
rapidsms-healthcare Documentation
Release 0.1.0

Caktus Consulting Group

March 26, 2013

CONTENTS

1 Dependencies 3

2 Documentation 5

3 Running the Tests 7

4 License 9

5 Contributing 11

6 Contents 13
6.1 Project Overview . 13
6.2 Getting Started . 14
6.3 Basic Usage . 15
6.4 Storage Backend API . 20
6.5 Full Settings Reference . 22
6.6 Contributing Guide . 22
6.7 Release History . 24

i

ii

rapidsms-healthcare Documentation, Release 0.1.0

rapidsms-healthcare is a reusable Django application for managing healthcare provider and patient records for build-
ing RapidSMS applications. The goal is to create a common API for storing and accessing these records and have
configurable storage backends for the data itself. For instance on site might store data using a SQL database via the
Django ORM while another might store the data in OpenMRS. Additional Django/RapidSMS applications can use
this API to store and retrive data without knowning how it will be stored.

CONTENTS 1

rapidsms-healthcare Documentation, Release 0.1.0

2 CONTENTS

CHAPTER

ONE

DEPENDENCIES

rapidsms-appointments currently runs on Python 2.6 and 2.7 and requires the following Python packages:

• Django >= 1.4

• RapidSMS >= 0.11.0

3

rapidsms-healthcare Documentation, Release 0.1.0

4 Chapter 1. Dependencies

CHAPTER

TWO

DOCUMENTATION

Documentation on using rapidsms-healthcare is available on Read The Docs.

5

http://readthedocs.org/docs/rapidsms-healthcare/

rapidsms-healthcare Documentation, Release 0.1.0

6 Chapter 2. Documentation

CHAPTER

THREE

RUNNING THE TESTS

With all of the dependancies installed, you can quickly run the tests with via:

python setup.py test

or:

python runtests.py

To test rapidsms-healthcare in multiple supported environments you can make use of the tox configuration.:

You must have tox installed
pip install tox
Build default set of environments
tox
Build a single environment
tox -e py26-1.4.X

7

http://tox.readthedocs.org/

rapidsms-healthcare Documentation, Release 0.1.0

8 Chapter 3. Running the Tests

CHAPTER

FOUR

LICENSE

rapidsms-healthcare is released under the BSD License. See the LICENSE file for more details.

9

https://github.com/caktus/rapidsms-healthcare/blob/master/LICENSE

rapidsms-healthcare Documentation, Release 0.1.0

10 Chapter 4. License

CHAPTER

FIVE

CONTRIBUTING

If you think you’ve found a bug or are interested in contributing to this project check out rapidsms-healthcare on
Github. A full contributing guide can be found in the online documentation.

Development sponsored by Caktus Consulting Group, LLC.

11

https://github.com/caktus/rapidsms-healthcare
https://github.com/caktus/rapidsms-healthcare
http://rapidsms-healthcare.readthedocs.org/en/latest/contributing.html
http://www.caktusgroup.com/services

rapidsms-healthcare Documentation, Release 0.1.0

12 Chapter 5. Contributing

CHAPTER

SIX

CONTENTS

6.1 Project Overview

As the name implies rapidsms-healthcare aims to solve a problem with storing healthcare related data for RapidSMS
deployments. Currently there is no canonical data model for storing patient or healthcare worker data in RapidSMS.
This means that each deployment tends to create its own model for this data. Applications that are then built to use
this data are tied to the model which hurts the reusability of these applications.

At the same time with development of external electronic medicial record systems such as OpenMRS, future deploy-
ments may choose to use these solutions rather than storing data via the Django ORM. So rather than try to create
a canonical representation of the data, this project intends to create a seperation between the storage and access of
the data. Applications which need to access or store patient data will do so through a common API without knowl-
edge of the storage allowing the same code to be used in a deployment which uses the ORM and another which uses
OpenMRS.

6.1.1 Goals

The development of rapidsms-healthcare is still in the very early stages but the primary goals for both the current and
future work are

• Client API for storing and retriving patient and provider records

• Default storage backend using the Django ORM

• Additional storage backend using OpenMRS

• Documentation guide/standards for creating additional storage backends

• Suite of applications known to work with this patient API

6.1.2 Related Projects

There two current projects which attempt to provider flexible data models for patient records

• https://github.com/unicefuganda/rapidsms-healthmodels

• https://github.com/ewheeler/rapidsms-people-app

While the flexibility is helpful for a singular deployment, it contributes to the difficulty when trying to create applica-
tions which can be used on a broad set of deployments.

