

RaMa-Scene developers documentation

Welcome to RaMa-Scene’s docs. This documentation is split into several parts:

	Introduction. An overview of the application inner workings.

	API descriptors. The front-end, back-end payloads.

	Calculations overview. Formula overview of calculations performed.

	Deployment. Details for deploying the application.

	Python initialise scripts. Independent scripts used for constructing files used by the application.

	Modules. Technical details.

1. Introduction

RaMa-Scene is a Django+React web-application that allows for analyzing Environmentally Extended Input-Output (EEIO) tables from EXIOBASE v3.3.

Several on-the-fly calculations are performed to generate EEIO results.
The on-the-fly calculations are made possible by loading in EXIOBASE raw data into memory
and employing background processing using Celery.

1.1. Implementation overview

The back-end can receive two main types of requests from the front-end. A websocket-based request
and an Ajax-based request.

Websockets are used for notifying the user and sending queries to the back-end, while Ajax is used to retrieve final results from the back-end.

Terminology:

	“Tasks” are used for front-end notifications of a given query and a “task” is a calculation process in Celery.

	“Jobs” are the database objects used by the back-end to remember which calculation (task) is started by which user.

See figure below for an overview of the back-end processes.

[image: _images/graph_overview.png]

1.2. Consumers

The module consumers is a Django Channels implementation that handles websockets.
Meaning that the consumers module is one of the core communication methods between front-end and back-end.
This module also invokes query management to process the queries.

1.3. Query Management

Any query received from the front-end needs to be processed in order to perform calculations and generate result data
in a proper format using the query management module.

1.4. Tasks

This module is the heart of the EEIO calculations. The Tasks module implements the Celery background processing implementation that allows to process multiple
calculations at the same time, but also calculations that take a long time.

1.5. Models

Models allows to insert and fetch database objects. It contains mapping coordinates for front-end and back-end communication as well
as the calculation status and results per user.

1.6. Views

The views module handles the AJAX POST and JSON result response.

1.7. Analyze

For performing the actual IO calculations the analyze module is used.

2. API descriptors

The React front-end has access to mapping coordinates reflecting product categories, countries and indicators.
See project root static_assets:

	final_countryTree_exiovisuals.csv

	final_productTree_exiovisuals.csv

	mod_indicators.csv

These mapping coordinates are not only used to render tree selectables, but also to transmit the global id’s of the product categories, countries and indicators
over the websocket channel. In turn the back-end handles these messages to perform calculations and store results.

API routing:

	API URL Websockets: <domain-ip>/ramascene/

	API URL AJAX: <domain-ip>/ajaxhandling/

	Interface format: JSON

Interface descriptors [websocket message to back-end]:

	Stage

	Instances relation

	Variable name, dataType, example

	Dimension

	Production, Consumption

	
	var name: querySelection

	
	JSON key: dimType, JSON value: String

	ex.: “dimType”:”Production”

	Visualization

	TreeMap, GeoMap

	
	var name: querySelection

	
	JSON key: vizType, JSON value: String

	ex.: “vizType”:”TreeMap”

	Filter

	Product

	
	var name: querySelection

	
	JSON key: nodesSec, JSON value: array

	ex.: “nodesSec”:”[1]”

	Filter

	Country

	
	var name: querySelection

	
	JSON key: nodesReg, JSON value: array

	ex.: “nodesReg”:”[4,5]”

	Filter

	Indicator

	
	var name: querySelection

	
	JSON key: ext, JSON value: array

	ex.: “ext”:”[8]”

	All

	
	→ to back-end

	[WS send]

	
	var name: querySelection & action

	
	JSON : querySelection, JSON: action

	ex.:see table below

→ to back-end complete payload example:

{

“action”:

“start_calc”,

“querySelection”:{

“dimType”:”Production”,

“vizType”:”TreeMap”,

“nodesSec”:[1],

“nodesReg”:[4,5],

“ext”:[8]

