
RaMa-Scene
Release 0.3-beta

Jul 09, 2020

Contents

1 Introduction 3
1.1 Implementation overview . 3
1.2 Consumers . 4
1.3 Query Management . 5
1.4 Tasks . 5
1.5 Models . 5
1.6 Views . 5
1.7 Analyze . 5
1.8 Modelling . 5

2 API descriptors 7
2.1 Default calculations . 7
2.2 Modelling calculations . 11

3 Calculation overview 13
3.1 Pre-calculating the matrices . 13
3.2 The four calculation routes . 13
3.3 Route 1 . 14
3.4 Route 2 . 15
3.5 Route 3 . 16
3.6 Route 4 . 17

4 Modelling overview 19
4.1 General description . 19
4.2 Settings . 19
4.3 Processing the settings . 20

5 Frontend 23
5.1 Package Manager . 23
5.2 Structure . 23

6 Deployment 29
6.1 Install Redis [message broker] for Django Channels websocket support 29
6.2 Install Django dependencies & prepare SQLlite . 30
6.3 Management commands and prepare static resources . 30
6.4 Install and setup nginx [HTTP and Reverse Proxy Server] . 31
6.5 Celery details and setup . 31

i

6.6 Testing the application . 32
6.7 Daemonizing . 32
6.8 Management of database results . 32

7 Python initialise scripts 33
7.1 Management commands . 33
7.2 Creating EXIOBASE numpy objects . 34
7.3 Building mapping coordinates files for the application . 34
7.4 Creating custom geojson and topojson files . 34

8 Testing 37
8.1 Unit testing . 37
8.2 Integration test . 37

9 Performance 39
9.1 Specs of tested server . 39
9.2 Load test setup . 39

10 ramascene 45
10.1 ramascene package . 45

Python Module Index 57

Index 59

ii

RaMa-Scene, Release 0.3-beta

Welcome to RaMa-Scene’s docs. This documentation is split into several parts:

1. Introduction. An overview of the application inner workings.

2. API descriptors. The front-end, back-end payloads.

3. Calculations overview. Overview of calculations performed.

4. Modelling. Overview of modelling procedures.

5. Frontend. Frontend description.

6. Deployment. Details for deploying the application.

7. Python initialise scripts. Independent scripts used for constructing files used by the application.

8. Testing. Unittests and integration tests.

9. Performance. Performance of the application and load test results.

10. Modules. Technical details.

Contents 1

intro.html
API-descriptors.html
API-descriptors.html
calculations.html
calculations.html
modelling.html
frontend.html
deployment.html
python-ini.html
python-ini.html
python-ini.html
testing.html
performance.html
modules.html

RaMa-Scene, Release 0.3-beta

2 Contents

CHAPTER 1

Introduction

RaMa-Scene is a Django+React web-application that allows for analyzing Environmentally Extended Input-Output
(EEIO) tables from EXIOBASE v3.3.

Several on-the-fly calculations are performed to generate EEIO results. The on-the-fly calculations are made possible
by loading in EXIOBASE raw data into memory and employing background processing using Celery.

1.1 Implementation overview

The back-end can receive two main types of requests from the front-end. A websocket-based request and an Ajax-
based request.

Websockets are used for notifying the user and sending queries to the back-end, while Ajax is used to retrieve final
results from the back-end.

Terminology:

• “Tasks” are used for front-end notifications of a given query and a “task” is a calculation process in Celery.

• “Jobs” are the database objects used by the back-end to remember which calculation (task) is started by which
user.

See figure below for an overview of the back-end processes.

3

RaMa-Scene, Release 0.3-beta

1.2 Consumers

The module consumers is a Django Channels implementation that handles websockets. Meaning that the consumers
module is one of the core communication methods between front-end and back-end. This module also invokes query
management to process the queries.

4 Chapter 1. Introduction

RaMa-Scene, Release 0.3-beta

1.3 Query Management

Any query received from the front-end needs to be processed in order to perform calculations and generate result data
in a proper format using the query management module.

1.4 Tasks

This module is the heart of the EEIO calculations. The Tasks module implements the Celery background processing
implementation that allows to process multiple calculations at the same time, but also calculations that take a long
time.

1.5 Models

Models allows to insert and fetch database objects. It contains mapping coordinates for front-end and back-end com-
munication as well as the calculation status and results per user.

1.6 Views

The views module handles the AJAX POST and JSON result response.

1.7 Analyze

For performing the actual IO calculations the analyze module is used.

1.8 Modelling

This module is used for implementation of modelling features in the application

1.3. Query Management 5

RaMa-Scene, Release 0.3-beta

6 Chapter 1. Introduction

CHAPTER 2

API descriptors

The React front-end has access to mapping coordinates reflecting product categories, countries and indicators. See
project root static_assets:

1. final_countryTree_exiovisuals.csv

2. final_productTree_exiovisuals.csv

3. mod_indicators.csv

These mapping coordinates are not only used to render tree selectables, but also to transmit the global id’s of the
product categories, countries and indicators over the websocket channel. In turn the back-end handles these messages
to perform calculations and store results. For example all countries and all products in the world represent the global
id [1]. The indicator [1] represents product output. For further reference see the mapping CSV files.

API routing:

• API URL Websockets: <domain-ip>/ramascene/

• API URL AJAX: <domain-ip>/ajaxhandling/

• Interface format: JSON

2.1 Default calculations

The following queries denote the communication between front-end and back-end for performing default calculations.

Interface descriptors [websocket message to back-end]:

7

RaMa-Scene, Release 0.3-beta

Stage Instances relation Variable name, dataType, exam-
ple

Calculation type Default calculation
var name: action

JSON key: action, JSON value: String
ex.: “action”:”default”

Dimension Production, Consumption
var name: querySelection

JSON key: dimType, JSON value: String
ex.: “dim-
Type”:”Production”

Visualization TreeMap, GeoMap
var name: querySelection

JSON key: vizType, JSON value: String
ex.: “viz-
Type”:”TreeMap”

Filter Product
var name: querySelection

JSON key: nodesSec, JSON value: array
ex.:
“nodesSec”:”[3,4,7]”

Filter Country
var name: querySelection

JSON key: nodesReg, JSON value: array
ex.: “nodesReg”:”[1]”

Filter Indicator
var name: querySelection

JSON key: extn, JSON value: array
ex.: “extn”:”[2]”

Year Default reference year
var name: querySelection

JSON key: year, JSON value: array
ex.: “year”:”[2011]”

All
→ to back-end [WS send] var name: querySelection & action

JSON : querySelection, JSON: action
ex.:see table below

→ to back-end complete payload example:

{
“action”:

“default”,
“querySelection”:{

“dimType”:”Production”,

8 Chapter 2. API descriptors

RaMa-Scene, Release 0.3-beta

“vizType”:”TreeMap”,
“nodesSec”:[3,4,7],
“nodesReg”:[1],
“extn”:[2],
“year”:[2011],
}

}

Interface descriptors [websocket messages from back-end]:

Stage Instances relation Variable name, dataType, exam-
ple

Action request status
from Back-end → [WS response] var name: action

JSON key: action, JSON value: string
ex.: {“ac-
tion”:”started”}

Job status
from Back-end → [WS response] var name: job_status

JSON key: job_status,JSON value: string
ex.:
{“job_status”:”started”}

Job status
from Back-end → [WS response] var name: job_id

JSON key: job_id,JSON value: int
ex.: {“job_id”:”176”}

Job name
from Back-end → [WS response] var name: job_name

JSON key: job_name,JSON value: JSON
ex.: full querySelection
as names

→ from back-end complete response example:

{
“job_id”:176,
“action”:”check status”,
“job_status”:”completed”,
“job_name”:{

‘nodesReg’: [‘Total’],
‘vizType’: ‘TreeMap’,
‘nodesSec’: [‘Fishing’, ‘Mining and quarrying’, ‘Construction’],
‘dimType’: ‘Production’,
‘extn’: [‘Value Added: Total’],
‘year’: [2011]

2.1. Default calculations 9

RaMa-Scene, Release 0.3-beta

}
}

If the websocket message job_status is set to “completed”, the front-end can perform a POST request for results via
Ajax containing the job_id named as ‘TaskID’. For example in the above websocket response we see that job_id is
176, the Ajax POST request is ‘TaskID:176’.

