
rapidsms-threadless-router
Documentation

Release 0.1.4

Caktus Consulting Group, LLC

September 05, 2012

CONTENTS

i

ii

rapidsms-threadless-router Documentation, Release 0.1.4

A RapidSMS router implementation that removes the threading functionality from the legacy Router class. Rather, all
inbound requests are handled via the main HTTP thread. Backends can optionally pass requests to a message queue
for out-of-band responses. threadless_router attempts to:

• Make RapidSMS backends more Django-like. Use Django’s URL routing and views to handle inbound HTTP
requests.

• Remove clutter and complexity of route process and threaded backends.

• Ease testing – no more threading or Queue modules slowing down tests.

Contents:

CONTENTS 1

https://github.com/rapidsms/rapidsms

rapidsms-threadless-router Documentation, Release 0.1.4

2 CONTENTS

CHAPTER

ONE

DIFFERENCES TO RAPIDSMS’
ROUTER

The legacy RapidSMS router is a globally instantiated object that routes incoming messages through each
RapidSMS app and sends outgoing messages via installed backends. The run_router management command starts
the router process and creates individual threads for each backend defined in the settings module.

In comparison, threadless_router handles all inbound and outbound backend communication from within
the main HTTP thread. Each request creates a new router instance and no seperate process or thread is created.
threadless_router backends all use a single point of entry into the routing functionality via incoming:

def incoming(backend_name, identity, text):
backend, _ = Backend.objects.get_or_create(name=backend_name)
connection, _ = backend.connection_set.get_or_create(identity=identity)
message = IncomingMessage(connection, text, datetime.datetime.now())
router = Router()
response = router.incoming(message)

Given a backend name, phone number, and messsage, incoming creates a new router instance and triggers the
incoming phases. Here’s a very simple Django view that extracts phone and message variables from an HTTP POST
and passes it off to incoming:

from threadless_router.base import incoming

def new_message(request, backend_name):
incoming(backend_name, request.POST[’phone’], request.POST[’message’])
return HttpResponse(’OK’)

It’s important to note here that backend_name is passed in as part of the request. This is how inbound messages are
paired with each defined backend. For example, you could create two entry points into the httptester app:

INSTALLED_BACKENDS = {
"httptester-public": {

"ENGINE": "threadless_router.backends.httptester.backend",
},
"httptester-private": {

"ENGINE": "threadless_router.backends.httptester.backend",
},

}

The chosen backend is determined by the URL:

>>> import urllib
>>> import urllib2
>>> data = urllib.urlencode({’identity’: ’1112223333’, ’text’: ’echo hello’})

3

rapidsms-threadless-router Documentation, Release 0.1.4

>>> urllib2.urlopen(’http://localhost:8000/httptester/httptester-public/’, data).read()
’OK’
>>> urllib2.urlopen(’http://localhost:8000/httptester/httptester-private/’, data).read()
’OK’

4 Chapter 1. Differences to RapidSMS’ Router

CHAPTER

TWO

USING
RAPIDSMS-THREADLESS-ROUTER

2.1 Caveats and Incompatibilities

threadless_router can integrate into existing RapidSMS projects. However, legacy backends will not work, so
you should use the backends bundled with threadless_router, available in the community, or create your own.
As all routing is handled from within the HTTP thread, non-HTTP backends, such as pygsm, are not (and will never
be) compatible with threadless_router. You should use an HTTP backend with Kannel to achieve the same
functionality.

The following legacy RapidSMS applications cannot be used with threadless_router:

• rapidsms.contrib.httptester - A new httptester is bundled as a replacement.

• rapidsms.contrib.scheduler - The legacy scheduler uses threads to achieve crontab-like functionality.
Instead, you can use other schedulers such as celerybeat.

• rapidsms.contrib.ajax

• rapidsms.contrib.messagelog

2.2 httptester

httptester, bundled with threadless_router, overrides key components in the legacy httptester app
to provide identical functionality. Django’s cache backend is used as dummy storage.

httptester Setup

• Add httptester to INSTALLED_APPS:

INSTALLED_APPS = [
...
"threadless_router.backends.httptester",
...

]

• Add httptester to INSTALLED_BACKENDS:

INSTALLED_BACKENDS = {
...
"httptester": {

"ENGINE": "threadless_router.backends.httptester.backend",

5

rapidsms-threadless-router Documentation, Release 0.1.4

},
...

