

 Navigation

 	
 index

 	
 next |

 	rapidsms-threadless-router 0.1.4 documentation

rapidsms-threadless-router

A RapidSMS [https://github.com/rapidsms/rapidsms] router implementation that
removes the threading functionality from the legacy Router class. Rather, all
inbound requests are handled via the main HTTP thread. Backends can optionally
pass requests to a message queue for out-of-band responses.
threadless_router attempts to:

	Make RapidSMS backends more Django-like. Use Django’s URL routing and views to handle inbound HTTP requests.

	Remove clutter and complexity of route process and threaded backends.

	Ease testing – no more threading or Queue modules slowing down tests.

Contents:

	Differences to RapidSMS’ Router

	Using rapidsms-threadless-router
	Caveats and Incompatibilities

	httptester

	HTTP backend

	Using rapidsms-threadless-router with Kannel
	Kannel Configuration

	threadless_router Configuration

	Asynchronous Task Queues
	django-celery

	Testing
	No Magic

	TestScript

	Changelog
	v0.1.4 (Released 2012-09-05)

	v0.1.3 (Released 2012-07-25)

	v0.1.2 (Released 2012-06-29)

	v0.1.1 (Released 2012-06-28)

	v0.1.0 (Released 2012-06-28)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011-2012, Caktus Consulting Group, LLC.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rapidsms-threadless-router 0.1.4 documentation

Differences to RapidSMS’ Router

The legacy RapidSMS router is a globally instantiated object that routes
incoming messages through each RapidSMS app and sends outgoing messages via
installed backends. The run_router management command starts the router
process and creates individual threads for each backend defined in the settings
module.

In comparison, threadless_router handles all inbound and outbound backend
communication from within the main HTTP thread. Each request creates a new
router instance and no seperate process or thread is created.
threadless_router backends all use a single point of entry into the routing
functionality via incoming:

def incoming(backend_name, identity, text):
 backend, _ = Backend.objects.get_or_create(name=backend_name)
 connection, _ = backend.connection_set.get_or_create(identity=identity)
 message = IncomingMessage(connection, text, datetime.datetime.now())
 router = Router()
 response = router.incoming(message)

Given a backend name, phone number, and messsage, incoming creates a new
router instance and triggers the incoming phases. Here’s a very simple
Django view that extracts phone and message variables from an HTTP POST and
passes it off to incoming:

from threadless_router.base import incoming

def new_message(request, backend_name):
 incoming(backend_name, request.POST['phone'], request.POST['message'])
 return HttpResponse('OK')

It’s important to note here that backend_name is passed in as part of the
request. This is how inbound messages are paired with each defined backend.
For example, you could create two entry points into the httptester app:

INSTALLED_BACKENDS = {
 "httptester-public": {
 "ENGINE": "threadless_router.backends.httptester.backend",
 },
 "httptester-private": {
 "ENGINE": "threadless_router.backends.httptester.backend",
 },
}

The chosen backend is determined by the URL:

>>> import urllib
>>> import urllib2
>>> data = urllib.urlencode({'identity': '1112223333', 'text': 'echo hello'})
>>> urllib2.urlopen('http://localhost:8000/httptester/httptester-public/', data).read()
'OK'
>>> urllib2.urlopen('http://localhost:8000/httptester/httptester-private/', data).read()
'OK'

 Copyright 2011-2012, Caktus Consulting Group, LLC.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rapidsms-threadless-router 0.1.4 documentation

Using rapidsms-threadless-router

Caveats and Incompatibilities

threadless_router can integrate into existing RapidSMS projects. However,
legacy backends will not work, so you should use the backends bundled with
threadless_router, available in the community, or create your own. As all
routing is handled from within the HTTP thread, non-HTTP backends, such as
pygsm, are not (and will never be) compatible with threadless_router.
You should use an HTTP backend with Kannel to achieve the same functionality.