Interface descriptors [AJAX response]:

Stage Instances relation Variable name, dataType, exam-
ple

Retrieve calculation
from Back-end → [AJAX re-

sponse]
var name: unit

JSON key: name, JSON value: string
ex.: {“Value
Added”:”[M.EUR]”}

All
from Back-end → [AJAX re-

sponse]
var name: job_id

JSON key: job_id, JSON value: int
ex.: {“job_id”:”176”}

All
from Back-end → [AJAX re-

sponse]
var name: rawResultData

JSON key: name, JSON value: array
ex.: {“To-
tal”:”[1256.67]”}

All
from Back-end → [AJAX re-

sponse]
var name: job_name

JSON key: job_name, JSON value: JSON
ex.: full querySelection
as names

→ from back-end complete response example:

{
“job_id”:176,
“unit”: {“Value Added: Total”:”M.EUR”},
“job_name”: {

“nodesReg”: [“Total”],
“nodesSec”: [“Fishing”, “Mining and quarrying”,”Construction”],
“dimType”: “Production”,
“extn”: [“Value Added: Total”],
“year”: [2011],
“vizType”: “GeoMap”
},

“rawResultData”:{
Fishing”:75172.94699626492, “Mining and quarrying”:2151937.135835223,
“Construction”:3148250.604361363

10 Chapter 2. API descriptors

RaMa-Scene, Release 0.3-beta

}
}

An important aspect is that in the current version the back-end expects the websocket message to contain a single
value for indicator and year. Additionally if the query selection contains “GeoMap” the “nodesReg” descriptor can
be an array of multiple elements denoting multiple countries, while the “nodesSec” descriptor can only have a single
indicator. On the other hand if the query selection contains “TreeMap” the “nodesSec” descriptor can be an array of
multiple elements denoting multiple products, while the “nodesReg” descriptor can only have a single indicator.

2.2 Modelling calculations

The following table denotes the communication between front-end and back-end for modelling calculations. Mod-
elling is applied on existing default query selections.

Stage Instances relation Variable name, dataType, exam-
ple

Product of interest Model details : Product
var name: model_details

JSON key: product, JSON value: array
ex.: “product”:[1]

Manufacturing region Model details : Product origin re-
gion var name: model_details

JSON key: originReg,JSON value: array
ex.: “originReg”:[3]

Model type of calculation Model details : Model type
var name: model_details

JSON key: consumedBy, JSON value: array
ex.: “con-
sumedBy”:[4]”

Region consuming Model details : Region of consump-
tion var name: model_details

JSON key: consumedReg, JSON value: array
ex.: “consume-
dReg”:[5]

Technological change Model details : Technical change
var name: model_details

JSON key: techChange, JSON value: array
ex.: “techChange”:[5]

The technological change is a single value denoting a percentage. See below for a full query example:

→ from back-end complete response example:

{
“action”: “model”,
“querySelection”: {

“dimType”: “Production”,

2.2. Modelling calculations 11

RaMa-Scene, Release 0.3-beta

“vizType”: “TreeMap”,
“nodesSec”: [1],
“nodesReg”: [4,5],
“ext”: [8],
“year”: [2011]
},
“model_details”: [

{
“product”: [1],
“originReg”: [3],
“consumedBy”: [4],
“consumedReg”: [5],
“techChange”: [-15]

},
{

“product”: [6],
“originReg”: [5],
“consumedBy”: [7],
“consumedReg”: [18],
“techChange”: [20]

}
]

}

Multiple model selections can be added, however a user can only specify a single-selection per “product”, “originReg”,
“consumedBy”, “consumedReg” in the array for this version of the application. The websocket response contains the
added model details specified by name.

12 Chapter 2. API descriptors

CHAPTER 3

Calculation overview

The following calculation explanations references the ramascene.analyze module code.

3.1 Pre-calculating the matrices

To reduce calculation times and to reduce load on the server the Leontief inverse or total requirements matrix (L) is
precalculated according:

When storing the Leontief inverse as an intermediate result, calculations on the server are reduced to simple matrix
– matrix multiplication and the computational intense task of solving a system of linear equations or making a full
matrix inverse can be avoided.

The matrices that are stored for further calculation are L , Y and B. They are stored as binary objects in the form of
numpy arrays.

3.2 The four calculation routes

If environmental impacts related to final consumption are analysed it is possible to compare the environmental impacts
from different points of view. We can compare the impact of consumed products between countries or between
different products. This is what is called the consumption based view. Or given a certain final consumption of products
we can calculate where the emissions are taking place and compare these between producing sector or countries. This
is what we call the production point of view. All in all we distinguish between four different ways comparisons can be
made. They are shown in Figure 1.

In each of the four calculation routes, the principal calculation that in each route is done is:

The way the resulting calculations are presented are however different each time. In route 1 the calculated indicators
results are presented per final consumed product. In route 2 the calculated indicator results are presented per consuming

13

RaMa-Scene, Release 0.3-beta

country. In route 3 the results are presented per producing country and in route 4 they are presented per produced
product. For each route the details are described below.

Figure 1: Consumption and production view and the corresponding calculation routes.

3.3 Route 1

In this calculation route the user can compare the environmental impacts associated with the final consumption of
different products in a set of selected countries. Environmental impacts generated by production in all countries and
by the production of all products are taken into account.

The calculation route has been designed for general application. It can calculate the environmental impacts of different
products given a specific selected country selling final product or specific country where the emission takes place or
specific sector where the emission takes place. However the actual implementation of route 1 takes into account that
country selling product are all countries, the country where the emission takes place are all countries and the emission
at all sectors are taken into account.

The calculation starts by creating the final demand vector that contains the selected products for the selected countries.

The symbol Y represents the multi-regional final demand matrix, that can be subdivided into sub-vectors that contain
final demand for domestically produced products and final demand for imported products. In the final demand table
there is no further subdivision into final demand by households, changes in stocks etc. Assume that there are three
countries:

And the consuming country 1 and 3 have been selected then Y first becomes:

where the subscript s stands for selected elements. Subsequently the total final demand for each product is calculated:

Where i is a column vector of ones of appropriate length.

14 Chapter 3. Calculation overview

RaMa-Scene, Release 0.3-beta

It is important to note that the user selects a product without specifying the origin of a product. For instance, if a user
selects wheat as a product of interest, in the final demand vector wheat from every origin is selected i.e. wheat from
Austria, wheat from Belgium etc.

For each of the final consumed products selected the output from each sector (X) needed to produce that product is
calculated as:

At this point it is possible to make a sub-selection from X to select only the output in countries and sectors that are of
interest to the user. For instance if we assume a three country case X can be expressed as:

If we’re only interested in the activities taking place in country 1 as a result of the selected final consumption of
products then the subselection is:

The next step is calculating the selected indicator:

where m is a vector of the impacts associated with each of the selected final consumed products given a certain selected
region and sector where the emission takes place.

There is one last step to make. The user does not specify the geographical origin of a product. For instance if the user
selects “rice” the actual product selected are “rice from Italy”, “rice from Taiwan”. The m vector with a length of 49
countries times 200 products needs to be aggregated into 200 product groups:

where G is an appropriate aggregation matrix.

In practice for the consumption based view the sector and region where the emission takes place is always set to all
sectors and all regions. However the code allows to make sub selections.

3.4 Route 2

In route 2 the environmental impacts of final consumption is compared between countries for a selected set of products.
Again environmental impacts generated by production in all countries and by the production of all products are taken
into account.

The calculation route has been designed for general application. It can calculate the environmental impacts of different
products given a specific selected country selling final product or specific country where the emission takes place or
specific sector where the emission takes place. However the actual implementation of route 2 takes into account that
country selling product are all countries, the country where the emission takes place are all countries and the emission
at all sectors are taken into account.

The calculation starts by creating the final demand vector that contains the selected products for the selected countries.

The symbol Y represents the multi-regional final demand matrix, that can be subdivided into subvectors that contain
total final demand for domestically produced products and total final demand for imported products. Assume that
there are three countries:

3.4. Route 2 15

RaMa-Scene, Release 0.3-beta

And the consuming country 1 and 3 have been selected then Y first becomes:

where the subscript s stands for selected elements.

It is important to note that the user selects a product without specifying the origin of a product. For instance, if a user
selects wheat as a product of interest, in the final demand vector wheat from every origin is selected i.e. wheat from
Austria, wheat from Belgium etc.

For each of the selected countries, the output from each sector (X) needed to produce that final demand for a country
is calculated as:

At this point it is possible to make a sub-selection from X to select only the output in countries and sectors that are of
interest to the user. For instance if we assume a three country case X can be expressed as:

If we’re only interested in the activities taking place in country 1 as a result of the selected final consumption of
products then the subselection is:

The next step is calculating the selected indicator:

where m is a vector of the impacts associated with each of the countries selected final demand.

3.5 Route 3

Using this calculation route the user can compare the emissions taking place in different countries given a certain
selected final demand. For instance it is possible to see in which countries emissions take place as a result of final
consumption in the USA.

The calculation route has been designed for general application. It can calculate the environmental impacts of different
products given a specific selected country selling final product or specific country where the emission takes place or
specific sector where the emission takes place. However the actual implementation of route 3 takes into account that
country selling product are all countries, the country where the emission takes place are all countries and the emission
at all sectors are taken into account.

The calculation starts by creating the final demand vector that contains the selected products for the selected countries.

The Y symbol represents the multi-regional final demand matrix, that can be subdivided into subvectors that contain
total final demand for domestically produced products and total final demand for imported products. Assume that
there are three countries:

16 Chapter 3. Calculation overview

RaMa-Scene, Release 0.3-beta

And the consuming country 1 and 3 have been selected then Y first becomes:

where the subscript s stands for selected elements.

It is important to note that the user selects a product without specifying the origin of a product. For instance, if a user
selects wheat as a product of interest, in the final demand vector wheat from every origin is selected i.e. wheat from
Austria, wheat from Belgium etc.