}

}

Interface descriptors [websocket messages from back-end]:

	Stage

	Instances relation

	Variable name, dataType, example

	
	
	

	Action request status

	
	from Back-end →

	[WS response]

	
	var name: action

	
	JSON key: action, JSON value: string

	ex.: {“action”:”started”}

	Job status

	
	from Back-end →

	[WS response]

	
	var name: job_status

	
	JSON key: job_status,JSON value: string

	ex.: {“job_status”:”started”}

	Job status

	
	from Back-end →

	[WS response]

	
	var name: job_id

	
	JSON key: job_id,JSON value: int

	ex.: {“job_id”:”165”}

	Job name

	
	from Back-end →

	[WS response]

	
	var name: job_name

	
	JSON key: job_name,JSON value: JSON

	ex.: full querySelection as names

→ from back-end complete response example:

{

“job_id”:176,

“action”:”check status”,

“job_status”:”completed”,

“job_name”:{

‘nodesReg’: [‘Total’],

‘vizType’: ‘TreeMap’,

‘nodesSec’: [‘Fishing’, ‘Mining and quarrying’, ‘Construction’],

‘dimType’: ‘Consumption’,

‘extn’: [‘Value Added: Total’]

}

}

Interface descriptors [AJAX response]:

	Stage

	Instances relation

	Variable name, dataType, example

	
	
	

	Retrieve calculation

	
	from Back-end →

	[AJAX response]

	
	var name: unit

	
	JSON key: name, JSON value: string

	ex.: {“Value Added”:”[M.EUR]”}

	All

	
	from Back-end →

	[AJAX response]

	
	var name: job_id

	
	JSON key: job_id, JSON value: int

	ex.: {“job_id”:”175”}

	All

	
	from Back-end →

	[AJAX response]

	
	var name: rawResultData

	
	JSON key: name, JSON value: array

	ex.: {“Europe”:”[1256.67]”}

	All

	
	from Back-end →

	[AJAX response]

	
	var name: job_name

	
	JSON key: job_name, JSON value: JSON

	ex.: full querySelection as names

→ from back-end complete response example:

{

“job_id”:

175,

“unit”:

{“GHG emissions: Total”: “kg CO2 eq”},

“job_name”:

{“nodesReg”: [“Europe”],

“nodesSec”: [“Fishing”],

“dimType”: “Production”,

“extn”: [“GHG emissions: Total”],

“vizType”: “GeoMap”},

“rawResultData”:

{“Europe”: 13787995489.580374}

}

3. Calculation overview

The following calculation explanations references the ramascene.analyze module code.

3.1. Pre-calculating the matrices

To reduce calculation times and to reduce load on the server the Leontief inverse or total requirements matrix (L)
is precalculated according:

[image: _images/image003.png]
When storing the Leontief inverse as an intermediate result, calculations on the server are reduced to simple matrix –
matrix multiplication and the computational intense task of solving a system of linear equations or making a full matrix
inverse can be avoided.

The matrices that are stored for further calculation are L , Y and B.
They are stored as binary objects in the form of numpy arrays.

3.2. The four calculation routes

If environmental impacts related to final consumption are analysed it is possible to compare the environmental impacts
from different points of view. We can compare the impact of consumed products between countries or between different
products. This is what is called the consumption based view. Or given a certain final consumption of products we can
calculate where the emissions are taking place and compare these between producing sector or countries. This is what we
call the production point of view. All in all we distinguish between four different ways comparisons can be made.
They are shown in Figure 1.

In each of the four calculation routes, the principal calculation that in each route is done is:

[image: _images/image009.png]
The way the resulting calculations are presented are however different each time. In route 1 the calculated indicators
results are presented per final consumed product. In route 2 the calculated indicator results are presented per
consuming country. In route 3 the results are presented per producing country and in route 4 they are presented per
produced product. For each route the details are described below.

