

RAML 2 AGL

	Introduction and Goals
	Requirements Overview

	Quality Requirements

	Constraints
	Technical Constraints

	Conventions

	System Scope and Context

	Solution Strategy

	Building Block View
	Service Class

	WebSocketApi

	APP Class

	AGL Service

	RAML Parser

	raml2agl main

	Runtime View
	RAML2AGL Generation

	AGL Service Start

	Web Socket Communication

	Deployment View

	Cross-cutting Concepts
	RPC over Web Socket

	Design Decisions
	RESTful Modeling Language Selection

	Python for raml2agl

	RAML Parser vs pyraml-parser/ramlifications

	RPC over Web Socket Communication

	Quality Requirements

	Risks and Technical Debts
	PyRAML/ramlifications Adoption

	RPC Limitations

	Glossary

Introduction and Goals

AGL provides many development interfaces. For
instance, HTML5, JavaScript, and C/C++ applications can be developed to run on
top AGL. However, development methodologies
aren’t explicitly mentioned from AGL’s
development team.

Requirements Overview

This documentation presents an MDD methodology
to simplify and abstract the development process.

Quality Requirements

Below, the quality requirements are presented.

	Requirement: Transparency REQ_001

	
links incoming: None

links outgoing: None

The MDD methodology shall show a clear
mapping between the components from involved layers.

	Requirement: Abstraction REQ_002

	
links incoming: None

links outgoing: None

The MDD methodology shall provide a
simplified abstract of the concepts in the underlying layers; e.g. Application
Framework.

	Requirement: Standardization REQ_003

	
links incoming: None

links outgoing: None

The developed solutions for the MDD
methodology, shall use standard and predefined processes, methodologies,
tools, and interfaces to facilitate their adoption.

	Requirement: Flexibility REQ_004

	
links incoming: None

links outgoing: None

The MDD methodology should provide
customization mechanisms.

	Requirement: Testability and Debugability REQ_005

	
links incoming: None

links outgoing: None

The MDD methodology should provide
mechanisms for testing and debug all main components.

Constraints

Technical Constraints

The technical constraints are shown in Table 1.

Table 1 Technical Constraints Table

	ID

	Constraint

	Description

	Software and programming constraints

	TC1

	Programming Language

	There’s no explicit constraint regarding
the programming language to be used.

	Operating system constraints

	TC2

	AGL distribution

	The developed MDD methodology shall apply
for developing for AGL Linux Distribution

	Hardware Constraints

	TC3

	Memory friendly

	The applications developed with the MDD
approach shall consider good memory
management practices.

Conventions

Finally, conventions used by this project are shown in
Table 2.

Table 2 Organizational Constraints Table

	ID

	Constraint

	Description

	C1

	Documentation

	The documentation is written using the
arc42 document structure and using Sphinx.

	C2

	Coding conventions

	For C/C++ and Python (used for the MDD)
development the coding styles used were
the Linux Kernel coding style
[8] and PEP8 [11],
respectively.

	8

	Linux kernel coding style. URL: https://www.kernel.org/doc/html/v4.10/process/coding-style.html.

	11

	PEP 8 – Style Guide for Python Code. URL: https://www.python.org/dev/peps/pep-0008/.

System Scope and Context

The work presented in this document proposed a Proof-of-Concept of an
MDD Approach. The approach is focused on
showing a possible workflow to develop AGL applications and services.
Fig. 1 shows the context diagram of such an approach. Note that
the proposed solution should consider AGL components in order to provide
a smooth integration with the AGL Linux Distribution.

[image: @startuml component "AGL Application Framework" as agl_af component "AGL Linux Distribution" as agl actor "Service/Application Developer" as dev actor "Application user" as user component "MDD Approach" as mdd component "Model" as model user .right.> mdd : <<flow>> dev .right.> mdd : <<flow>> model .down.> mdd : <<flow>> metadata mdd .down.> agl_af : <<flow>> mdd .down.> agl : <<flow>> @enduml]

Fig. 1 MDD Approach Context

Solution Strategy

The MDD approach developed is focused on
developing applications to run on top of AGL. The AGL architecture specifies
different layers of abstraction and the MDD
workflows shall be compliant with this architecture. Therefore, the
MDD process presented in this work focuses
on the development of AGL Services that use AGL’s Applications Framework
APIs.

AGL services expose functionality to all the applications that might run
on top [32]. To be more specific AGL services are implemented
as systemd user-defined services in AGL. The way they expose the
functionality is exposing a RESTfull API through a Web Sockets (or dbus).
Meaning that in order to access functionality exposed by an AGL service, the
application has to open a Web Socket use the RESTfull API.

The MDD approach presented in this document
focuses in defining a model of the RESTfull API. The model is then used as an
input for automatically generate the communication components of both the AGL
service and the AGL application.

For modeling the RESTfull API, RAML was used.
RAML is a recently developed community
standard that has already been widely adopted in other projects like;
API Workbench and API Designer [17]. It’s a markup language
based in YAML, which makes it both; machine readable and human readable.

raml2agl is written in Python (Python 3), which makes it really fast to
develop and portable. Although Python has already two reference implementations
of a RAML parser called pyraml-parser [13] and
ramlifications (developed by Spotify) [36], they
were not used for developing raml2agl since they only support RAML 0.8
and raml2agl plans to support RAML 1.0. Therefore, a custom RAML 1.0
parser was designed and implemented. ramlifications plans to support
RAML 1.0 in the future. [36] Therefore, raml2agl
could adopt it in the future.