}

• Add httptester urls:

urlpatterns = patterns(’’,
...
url(r’^httptester/$’,

’threadless_router.backends.httptester.views.generate_identity’,
{’backend_name’: ’httptester’}, name=’httptester-index’),

(r’^httptester/’, include(’threadless_router.backends.httptester.urls’)),
...

)

• Update RAPIDSMS_TABS to reference new view:

RAPIDSMS_TABS = [
...
("httptester-index", "Message Tester"),
...

]

2.3 HTTP backend

The http backend provides the foundation for building http-powered services. Built on top of Django 1.3’s
class-based generic views, the BaseHttpBackendView allows for easy extension and customization. A simple
SimpleHttpBackendView is bundled as a quick start example.

simple-http Setup

• Add http app to INSTALLED_APPS:

INSTALLED_APPS = [
...
"threadless_router.backends.http",
...

]

• Add simple-http to INSTALLED_BACKENDS:

INSTALLED_BACKENDS = {
...
"simple-http": {

"ENGINE": "threadless_router.backends.http.outgoing",
"outgoing_url": ’http://myservice.com/?identity=%(identity)s&text=%(text)s’,

},
...

}

• Add http urls:

urlpatterns = patterns(’’,
...
(r’^http/’, include(’threadless_router.backends.http.urls’)),
...

)

6 Chapter 2. Using rapidsms-threadless-router

rapidsms-threadless-router Documentation, Release 0.1.4

• Now incoming requests will be handled by the http thread:

>>> import urllib
>>> import urllib2
>>> data = urllib.urlencode({’identity’: ’1112223333’, ’text’: ’echo hello’})
>>> urllib2.urlopen(’http://localhost:8000/http/simple-http/’, data).read()
’OK’

2.3. HTTP backend 7

rapidsms-threadless-router Documentation, Release 0.1.4

8 Chapter 2. Using rapidsms-threadless-router

CHAPTER

THREE

USING
RAPIDSMS-THREADLESS-ROUTER

WITH KANNEL

Given the fact that threadless_router uses a Django view to handle incoming messages, instead of its own
HTTP server like RapidSMS’s Kannel backend does, threadless_router fits perfectly with the Kannel model
of sending and receiving all messages over HTTP in a simple, scalable way.

3.1 Kannel Configuration

Kannel configuration can be a non-trivial task, depending on what gateways you’re using. Complete details can be
found in the Kannel documentation itself.

To configure Kannel to connect to a RapidSMS project that uses threadless_router, you need to add a few
things to your Kannel configuration (usually /etc/kannel/kannel.conf).

• Add a sendsms-user for RapidSMS to use to send outbound messages:

group = sendsms-user
username = rapidsms
password = change-me
user-deny-ip = "*.*.*.*"
user-allow-ip = "127.0.0.1;"

• Add an sms-service entry to pass inbound messages to RapidSMS:

group = sms-service
keyword = default
don’t send a reply here (it’ll come through sendsms):
max-messages = 0
get-url = http://127.0.0.1:8000/backend/my-kannel-backend/?id=%p&text=%a&charset=%C&coding=%c

3.2 threadless_router Configuration

The kannel backend provides an implementation of the http backend for integrating with Kannel. To enable the
kannel backend on an existing project, complete the following steps:

• Add kannel app to INSTALLED_APPS:

9

rapidsms-threadless-router Documentation, Release 0.1.4

INSTALLED_APPS = [
...
"threadless_router.backends.kannel",
...

]

• Add my-kannel-backend to INSTALLED_BACKENDS:

INSTALLED_BACKENDS = {
...
"my-kannel-backend": {

"ENGINE": "threadless_router.backends.kannel.outgoing",
"sendsms_url": "http://127.0.0.1:13013/cgi-bin/sendsms",
"sendsms_params": {"smsc": "usb0-modem", # if you have more than one

"from": "1234", # may not be set automatically by SMSC
"username": "rapidsms",
"password": "change-me"},

"coding": 0,
"charset": "ascii",
"encode_errors": "ignore", # strip out unknown (unicode) characters

},
...

}

• Add kannel urls:

urlpatterns = patterns(’’,
...
(r’^backend/’, include(’threadless_router.backends.kannel.urls’)),
...

)

• Now incoming requests to /backend/my-kannel-backend/ will be handled by the newly configured Kannel back-
end.