[image: _images/image011.png]
Figure 1: Consumption and production view and the corresponding calculation routes.

3.3. Route 1

In this calculation route the user can compare the environmental impacts associated with the final consumption of
different products in a set of selected countries. Environmental impacts generated by production in all countries and
by the production of all products are taken into account.

The calculation route has been designed for general application. It can calculate the environmental impacts of different
products given a specific selected country selling final product or specific country where the emission takes place or
specific sector where the emission takes place. However the actual implementation of route 1 takes into account that
country selling product are all countries, the country where the emission takes place are all countries and the emission
at all sectors are taken into account.

The calculation starts by creating the final demand vector that contains the selected products for the selected
countries.

The symbol Y represents the multi-regional final demand matrix, that can be subdivided into sub-vectors that contain
final
demand for domestically produced products and final demand for imported products. In the final demand table there is no
further subdivision into final demand by households, changes in stocks etc. Assume that there are three countries:

[image: _images/image013.png]
And the consuming country 1 and 3 have been selected then Y first becomes:

[image: _images/image015.png]
where the subscript s stands for selected elements. Subsequently the total final demand for each product is calculated:

[image: _images/image019.png]
Where i is a column vector of ones of appropriate length.

It is important to note that the user selects a product without specifying the origin of a product.
For instance, if a user selects wheat as a product of interest, in the final demand vector wheat from every
origin is selected i.e. wheat from Austria, wheat from Belgium etc.

For each of the final consumed products selected the output from each sector (X) needed to produce that
product is calculated as:

[image: _images/image026.png]
At this point it is possible to make a sub-selection from X to select only the output in countries and sectors that are
of interest to the user. For instance if we assume a three country case X can be expressed as:

[image: _images/image029.png]
If we’re only interested in the activities taking place in country 1 as a result of the selected final consumption of
products then the subselection is:

[image: _images/image032.png]
The next step is calculating the selected indicator:

[image: _images/image033.png]
where m is a vector of the impacts associated with each of the selected final consumed products given a certain
selected region and sector where the emission takes place.

There is one last step to make. The user does not specify the geographical origin of a product. For instance
if the user selects “rice” the actual product selected are “rice from Italy”, “rice from Taiwan”. The m vector with a
length of 49 countries times 200 products needs to be aggregated into 200 product groups:

[image: _images/image037.png]
where G is an appropriate aggregation matrix.

In practice for the consumption based view the sector and region where the emission takes place is always set to all
sectors and all regions. However the code allows to make sub selections.

3.4. Route 2

In route 2 the environmental impacts of final consumption is compared between countries for a selected set of products.
Again environmental impacts generated by production in all countries and by the production of all products are taken
into account.

The calculation route has been designed for general application. It can calculate the environmental impacts of different
products given a specific selected country selling final product or specific country where the emission takes place or
specific sector where the emission takes place. However the actual implementation of route 2 takes into account that
country selling product are all countries, the country where the emission takes place are all countries and the emission
at all sectors are taken into account.

The calculation starts by creating the final demand vector that contains the selected products for the selected countries.

The symbol Y represents the multi-regional final demand matrix, that can be subdivided into subvectors that contain total
final demand for domestically produced products and total final demand for imported products. Assume that there are
three countries:

[image: _images/image013.png]
And the consuming country 1 and 3 have been selected then Y first becomes:

[image: _images/image015.png]
where the subscript s stands for selected elements.

It is important to note that the user selects a product without specifying the origin of a product.
For instance, if a user selects wheat as a product of interest, in the final demand vector wheat from every
origin is selected i.e. wheat from Austria, wheat from Belgium etc.

For each of the selected countries, the output from each sector (X) needed to produce that final demand for a
country is calculated as:

[image: _images/image041.png]
At this point it is possible to make a sub-selection from X to select only the output in countries and sectors that are of
interest to the user. For instance if we assume a three country case X can be expressed as:

[image: _images/image029.png]
If we’re only interested in the activities taking place in country 1 as a result of the selected final consumption of
products then the subselection is:

[image: _images/image032.png]
The next step is calculating the selected indicator:

[image: _images/image033.png]
where m is a vector of the impacts associated with each of the countries selected final demand.