Following the selection of final consumed products in a selected number of countries the final demand matrix is
summed to get total final demand for each product:

The output needed to satisfy this final demand is subsequently calculated according:

The vector x contains all possible product outputs and has a length of 49 countries times 200 products. The emissions
or impact indicators are calculated by multiplying selected emission coefficients or selected indicator coefficients with
the diagonalised output vector:

The vector m is subsequently aggregated into emission or indicators per country

where G is an appropriate aggregation matrix.

3.6 Route 4

Using this calculation route the user can compare the emissions associated with different product outputs given a
certain selected final demand. For instance it is possible to see in which product output has the highest emissions as
a result of final consumption in the USA. This calculation route starts in the same way as calculation Route 3 but the
aggregation step at the end differs from route 1.

The calculation route has been designed for general application. It can calculate the environmental impacts of different
products given a specific selected country selling final product or specific country where the emission takes place or
specific sector where the emission takes place. However the actual implementation of route 4 takes into account that
country selling product are all countries, the country where the emission takes place are all countries and the emission
at all sectors are taken into account.

The calculation starts by creating the final demand vector that contains the selected products for the selected countries.

The symbol Y represents the multi-regional final demand matrix, that can be subdivided into subvectors that contain
total final demand for domestically produced products and total final demand for imported products. Assume that
there are three countries:

3.6. Route 4 17

RaMa-Scene, Release 0.3-beta

And the consuming country 1 and 3 have been selected then Y first becomes:

where the subscript s stands for selected elements.

It is important to note that the user selects a product without specifying the origin of a product. For instance, if a user
selects wheat as a product of interest, in the final demand vector wheat from every origin is selected i.e. wheat from
Austria, wheat from Belgium etc.

Following the selection of final consumed products in a selected number of countries the final demand matrix is
summed to get total final demand for each product:

The output needed to satisfy this final demand is subsequently calculated according:

The vector x contains all possible product outputs and has a length of 49 countries times 200 products. The emissions
or impact indicators are calculated by multiplying selected emission coefficients or selected indicator coefficients with
the diagonalised output vector:

The vector m is subsequently aggregated into emission or indicators per country

where G is an appropriate aggregation matrix.

18 Chapter 3. Calculation overview

CHAPTER 4

Modelling overview

The following explanations references the ramascene.modelling module code.

4.1 General description

In order to create scenarios using EEIO data, operations need to be performed on the source data to obtain their
counterfactual. Counter-factual scenarios are IO tables representing a structure of the economy different from the
baseline structure. They are constructed by adjusting particular elements in the matrices composing the IO system.

In order to create counter-factual IO tables, the RaMa-SCENE platform takes as a reference A, the technical coefficient
matrix, and Y, the final demand matrix. These two matrices are a representation of the relationship of input products
to outputs (A) and the demand of products by final consumers (Y).

Changes in relationships in the way products are manufactured are therefore implemented by modifying the A matrix,
while variations in the way products are consumed by final consumers are applied on final demand.

Once the A and Y matrix are modified through ramascene.modelling module, they are processed by ramascene.analyze
module so to output results.

4.2 Settings

Through the interface, under “Scenario Modelling”, users are able to specify the coordinates of the IO elements that
they wish to modify and the magnitude of the change for these intersected values.

The coordinates are defined by row-wise and column-wise items:

Row-wise:

• Product: the supply of a product;

• Originating from: the region that is supplying the product.

Column-wise:

19

RaMa-Scene, Release 0.3-beta

• Consumed by: who is consuming the product, namely final consumers (Y) or a manufacturing activity (S);

• Consumed where: the region in which the consumption of the product is conducted.

The magnitude of the change by which the intersected values are modified is specified under the “Technical Change
Coefficient”. Here both negative and positive relative values can be specified. A negative relative value defines the
reduction that need to be calculated relative to the baseline data while a positive one defines an increase.

Once a set of coordinates and a technical change coefficient are specified, users can add the change. This can be done
iteratively until one is satisfied with the scenario settings. A wrong addition can also be removed through the “Remove
last” button.

One the user is satisfied with the settings, they can be saved and applied by pressing the M icon on one of the previous
analyses available under the “Analysis queue” menu.

4.3 Processing the settings

Through the ramascene.modelling module, each added change is processed iteratively. If any change was specified
to be applied in “Y: final consumption” the final demand matrix Y is used as a reference, otherwise the software
references the technical coefficient matrix (A).

The objective of these operations is to obtain a counter-factual final demand matrix Y alt and Leontief inverse matrix
L alt.

The following equation exemplifies how changes in any given matrix are applied:

Where M ij is a value of specific coordinates in the matrix of reference M. If the coordinates ij are part of a set of
pre-determined coordinates Ω, then M ij is different from its baseline.

The selected value is then modified by following this equation:

Where M ij
alt is the modified value intersected through the coordinates and k is the technical change coefficient by

which M ij is modified.

This process is easily applied to final demand in the following way:

20 Chapter 4. Modelling overview

RaMa-Scene, Release 0.3-beta

However, in order to obtain a counterfactual Leontief inverse matrix L alt , these changes need to be applied to the
technical coefficient matrix A:

From the counter-factual A alt the counterfactual L alt is calculated by using the following equation:

The total product output is then calculated through the IO equation employing L alt and Y alt :

4.3. Processing the settings 21

RaMa-Scene, Release 0.3-beta

22 Chapter 4. Modelling overview

CHAPTER 5

Frontend

The frontend uses the React framework. The source javascript files are stored in the folder assets/js/client. Webpack
will build the distributables and places them in /assets/bundles.

5.1 Package Manager

The used javascript package manager is yarn. Yarn uses package.json to create yarn.lock file.

5.2 Structure

5.2.1 The main App component

The main React component is defined in the file ramascene.js : this component defines the main page structure. The
main App component uses other sub components :

• AnalysisJob : displayed as a job in the Analysis queue panel

• IndicatorFilterableSingleSelectDropdownTree : displayed as the Indicator dropdown selectbox

• ProductFilterableSingle- and ProductFilterableMultiSelectDropdownTree : displayed as the products drop-
down selectbox

• RegionFilterableSingle- and RegionFilterableMultiSelectDropdownTree : displayed as the region dropdown
selectbox

• ScenarioModel : displayed as the content for the Scenario Modelling panel

• Visualization : displayed as the content for the Main and Comparison View panels

• YearFilterableSingleSelectDropdownTree : displayed as the year dropdown selectbox

23

RaMa-Scene, Release 0.3-beta

The main App component also defines following constants :

Constant Value Description
MAX_JOB_COUNT 10 max. number of jobs permitted in analysis queue
WAIT_INTERVAL 5000 the time a message to the user is displayed when a new job is placed on the analysis

job queue

The main App component most important state variables :

• jobs : array of Analysis jobs

• model_details : array of scenario modelling changes

The main App component functions :

• handleAnalyse() : will push a new job on the analysis queue and shows a message for WAIT_INTERVAL time

• handleModelling() : will only show a message for WAIT_INTERVAL time

• handleJobFinished() : hides the message

• renderVisualization() : deselects the currently selected job, selects the new job and renders the Visualization
component

• renderComparisonVisualization() : almost the same functionality as renderVisualization

• hideMainView() : empties the main view panel

• hideComparisonView() : empties the comparison view panel

• deleteJob() : deletes 1 job from analysis queue

24 Chapter 5. Frontend

RaMa-Scene, Release 0.3-beta

5.2.2 The ScenarioModel component

This component makes it possible to add or remove changes to a new model_details structure and then save it to the
model_details. It is also possible to clear the model_details.

The ScenarioModel component uses other sub components :

• ProductFilterableSingleSelectDropdownTree : displayed as the products dropdown selectbox

• ConsumerFilterableSingleSelectDropdownTree : displayed as the ‘consumed by’ dropdown selectbox

• RegionFilterableSingleSelectDropdownTree : displayed as the ‘originating from/where’ dropdown select-
boxes

The ScenarioModel component defines following constants :

Constant Value Description
MAX_CHANGES 5 max. number of changes a scenario can contain

The main functions :

• handleAddClick() : pushes a new change to the new model_details structure

• handleRemoveClick() : pops the last change from the new model_details structure

• handleSaveClick() : saves the new model_details structure

• handleClearClick() : clears the model_details structure

5.2.3 The AnalysisJob component

This component does all the Websocket and AJAX traffic.

The AnalysisJob component most important state variables :

• query : contains the query

The main AnalysisJob component functions :

• componentDidMount() : this is a React lifecycle callback function which is called immediately after the com-
ponent is inserted into the DOM tree. This function will set up the Websocket connection and sends the analysis
query to the RaMa-scene server.

• handleWebSocketResponse() : called when a message is received on the websocket. The received data will be
parsed as JSON. When job_status == ‘started’ the job name can be generated. When job_status == ‘completed’
an AJAX call is executed to retrieve the raw result data. Upon reception of the raw results, some preparations
for CSV download are executed.

• generateCSVdata() : prepares the CSV data for download

• startModelling() : will set up a Websocket connection and sends the model_details to the RaMa-scene server.