Another reason to use Python to write raml2agl is the variety of already
implemented components. Especially the support for Jinja2 templating language
was of high importance here. Jinja2 is a very powerful and complete templating
language with bindings for Python. [35] The code generation was
implemented using Jinja2 templates, which makes the code generation highly
flexible and fast to develop.

The final outcome of the automatic code generation is a set of C++ classes
that implement the entire RESTfull API communication. Moreover, simple C++
classes methods abstract the complex Web Socket handling and RESTfull API
message marshaling and unmarshaling. This approach can be compared with other
projects like Google’s protobuffer [25] that aims to
automatically generate the communication components.

	13

	Pyraml. URL: https://github.com/an2deg/pyraml-parser.

	17

	Raml projects. URL: https://raml.org/projects.

	25

	Google. Protobuffers. URL: https://developers.google.com/protocol-buffers/.

	32

	Automotive Grade Linux. Automotive grade linux requirements specifications. May 2015. URL: http://docs.automotivelinux.org/docs/architecture/en/dev/reference/AGL_Specifications/agl_spec_v1.0_final.pdf.

	35

	Armin Ronacher. Welcome to Jinja2. URL: http://jinja.pocoo.org/docs/2.10/.

	36(1,2)

	Spotify. Ramlfications. URL: https://github.com/spotify/ramlfications.

Building Block View

To understand where the proposed MDD approach
has its importance, the components involved in the Unix Web Socket communication
have to be presented. Fig. 2 presents these components.

[image: @startuml interface "Unix Web Socket" as ws package "AGL" { component "AGL Applications Framework" as af interface "Application Framework API" as af_api } package "Service" { component "AGL Service" as service component "Service Class" as service_class interface "Service Class" as i_service_class service .up.> af_api : use service .down.> i_service_class : use af -down- af_api i_service_class -down- service_class } package "Application" { component "APP Class" as app_class component "Application" as app component "WebSocketApi" as wsapi interface "APP Class" as i_app_class app .down.> i_app_class : use app_class -up- i_app_class app_class -down-|> wsapi } service -right-> ws app_class .right. ws : use @enduml]

Fig. 2 Web Socket Communication Component Diagram

Since the AGL Application Framework and its API are already given in the
AGL architecture, the rationale behind the design was to wrap the
AGL Application Framework API and the Web Socket communication in an RPC-like
approach. Moreover, the components were encapsulated applying functional
decomposition. Table 3 shows the responsibilities for
each of the components in Fig. 2.

Table 3 Top Block Components Responsibilities

	Name

	Responsibility

	AGL Application Framework

	Manage all AGL Services and their life cycle,
Create Unix Web Socket for the RESTfull API to
be served by the AGL Services, Forward
RESTfull API verb calls to AGL Services verbs
callbacks, Verbs authentication process
handling.

	AGL Service

	Initialize service resources, serve the
RESTfull API, Forward the RESTfull API verbs
to the corresponding Service Class method,
Unmarshal JSON messages as to parse
corresponding Service Class method parameters,
Marshal output parameters of Service Class as
JSON to reply through Unix Web Socket.

	Service Class

	Implements the intended functionality at
service side for each RESTfull API verb.

	Application

	Use functionality exposed by the AGL Services
to achieve a user-visible purpose.

	APP Class

	Exposes all RESTfull API verbs as methods
with input and output parameters, Marshal
parameters as JSON to send requests to the
Unix Web Socket, Unmarshal JSON replies to
update output parameters.

	WebSocketApi

	Handle Unix Web Socket connection, Form
RESTfull API request, Wait for RESTfull API
replies.

raml2agl features an automatic code generation tool developed.
Fig. 3 shows the building blocks of the tool and its
relations with the possible outputs.

[image: @startuml component "RAML Model" as model interface "RAML" as raml package "RAML2AGL" { component "RAML Parser" as parser component "raml2agl main" as main interface "JSON Model" as jmodel interface "Templates Engine" as jinja_tmp component "Jinja2 Environment" as jinja_env parser -left- raml parser -down- jmodel main .up.> jmodel : use main .down.> jinja_tmp : use jinja_env -up- jinja_tmp } package "Service" { component "AGL Service" as service component "Service Class" as service_class } package "Application" { component "APP Class" as app_class } model -right- raml main -right-> service : <<generate>> main -right-> app_class : <<generate>> main -right-> service_class : <<partially generate>> @enduml]

Fig. 3 RAML2AGL Block Diagram

As shown in Fig. 3, raml2agl generates code for the
Service Class, App Class, and the AGL Service; the last two are fully
generated. Note that the automatically generated components are the ones with
more responsibilities, as shown in Table 3. This fact was
also the rationale behind the definition of the components, to automate most of
the process and reduce the overhead of creating a new Service and/or
Application. Moreover, Table 4 shows the
responsibilities of each of the raml2agl components.

Table 4 RAML2AGL Components Responsibilities

	Name

	Responsibility

	RAML Parser

	Read the RAML model and create a JSON model to
be pass to the Jinja2 templates.

	Jinja2 Environment

	Manage the templates, render the templates
using the JSON model.

	raml2agl main

	Read the RAML model from a file, Control the
entire generation flow, reads input command
line parameters, Calls the RAML Parser to
generate JSON model, Calls the Jinja2
Environment to render the corresponding
templates.