3.5. Route 3

Using this calculation route the user can compare the emissions taking place in different countries given a
certain selected final demand. For instance it is possible to see in which countries emissions take place as a
result of final consumption in the USA.

The calculation route has been designed for general application. It can calculate the environmental impacts of
different products given a specific selected country selling final product or specific country where the emission
takes place or specific sector where the emission takes place. However the actual implementation of route 3 takes
into account that country selling product are all countries, the country where the emission takes place are all
countries and the emission at all sectors are taken into account.

The calculation starts by creating the final demand vector that contains the selected products for the selected countries.

The Y symbol represents the multi-regional final demand matrix, that can be subdivided into subvectors that contain
total final demand for domestically produced products and total final demand for imported products. Assume that there
are three countries:

[image: _images/image013.png]
And the consuming country 1 and 3 have been selected then Y first becomes:

[image: _images/image015.png]
where the subscript s stands for selected elements.

It is important to note that the user selects a product without specifying the origin of a product. For instance, if a
user selects wheat as a product of interest, in the final demand vector wheat from every origin is selected i.e. wheat
from Austria, wheat from Belgium etc.

Following the selection of final consumed products in a selected number of countries the final demand matrix is summed
to get total final demand for each product:

[image: _images/image020.png]
The output needed to satisfy this final demand is subsequently calculated according:

[image: _images/image047.png]
The vector x contains all possible product outputs and has a length of 49 countries times 200 products.
The emissions or impact indicators are calculated by multiplying selected emission coefficients or selected indicator
coefficients with the diagonalised output vector:

[image: _images/image052.png]
The vector m is subsequently aggregated into emission or indicators per country

[image: _images/image038.png]
where G is an appropriate aggregation matrix.

3.6. Route 4

Using this calculation route the user can compare the emissions associated with different product outputs
given a certain selected final demand. For instance it is possible to see in which product output has the
highest emissions as a result of final consumption in the USA. This calculation route starts in the same way
as calculation Route 3 but the aggregation step at the end differs from route 1.

The calculation route has been designed for general application. It can calculate the environmental impacts
of different products given a specific selected country selling final product or specific country where the
emission takes place or specific sector where the emission takes place. However the actual implementation of
route 4 takes into account that country selling product are all countries, the country where the emission takes
place are all countries and the emission at all sectors are taken into account.

The calculation starts by creating the final demand vector that contains the selected products for the selected countries.

The symbol Y represents the multi-regional final demand matrix, that can be subdivided into subvectors that contain
total final demand for domestically produced products and total final demand for imported products. Assume that there
are three countries:

[image: _images/image013.png]
And the consuming country 1 and 3 have been selected then Y first becomes:

[image: _images/image015.png]
where the subscript s stands for selected elements.

It is important to note that the user selects a product without specifying the origin of a product. For instance,
if a user selects wheat as a product of interest, in the final demand vector wheat from every origin is selected i.e.
wheat from Austria, wheat from Belgium etc.

Following the selection of final consumed products in a selected number of countries the final demand matrix is summed
to get total final demand for each product:

[image: _images/image020.png]
The output needed to satisfy this final demand is subsequently calculated according:

[image: _images/image047.png]
The vector x contains all possible product outputs and has a length of 49 countries times 200 products.
The emissions or impact indicators are calculated by multiplying selected emission coefficients or selected indicator
coefficients with the diagonalised output vector:

[image: _images/image052.png]
The vector m is subsequently aggregated into emission or indicators per country

[image: _images/image038.png]
where G is an appropriate aggregation matrix.