5.2. Structure 25

RaMa-Scene, Release 0.3-beta

5.2.4 The Visualization component

This component will render the result using D3plus package. It uses 3 different topojson files for the geo map : one
with a layer over the whole world, one with a layer per continent and one with a layer per individual country/region.

26 Chapter 5. Frontend

RaMa-Scene, Release 0.3-beta

5.2.5 Dropdown Tree select

Because it seems not possible to switch on the fly a multi-select to a single-select box with the rc-tree-select package
we’re using, two separate base classes are provided :

• FilterableMultiSelectDropdownTree

• FilterableSingleSelectDropdownTree

The FilterableSingle- and FilterableMultiSelectDropdownTree component most important state variables :

• data : contains the tree data

• value : contains the current selection

• callback : callback to be executed when onChange event occurs. For FilterableMultiSelectDropdownTree it
first tries to execute a derived class’s handleOnChange function.

The main functions :

• filterCaseInsensitive() : this function will return true if the inputValue and the treeNode label are the same text
when ignoring the upper- or lowercase.

Most noticeable derived classes of FilterableMultiSelectDropdownTree are ProductFilterableMultiSelectDrop-
downTree and RegionFilterableMultiSelectDropdownTree. The ProductFilterableMultiSelectDropdownTree over-
rides the render() function to add buttons for quickly select all items on one of its three tree levels. The ProductFil-
terableMultiSelectDropdownTree component also implements the handleOnChange super class function which keeps
care that a user doesn’t mix selecting items from different tree levels. The RegionFilterableMultiSelectDropdownTree
also implements the handleOnChange super class function. It will take care of selecting only total/continent/country
items depending on the ‘Geographic aggregation level’. If Country aggregation level is chosen and a continent is
selected, then it selects all countries of that continent instead. If Continent aggregation level is chosen and countries
are selected, then it selects the continents to which these countries belong instead.

5.2. Structure 27

RaMa-Scene, Release 0.3-beta

28 Chapter 5. Frontend

CHAPTER 6

Deployment

The web-application deployment process is based on the following documentations and is tested on Ubuntu 16.04
LTS:

1. http://masnun.rocks/2016/11/02/deploying-django-channels-using-daphne/

2. http://channels.readthedocs.io/en/stable/deploying.html

3. https://medium.com/@saurabhpresent/deploying-django-channels-using-supervisor-and-ngnix-2f9a25393eef

4. https://medium.com/@dwernychukjosh/setting-up-nginx-gunicorn-celery-redis-supervisor-and-postgres-with-django-to-run-your-python-73c8a1c8c1ba

5. https://www.vultr.com/docs/installing-and-configuring-supervisor-on-ubuntu-16-04

It is advised to read these guides. See the next sections for an example to get started quickly.

Please refer to our repository for downloading the raw data, see README.md.

6.1 Install Redis [message broker] for Django Channels websocket
support

Install redis: $ sudo apt-get install redis-server

Before you create the virtual environment make sure you have python-dev installed via apt-get Create a virtual envi-
ronment (python3.5 or higher) and install the following:

$ pip3 install asgi_redis

$ pip3 install -U channels_redis

Test redis:

$ redis-cli ping

Return value should be : PONG

29

http://masnun.rocks/2016/11/02/deploying-django-channels-using-daphne/
http://channels.readthedocs.io/en/stable/deploying.html
https://medium.com/@saurabhpresent/deploying-django-channels-using-supervisor-and-ngnix-2f9a25393eef
https://medium.com/@dwernychukjosh/setting-up-nginx-gunicorn-celery-redis-supervisor-and-postgres-with-django-to-run-your-python-73c8a1c8c1ba
https://www.vultr.com/docs/installing-and-configuring-supervisor-on-ubuntu-16-04

RaMa-Scene, Release 0.3-beta

Make sure redis is a daemon, see redis.conf.

6.2 Install Django dependencies & prepare SQLlite

In the same virtual env., change directory towards the project root: $ pip3 install -r requirements.txt

Make sure you set the following environment variables (see example-prod-env.sh):

• export DJANGO_SETTINGS_MODULE=”ramasceneMasterProject.config.<config filename>”

• export DATASETS_VERSION=”<ramascene database version available e.g. v3>”

• export DATASETS_DIR=”<my/path/to/datasets>”

• export SECRET_KEY=”<django secret key>”

• export BROKER_URL=”<default is amqp://localhost>”

• export HOST=”<ip or domain>”

• export OPENBLAS_NUM_THREADS=<adjust according to how many cores you want to use>

If you are on Linux and using the OPENBLAS library for Numpy. It is advised to set the number of threads Numpy
uses. To find which library is used in python:

>>>np.__config__.show()

Note: For more information on the OPENBLAS_NUM_THREADS settings see Celery section further down the page.

Prepare SQLlite:

$ python3 manage.py makemigrations

$ python3 manage.py migrate

Create superuser for administration purposes:

$ python3 manage.py createsuperuser

6.3 Management commands and prepare static resources

Populating database classifications:

$ python3 manage.py populateHierarchies

Install node.js (node version: 3.10.10 or higher), if not already installed:

$ sudo apt-get install nodejs

Prepare static resources:

$ npm install

Set webpack conf settings for production:

• Configure webpack.config.js for ajax url and websocket url at webpack.DefinePlugin() to your domain.

• Adjust process environment to “production” at webpack.DefinePlugin().

• Configure Dotenv to point to your environment variables if desired. Alternatively remove dotenv section.

30 Chapter 6. Deployment

RaMa-Scene, Release 0.3-beta

• Make sure that new UglifyJsPlugin() is set.

Built React bundle:

$./node_modules/.bin/webpack --config webpack.config.js

Django collect static: $ python3 manage.py collectstatic

6.4 Install and setup nginx [HTTP and Reverse Proxy Server]

Installing nginx requires apache to be stopped temporarily:

$ sudo service apache2 stop

Install nginx:

$ sudo apt-get install nginx

Configure nginx, make sure proxy_pass is set to this: http://0.0.0.0:8001

See example configuration file example_nginx

Check status of nginx: $ sudo nginx -t

Allow Nginx to interact with the host machine on the network: $ sudo ufw allow ‘Nginx Full’

6.5 Celery details and setup

Celery is used to delegate long lasting CPU jobs and heavy memory usage for performing IO calculations on the fly.
In this project the message broker rabbitMQ is used. Each user performing a request for calculation is set in the queue
and that task is handled when ready by the Celery consumer.

Installing the rabbitMQ broker:

$ sudo apt-get install -y erlang

$ sudo apt-get install rabbitmq-server

Then enable and start the RabbitMQ service:

$ systemctl enable rabbitmq-server

$ systemctl start rabbitmq-server

Check the status to make sure everything is running: $ systemctl status rabbitmq-server

Celery details:

Each Celery worker spawns a number of child processes and these processes use as much memory as it needs. The
first limit to set is the concurrency. It is normally advised to run a single worker per machine and the concurrency
value will define how many processes will run in parallel. Concurrency set to 1 follows a first in first out principle for
users, if concurrency is increased the server’s resources (CPU and MEM) are more extensively used and Celery could
handle requests simultaneously. For the RaMa-Scene app one single worker for default calculations and a dedicated
worker for modeling final demand is advised, due to the nature of computation extensive modelling. In addition it is
recommended to set the concurrency to 1, if increased it is advised to perform load testing.

Setting a Celery MEM limit:

Loading numpy objects over different years can causes severe memory use if Python doesn’t release memory after a
calculation is finished. The common idea is that Python does garbage collection and frees up memory once finished.
However during testing it became apparent that memory wasn’t released, refer to https://github.com/celery/celery/

6.4. Install and setup nginx [HTTP and Reverse Proxy Server] 31

https://github.com/celery/celery/issues/3339
https://github.com/celery/celery/issues/3339

RaMa-Scene, Release 0.3-beta

issues/3339. The setting implemented in the Django settings.py is a limit on the number of task handled per child
process. If set to 1 a new worker has to be spawned if a tasks is finished, enforcing the release of memory.

Setting a Numpy limit:

Most linux machines use the OPENBLAS library for numpy. OPENBLAS uses all cores available for performing
calculations by default. By setting the OPENBLAS_NUM_THREADS it is possible to limit the amount of cores
used, leaving resources available on the server.

Note: For more information on Celery refer to the performance page in this documentation and the official celery
docs.

6.6 Testing the application

Make sure Daphne is installed and start daphne (in virtualenv):

$ daphne -b 0.0.0.0 -p 8001 ramasceneMasterProject.asgi:application

Start the Celery workers in virtual env.:

$ celery -A ramasceneMasterProject worker -l info --concurrency 1 --queue
calc_default -n worker1.%h

$ celery -A ramasceneMasterProject worker -l info --concurrency 1 --queue
modelling -n worker2.%h Be careful with load if you raise concurrency. For final production setup
remove the parameter -l info.

Test the application to see if everything is running correct in a web-browser.