Service Class

Fig. 4 shows an example of the output of
raml2agl using the following model;

#%RAML 1.0
title: Example
mediaType: application/json
version: v1
baseUri: localhost:8000/api?token=x
/method_1:
 post:
 body:
 properties:
 param_in_1:
 type: integer
 get:
 responses:
 200:
 body:
 properties:
 param_out_1:
 type: integer
/method_2:
 post:
 body:
 properties:
 param_in_1:
 type: string
 get:
 responses:
 200:
 body:
 properties:
 param_out_1:
 type: string

[image: @startuml class WebSocketApi { } class "Example" <<APP Class>> { method_1(param_in_1: const int, param_out_1: int &): int method_2(param_in_1: const char *, param_out_1: const char *): int } class "ServiceExample" <<Service Class>> { method_1(param_in_1: const int, param_out_1: int &): int method_2(param_in_1: const char *, param_out_1: const char *): int } "Example" -up-|> WebSocketApi "Example" .. "ServiceExample": linked over unix web socket hide members show "Example" methods show "ServiceExample" methods @enduml]

Fig. 4 Generated Example

Note that Service Class isn’t fully automatic generated. Nevertheless, a
skeleton of the entire class with all the methods definition is generated. Is
the task of the Service developer to finish the implementation of the
functionality. Moreover, each method represents a verb of the RESTfull API.
Hence, /example/method_1 will shall be implemented in
ServiceExample.method_1(...). Furthermore, the model title is the parsed
to name the RESTfull API and both classes.

WebSocketApi

Fig. 5 class diagram shows the definition of the
WebSocketApi class.

[image: @startuml class WebSocketApi { -{static} wsj1_itf: struct afb_wsj1_itf -{static} wsj1: struct afb_wsj1 * -{static} exonrep: int -{static} callcount: int -{static} loop: sd_event * -{static} reply: bool -{static} curr_reply: json_object * -uri: const char * -api_name: const char * #connected: bool +WebSocketApi(uri: const char *, api_name: const char *) +~WebSocketApi() #emit(verb: const char *, object: const char *): json_object * -{static} dec_callcount(): void -{static} on_wsj1_hangup(closure: void *, wsj1: struct afb_wsj1 *): void -{static} on_wsj1_call(closure: void *, api: const char *, verb: const char *, msg: struct afb_wsj1_msg *): void -{static} on_wsj1_event(closure: void *, event: const char *, msg: struct afb_wsj1_msg *): void -{static} on_wsj1_reply(closure: void *, msg: struct afb_wsj1_msg *): void -{static} wsj1_call(api: const char *, verb: const char *, object: const char *): int } @enduml]

Fig. 5 Web Socket API Class Diagram

Moreover, below the description of each of the classes members.

	
class WebSocketApi

	Handle Unix Web Socket connection and transmission

Public Functions

	
WebSocketApi(const char *uri, const char *api_name)

	Constructor

Creates Unix Web Socket connection and initialize the wait loop

	Parameters

	
	uri: Base uri to the web socket

	api_name: API name

	
~WebSocketApi()

	Destructor

Releases the resources and disconnect from the Unix Web Socket

Protected Functions

	
json_object *emit(const char *verb, const char *object)

	Send string to the specified API’s verb

	Return

	Reply JSON object

	Parameters

	
	verb: API’s verb

	object: Marshaled JSON object

Protected Attributes

	
bool connected

	Flags connection status

Private Members

	
const char *uri

	Base URI of the API

	
const char *api_name

	API name

Private Static Functions

	
static void dec_callcount()

	Decrement the reference count of calls

	
static void on_wsj1_hangup(void *closure, struct afb_wsj1 *wsj1)

	Hang up callback
	Parameters

	
	closure: Hangup’s closure

	wsj1: Connection object

	
static void on_wsj1_call(void *closure, const char *api, const char *verb, struct afb_wsj1_msg *msg)

	Receives a method invocation callback
	Parameters

	
	closure: Call’s closure

	api: API Name

	verb: API’s verb

	msg: Message to be sent

	
static void on_wsj1_event(void *closure, const char *event, struct afb_wsj1_msg *msg)

	Receive an event callback
	Parameters

	
	closure: Event’s closure

	event: Issued event

	msg: Received message

	
static void on_wsj1_reply(void *closure, struct afb_wsj1_msg *msg)

	Receive a reply callback
	Parameters

	
	closure: Reply’s closure

	msg: Replied message

	
static int wsj1_call(const char *api, const char *verb, const char *object)

	Send a marshaled object to the specified API and API’s verb
	Return

	Return POSIX error codes

	Parameters

	
	api: API name

	verb: API’s verb

	object: Marshalled JSON object

Private Static Attributes

	
struct afb_wsj1_itf wsj1_itf

	The Web Socket callback interface for wsj1

	
struct afb_wsj1 *wsj1

	The Web Socket connection object

	
int exonrep

	The Web Socket connection object

	
int callcount

	Calls Reference counter

	
sd_event *loop

	Wait loop event

	
bool reply

	Flags the presens of a reply

	
json_object *curr_reply

	Last received JSON object

APP Class

As shown in Fig. 4 the Example APP Class
has symmetric methods with ServiceExample. Therefore, a call to
Example.method_1 will call /example/method_1 RESTfull API
through the Unix Web Socket. Note that every APP Class is completely
automatically generated. Moreover, APP Class inherits WebSocketApi
and implements the entire Unix Web Socket communication its methods.

AGL Service

An AGL service is basically the implementation of the
Application Framework API shown in Fig. 6.