4. Deployment

The web-application deployment process is based on the following documentations and is tested on Ubuntu 16.04 LTS:

	http://masnun.rocks/2016/11/02/deploying-django-channels-using-daphne/

	http://channels.readthedocs.io/en/stable/deploying.html

	https://medium.com/@saurabhpresent/deploying-django-channels-using-supervisor-and-ngnix-2f9a25393eef

	https://medium.com/@dwernychukjosh/setting-up-nginx-gunicorn-celery-redis-supervisor-and-postgres-with-django-to-run-your-python-73c8a1c8c1ba

	https://www.vultr.com/docs/installing-and-configuring-supervisor-on-ubuntu-16-04

It is advised to read these guides. See the next sections for an example to get started quickly.

4.1. Install Redis [message broker]

Install redis:
sudo apt-get install redis-server

Create a virtual environment and install the following:

pip3 install asgi_redis

pip3 install -U channels_redis

Test redis:

redis-cli ping

Return value should be : PONG

Make sure redis is a daemon, see redis.conf.

4.2. Install Django dependencies & prepare SQLlite

In the same virtual env., change directory towards the project root:
pip3 install -r requirements.txt

Change directory to project folder for preparation SQLlite with Django:

python3 manage.py makemigrations

python3 manage.py migrate

Create superuser for administration purposes:

python3 manage.py createsuperuser

4.3. Management commands and prepare static resources

Populating database classifications:

python3 manage.py populateHierarchies

Adjust settings.py in project:

PATH_TO_L = ‘<full path to L matrix>’

PATH_TO_B = ‘<full path to B matrix>

PATH_TO_Y = ‘<full path to Y matrix>’

DEBUG = False

ALLOWED_HOSTS = [<domain>]

Install node.js (node version: 3.10.10 or higher), if not already installed:

sudo apt-get install nodejs

Prepare static resources:

$npm install

Set webpack conf settings for production:

	Configure webpack.config.js for ajax url and websocket url at webpack.DefinePlugin().

	Adjust process environment to “production” at webpack.DefinePlugin().

	Make sure that new UglifyJsPlugin() is set.

Built React bundle:

./node_modules/.bin/webpack --config webpack.config.js

Django collect static:
python3 manage.py collectstatic

4.4. Install and setup nginx [HTTP and Reverse Proxy Server]

Installing nginx requires apache to be stopped if running:

sudo service apache2 stop

Install nginx:

sudo apt-get install nginx

Configure nginx, make sure proxy_pass is set to this:
http://0.0.0.0:8001

See example configuration file example_nginx

Check status of nginx:
sudo nginx -t

Allow Nginx to interact with the host machine on the network:
sudo ufw allow ‘Nginx Full’

4.5. Setting up Daphne and Celery

Make sure Daphne is installed and start daphne (in virtualenv):

daphne -b 0.0.0.0 -p 8001 ramasceneMasterProject.asgi:application

Start Celery in virtual env.:

celery -A ramasceneMasterProject worker -l info --concurrency=2

Be careful with CPU load if you raise concurrency.

Test the application to see if everything is running correct in a web-browser.

4.6. Daemonizing

Celery, Daphne need to be deamonized. For example with supervisor.
See example configuration file example_supervisord

4.7. RaMa-Scene memory usage

The memory usage of the application is approximately 1.8G, namely due to loading raw data in memory. Loading in raw
data objects in memory improves calculations speeds. The following measurements are taken:

	Daphe (Interface server for making Django available): increase from (default) 462M to 1.24G

	Celery (background processor): increase from 1.24G to 2.24G

5. Python initialise scripts

Python initialise scripts provide the following features:

	Building mapping coordinates files for the application

	Creating custom geojson and topojson files

	Management commands

Note: these scripts are not directly used by the application at runtime. If you wish to extent or develop features such as
using another EEIO dataset it is recommendend to investigate how these script work.
Deployment management commands are used for populating the database, see section 4.3.