6.7 Daemonizing

Celery and Daphne need to be deamonized. For example with supervisor. Bare in mind that the environment variables
have to be set in the configuration file. See example configuration file example_supervisord

If you make changes to the file you have to do:

• sudo supervisorctl reread

• sudo supervisorctl update

If you want to stop or start processes:

• sudo supervisorctl stop <program name e.g. celeryd>

• sudo supervisorctl start <program name e.g. celeryd>

6.8 Management of database results

Cron can be used to clear the database results on a regular basis, see example below:

#at 5 a.m on every sunday 0 5 * * 0

#delete database contents . <path to environment>/env.sh && cd /<proj>/ && /
<virtual-env>/bin/python /<proj>/manage.py clear_models

32 Chapter 6. Deployment

https://github.com/celery/celery/issues/3339
https://github.com/celery/celery/issues/3339

CHAPTER 7

Python initialise scripts

Python initialise scripts provide the following features:

1. Management commands

2. Creating EXIOBASE numpy objects

3. Building mapping coordinates files for the application

4. Creating custom geojson and topojson files

Note: the scripts under point 2, 3 and 4 are not directly used by the application at runtime. If you wish to extent
or develop features such as using another EEIO dataset it is recommended to investigate how these script work,
alternatively these points can be skipped. Deployment management commands are used for populating the database
and are needed for deployment.

7.1 Management commands

This application uses a sql-lite database to store mapping coordinates, user queries (Jobs) and user results (Celery
results). For mapping coordinates the database needs to be populated before running the application.

The management commands uses CSV files generated by prepare_csv.py:

• mod_final_countryTree_exiovisuals.csv

• mod_final_productTree_exiovisuals.csv

The following command is used to populate the database python manage.py populateHierarchies pop-
ulates the database with the mapping files needed.

Aside from database population, it is advised to clean the database of user results whenever needed. This can be done
with the following command python manage.py clear_models

Note : see project folder ramascene/management/commands

33

RaMa-Scene, Release 0.3-beta

7.2 Creating EXIOBASE numpy objects

Originally EXIOBASE data is structured in tabulated text file format. This application uses the python numpy library
to perform calculations and therefore the original EXIOBASE data is converted to numpy objects. Two versions of
numpy formatted EXIOBASE data are created:

• v3: an unmodified version. Note that the unmodified version is constructed in such a way that the Rama-
Scene calculation procedure including indicators works efficiently as opposed to the default EXIOBASE tabular
format.

• v4: a modified version including secondary materials

The original script to create version 3 is located at

python_ini/devScripts/script/create_numpy_objects_v3.py

The script expects the following folder structure:

• script/create_numpy_objects_v3.py -> the actual conversion script

• data/auxiliary -> auxiliary information to determine indicators in the application

• data/clean/<year> -> a folder that contains the years reserved for output (not in the source code, because of the
large amount of data)

• data/raw/<year> -> a folder that contains the original txt files per year (not in the source code, because of the
large amount of data)

For version 4 please refer to https://bitbucket.org/CML-IE/pysuttoio/src/master/

Note : see project folder python_ini/devScripts/script/create_numpy_objects_v3.py and https://bitbucket.org/CML-
IE/pysuttoio/src/master/

7.3 Building mapping coordinates files for the application

EXIOBASE v3.3 has specific classifications that needs to map to user input. For example if Europe is selected by
the user as one of the parameters for analyses, the calculation procedure uses indices corresponding to all countries
belonging to Europe. In turn these calculation results need to be aggregated back into a single value for Europe.
For coordinating user input to calculation procedures we developed the following mapping CSV’s based on an older
application called ExioVisuals :

• final_countryTree_exiovisuals.csv

• final_productTree_exiovisuals.csv

These files are read in by the script prepare_csv.py that in turn makes a slight modification to easily denote
aggregated/disaggregated countries or product categories. The output files of prepare_csv.py are prefixed with
mod_<filename> and is used by one of the management commands.

Note : see project folder python_ini/data & python_ini/devScripts.

7.4 Creating custom geojson and topojson files

For visualizations of continental data custom polygons need to be created that reflect the country mapping of EX-
IOBASE. A script is developed to dissolve countries that belong to a certain continent or “rest of ” classification with
the library GeoPandas.

34 Chapter 7. Python initialise scripts

https://bitbucket.org/CML-IE/pysuttoio/src/master/

RaMa-Scene, Release 0.3-beta

Relevant scripts: geo_dissolve_by_level.py, prepare_geomapping_ISO3166_3.py,
prepare_geomapping_ISO3166_2.py

1. First the mod_final_countryTree_exiovisuals.csv (modified by prepare_csv script above) is further adjusted
to contain the 3-letter ISO code available in the DESIRE country list excel.The default modified file only
contains 2-letter codes and this cannot be used by the script needed to create polygon files.Changing
2-letter to 3-letter codes is done manually by using the DESIRE country list, the new file is called
mod_final_countryTree_ISO3166_3.csv.

2. Run prepare_geomapping_ISO3166_3.py with mod_final_countryTree_ISO3166_3.csv

3. After step 1 and 2, create a virtual environment and install the requirements.txt in the python_ini/geoMapbuilds
to enable the use of GeoPandas.

4. The script geo_dissolve_by_level.py is used to create 3 geojson files, 1) a file for the whole world, 2) a file
for continents, 3) a file for countries and rest of regions. This is needed for the visualization library d3plus.
Before running the script, please select which of the three files you wish to generate by adjusting the SETTING
variable.

5. The generated files are fairly big, in turn it is key to make these small smaller by converting them to topojson
and simplify the polygons using MapShaper.org. This is achieved with 1) importing the files into mapshaper, 2)
clicking on “simplify”, check “prevent shape removal” and finally set the percentage to 5% 3) finally export to
topojson with command “id-field=id” “drop-table”

Note : see project folder python_ini/geomapBuilds and python_ini/devScripts

7.4. Creating custom geojson and topojson files 35

RaMa-Scene, Release 0.3-beta

36 Chapter 7. Python initialise scripts

CHAPTER 8

Testing

Various tests are implemented for websocket communication, celery background processing, AJAX, views, and the
models. See ramascene/tests/ folder.

8.1 Unit testing

Perform unit tests in the root folder:

$ python3 manage.py test -v2

8.2 Integration test

A more extensive validation tests is performed with pytest. Several validation files (CSV) are prepared from results
computed outside of the web-application. Please refer to ramascene/tests/validation_files for the structure of these
files. Each file contains information to generate a query, send a websocket query, receive results back from Celery.
These results are in turn matched against the validation files expected results with a given tolerance. Lastly refer to
confttest.py to see which scripts are called for performing the test.

Please be aware that at the moment only EXIOBASE v3 can be tested this way

To test over the full life cycle of the back-end you can run the following command in the root folder:

$ pytest -vs

Make sure to run a celery worker:

$ celery -A ramasceneMasterProject worker -l info --concurrency 1 --queue
calc_default -n worker1.%h

If the test has succeeded, you’ll need to repopulate the database with the following command:

$ python3 manage.py populateHierarchies

37

RaMa-Scene, Release 0.3-beta

38 Chapter 8. Testing

CHAPTER 9

Performance

9.1 Specs of tested server

• Brand: Dell PowerEdge R320

• CPU: Intel Xeon E5-1410 v2 @ 2.80 GHz

• Memory: 8 GiB DIMM DDR3 Synchronous 1600 MHz

• Number of cores: 8

9.2 Load test setup

9.2.1 websocket-tester

A custom websocket-tester is developed to simulate queries to the server. Multiple request are send using a simple
loop. For more information on the exact queries see description on testing scenarios further down this page.

9.2.2 Celery flower

For assessing performance of calculations the library Celery Flower is used. Refer to the official docs for more
information. To setup Flower on a remote server with Django you have to use the proxy server. For safety setup a
htpasswd file in the nginx configuration. See example configuration here for nginx with Celery Flower (adjust to your
needs) example_nginx_flower

For RabbitMQ the management plugin has to be enabled: $ sudo rabbitmq-plugins enable
rabbitmq_management

An example to start flower (make sure you are in the project root):

$ flower -A ramasceneMasterProject –port=5555 -Q modelling,calc_default –bro-
ker=amqp://guest:guest@localhost:5672// –broker_api=http://guest:guest@localhost:15672/api/ –url_prefix=flower

39

RaMa-Scene, Release 0.3-beta

In turn you can access flower via the web browser with <domain>/flower/.

9.2.3 Settings for Celery

The following settings are in place:

• [Django settings] CELERY_WORKER_MAX_TASKS_PER_CHILD = 1

• [env. variable] OPENBLAS_NUM_THREADS=2 for default calculations

• [env. variable] OPENBLAS_NUM_THREADS=5 for modelling calculations

• [Celery] –concurrency 1 for default calculations

• [Celery] –concurrency 1 for modelling calculations

Each Celery queue has its own dedicated worker (1 worker for default and 1 worker for modelling)

9.2.4 Testing scenarios and simultaneous requests

The longest calculation route is the one with the selections TreeMap and Consumption view. For simplicity we use
“value added” as the indicator coupled with “total” for product and countries. All scenarios use this selection. For
modelling we select “totals” for all categories except “consumed by” which contains the “S: Agriculture, hunting and
forestry” aggregate. A single technical change is set to an arbitrary value of 100.

• Scenario A [Analytical]: 30 analytical request whereby 17 requests cover all years. and 13 request use the year
2011.