13

https://github.com/unicefuganda/rapidsms-healthmodels
https://github.com/ewheeler/rapidsms-people-app

rapidsms-healthcare Documentation, Release 0.1.0

6.2 Getting Started

Here you will find the necessary steps to install and initial configure the rapidsms-healthcare application.

6.2.1 Requirements

rapidsms-healthcare requires Python 2.6 or 2.7. Python 3 is not currently supported but is planned in the future as
Django and RapidSMS support for Python 3 increases. It also requires the following packages:

• Django >= 1.4

• RapidSMS >= 0.11.0

6.2.2 Installation

Stable releases of rapidsms-healthcare can be found on PyPi and pip is the recommended method for installing the
package:

pip install rapidsms-healthcare

6.2.3 Configuration

The storage and retrieval of healthcare related data is configured by the HEALTHCARE_STORAGE_BACKEND set-
ting. If you are using the default storage backend you need to change your INSTALLED_APPS to include:

INSTALLED_APPS = (
Other apps go here
’healthcare.backends.djhealth’,

)

If you are using a different backend then you can skip this step. The Django backend uses South to manage possible
future changes to the schema. While not required if you are using South in your project then you can create the tables
needed for the backend via:

python manage.py migrate djhealth

If you are not using South then you can create the tables via:

python manage.py syncdb

Note: While using South is optional, it is highly recommended. If you are not using South then you may need to
apply future schema change yourself. When needed these will be noted in the release notes.

6.2.4 Next Steps

• For information on storing and retrieving data you can go to the usage documentation.

• For information on creating a custom storage backend please see the backend API documentation.

• If you have found and bug or would like to contribute a feature you can go to the contributing guide.

14 Chapter 6. Contents

http://pypi.python.org/
http://www.pip-installer.org/
http://south.aeracode.org/

rapidsms-healthcare Documentation, Release 0.1.0

6.3 Basic Usage

The primary usage of this application is for other RapidSMS applications to have a common way to store and retrive
patient/provider data even though each project which deploy the application may use different methods of actually
storing the data.

Applications built with rapidsms-healtcare should use the functionality provided by healthcare.api. The
client object in the module is primary entry point for accessing the healthcare data. It provides basic CRUD
(Create/Update/Delete) operations for the patient and provider data:

from healthcare.api import client

patient = client.patients.create(name=’Joe’, sex=’M’)

6.3.1 Available Backends

Where this data is stored configured by the HEALTHCARE_STORAGE_BACKEND setting. Below are all of the
available backends included in the rapidsms-healthcare distribution.

DjangoStorage

Path: ’healthcare.backends.djhealth.DjangoStorage’

This is the default storage backend. It stores the patient and provider information using the Django ORM. To use this
backend you must include ’healthcare.backends.djhealth’ in your INSTALLED_APPS setting to create
the necessary tables.

Warning: Though the default storage backend uses the Django ORM, developers should resist all temptation to
access the models directly (including creating FKs in additional models) as that will break the portability of the
application.

DummyStorage

Path: ’healthcare.backends.dummy.DummyStorage’

This backend stores the data in local memory. This backend is indended only for testing and should never be used in
a production setting.

6.3.2 Patient Information

Operations on patient data are done through client.patients. Currently the backend supports create, get, up-
date, filter, delete, link, and unlink:

from healthcare.api import client

Create new patient
patient = client.patients.create(name=’Joe’, sex=’M’)

Update the patient’s name
client.patients.update(patient[’id’], name=’Jack’)

Refetch the patient record

6.3. Basic Usage 15

rapidsms-healthcare Documentation, Release 0.1.0

patient = client.patients.get(patient[’id’])

Get patients with name containing ’Ja’
patients = client.patients.filter(name__like=’Ja’)

Delete a patient record
client.patients.delete(patient[’id’])

Patient Data Model

Patients currently store the following pieces of data 1:

Name Type Description
id String Globally unique identifier
name String A readable name/identifier
sex String (M/F) Patient’s sex
birth_date Date Date the patient was born
death_date Date Date the patient died
location String Identifier for the patient’s location
created_date Datetime Time when the record was created
updated_date Datetime Time when the record was last updated
status String (A/I) Flag to denote if the record is currently active

The location field might store the name of the location or an identifier for another location/facility registry.

patients.create

patients.create adds a new patient record to the data store. The arguments for this function are passed to the
backend to store on the record. The patient data is returned as a dictionary and contains additional fields which are
generated by the backend: id, created_date and updated_date.

patients.update

patients.update takes the id of the patient along with arguments to be passed to the backend to update. This
returns a boolean to note whether a matching patient was found and updated.

patients.get

patients.get returns a patient’s data as dictionary for the given id. If no matching patient was found this will
raise a PatientNotFound exception.