5.1. Building mapping coordinates files for the application

EXIOBASE v3.3 has specific classifications that needs to map to user input.
For example if Europe is selected by the user as one of the parameters for analyses, the calculation procedure uses indices corresponding to all countries belonging to Europe.
In turn these calculation results need to be aggregated back into a single value for Europe.
For coordinating user input to calculation procedures the RaMa-Scene application developed the following mapping CSV’s :

	final_countryTree_exiovisuals.csv

	final_productTree_exiovisuals.csv

These files are read in by the script prepare_csv.py that in turn makes a slight modification to easily denote aggregated or disaggregated countries or product categories.

Note : see project folder python_ini/data & python_ini/devScripts.

5.2. Creating custom geojson and topojson files

For visualizations of continental data custom polygons need to be created that reflect the country mapping of EXIOBASE.
A script is developed to dissolve countries that belong to a certain continent or “rest of ” classification with the library GeoPandas.

Relevant scripts: geo_dissolve_by_level.py, prepare_geomapping_ISO3166_3.py, prepare_geomapping_ISO3166_2.py

Note : see project folder python_ini/geomapBuilds

5.3. Management commands

This application uses a sql-lite database to store mapping coordinates, user queries (Jobs) and user results (Celery results).
For mapping coordinates the database needs to be populated before running the application.

The management commands uses CSV files generated by prepare_csv.py:

	mod_final_countryTree_exiovisuals.csv

	mod_final_productTree_exiovisuals.csv

The following command is used to populate the database python manage.py populateHierarchies populates the database with the mapping files needed.

Aside from database population, it is necessary to clean the database of results when needed. This can be done
with the following command python manage.py clear_models

Note : see project folder ramascene/management/commands

6. ramascene

	6.1. ramascene package
	6.1.1. Subpackages
	6.1.1.1. ramascene.management package
	6.1.1.1.1. Subpackages

	6.1.1.1.2. Module contents

	6.1.2. Submodules

	6.1.3. ramascene.analyze module

	6.1.4. ramascene.consumers module

	6.1.5. ramascene.exceptions module

	6.1.6. ramascene.models module

	6.1.7. ramascene.productindexmanger module

	6.1.8. ramascene.querymanagement module

	6.1.9. ramascene.tasks module

	6.1.10. ramascene.views module

	6.1.11. Module contents

6.1. ramascene package

6.1.1. Subpackages

	6.1.1.1. ramascene.management package
	6.1.1.1.1. Subpackages
	6.1.1.1.1.1. ramascene.management.commands package
	6.1.1.1.1.1.1. Submodules

	6.1.1.1.1.1.2. ramascene.management.commands.clear_models module

	6.1.1.1.1.1.3. ramascene.management.commands.populateHierarchies module

	6.1.1.1.1.1.4. Module contents

	6.1.1.1.2. Module contents

6.1.2. Submodules

6.1.3. ramascene.analyze module

	
class ramascene.analyze.Analyze(product_calc_indices, country_calc_indices, indicator_calc_indices, querySelection, idx_units, job_name, job_id, s_country_idx, Y_data, B_data, L_data)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This class contains the method for calculations

	
route_four()

	Perform calculations according to route four.

	Returns

	json result data

	Return type

	json

	
route_one()

	Perform calculations according to route one.

	Returns

	json result data

	Return type

	json

	
route_three()

	Perform calculations according to route three.

	Returns

	json result data

	Return type

	json

	
route_two()

	Perform calculations according to route two.

	Returns

	json result data

	Return type

	json

6.1.4. ramascene.consumers module

	
class ramascene.consumers.RamasceneConsumer(scope)

	Bases: channels.consumer.AsyncConsumer

This class represents the Django Channels web socket interface functionality.

	
celery_message(event)

	Sends Celery task status.

	
websocket_connect(event)

	websocket first connection, accept immediately

	
websocket_disconnect(message)

	Websocket disconnect function.

	
websocket_receive(event)

	Receives message from front-end.