• Scenario B [Modelling]: 30 modelling request whereby 17 requests cover all years. and 13 request use the year
2011. All requests do heavy calculations covering the modelling of intermediates.

• Scenario C [Analytical + Modelling]: 15 requests over 15 different years for analytical and 15 request over 15
different years for modelling.

Idle MEM use at point before load test: 572M

9.2.5 Results scenario A

• Max. time for a given task: 8.3 sec.

• Total time for the last user to finish the task: 4 min. and 58 sec.

• Highest detected MEM load: 2.87G (includes the idle MEM)

40 Chapter 9. Performance

RaMa-Scene, Release 0.3-beta

Conclusion:

The queued task in the right bottom plot show expected behaviour due to the concurrency set to 1. The time in queue
for a given task is relatively long compared to the time take to do calculations. This was expected as the CPU use is
limited coupled with no simultaneous requests.

9.2.6 Results scenario B

• Max. time for a given task: 48.97 sec.

• Total time for the last user to finish the task: 22 min. 59 sec.

• Highest detected MEM load: 3.49G (includes the idle MEM)

• Execution time of the first task: 46.09 sec.

9.2. Load test setup 41

RaMa-Scene, Release 0.3-beta

Conclusion:

CPU use is less limited for modelling and it can use 5 cores if needed, however that only speeds up execution time.
The last user still has to wait considerable time as opposed to the analytical queries. The spikes in the two plots on the
left show that there are no concurrent requests handled as set in the settings.

9.2.7 Results scenario C

• Max. time for a given analytical task: 9.48 sec.

• Total time for the last user to finish the task for analytics: 3 min. 28 sec.

• Max. time for a given modelling task: 49.36 sec.

• Total time for the last user to finish the task for modelling: 11 min. 55 sec.

• Highest detected MEM load: 6.44G (includes the idle MEM)

42 Chapter 9. Performance

RaMa-Scene, Release 0.3-beta

Conclusion:

As shown in the top left and bottom right graph both workers are active. The analytical queue depletes faster than the
modelling queue, which is also expected and desired behaviour. The MEM load has increased as both workers use
memory.

9.2.8 Final conclusion

Modelling has a significant impact on CPU use, in turn a limit is set on CPU considering the specs of the tested server.
This limit results in relatively long waiting time for users doing modelling. To circumvent this either a server with
more powerful specs is required or celery can be configured with workers on different machines. In both cases more
CPU is required and optimally more memory. If more memory is in place, logically concurrency can be increased
however new load tests have to be performed.

9.2. Load test setup 43

RaMa-Scene, Release 0.3-beta

44 Chapter 9. Performance

CHAPTER 10

ramascene

10.1 ramascene package

10.1.1 Submodules

10.1.2 ramascene.analyze module

class ramascene.analyze.Analyze(product_calc_indices, country_calc_indices, indica-
tor_calc_indices, querySelection, idx_units, job_name,
job_id, s_country_idx, Y_data, B_data, L_data)

Bases: object

This class contains the method for calculations

route_four()
Perform calculations according to route four.

Returns json result data

Return type json

route_one()
Perform calculations according to route one.

Returns json result data

Return type json

route_three()
Perform calculations according to route three.

Returns json result data

Return type json

route_two()
Perform calculations according to route two.

45

https://docs.python.org/3/library/functions.html#object

RaMa-Scene, Release 0.3-beta

Returns json result data

Return type json

10.1.3 ramascene.consumers module

class ramascene.consumers.RamasceneConsumer(scope)
Bases: channels.generic.websocket.JsonWebsocketConsumer

This class represents the Django Channels web socket interface functionality.

celery_message(event)
Sends Celery task status.

save_job(job_name)
Update and save the job status to started

websocket_connect(event)
websocket first connection, accept immediately

websocket_disconnect(message)
Websocket disconnect function.

websocket_receive(event)
Receives message from front-end.

Tries to parse the message, if successful it will perform pre-processing steps and invokes Celery tasks.

Parameters event (dict) – message from front-end

ws_response(job)
Sends web socket response that the job is started

10.1.4 ramascene.modelling module

class ramascene.modelling.Modelling(ready_model_details, Y_data, load_A, year,
model_details)

Bases: object

This class contains the methods for modeling

apply_model()

model_final_demand(Y, rows, columns, tech_change)
It allows for modification of values within final demand for scenario building

model_intermediates(A, rows, columns, tech_change)
It allows for modification of values within intermediates for scenario building

unpack(structure, name)
Unpack deep structure of modelling details (these are arrays of local ids per intervention)

10.1.5 ramascene.models module

class ramascene.models.Country(*args, **kwargs)
Bases: django.db.models.base.Model

Country model to store identifiers for the countries and aggregations

46 Chapter 10. ramascene

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

RaMa-Scene, Release 0.3-beta

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

code
The country code

global_id
The global id representing the application coordinates as primary id

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

identifier
an identifier determining if it is a leaf node or aggregate

leaf_children_global
the global id’s of the leafs for this continent (if available)

leaf_children_local
the local id’s of the leafs of this country (if available)

level
The level of hierarchy this country is in

local_id
The local id, only used if the hierarchy level is the lowest

name
The name of the country

objects = <django.db.models.manager.Manager object>

parent_id
The id representing what parent this country belongs to (by parent global_id)

class ramascene.models.Indicator(*args, **kwargs)
Bases: django.db.models.base.Model

Indicator model to store identifiers for indicators

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

global_id
The global id representing the application coordinates as primary id

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

level
The level of hierarchy this indicator is in

local_id
The local id (unusedas there are no direct summing steps performed for the extensions)

10.1. ramascene package 47

RaMa-Scene, Release 0.3-beta

name
The name of the indicator

objects = <django.db.models.manager.Manager object>

parent_id
The id representing what parent this indicator belongs to (unused as there are no direct summing steps
performed for the extensions)

unit
The unit used for the indicator

class ramascene.models.Job(*args, **kwargs)
Bases: django.db.models.base.Model

Job model to store Celery jobs

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

celery_id
The unique identifier for retrieving the results of the job from Celery

completed
The date the Celery job was completed

created
The date the Celery job was created

get_next_by_created(*, field=<django.db.models.fields.DateTimeField: created>, is_next=True,
**kwargs)

get_previous_by_created(*, field=<django.db.models.fields.DateTimeField: created>,
is_next=False, **kwargs)

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

name
The name of the Celery job

objects = <django.db.models.manager.Manager object>

status
The status of the Celery job

class ramascene.models.ModellingProduct(*args, **kwargs)
Bases: django.db.models.base.Model

Modelling data-model to store identifiers for the products and aggregations (slight modified version of Product)

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

code
The product category code

48 Chapter 10. ramascene

RaMa-Scene, Release 0.3-beta

global_id
The global id representing the application coordinates as primary id

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

identifier
an identifier determining if it is a leaf node or aggregate

leaf_children_global
the global id’s of the leafs for this product group (if available)

leaf_children_local
the local id’s of the leafs of this product group (if available)

level
The level of hierarchy this product is in

local_id
The local id, only used if the hierarchy level is the lowest

name
The name of the product category

objects = <django.db.models.manager.Manager object>

parent_id
The id representing what parent this product belongs to (by parent global_id)

class ramascene.models.Product(*args, **kwargs)
Bases: django.db.models.base.Model

Product model to store identifiers for the products and aggregations

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

code
The product category code

global_id
The global id representing the application coordinates as primary id

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

identifier
an identifier determining if it is a leaf node or aggregate

leaf_children_global
the global id’s of the leafs for this product group (if available)

leaf_children_local
the local id’s of the leafs of this product group (if available)

level
The level of hierarchy this product is in

10.1. ramascene package 49

RaMa-Scene, Release 0.3-beta

local_id
The local id, only used if the hierarchy level is the lowest

name
The name of the product category

objects = <django.db.models.manager.Manager object>

parent_id
The id representing what parent this product belongs to (by parent global_id)

10.1.6 ramascene.productindexmanger module

class ramascene.productindexmanger.ProductIndexManager(c_prd_ids, s_cntr_ids,
p_prd_ids, p_cntr_ids)

Bases: object

The ProductIndexManager provides functions to translate ids of selected countries and products into ids of the
combination of selected countries and products and returns ids that cab be used directly to select columns and/or
rows from final demand matrices, extension matrices and leontief inverse matrix.

The selected countries and products have to be supplied when initializing the ProductIndexManager. After
initialisation no changes to the supplied ids are allowed.

Parameters

• c_prd_ids – ndarray 1D array containing integers indicating the ids of selected consumed
products

• s_cntr_ids – ndarray 1D array containing integers indicating the ids of the selected
countries selling final products

• p_prd_ids – ndarray 1D array containing integers indicating the ids of the selected pro-
duced products

• p_cntr_ids – 1D array containing integers indicating the ids of the selected producing
countries

get_consumed_product_ids()
Get the ids of the selected consumed products

Based on the ids of the selected consumed products and the ids of the selected countries selling final
products the ids of all selected products in the final demand vector are generated. It allows to make a full
selection of the selected consumed products from a final demand vector. A full selection means that if the
id of the product bread was selected, now the ids of bread from Italy, bread from Belgium etc are generated
as long as Italy, Belgium etc are within the ids of countries selling final products. The ids are zero based.