Patients can also be associated with external ids using the link method. You can retrieve these users using get by
passing the source name of the identifier.:

from healthcare.api import client

Create new patient
patient = client.patients.create(name=’Joe’, sex=’M’)

Associate patient with an external ID
client.patients.link(patient[’id’], ’123456789’, ’NationalID’)

1 Required fields are bold and generated values are in italics.

16 Chapter 6. Contents

rapidsms-healthcare Documentation, Release 0.1.0

Refetch the patient record using national id
patient = client.patients.get(’123456789’, source=’NationalID’)

patients.filter

patients.filter returns a list of matched patient data dictionaries. If there are no matches then it will be an
empty list. Additional details on filtering expressions is given below.

patients.delete

patients.delete takes the id of the patient and returns a boolean to note whether a matching patient was found
and deleted.

patients.link and patients.unlink

The patient.id is generated by the backend and cannot be controlled by the application. patients.link
and patients.unlink are used to manage associations between patients and additional identifiers used by the
application. These might be identifiers created internally by application, assigned by health care facilities or national
identifiers. To create a new association you need patient id, the additional id, and a name for the source of the id. The
additional identifiers should be unique for their source.:

from healthcare.api import client

Create new patient
patient = client.patients.create(name=’Joe’, sex=’M’)

Associate patient with an external ID
client.patients.link(patient[’id’], ’123456789’, ’NationalID’)

patients.unlink is used to remove this association.:

Continued from the above example...

Remove patient’s external ID
client.patients.unlink(patient[’id’], ’123456789’, ’NationalID’)

The patients.link and patients.unlink both return booleans to denote whether the association cre-
ation/deletion was successful.

6.3.3 Provider Information

Operations on patient data are done through client.providers. Currently the backend supports create, get,
update, filter and delete:

from healthcare.api import client

Create new provider
provider = client.providers.create(name=’Joe’)

Update the providers’s name
client.providers.update(provider[’id’], name=’Jack’)

Refetch the provider record

6.3. Basic Usage 17

rapidsms-healthcare Documentation, Release 0.1.0

provider = client.providers.get(provider[’id’])

Get providers with name containing ’Ja’
providers = client.providers.filter(name__like=’Ja’)

Delete a provider record
client.providers.delete(provider[’id’])

Provider Data Model

Providers currently store the following pieces of data 2:

Name Type Description
id String Globally unique identifier
name String A readable name/identifier
location String Identifier for the provider’s location
created_date Datetime Time when the record was created
updated_date Datetime Time when the record was last updated
status String (A/I) Flag to denote if the record is currently active

As with patients, the location field might store the name of the location or an identifier for another location/facility
registry.

providers.create

providers.create adds a new provider record to the data store. The arguments for this function are passed to
the backend to store on the record. The provider data is returned as a dictionary and contains additional fields which
are generated by the backend: id, created_date and updated_date.

providers.update

providers.update takes the id of the provider along with arguments to be passed to the backend to update. This
returns a boolean to note whether a matching provider was found and updated.

providers.get

providers.get returns a provider’s data as dictionary for the given id. If no matching provider was found this will
raise a ProviderNotFound exception.

providers.filter

providers.filter returns a list of matched provider data dictionaries. If there are no matches then it will be an
empty list. Additional details on filtering expressions is given below.

providers.delete

providers.delete takes the id of the provider and returns a boolean to note whether a matching provider was
found and deleted.

2 Required fields are bold and generated values are in italics.

18 Chapter 6. Contents

rapidsms-healthcare Documentation, Release 0.1.0

6.3.4 Filter Expressions

Both the patient and provider APIs support filtering the data by the fields in their respective models. The lookup
expressions are modeled after the lookup types in the ORM. Unlike the Django ORM, there is no support for join-like
expressions in the lookups.