[image: @startuml class afb_auth << (S,#FF7700) >> { } class afb_verb_v2 << (S,#FF7700) >> { verb: const char * (*callback)(req: struct afb_req): void auth: const struct afb_auth * info: const char * session: uint32_t } class afb_binding_v2 << (S,#FF7700) >> { api: const char * specification: const char * info: const char * verbs: const struct afb_verb_v2 * (*preinit)(): int (*init)(): int (*onevent)(event: const char *, object: struct json_object *): void noconcurrency: unsigned } afb_binding_v2 --* afb_verb_v2 : use afb_verb_v2 --* afb_auth : use @enduml]

Fig. 6 AGL Application Framework API [29]

Furthermore, to implement Fig. 4, for instance,
a null-terminated list of verbs has to be defined as follows;

static const struct afb_verb_v2 verbs[] = {
 /*Without security*/
 {.verb = "method_1", .callback = method_1, .auth = NULL, .info = "method_1", .session = 0},
 {.verb = "method_2", .callback = method_2, .auth = NULL, .info = "method_2", .session = 0},
 {.verb = NULL, .callback = NULL, .auth = NULL, .info = NULL, .session = 0 }
};

Note that for an initial implementation the authentication mechanisms weren’t
implemented. Nevertheless, it has been included in the raml2agl’s road
map, see [22].

And finally, to register the entire API to the AGL Application Framework the
afb_binding_v2 structure is automatically generated as follows.

const struct afb_binding_v2 afbBindingV2 = {
 .api = "example",
 .specification = "",
 .info = "Auto generated - Example",
 .verbs = verbs,
 .preinit = NULL,
 .init = init,
 .onevent = NULL,
 .noconcurrency = 1
};

RAML Parser

Fig. 7 presents the internals of the RAML Parser component.
Furthermore, the responsibilities of each of the sub-components are stated in
Table 5

[image: @startuml interface RAML as raml interface JSON as json package "RAML Parser" { component "Root Attributes Parser" as root_parser component "Methods Parser" as method_parser package "Parameters Parser" { component "Input Parameters Parser" as input_params component "Output Parameters Parser" as output_params component "Types Parser" as type_parser input_params <-down-> type_parser : <<flow>> RAML, JSON output_params <-down-> type_parser : <<flow>> RAML, JSON } method_parser <-down-> input_params : <<flow>> RAML, JSON method_parser <-down-> output_params : <<flow>> RAML, JSON root_parser <-down-> method_parser : <<flow>> RAML, JSON } raml -right-> root_parser : <<flow>> RAML root_parser -right-> json : <<flow>> JSON @enduml]

Fig. 7 RAML Parser Block Diagram

Table 5 RAML2 Parser Sub-components Responsibilities

	Name

	Responsibility

	Root Attributes Parser

	Parse the RAML root attributes like; title and
base URI.

	Methods Parser

	Parse the RAML verbs as methods

	Input Parameters Parser

	Parse the RAML verbs’ input parameters

	Output Parameters Parser

	Parse the RAML verbs’ output parameters

	Types Parser

	Parse the RAML verbs’ parameters’ types

raml2agl main

Fig. 8 presents the internals of the RAML2AGL main
component. Furthermore, the responsibilities of each of the sub-components are
stated in Table 6

[image: @startuml interface "JSON model" as json interface "Template Engine" as tmpl interface "Command Line" as cmd interface "Filesystem" as fs package "raml2agl main" { component "Templates Filters" as filters component "Command Line Arguments Parser" as parser component "Files Generator" as gen parser --> gen : Configures cmd --> parser gen -down-> fs : Write files } json -right-> gen filters .right.> tmpl gen .right.> tmpl : use @enduml]

Fig. 8 RAML2AGL main Block Diagram

Table 6 RAML2AGL main Sub-components Responsibilities

	Name

	Responsibility

	Command Line Arguments
Parser

	Parses the command line arguments to configure
the File Generator.

	Templates Filters

	Defines Jinja2 Template filters to convert
data types from RAML format to C++.

	Files Generator

	Passes the JSON model to render the templates
to be built and write files to the selected
output location.

	22

	Pedro Cuadra. Raml to agl. URL: https://github.com/pjcuadra/raml2agl.

	29

	Automotive Grade Linux. Bindings reference. URL: http://docs.automotivelinux.org/docs/apis_services/en/dev/reference/af-binder/afb-binding-references.html.

Runtime View

RAML2AGL Generation

Fig. 9 presents the sequence of the raml2agl
run for automatically generate APP Class, WebSocketApi, AGL Service and
Service Class.

[image: @startuml participant raml2agl participant "RAML Model" as model participant "Jinja 2 Templates Engine" as jinja participant "Filesystem" as fs activate raml2agl raml2agl --> model : Read RAML model raml2agl --> raml2agl: RAML to JSON model raml2agl --> jinja : Load templates ... alt "--service" == Generate AGL Service == raml2agl -> jinja : Get AGL Service template jinja --> raml2agl raml2agl -> jinja : Render AGL Service template jinja --> raml2agl raml2agl --> fs : Write generated AGL Service (*.cpp) == Generate Service Class == raml2agl -> jinja : Get Service Class template jinja --> raml2agl raml2agl -> jinja : Render Service Class template jinja --> raml2agl raml2agl --> fs : Write generated Service Class (*.cpp and *.h) else "--app" == Generate APP Class == raml2agl -> jinja : Get APP Class template jinja --> raml2agl raml2agl -> jinja : Render APP Class template jinja --> raml2agl raml2agl --> fs : Write generated APP Class (*.cpp and *.h) raml2agl --> fs : Copy WebSocketApi.cpp and WebSocketApi.h end alt "-v" raml2agl --> raml2agl : Print JSON Model end deactivate raml2agl @enduml]

Fig. 9 RAML2AGL Generation

AGL Service Start

It’s important to have some insight on how AGL Services are initialized and
how the Unix Web Socket gets created. Therefore,
Fig. 10 shows this process.