Returns one dimensional numpy array with ids of type int

get_country_count()
Get the number of countries and regions in EXIOBASE

Returns integer object with the number of countries/regions.

get_full_selected_c_product_count()
Get the full number of consuming products selected.

Products in different countries are counted as unique items, i.e. bread from Belgium and bread from Italy
consumed in a particular country are considered two items.

Returns integer object with the full count of consumed products selected.

50 Chapter 10. ramascene

https://docs.python.org/3/library/functions.html#object

RaMa-Scene, Release 0.3-beta

get_full_selected_p_product_count()
Get the full number of produced products selected.

Products in different countries are counted as unique items, i.e. cars produced in France and cars produced
in Germany are considered two items.

Returns integer object with the full count of produced products selected.

get_produced_product_ids()
Get the ids of the selected produced products

Based on the ids of the selected produced products and the ids of the selected producing countries
the ids of all selected produced products are generated. It allows to make a full selection of the
selected produced products from the output vector. A full selection means that if the id of the
product car was selected, now the ids of car from Germany, car from France etc are generated as
long as Germany, France etc are within the ids of selected producing countries. The ids are zero
based.

Returns one dimensional numpy array with ids of type int

get_product_count()
Get the number of products per country in EXIOBASE

Returns integer object with the number of products.

get_selected_c_product_count()
Get the number of consumed products selected.

Returns integer object with the number of consumed products selected.

get_selected_p_country_count()
Get the number of selected producing countries.

Returns integer object with the number of producing countries selected.

get_selected_p_product_count()
Get the number of selected produced products.

Returns integer object with the number of produced products selected.

get_selected_s_country_count()
Get the number of selected countries selling final products.

Returns integer object with the number of contries selling final products selected.

10.1.7 ramascene.querymanagement module

ramascene.querymanagement.clean_indicators(idx_lst)
Clean data as preprocessing step for calculation.

Clean the selected indicator by converting to integers and applying offset of -1.

Parameters idx_lst (list) – indicators

Returns indicators(processed)

Return type list

ramascene.querymanagement.clean_local_leafs(a_list)
Clean data as preprocessing step for calculation.

Clean the country or product data for calculations by splitting and converting to integers.

10.1. ramascene package 51

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

RaMa-Scene, Release 0.3-beta

Parameters a_list (str) – country or product string of coordinates separated by #

Returns country or product list of coordinates as integers

Return type list

ramascene.querymanagement.clean_single_leafs(leaf, OFFSET)
Clean data as preprocessing step for calculation.

Clean the country or product data for calculations by splitting, applying offset (-1) and converting to integers.

Parameters leaf (str) – single country or product coordinate (non-processed)

Returns country or product list of coordinates (single element, processed)

Return type list

ramascene.querymanagement.convert_to_numpy(list_obj)
Clean data as preprocessing step for calculation.

Convert processed country,product, indicator lists to numpy array.

Parameters product,country,indicator (list) – pre-processed list

Returns numpy arrays of products or countries or indicator coordinates

Return type list

ramascene.querymanagement.get_aggregations_countries(querySelection, result_data)
Sum to construct aggregates results for countries.

Invoked at Celery tasks to sum values that belong to a certain aggregate.

Parameters

• querySelection (dict) – original querySelection from user

• result_data (dict) – dictionary of result_data from calculation

Returns dicitonary of result_data, but with aggregations if there are any

Return type dict

ramascene.querymanagement.get_aggregations_products(querySelection, result_data)
Sum to construct aggregates results for products.

Invoked at Celery tasks to sum values that belong to a certain aggregate.

Parameters

• querySelection (dict) – original querySelection from user

• result_data (dict) – dictionary of result_data from calculation

Returns dicitonary of result_data, but with aggregations if there are any

Return type dict

ramascene.querymanagement.get_calc_names_country(country_result_data)
Get name of countries.

Uses the database/model to fetch names, used inside calculation as conversion step

Parameters country_result_data (dict) – key/value pair product with key as global_id

Returns key/value pair country with key as name corresponding to querySelection global_id

Return type dict

52 Chapter 10. ramascene

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

RaMa-Scene, Release 0.3-beta

ramascene.querymanagement.get_calc_names_product(prod_result_data)
Get name of products.

Uses the database/model to fetch names, used inside calculation as conversion step

Parameters prod_result_data (dict) – key/value pair product with key as global_id

Returns key/value pair product with key as name corresponding to querySelection global_id

Return type dict

ramascene.querymanagement.get_indicator_units(idx_lst)
Get units of passed-in indicators.

Can be multiple or single units depending on the API implementation version

Parameters idx_lst (list) – indicators

Returns key/value pair name of indicator and corresponding unit

Return type dict

ramascene.querymanagement.get_leafs_country(country_global_ids)
Returns the leaf nodes of a given global id

Uses the database/model to fetch leaf nodes.

Parameters country_global_ids (list) – A list of user selected country global ids

Returns complete list of leaf ids (minus a offset of -1 for calculation purposes)

Return type list

ramascene.querymanagement.get_leafs_modelled_product(product_global_ids)
Returns the leaf nodes of a given global id

Uses the database/model to fetch leaf nodes.

Parameters product_global_ids (list) – A list of user selected product global ids

Returns complete list of leaf ids (minus a offset of -1 for calculation purposes)

Return type list

ramascene.querymanagement.get_leafs_product(product_global_ids)
Returns the leaf nodes of a given global id

Uses the database/model to fetch leaf nodes.

Parameters product_global_ids (list) – A list of user selected product global ids

Returns complete list of leaf ids (minus a offset of -1 for calculation purposes)

Return type list

ramascene.querymanagement.get_modelled_names_product(prod_ids)
Get name of products consumed by in modelling

Uses the database/model to fetch names, used for sending selection information to front-end

Parameters prod_ids (list) – list of products by global id

Returns lists of products

Return type list

10.1. ramascene package 53

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

RaMa-Scene, Release 0.3-beta

ramascene.querymanagement.get_names_country(country_ids)
Get name of countries

Uses the database/model to fetch names, used for sending selection information to front-end

Parameters country_ids (list) – list of countries by global id

Returns lists of countries

Return type list

ramascene.querymanagement.get_names_indicator(indicator_ids)
Get name of indicators

Uses the database/model to fetch names, used for sending selection information to front-end

Parameters indicator_ids (list) – list of indicators by global id

Returns lists of indicators as names

Return type list

ramascene.querymanagement.get_names_product(prod_ids)
Get name of products

Uses the database/model to fetch names, used for sending selection information to front-end

Parameters prod_ids (list) – list of products by global id

Returns lists of products

Return type list

ramascene.querymanagement.get_numpy_objects(year, object_name)

Retrieve numpy objects per year.

Args: year (int): selected year object_name (str): L, A, B, or Y

Returns: numpy object: numpy object of the given object_name

ramascene.querymanagement.identify_country(country_id)
Helper function.

Does database check on countries if the global_id the user selected is an aggregate or not

Parameters country_id (int) – global id

Returns identifier e.g. LEAF or AGG or TOTAL

Return type str

ramascene.querymanagement.identify_modelling_product(prod_id)
Helper function.

Does database check on products if the global_id the user selected is an aggregate or not

Parameters prod_id (int) – global id

Returns identifier e.g. LEAF or AGG or TOTAL

Return type str

ramascene.querymanagement.identify_product(prod_id)
Helper function.

Does database check on products if the global_id the user selected is an aggregate or not

54 Chapter 10. ramascene

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

RaMa-Scene, Release 0.3-beta

Parameters prod_id (int) – global id

Returns identifier e.g. LEAF or AGG or TOTAL

Return type str

10.1.8 ramascene.tasks module

ramascene.tasks.async_send(channel_name, job)
Send job message to front-end.

uses the channel_name and Job object. Send success or failure status.

Parameters

• channel_name (object) – websocket channel name

• job (object) – model object of the job

ramascene.tasks.default_handler(job_name, job_id, channel_name, ready_query_selection,
query_selection)

invokes Celery function.

Handler for invoking Celery method.

Parameters

• job_name (str) – the name of the job

• job_id (int) – the id of the job

• channel_name (object) – the websocket channel name

• ready_query_selection (dict) – the query_selection preprocessed (only needs
convertion to numpy array)

• query_selection (dict) – the original query_selection used for aggregations at later
stage

ramascene.tasks.handle_complete(job_id, channel_name, celery_id)
Handle a successful Celery Task.

ramascene.tasks.job_update(job_id)
Update job status to completion.

Update the job status by reference job id. :param job_id: job id :type job_id: int

10.1.9 ramascene.views module

ramascene.views.ajaxHandling(request)
AJAX handler.

Checks if the request is a post. Uses from the request the task/job id to fetch the Celery unique identifier. In turn
it retrieves by using the Celery unique identifier the actual results

Parameters object – request

Returns JSON response of result calculation

ramascene.views.home(request)
Home page.