The following legacy RapidSMS applications cannot be used with
threadless_router:

	rapidsms.contrib.httptester - A new httptester is bundled as a
replacement.

	rapidsms.contrib.scheduler - The legacy scheduler uses threads to achieve
crontab-like functionality. Instead, you can use other schedulers such as
celerybeat.

	rapidsms.contrib.ajax

	rapidsms.contrib.messagelog

httptester

httptester, bundled with threadless_router, overrides key components in
the legacy httptester app to provide identical functionality. Django’s
cache backend is used as dummy storage.

httptester Setup

	Add httptester to INSTALLED_APPS:

INSTALLED_APPS = [
 # ...
 "threadless_router.backends.httptester",
 # ...
]

	Add httptester to INSTALLED_BACKENDS:

INSTALLED_BACKENDS = {
 # ...
 "httptester": {
 "ENGINE": "threadless_router.backends.httptester.backend",
 },
 # ...
}

	Add httptester urls:

urlpatterns = patterns('',
 # ...
 url(r'^httptester/$',
 'threadless_router.backends.httptester.views.generate_identity',
 {'backend_name': 'httptester'}, name='httptester-index'),
 (r'^httptester/', include('threadless_router.backends.httptester.urls')),
 # ...
)

	Update RAPIDSMS_TABS to reference new view:

RAPIDSMS_TABS = [
 # ...
 ("httptester-index", "Message Tester"),
 # ...
]

HTTP backend

The http backend provides the foundation for building http-powered
services. Built on top of Django 1.3’s class-based generic views, the
BaseHttpBackendView allows for easy extension and customization. A simple
SimpleHttpBackendView is bundled as a quick start example.

simple-http Setup

	Add http app to INSTALLED_APPS:

INSTALLED_APPS = [
 # ...
 "threadless_router.backends.http",
 # ...
]

	Add simple-http to INSTALLED_BACKENDS:

INSTALLED_BACKENDS = {
 # ...
 "simple-http": {
 "ENGINE": "threadless_router.backends.http.outgoing",
 "outgoing_url": 'http://myservice.com/?identity=%(identity)s&text=%(text)s',
 },
 # ...
}

	Add http urls:

urlpatterns = patterns('',
 # ...
 (r'^http/', include('threadless_router.backends.http.urls')),
 # ...
)

	Now incoming requests will be handled by the http thread:

>>> import urllib
>>> import urllib2
>>> data = urllib.urlencode({'identity': '1112223333', 'text': 'echo hello'})
>>> urllib2.urlopen('http://localhost:8000/http/simple-http/', data).read()
'OK'

 Copyright 2011-2012, Caktus Consulting Group, LLC.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rapidsms-threadless-router 0.1.4 documentation

Using rapidsms-threadless-router with Kannel

Given the fact that threadless_router uses a Django view to handle
incoming messages, instead of its own HTTP server like RapidSMS’s Kannel
backend does, threadless_router fits perfectly with the Kannel model of
sending and receiving all messages over HTTP in a simple, scalable way.

Kannel Configuration

Kannel configuration can be a non-trivial task, depending on what gateways
you’re using. Complete details can be found in the Kannel documentation
itself.

To configure Kannel to connect to a RapidSMS project that uses
threadless_router, you need to add a few things to your Kannel
configuration (usually /etc/kannel/kannel.conf).

	Add a sendsms-user for RapidSMS to use to send outbound messages:

group = sendsms-user
username = rapidsms
password = change-me
user-deny-ip = "*.*.*.*"
user-allow-ip = "127.0.0.1;"

	Add an sms-service entry to pass inbound messages to RapidSMS:

group = sms-service
keyword = default
don't send a reply here (it'll come through sendsms):
max-messages = 0
get-url = http://127.0.0.1:8000/backend/my-kannel-backend/?id=%p&text=%a&charset=%C&coding=%c

threadless_router Configuration

The kannel backend provides an implementation of the http backend for
integrating with Kannel. To enable the kannel backend on an existing
project, complete the following steps:

	Add kannel app to INSTALLED_APPS:

INSTALLED_APPS = [
 # ...
 "threadless_router.backends.kannel",
 # ...
]

	Add my-kannel-backend to INSTALLED_BACKENDS:

INSTALLED_BACKENDS = {
 # ...
 "my-kannel-backend": {
 "ENGINE": "threadless_router.backends.kannel.outgoing",
 "sendsms_url": "http://127.0.0.1:13013/cgi-bin/sendsms",
 "sendsms_params": {"smsc": "usb0-modem", # if you have more than one
 "from": "1234", # may not be set automatically by SMSC
 "username": "rapidsms",
 "password": "change-me"},
 "coding": 0,
 "charset": "ascii",
 "encode_errors": "ignore", # strip out unknown (unicode) characters
 },
 # ...
}

	Add kannel urls:

urlpatterns = patterns('',
 # ...
 (r'^backend/', include('threadless_router.backends.kannel.urls')),
 # ...
)

	Now incoming requests to /backend/my-kannel-backend/ will be handled by the
newly configured Kannel backend.