[image: @startuml actor Systemd participant "AGL App Framework" as af participant "AGL Service" as service participant "Unix Web Socket" as ws ... On System Start Up ... Systemd --> af : Start activate af af -> af : Start services activate af af --> ws : <<create>> With service's API Name activate ws af --> service : Start service activate service service --> ws : Listen ... @enduml]

Fig. 10 AGL Service Start

Web Socket Communication

The Web Socket Communication can only happen after the AGL Service is already
running, thus the Unix Web Socket was already created and the RESTfull API
is being served. Fig. 11 shows the sequence how the
entire communication takes place.

[image: @startuml actor User as user participant APP as app participant "APP Class" as app_class participant "Unix Web Socket" as ws participant "AGL Service" as service participant "Service Class" as service_class activate service activate ws user --> app : Start APP activate app app --> app_class : <<create>> activate app_class app_class -> ws : Connect \\nto 'api_name' \\nWeb Socket ws -> app_class activate app_class ... app -> app_class : 'APP Class'.method(params) app_class -> app_class : Marshal params \\nas JSON app_class --> ws : Request \\nverb=method \\nwith JSON app_class -> app_class : Start wait loop activate app_class ws --> service : Request \\nverb=method \\nwith JSON service -> service : Call verb's callback activate service service --> service : Unmarshal \\nJSON \\ninto params service -> service_class : 'Service Class'.method(params) activate service_class service_class -> service deactivate service_class service --> service : Marshal \\nresulting \\nparams as JSON service --> ws : Reply with JSON deactivate service ws --> app_class : Reply with JSON deactivate app_class ws --> app_class : Unmarshal \\nJSON \\ninto vars app_class --> app_class : Update params \\nwith vars app_class --> app ... user --> app : Stop APP app --> app_class : <<destroy>> app_class -> ws : Disconnect ws -> app_class deactivate app_class deactivate app_class deactivate app @enduml]

Fig. 11 Web Socket Communication

Note that the Application using the APP Class will have the entire Web
Socket communication abstracted as simple method calls. Hence, an RPC model
is implemented on top of the RESTful API. Fig. 12
shows this abstracted communication sequence.

[image: @startuml actor User as user participant APP as app participant "APP Class" as app_class user --> app : Start APP activate app app --> app_class : <<create>> activate app_class ... app -> app_class : 'APP Class'.method(params) app_class --> app ... user --> app : Stop APP app --> app_class : <<destroy>> deactivate app_class deactivate app @enduml]

Fig. 12 Web Socket Communication

Deployment View

Fig. 13 and
Fig. 14 show the structure
of the raml2agl repository. Note that src/template/ directory
holds all the templates that feed the Jinja2 Environment to generate the
components also shown in the corresponding diagram.

[image: @startuml folder "RAML2AGL Root Directory" { folder "src" { artifact "raml2agl.py" as raml2agl artifact "ramlParser.py" as raml_parser folder "templates" { } } } component "RAML Parser" as c_raml_parser component "raml2agl Main" as c_raml2agl raml_parser .down.> c_raml_parser : <<manifest>> raml2agl .down.> c_raml2agl : <<manifest>> @enduml]

Fig. 13 Deployment Diagram of RAML2AGL Root

[image: @startuml folder "RAML2AGL Root Directory" { folder "src" { folder "templates" { folder "types/app" { artifact "WebSocketApi.cpp" as ws_c artifact "WebSocketApi.h" as ws_h } folder "app" { artifact "class_header.h (APP)" as app_class_h artifact "class_source.c (APP)" as app_class_c } folder "service" { artifact "class_header.h (Service)" as service_class_h artifact "class_source.c (Service)" as service_class_c artifact "agl_service.c" as agl_service artifact "macros.c" } } } } component "APP Class" as c_app_class component "Service Class" as c_service_class component "WebSocketApi" as c_ws component "AGL Service" as c_agl_service app_class_h .down.> c_app_class : <<manifest>> app_class_c .down.> c_app_class : <<manifest>> service_class_h .down.> c_service_class : <<manifest>> service_class_c .down.> c_service_class : <<manifest>> ws_h .down.> c_ws : <<manifest>> ws_c .down.> c_ws : <<manifest>> agl_service .down.> c_agl_service : <<manifest>> @enduml]

Fig. 14 Deployment Diagram of RAML2AGL Root (With Templates)

Moreover, the Application and Service source files are separately compiled
and deployed at different abstraction layers within the AGL architecture.
Fig. 15

[image: @startuml node "Development Platform" { node "AGL" { rectangle "App/HMI" as app_layer { component "APP Class" as c_app_class component "WebSocketApi" as c_ws } rectangle "Services" as services_layer { component "Service Class" as c_service_class component "AGL Service" as c_agl_service } app_layer -(0- services_layer } } @enduml]

Fig. 15 Deployment Diagram of RAML2AGL Root (Runtime)

Cross-cutting Concepts

RPC over Web Socket

Since the raml2agl implements an RPC over a Web Socket,
Fig. 16 shows a generic RPC and
Fig. 17 shows a generic Web Socket communication. Note that
in order to communicate over Web Socket a connection between Client and
Server has to be acknowledged. Similarly, the connection has to be closed
once it’s not going to be used anymore. This part is handled in the
WebSocketApi constructor and destructor, respectively. Moreover, the
APP Class and the AGL Service handle the messaging and thus simulating an
RPC.

[image: @startuml activate Client Client -> Server : request deactivate Client activate Server Server -> Client : reply deactivate Server activate Client @enduml]

Fig. 16 RPC Model

[image: @startuml activate Client activate Server Client -> Server : Handshake Server -> Client Client <-> Server : Message Exchange alt Client -> Server : Close Connection else Server -> Client : Close Connection end @enduml]

Fig. 17 Web Socket Model

Design Decisions

RESTful Modeling Language Selection

There is a handful of Modeling Language that can be used for modeling RESTful
APIs. The main criteria to select the modeling language to be used was that it
has to be machine- and human-readable format, filtering the possibilities to
those using JSON and YAML formats. Options like API Blueprint were filtered
out because it’s written using Markdown which is more human-readable but much
less machine-readable. In contrast, XML-based modeling languages were also left
out, because it is not a human-readable format.