10.1. ramascene package 55

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

RaMa-Scene, Release 0.3-beta

10.1.10 Module contents

ramascene.activate_foreign_keys(sender, connection, **kwargs)

56 Chapter 10. ramascene

Python Module Index

r
ramascene, 56
ramascene.analyze, 45
ramascene.consumers, 46
ramascene.modelling, 46
ramascene.models, 46
ramascene.productindexmanger, 50
ramascene.querymanagement, 51
ramascene.tasks, 55
ramascene.views, 55

57

RaMa-Scene, Release 0.3-beta

58 Python Module Index

Index

A
activate_foreign_keys() (in module ramascene), 56
ajaxHandling() (in module ramascene.views), 55
Analyze (class in ramascene.analyze), 45
apply_model() (ramascene.modelling.Modelling

method), 46
async_send() (in module ramascene.tasks), 55

C
celery_id (ramascene.models.Job attribute), 48
celery_message() (rama-

scene.consumers.RamasceneConsumer
method), 46

clean_indicators() (in module rama-
scene.querymanagement), 51

clean_local_leafs() (in module rama-
scene.querymanagement), 51

clean_single_leafs() (in module rama-
scene.querymanagement), 52

code (ramascene.models.Country attribute), 47
code (ramascene.models.ModellingProduct attribute), 48
code (ramascene.models.Product attribute), 49
completed (ramascene.models.Job attribute), 48
convert_to_numpy() (in module rama-

scene.querymanagement), 52
Country (class in ramascene.models), 46
Country.DoesNotExist, 46
Country.MultipleObjectsReturned, 47
created (ramascene.models.Job attribute), 48

D
default_handler() (in module ramascene.tasks), 55

G
get_aggregations_countries() (in module rama-

scene.querymanagement), 52
get_aggregations_products() (in module rama-

scene.querymanagement), 52

get_calc_names_country() (in module rama-
scene.querymanagement), 52

get_calc_names_product() (in module rama-
scene.querymanagement), 52

get_consumed_product_ids() (rama-
scene.productindexmanger.ProductIndexManager
method), 50

get_country_count() (rama-
scene.productindexmanger.ProductIndexManager
method), 50

get_full_selected_c_product_count() (rama-
scene.productindexmanger.ProductIndexManager
method), 50

get_full_selected_p_product_count() (rama-
scene.productindexmanger.ProductIndexManager
method), 50

get_indicator_units() (in module rama-
scene.querymanagement), 53

get_leafs_country() (in module rama-
scene.querymanagement), 53

get_leafs_modelled_product() (in module rama-
scene.querymanagement), 53

get_leafs_product() (in module rama-
scene.querymanagement), 53

get_modelled_names_product() (in module rama-
scene.querymanagement), 53

get_names_country() (in module rama-
scene.querymanagement), 53

get_names_indicator() (in module rama-
scene.querymanagement), 54

get_names_product() (in module rama-
scene.querymanagement), 54

get_next_by_created() (ramascene.models.Job method),
48

get_numpy_objects() (in module rama-
scene.querymanagement), 54

get_previous_by_created() (ramascene.models.Job
method), 48

get_produced_product_ids() (rama-
scene.productindexmanger.ProductIndexManager

59

RaMa-Scene, Release 0.3-beta

method), 51
get_product_count() (rama-

scene.productindexmanger.ProductIndexManager
method), 51

get_selected_c_product_count() (rama-
scene.productindexmanger.ProductIndexManager
method), 51

get_selected_p_country_count() (rama-
scene.productindexmanger.ProductIndexManager
method), 51

get_selected_p_product_count() (rama-
scene.productindexmanger.ProductIndexManager
method), 51

get_selected_s_country_count() (rama-
scene.productindexmanger.ProductIndexManager
method), 51

global_id (ramascene.models.Country attribute), 47
global_id (ramascene.models.Indicator attribute), 47
global_id (ramascene.models.ModellingProduct at-

tribute), 48
global_id (ramascene.models.Product attribute), 49

H
handle_complete() (in module ramascene.tasks), 55
home() (in module ramascene.views), 55

I
id (ramascene.models.Country attribute), 47
id (ramascene.models.Indicator attribute), 47
id (ramascene.models.Job attribute), 48
id (ramascene.models.ModellingProduct attribute), 49
id (ramascene.models.Product attribute), 49
identifier (ramascene.models.Country attribute), 47
identifier (ramascene.models.ModellingProduct at-

tribute), 49
identifier (ramascene.models.Product attribute), 49
identify_country() (in module rama-

scene.querymanagement), 54
identify_modelling_product() (in module rama-

scene.querymanagement), 54
identify_product() (in module rama-

scene.querymanagement), 54
Indicator (class in ramascene.models), 47
Indicator.DoesNotExist, 47
Indicator.MultipleObjectsReturned, 47

J
Job (class in ramascene.models), 48
Job.DoesNotExist, 48
Job.MultipleObjectsReturned, 48
job_update() (in module ramascene.tasks), 55

L
leaf_children_global (ramascene.models.Country at-

tribute), 47
leaf_children_global (rama-

scene.models.ModellingProduct attribute),
49

leaf_children_global (ramascene.models.Product at-
tribute), 49

leaf_children_local (ramascene.models.Country at-
tribute), 47

leaf_children_local (rama-
scene.models.ModellingProduct attribute),
49

leaf_children_local (ramascene.models.Product at-
tribute), 49

level (ramascene.models.Country attribute), 47
level (ramascene.models.Indicator attribute), 47
level (ramascene.models.ModellingProduct attribute), 49
level (ramascene.models.Product attribute), 49
local_id (ramascene.models.Country attribute), 47
local_id (ramascene.models.Indicator attribute), 47
local_id (ramascene.models.ModellingProduct attribute),

49
local_id (ramascene.models.Product attribute), 49

M
model_final_demand() (ramascene.modelling.Modelling

method), 46
model_intermediates() (ramascene.modelling.Modelling

method), 46
Modelling (class in ramascene.modelling), 46
ModellingProduct (class in ramascene.models), 48
ModellingProduct.DoesNotExist, 48
ModellingProduct.MultipleObjectsReturned, 48

N
name (ramascene.models.Country attribute), 47
name (ramascene.models.Indicator attribute), 47
name (ramascene.models.Job attribute), 48
name (ramascene.models.ModellingProduct attribute), 49
name (ramascene.models.Product attribute), 50

O
objects (ramascene.models.Country attribute), 47
objects (ramascene.models.Indicator attribute), 48
objects (ramascene.models.Job attribute), 48
objects (ramascene.models.ModellingProduct attribute),

49
objects (ramascene.models.Product attribute), 50

P
parent_id (ramascene.models.Country attribute), 47
parent_id (ramascene.models.Indicator attribute), 48

60 Index

RaMa-Scene, Release 0.3-beta

parent_id (ramascene.models.ModellingProduct at-
tribute), 49

parent_id (ramascene.models.Product attribute), 50
Product (class in ramascene.models), 49
Product.DoesNotExist, 49
Product.MultipleObjectsReturned, 49
ProductIndexManager (class in rama-

scene.productindexmanger), 50

R
ramascene (module), 56
ramascene.analyze (module), 45
ramascene.consumers (module), 46
ramascene.modelling (module), 46
ramascene.models (module), 46
ramascene.productindexmanger (module), 50
ramascene.querymanagement (module), 51
ramascene.tasks (module), 55
ramascene.views (module), 55
RamasceneConsumer (class in ramascene.consumers), 46
route_four() (ramascene.analyze.Analyze method), 45
route_one() (ramascene.analyze.Analyze method), 45
route_three() (ramascene.analyze.Analyze method), 45
route_two() (ramascene.analyze.Analyze method), 45

S
save_job() (ramascene.consumers.RamasceneConsumer

method), 46
status (ramascene.models.Job attribute), 48

U
unit (ramascene.models.Indicator attribute), 48
unpack() (ramascene.modelling.Modelling method), 46

W
websocket_connect() (rama-

scene.consumers.RamasceneConsumer
method), 46

websocket_disconnect() (rama-
scene.consumers.RamasceneConsumer
method), 46

websocket_receive() (rama-
scene.consumers.RamasceneConsumer
method), 46

ws_response() (ramascene.consumers.RamasceneConsumer
method), 46

Index 61

	Introduction
	Implementation overview
	Consumers
	Query Management
	Tasks
	Models
	Views
	Analyze
	Modelling

	API descriptors
	Default calculations
	Modelling calculations

	Calculation overview
	Pre-calculating the matrices
	The four calculation routes
	Route 1
	Route 2
	Route 3
	Route 4

	Modelling overview
	General description
	Settings
	Processing the settings

	Frontend
	Package Manager
	Structure

	Deployment
	Install Redis [message broker] for Django Channels websocket support
	Install Django dependencies & prepare SQLlite
	Management commands and prepare static resources
	Install and setup nginx [HTTP and Reverse Proxy Server]
	Celery details and setup
	Testing the application
	Daemonizing
	Management of database results

	Python initialise scripts
	Management commands
	Creating EXIOBASE numpy objects
	Building mapping coordinates files for the application
	Creating custom geojson and topojson files

	Testing
	Unit testing
	Integration test

	Performance
	Specs of tested server
	Load test setup

	ramascene
	ramascene package

	Python Module Index
	Index