10 Chapter 3. Using rapidsms-threadless-router with Kannel

CHAPTER

FOUR

ASYNCHRONOUS TASK QUEUES

threadless_router allows inbound messages to be easily passed off to an asynchronous task queue, such as
Celery. Task queues allow message processing to be handled outside of the HTTP request/response cycle.

4.1 django-celery

A celery handler is bundled for example.

• Install djcelery with pip:

pip install django-celery==2.2.4

• Add djcelery and threadless_router.celery apps to INSTALLED_APPS:

INSTALLED_APPS = [
...
"djcelery",
"threadless_router.celery",
...

]

• Point backend handler(s) to celery task:

INSTALLED_BACKENDS = {
...
"simple-http": {

"ENGINE": ’...’.
"HANDLER": "threadless_router.celery.handler", # <-----
"outgoing_url": ’...’,

},
...

}

• Start celeryd in separate shell:

$./manage.py celeryd

• Now all inbound messages to the “simple-http” backend will respond out-of-band via a celery task.

11

http://celeryproject.org/

rapidsms-threadless-router Documentation, Release 0.1.4

12 Chapter 4. Asynchronous Task Queues

CHAPTER

FIVE

TESTING

The benefit of a threadless router is that testing is very easy (and fast). No more sleeping until threads join, so tests
run at a bearable pace.

5.1 No Magic

Need to test using the router? Just instantiate it. INSTALLED_APPS and INSTALLED_BACKENDS will be used by
default, unless you pass in overrides into the constructor. For example:

class MyTest(TestCase):
def testExample(self):

backends = {’mockbackend’: {"ENGINE": MockBackend}}
router = Router(backends=backends)

5.2 TestScript

RapidSMS provides rapidsms.tests.scripted.TestScript for testing the entire stack with transcript-like
input. threadless_router has it’s own TestScript class the provides the same functionality.

By default, any apps within INSTALLED_APPS will be used, but you can also specific apps for each TestCase. For
example, here’s how one can test the functionality of the rapidsms.contrib.default app:

from django.conf import settings

from rapidsms.apps.base import AppBase
from rapidsms.contrib.default.app import App as DefaultApp

from threadless_router.tests.scripted import TestScript

class OtherApp(AppBase):
""" Simple application that only responds to a single message """

name = ’other-app’

def handle(self, msg):
if msg.text == ’other-app-should-catch’:

msg.respond(’caught’)
return True

13

rapidsms-threadless-router Documentation, Release 0.1.4

class DefaultTest(TestScript):
""" Test that rapidsms.contrib.default works properly """

apps = [OtherApp, DefaultApp]

def setUp(self):
super(DefaultTest, self).setUp()
self._old_message = getattr(settings, ’DEFAULT_RESPONSE’, None)

def tearDown(self):
super(DefaultTest, self).tearDown()
if self._old_message:

settings.DEFAULT_RESPONSE = self._old_message

def test_full_stack(self):
""" Test default response functionality alongside other apps """
message = ’Invalid message, please try again!’
settings.DEFAULT_RESPONSE = message
self.runScript("""1112223333 > other-app-should-catch

1112223333 < caught
1112223333 > uncaught-message-test
1112223333 > {0}""".format(message))

14 Chapter 5. Testing

CHAPTER

SIX

CHANGELOG

Below is the history of the rapidsms-threadless-router project. With each release we note new features, large bug fixes
and any backwards incompatible changes.

6.1 v0.1.4 (Released 2012-09-05)

6.1.1 Bug Fixes

• Fixed outgoing to report if the message was sent or not. Thanks to Cory Zue.

6.2 v0.1.3 (Released 2012-07-25)

6.2.1 Bug Fixes

• Fixed exception when an originary app such as djcelery contains an app module. Thanks to Tim Akinbo.

6.3 v0.1.2 (Released 2012-06-29)

6.3.1 Bug Fixes

• Fixed packaging of httptester templates and css

6.4 v0.1.1 (Released 2012-06-28)

6.4.1 Bug Fixes

• Fixed broken packaging due to missing README in the distribution

6.5 v0.1.0 (Released 2012-06-28)

The initial PyPi release.

15

rapidsms-threadless-router Documentation, Release 0.1.4

6.5.1 Features

• Replacement HTTP based router

• Working replacements for the http, httptester and kannel backends

• Test utilities for writing scripted router tests

• Compatibility layer for processing messages with Celery

16 Chapter 6. Changelog

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

17