The analysis was, therefore, focus on OpenAPI and RAML. Nevertheless, after
analyzing their specifications [19] and [18], RAML
was considered to be equally descriptive and much less verbose.

Python for raml2agl

Python was selected to develop raml2agl, because of its simplicity.
Also, there are many Python libraries that make the development process faster
and easier. For instance, Jinja2 makes the entire automatic code generation with
relatively less effort. Python YAML parsing library is also used for RAML
parsing. Moreover, Python’s dictionaries are a key language feature that proofs
to be useful for parsing file’s content. As shown in [15] doesn’t
perform the best compared to a comparable implementation in other languages.
Nevertheless, a high performance isn’t required from raml2agl since the
code generation isn’t being done online nor frequently.

RAML Parser vs pyraml-parser/ramlifications

Even though there are reference implementations of a RAML parser called,
pyraml-parser and ramlifications, it was decided to not use them
for now since they only support up to RAML 0.8, whereas raml2agl plans
to support RAML 1.0.

This fact adds a little overhead to the development and also includes some risks
(discussed in PyRAML/ramlifications Adoption). Nevertheless, the RAML Parser didn’t
represent much effort to develop and generates the expected behavior
efficiently.

Since ramlifications plans to support RAML 1.0
[36], it might be a good idea to integrate it into the
RAML Parser once it’s supported.

RPC over Web Socket Communication

Web Socket communication is a powerful communication and design pattern. For
instance, Web Socket Communication enables bi-directional and asynchronous
communication. Whereas, RPC is a unidirectional and synchronous communication.

Therefore, implementing an RPC on top of Web Socket Communication means losing
some communication capabilities. This design decision is probably the most
important done regarding the MDD approach.

Even when the RPC communication model isn’t desired, raml2agl can still
be used. For instance, it can still be used to automatically generate the
AGL Service and the Service Class, since the RPC model is only implemented
in APP Class and WebSocketApi.

	15

	Python 3 programs versus c++ g++. URL: https://benchmarksgame.alioth.debian.org/u64q/compare.php?lang=python3&lang2=gpp.

	18

	RAML Version 1.0: RESTful API Modeling Language. URL: https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md/.

	19

	The openapi specification. URL: https://github.com/OAI/OpenAPI-Specification.

	36

	Spotify. Ramlfications. URL: https://github.com/spotify/ramlfications.

Quality Requirements

In this chapter, the quality requirement presented in
Quality Requirements are evaluated. Besides, other quality aspects are
also introduced an evaluated.

raml2agl tool fulfills Transparency (REQ_001) by maintaining a clear mapping
between the Service Class’s and the APP Class’s methods. Hence creating as
well an Object Oriented interface that abstracts the Unix Web Socket
communication and thus fulfilling Abstraction (REQ_002) as well.

The adoption of RAML as the interface modeling language speaks for the
fulfillment Standardization (REQ_003). Moreover, raml2agl uses broadly adopted
tools, such as Jinja2. Also, raml2agl follows standard coding styles
such as the Kernel’s coding style and PEP8. Both broadly adopted tools and
the use of standard coding styles, also contribute towards Standardization (REQ_003)
fulfillment.

raml2agl allows the user to set the output directories and decide
what components to generate. Additionally, by supporting RAML raml2agl
enables the user to generate a wide variety of interfaces. These are two
already-implemented customization mechanisms for the proposed MDD approach.
Therefore fulfilling Flexibility (REQ_004).

As for Testability and Debugability (REQ_005), generates intermediate probing points with well-defined
interfaces which allows the user to develop unit testing for the system’s
main components. For instance, the AGL service developer can create unit testing
for the Service Class, which would test the actual AGL Service’s purpose.
Similarly, the AGL Service developer could interact with the RESTful interface
directly using tools like Postman [12]. This will test a
different aspect of the components interaction, which is the marshaling and
unmarshaling of the JSON in the AGL Service side, as well as the mapping with
the Service Class’s methods. In the APP Service side, a similar testing can
be done to verify the marshaling and unmarshaling of the methods’ parameters
into JSON.

By defining a standard interface also enables a decoupled development process,
where AGL Service and AGL Application can be developed in parallel. Moreover,
mocking [10] mechanisms can be easily implemented using the
interface’s definition. For instance, the APP Service interface could be
mocked using Google Test [24], thus enabling testing at
AGL application level without the need of running in the actual system, which
at the same time enables faster development.

Interestingly, the mocking and components unit tests can be also automatically
generated out of the RAML model, also contributing towards Flexibility (REQ_004).
Moreover, by having a deterministic mapping between the RAML model and the
components’ behavior correctness can be verified once and guaranteed for
everyone [33], thus minimizing the testing
effort. Note that correct memory management is also considered part of the
code’s behavior correctness as it’s one of the system’s constraints (TC3) as
specified in Constraints. For instance, all the developed unit testing
could be tested under memory management checking tools such as valgrind
to validate its correctness. By doing so, the memory management correctness is
verified without any more testing effort since the same unit tests are run, but
on top of valgrind. In fact, this was done while testing
raml2agl’s behavior.

	10

	Mock object. URL: https://en.wikipedia.org/wiki/Mock_object.

	12

	Postman. URL: https://www.getpostman.com/.

