS 0.19.0 release notes
	RapidSMS 0.18.0 release notes
	RapidSMS 0.17.0 release notes
	RapidSMS 0.16.0 release notes
	RapidSMS 0.15.0 release notes
	RapidSMS 0.14.0 release notes
	RapidSMS 0.13.0 release notes
	RapidSMS 0.12.0 release notes
	RapidSMS 0.11.1 release notes
	RapidSMS 0.11.0 release notes
	RapidSMS 0.10.0 release notes
	Migrating your Project from RapidSMS 0.9.6 to 0.10.0
	RapidSMS 0.9.6 release notes
	RapidSMS Roadmap

	RapidSMS internals
	RapidSMS 1.0 Roadmap
	mHealth Interoperability Survey
	How to Make RapidSMS Tutorial Videos

	RapidSMS License
	Contributor Licence Agreements (CLAs)
	History

	Indices and tables
	Python Module Index