exact

exact is the default lookup type. As the name implies it requires an exact match between the field and given value.:

patients = client.providers.filter(name=’Joe’)
providers = client.providers.filter(name__exact=’Joe’)

like

The like lookup is a containment expression for string-type fields. For instance, this would be used to find data with
a partial name match.:

patients = client.providers.filter(name__like=’J’)
providers = client.providers.filter(name__like=’J’)

in

An in expression is an exact match for a list of values. This lookup might be used to find a set of patients where you
know all of their names.:

patients = client.providers.filter(name__in=[’Joe’, ’Jane’])
providers = client.providers.filter(name__in=[’Joe’, ’Jane’])

lt and lte

Similar to the ORM, the lt and lte expressions are inequality expressions. These are used to find data either strictly
less than or less than or equal to a given value respectively.:

import datetime

patients = client.providers.filter(updated_date__lt=datetime.datetime.now())
providers = client.providers.filter(updated_date__lte=datetime.datetime.now())

gt and gte

gt and gte expressions are inequality expressions. These are used to find data either strictly greater than or greater
than or equal to a given value respectively.:

import datetime

patients = client.providers.filter(updated_date__lt=datetime.datetime.now())
providers = client.providers.filter(updated_date__lte=datetime.datetime.now())

6.3. Basic Usage 19

rapidsms-healthcare Documentation, Release 0.1.0

6.4 Storage Backend API

If the existing storage backends do not met your needs then you can write you own backend. You may want to store
data using a popular medical record system (OpenMRS, FreeMED) or NoSQL database (CouchDB, MongoDB). Since
applications interact with the storages though the client API they will transparently work with your new storage.

Note: This is an advanced use case and not necessary for most users or application developers.

The data passed to the backend will match the data described in the patient and provider data model sections. Backend
methods which return data should return dictionaries matching this format as well.

6.4.1 Backend API

Additional backends should extend from HealthcareStorage which is defined below:

class HealthcareStorage

get_patient(id, source=None)
Patient data should be fetched for the given id and returned as a dictionary. If the patient does not exist
this method should return None.

source is an optional paramter. If given then the id should be interpreted as the source_id
and the source as the source_name to find the patient using the association created by
py:meth:HealthcareStorage.link_patient. If the patient cannot be found for this association it should also
return None.

create_patient(data)
A patient record should be created for given set of data given as a dictionary. The newly created patient
record should be returned as a dictionary.

update_patient(id, data)
Patient data for the given id should be updated with the data dictionary. data may not be a full set
of the patient fields. This method should return True if a patient was found and updated and False
otherwise.

delete_patient(id)
Patient data for the given id should be deleted. This method should return True if a patient was found
and deleted and False otherwise.

filter_patients(*lookups)
Returns a list of patients matching the set of lookups. If no patients were found it should return an empty
list. If no lookups were passed it should return all patients. The details of the lookup structure is given
in the next section. When multiple lookups are passed, the intersection of the results should be returned
(default to AND the expressions).

link_patient(id, source_id, source_name)
Associates a patient with an addition identifier. The source_id and source_name pair should be
enforced as unique. This should return a True value if the association was created. Otherwise it should
return False.

unlink_patient(id, source_id, source_name)
Removes an association of a patient with an addition identifier. This should return a True value if the
association was found and removed. Otherwise it should return False.

20 Chapter 6. Contents

rapidsms-healthcare Documentation, Release 0.1.0

get_provider(id)
Provider data should be fetched for the given id and returned as a dictionary. If the provider does not exist
this method should return None.

create_provider(data)
A provider record should be created for given set of data given as a dictionary. The newly created
provider record should be returned as a dictionary.

update_provider(id, data)
Provider data for the given id should be updated with the data dictionary. data may not be a full set
of the provider fields. This method should return True if a provider was found and updated and False
otherwise.

delete_provider(id)
Provider data for the given id should be deleted. This method should return True if a provider was found
and deleted and False otherwise.

filter_providers(*lookups)
Returns a list of providers matching the set of lookups. If no providers were found it should return an
empty list. If no lookups were passed it should return all providers. The details of the lookup structure
is given in the next section. When multiple lookups are passed, the intersection of the results should be
returned (default to AND the expressions).

6.4.2 Backend Lookups

The above HealthcareStorage.filter_patients() and py:meth:HealthcareStorage.filter_providers
methods are each passed a list of lookups for filtering the underlying records. Each of these lookups is a 3-tuple
(field_name, operator, value). The field_name is passed as a string and must match a field name
on the corresponding data model. The value is the requested value for comparison which should be a standard
Python type (int, float, list, sting, date, datetime, etc). The operator is one of the below constants from the
healthcare.backends.comparisons module.

Operator Comparison
EQUAL Field is an exact match to the value
LIKE Field contains the value
IN Field is an exact match to one of the values in the value (list/tuple)
LT Field is less than the value
LTE Field is less than or equal to the value
GT Field is greater than the value
GTE Field is greater than or equal to the value

The backend is responsible for mapping these operators to the meaningful expressions for its storage method.