	24

	Google. Googletest. URL: https://github.com/google/googletest.

	33

	Collin O’Halloran. Model base code verification. Formal Methods and Software Engineering: 5th International Conference on Formal Engineering Methods, ICFEM 2003, Singapore, November 5-7, 2003, Proceedings, 2003.

Risks and Technical Debts

Each of the subsections discusses a risk and technical debt aspect.

PyRAML/ramlifications Adoption

As mentioned before, pyraml nor ramlifications weren’t adopted
to develop raml2agl. This leaves an important technical debt since the
compliance with the RAML standard isn’t verified in the implemented RAML parser.
Meaning, that some modeling language syntax error in an input RAML model
wouldn’t be caught.

Moreover, the by the time of writing this document, the RAML parser doesn’t
support all RAML 1.0 features but are being increasingly supported. Thus,
creating a gap between the RAML 1.0 modeling features and the raml2agl
features. Nevertheless, the most important RAML 1.0 modeling features are
supported in raml2agl. Please review [22] for an
updated list of RAML 1.0 supported features.

RPC Limitations

The use of an RPC communication model on top of Web Socket represents a risk
and technical debt since some applications might work better on top of the
raw Web Socket communication. Nevertheless, raml2agl can still be used
for the client side automatically code generation as mentioned in
RPC over Web Socket Communication.

	22

	Pedro Cuadra. Raml to agl. URL: https://github.com/pjcuadra/raml2agl.

Glossary

	RESTful API

	An API that uses GET, PUT, POST, and DELETE HTTP requests to expose the
functionalities.

	RAML

	RESTful API Modeling Language

	Web Socket

	A networks communication protocol, over TCP, located at layer 7 of the OSI
model.

	RPC

	Remote Procedure Call is when a section of a program’s code is executed
in a different address space or system.

	MDD

	Model Driven Development

Index

 M
 | R
 | W

M

 	
 	MDD

R

 	
 	RAML

 	
 	RESTful API

 	RPC

W

 	
 	Web Socket

 	WebSocketApi (C++ class)

 	WebSocketApi::api_name (C++ member)

 	WebSocketApi::callcount (C++ member)

 	WebSocketApi::connected (C++ member)

 	WebSocketApi::curr_reply (C++ member)

 	WebSocketApi::dec_callcount (C++ function)

 	WebSocketApi::emit (C++ function)

 	WebSocketApi::exonrep (C++ member)

 	WebSocketApi::loop (C++ member)

 	
 	WebSocketApi::on_wsj1_call (C++ function)

 	WebSocketApi::on_wsj1_event (C++ function)

 	WebSocketApi::on_wsj1_hangup (C++ function)

 	WebSocketApi::on_wsj1_reply (C++ function)

 	WebSocketApi::reply (C++ member)

 	WebSocketApi::uri (C++ member)

 	WebSocketApi::WebSocketApi (C++ function)

 	WebSocketApi::wsj1 (C++ member)

 	WebSocketApi::wsj1_call (C++ function)

 	WebSocketApi::wsj1_itf (C++ member)

 	WebSocketApi::~WebSocketApi (C++ function)

 _images/plantuml-833f6c849ef4b58148213eb19e471088b2d627d4.png
. afb_binding_v2
api. const char *

specification: const char *
info: const char +

verbs: const struct afb_verb_v2 *
noconcurrency: unsignad

(rpreinitl): int
(Hinit)(): int
(ronevent){event: const char *, object: struct json_object *): void

Verb: const char +
auth: const struct afb_auth +
info: const char +
Session: uint32_t

(rcallbacki(req: struct afb_rea): void

_images/plantuml-9cb1b7aafd8d941d7da01cf1647868a959e4be3f.png
Handshake

Message Exchange

Close Connection

Close Connection

_images/plantuml-bebb57d2142ac33c41f62bdb5c875756913717da.png
rami2ag RAML Model | | jinja 2 Templates Engine | | Fllesystem

[RAML to JSON model

alt Tservice']

! Generate AGL Service

Get AGL Service template

Render AGL Service template

k<
 Write generated AGL Service (*.cpp)

! Generate Service Class

Get Service Class template
[
Render Senvice Class tpmplate N

Generate APP Class

Get APP Class template N
k
Render APP Class template

[
| Write generated APP Class (*.cpp and *.h)

| Copy WebSocketApi.chp and WebSocketApih

alt [
 print JSON Model
<

rami2ag! RAML Model | | jinja 2 Templates Engine | | Fllesystem

_static/file.png

_images/plantuml-dbcc800036a60f039579486ede9d7464520a440f.png
Q

Commgnd Line

rami2agl main
k2

i Command Line Arguments Parser

iTemp\ates Fitters

Configures
Q Files Generator - AC)
JSON model Template Engine

Wite files|

o

Filesystem

_static/down-pressed.png

_images/plantuml-9d966f8e874e97fe5f5a2055cfb57a828396e872.png
User

User

Stop APP

Start APP

<<create>>

"APP Class'method(params)

APP Class l

Connect
to 'api_name'
Web Socket

Marshal params
as JSON

Request
verb=method
with JSON

Start watt loop

Unmarshal
JSON
into vars

Update params
with vars

Disconnect

Unix Web Socket

Request
Verb=method
with JSON

Reply vith JSON

AGL Service

JSON

Callverbs callback

Unmarshal

into params
Senvice Class' method(params),

Marshal
resulting
ms as JSON

Senvice Class l

L
APP Class l Unix Web Socket l AGL Service l

Senvice Class l

_static/down.png

_images/plantuml-bc4022075f9510f22abe8192542035f1f054bbe2.png
RAML2AGL Root Directory\

src

templates

WebSocketApl

\ «manifest» /«manifest»