 Copyright 2011-2012, Caktus Consulting Group, LLC.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rapidsms-threadless-router 0.1.4 documentation

Asynchronous Task Queues

threadless_router allows inbound messages to be easily passed off to an
asynchronous task queue, such as Celery [http://celeryproject.org/]. Task
queues allow message processing to be handled outside of the HTTP
request/response cycle.

django-celery

A celery handler is bundled for example.

	Install djcelery with pip:

pip install django-celery==2.2.4

	Add djcelery and threadless_router.celery apps to INSTALLED_APPS:

INSTALLED_APPS = [
 # ...
 "djcelery",
 "threadless_router.celery",
 # ...
]

	Point backend handler(s) to celery task:

INSTALLED_BACKENDS = {
 # ...
 "simple-http": {
 "ENGINE": '...'.
 "HANDLER": "threadless_router.celery.handler", # <-----
 "outgoing_url": '...',
 },
 # ...
}

	Start celeryd in separate shell:

$./manage.py celeryd

	Now all inbound messages to the “simple-http” backend will respond out-of-band via a celery task.

 Copyright 2011-2012, Caktus Consulting Group, LLC.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rapidsms-threadless-router 0.1.4 documentation

Testing

The benefit of a threadless router is that testing is very easy (and fast). No
more sleeping until threads join, so tests run at a bearable pace.

No Magic

Need to test using the router? Just instantiate it. INSTALLED_APPS and
INSTALLED_BACKENDS will be used by default, unless you pass in overrides into
the constructor. For example:

class MyTest(TestCase):
 def testExample(self):
 backends = {'mockbackend': {"ENGINE": MockBackend}}
 router = Router(backends=backends)

TestScript

RapidSMS provides rapidsms.tests.scripted.TestScript for testing the entire
stack with transcript-like input. threadless_router has it’s own
TestScript class the provides the same functionality.

By default, any apps within INSTALLED_APPS will be used, but you can also
specific apps for each TestCase. For example, here’s how one can test the
functionality of the rapidsms.contrib.default app:

from django.conf import settings

from rapidsms.apps.base import AppBase
from rapidsms.contrib.default.app import App as DefaultApp

from threadless_router.tests.scripted import TestScript

class OtherApp(AppBase):
 """ Simple application that only responds to a single message """

 name = 'other-app'

 def handle(self, msg):
 if msg.text == 'other-app-should-catch':
 msg.respond('caught')
 return True

class DefaultTest(TestScript):
 """ Test that rapidsms.contrib.default works properly """

 apps = [OtherApp, DefaultApp]

 def setUp(self):
 super(DefaultTest, self).setUp()
 self._old_message = getattr(settings, 'DEFAULT_RESPONSE', None)

 def tearDown(self):
 super(DefaultTest, self).tearDown()
 if self._old_message:
 settings.DEFAULT_RESPONSE = self._old_message

 def test_full_stack(self):
 """ Test default response functionality alongside other apps """
 message = 'Invalid message, please try again!'
 settings.DEFAULT_RESPONSE = message
 self.runScript("""1112223333 > other-app-should-catch
 1112223333 < caught
 1112223333 > uncaught-message-test
 1112223333 > {0}""".format(message))

 Copyright 2011-2012, Caktus Consulting Group, LLC.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 Navigation

 	
 index

 	
 previous |

 	rapidsms-threadless-router 0.1.4 documentation

Changelog

Below is the history of the rapidsms-threadless-router project. With each release
we note new features, large bug fixes and any backwards incompatible changes.

v0.1.4 (Released 2012-09-05)

Bug Fixes

	Fixed outgoing to report if the message was sent or not. Thanks to Cory Zue.

v0.1.3 (Released 2012-07-25)

Bug Fixes

	Fixed exception when an originary app such as djcelery contains an app module. Thanks to Tim Akinbo.

v0.1.2 (Released 2012-06-29)

Bug Fixes

	Fixed packaging of httptester templates and css

v0.1.1 (Released 2012-06-28)

Bug Fixes

	Fixed broken packaging due to missing README in the distribution

v0.1.0 (Released 2012-06-28)

The initial PyPi release.

Features

	Replacement HTTP based router

	Working replacements for the http, httptester and kannel backends

	Test utilities for writing scripted router tests

	Compatibility layer for processing messages with Celery

 Copyright 2011-2012, Caktus Consulting Group, LLC.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 Navigation

 	
 index

 	rapidsms-threadless-router 0.1.4 documentation

Index

 Copyright 2011-2012, Caktus Consulting Group, LLC.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	master

 	latest

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		rapidsms-threadless-router 0.1.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011-2012, Caktus Consulting Group, LLC.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 		master

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