6.4.3 Testing the Backend

There is a testing mixin BackendTestMixin in healthcare.tests.base which runs through a set of com-
patibility tests for the backends. You simply need to attach the path of the backend to the backend attribute.

from django.test import TestCase

from healthcare.tests.base import BackendTestMixin

class FancyBackendTestCase(BackendTestMixin, TestCase):
backend = ’path.to.new.backend’

6.4. Storage Backend API 21

rapidsms-healthcare Documentation, Release 0.1.0

This should not be considered an complete set of tests and the developers should write additional tests to cover edge
cases in their backend.

6.5 Full Settings Reference

Below are the full set of settings for configuring rapidsms-healthcare along with their default values.

6.5.1 HEALTHCARE_STORAGE_BACKEND

Default: ’healthcare.backends.djhealth.DjangoStorage’

Controls where rapidsms-healthcare stores patient and provider data. The default backends provided are:

• healthcare.backends.dummy.DummyStorage

• healthcare.backends.djhealth.DjangoStorage

Additional backends can be written as needed.

6.6 Contributing Guide

There are a number of ways to contribute to rapidsms-healthcare. If you are interested in making rapidsms-healthcare
better then this guide will help you find a way to contribute.

6.6.1 Ways to Contribute

You can contribute to the project by submitting bug reports, feature requests or documentation updates through the
Github issues.

6.6.2 Getting the Source

You can clone the repository from Github:

git clone git://github.com/caktus/rapidsms-healthcare.git

However this checkout will be read only. If you want to contribute code you should create a fork and clone your fork.
You can then add the main repository as a remote:

git clone git@github.com:<your-username>/rapidsms-healthcare.git
git remote add upstream git://github.com/caktus/rapidsms-healthcare.git
git fetch upstream

6.6.3 Running the Tests

When making changes to the code, either fixing bugs or adding features, you’ll want to run the tests to ensure that you
have not broken any of the existing functionality. With the code checked out and Django installed you can run the tests
via:

python setup.py test

22 Chapter 6. Contents

https://github.com/caktus/rapidsms-healthcare/issues

rapidsms-healthcare Documentation, Release 0.1.0

or:

python runtests.py

To test against multiple versions of Django you can use install and use tox>=1.4. The tox command will run the
tests against Django 1.3, 1.4 and the current Git master using Python 2.6.:

Build all environments
tox
Build a single environment
tox -e py26-1.3.X

Building all environments will also build the documentation. More on that in the next section.

6.6.4 Building the Documentation

This project aims to have a minimal core with hooks for customization. That makes documentation an important
part of the project. Useful examples and notes on common use cases are a great way to contribute and improve the
documentation.

The docs are written in ReST and built using Sphinx. As noted above you can use tox to build the documentation or
you can build them on their own via:

tox -e docs

or:

make html

from inside the docs/ directory.

6.6.5 Coding Standards

Code contributions should follow the PEP8 and Django contributing style standards. Please note that these are only
guidelines. Overall code consistency and readability are more important than strict adherence to these guides.

6.6.6 Submitting a Pull Request

The easiest way to contribute code or documentation changes is through a pull request. For information on submitting
a pull request you can read the Github help page https://help.github.com/articles/using-pull-requests.

Pull requests are a place for the code to be reviewed before it is merged. This review will go over the coding style as
well as if it solves the problem indended and fits in the scope of the project. It may be a long discussion or it might
just be a simple thank you.

Not necessarily every request will be merged but you should not take it personally if you change is not accepted. If
you want to increase the chances of your change being incorporated then here are some tips.

• Address a known issue. Preference is given to a request that fixes a currently open issue.

• Include documentation and tests when appropriate. New features should be tested and documented. Bugfixes
should include tests which demostrate the problem.

• Keep it simple. It’s difficult to review a large block of code so try to keep the scope of the change small.

You should also feel free to ask for help writing tests or writing documentation if you aren’t sure how to go about it.

6.6. Contributing Guide 23

http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org/
http://www.python.org/dev/peps/pep-0008/
https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/coding-style/
https://help.github.com/articles/using-pull-requests

rapidsms-healthcare Documentation, Release 0.1.0

6.7 Release History

Release and change history for rapidsms-healthcare

6.7.1 v0.1.0 (Released 2013-02-21)

• Initial public release

• Suport for Django ORM and in-memory backends

24 Chapter 6. Contents

	Dependencies
	Documentation
	Running the Tests
	License
	Contributing
	Contents
	Project Overview
	Getting Started
	Basic Usage
	Storage Backend API
	Full Settings Reference
	Contributing Guide
	Release History