APP Class

Senvice Class

types/app \ app. service\
websocketapicppD) websocketapinl) class_ header h (apPID) class_source.c (apP)D) macros.cD) class_header h (senvice)) class_source.c (senice) D) agl senvice.cD)
~

7 7 T G i

7 - T

7 . T

7 7 N ™7 T

0 7 5 - ~ n
\ «manifest» / «manifest manifest» , “manifest» (emanifest

AGL Service

_images/plantuml-f5cd672e9f5d4bbdda1038d5e065855ccf656bdf.png
RAML Parser\

=0

JSON

Root Attributes Parser

RAML

[eflow» RAML, JSON

Methods Parser

cHlown RAML, JSON \ eflow» RAML, JSON

Parameters Pgrser
2 R}

i\nput Parameters Parser i Output Parameters Parser

«flown RAML, JSON_“flown RAML, JSON

Types Parser

_static/up-pressed.png

_images/plantuml-f9b70a9fcf03375b190d5e88a583c852c3817749.png
APP Class

User

<<create>>

"APP Class'method(params)

<destroy>>

APP Class

_static/minus.png

_images/plantuml-df4bd22eb77b1af449bc7deb6a822026987ce6f1.png
WebSocketApi

<APP Class»
Example

method_L(param_in_L: const int, param_out_L: int &): int
method 2(param_in_L: const char ¥+, param_out_1: const char *): int

I
linked over unix web socket
I

<Senvice Class

ServiceExample

method_L(param_in_L: const int, param_out_L: int &): int
method 2(param_in_L: const char ¥+, param_out_1: const char *): int

_static/plus.png

_images/plantuml-f2515c4fc8e4f169afe540619948db14829dcf9e.png
AGL

[Application|

AGL Applications Framework

Application Fiamework API

Application

Unix Web Soeket

[fervicey,
==

I
|
use
I
'

o

APP Class

WebSocketApl

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 RAML 2 AGL

 		
 Introduction and Goals

 		
 Requirements Overview

 		
 Quality Requirements

 		
 Constraints

 		
 Technical Constraints

 		
 Conventions

 		
 System Scope and Context

 		
 Solution Strategy

 		
 Building Block View

 		
 Service Class

 		
 WebSocketApi

 		
 APP Class

 		
 AGL Service

 		
 RAML Parser

 		
 raml2agl main

 		
 Runtime View

 		
 RAML2AGL Generation

 		
 AGL Service Start

 		
 Web Socket Communication

 		
 Deployment View

 		
 Cross-cutting Concepts

 		
 RPC over Web Socket

 		
 Design Decisions

 		
 RESTful Modeling Language Selection

 		
 Python for raml2agl

 		
 RAML Parser vs pyraml-parser/ramlifications

 		
 RPC over Web Socket Communication

 		
 Quality Requirements

 		
 Risks and Technical Debts

 		
 PyRAML/ramlifications Adoption

 		
 RPC Limitations

 		
 Glossary

_images/plantuml-0de0b5872ac03dbcb45ff9dc68f617fc29648d13.png
Client I

Server

0

equest _ |

D’—)
| _reply ‘I

Client

[
H

Server

_images/plantuml-3577440f461d1dbea8c51bf81cb8a6783e614336.png
RAML2AGL Root Directory\

B
templates EEEEE P
i i
T T
:«mamfsst» :«mamfsst»
v v
iram\2ag\ Main iRAML Parser

_images/plantuml-4b6bf260534092e97d0b28e677f9372c7b779f96.png
@ WebSocketApi

0 w[L if_struct afb wsil it
0 Ws[1_ struct afb wsj1 *

0 exonrep: int

0 callcount_int

0 loop: sd event +

o reply:_bool

O curr reply: json object *

O urk: const char T

0 api_name: const char +

& conmected: bool

‘o WebSocketApiluri: const char ¥, api_name: const char + |
~WebSocketApil)

< emitiverb: const char +, object: const char +): json_object +
dec_callcount() void

‘oh WSiT hanguplclosure: void ¥, wsil: struct afb wsil 4): void

on-ws)1 call(closure: void ¥, api” cansE char ¥. verb: const char ¥, msg: struct afb wsjl msg *): void

B on ws[1_eventiclosure: vord ™, event. const char ¥, msq_struct afb WSl msq 1) void

5 on w1 replyiclosure: void T, msg: struct afb wsi1 msg 1] void

B Wl calllapi: const char ¥, verb: const char ¥,object.const char 1) int

_images/plantuml-542472d6102de14d58e697f4e9e65131c3155fae.png
I
eflows metadata

Application user Service/Application Developer ’ N

4 N

AGL Application Framework l AGL Linux Distribution l

_images/plantuml-3ea4206f8faf95bb6ff97c66dea8a1320c64a22d.png
Development Platform

AGL

App/HMI

iwebsuckemp\ iAPP Class

Services

iAGL Senvice i Senvice Class

_images/plantuml-4910e489fe4ab735326433883351626b74daf5d1.png
AGL App Framework | | AGL Service | | Unix Web Socket
systemd

On System Start Up.

Start services

<<create>> With service's API Name,

Start service

i L . :
Systemd [g1 App Framework l AGL Service l Unix Web Socket l

_images/plantuml-7401196514ad84a05dca9b1630cc9f291ef7430b.png
RAML2AGL\

RAML Model

RAML

RAML Parser

use

«generate»

itially generate»

rami2agl main f—>

Templates Engine

Jinja2 Environment

«generate»
)z Senvice Class EAGL Senvice EAPP Class