Tries to parse the message, if successful it will perform pre-processing steps and finally invoke Celery task.

	Parameters

	event (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – message from front-end

6.1.5. ramascene.exceptions module

	
exception ramascene.exceptions.ClientError(code)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Custom exception class that is caught by the websocket receive()
handler and translated into a send back to the client.

6.1.6. ramascene.models module

	
class ramascene.models.Country(*args, **kwargs)

	Bases: django.db.models.base.Model

Country model to store identifiers for the countries and aggregations

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned

	
code

	The country code

	
global_id

	The global id representing the application coordinates as primary id

	
id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
identifier

	an identifier determining if it is a leaf node or aggregate

	
leaf_children_global

	the global id’s of the leafs for this continent (if available)

	
leaf_children_local

	the local id’s of the leafs of this country (if available)

	
level

	The level of hierarchy this country is in

	
local_id

	The local id, only used if the hierarchy level is the lowest

	
name

	The name of the country

	
objects = <django.db.models.manager.Manager object>

	

	
parent_id

	The id representing what parent this country belongs to (by parent global_id)

	
class ramascene.models.Indicator(*args, **kwargs)

	Bases: django.db.models.base.Model

Indicator model to store identifiers for indicators

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned

	
global_id

	The global id representing the application coordinates as primary id

	
id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
level

	The level of hierarchy this indicator is in

	
local_id

	The local id (unusedas there are no direct summing steps performed for the extensions)

	
name

	The name of the indicator

	
objects = <django.db.models.manager.Manager object>

	

	
parent_id

	The id representing what parent this indicator belongs to (unused as there are no direct summing steps performed for the extensions)

	
unit

	The unit used for the indicator

	
class ramascene.models.Job(*args, **kwargs)

	Bases: django.db.models.base.Model

Job model to store Celery jobs

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned

	
celery_id

	The unique identifier for retrieving the results of the job from Celery

	
completed

	The date the Celery job was completed

	
created

	The date the Celery job was created

	
get_next_by_created(*, field=<django.db.models.fields.DateTimeField: created>, is_next=True, **kwargs)

	

	
get_previous_by_created(*, field=<django.db.models.fields.DateTimeField: created>, is_next=False, **kwargs)

	

	
id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
name

	The name of the Celery job

	
objects = <django.db.models.manager.Manager object>

	

	
status

	The status of the Celery job

	
class ramascene.models.Product(*args, **kwargs)

	Bases: django.db.models.base.Model

Product model to store identifiers for the products and aggregations

	
exception DoesNotExist

	Bases: django.core.exceptions.ObjectDoesNotExist

	
exception MultipleObjectsReturned

	Bases: django.core.exceptions.MultipleObjectsReturned

	
code

	The product category code

	
global_id

	The global id representing the application coordinates as primary id

	
id

	A wrapper for a deferred-loading field. When the value is read from this
object the first time, the query is executed.

	
identifier

	an identifier determining if it is a leaf node or aggregate

	
leaf_children_global

	the global id’s of the leafs for this product group (if available)

	
leaf_children_local

	the local id’s of the leafs of this product group (if available)

	
level

	The level of hierarchy this product is in

	
local_id

	The local id, only used if the hierarchy level is the lowest

	
name

	The name of the product category

	
objects = <django.db.models.manager.Manager object>

	

	
parent_id

	The id representing what parent this product belongs to (by parent global_id)

6.1.7. ramascene.productindexmanger module

	
class ramascene.productindexmanger.ProductIndexManager(c_prd_ids, s_cntr_ids, p_prd_ids, p_cntr_ids)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The ProductIndexManager provides functions to translate ids of
selected countries and products into ids of the combination of
selected countries and products and returns ids that cab be used
directly to select columns and/or rows from final demand matrices, extension matrices and
leontief inverse matrix.

The selected countries and products have to be supplied when initializing
the ProductIndexManager. After initialisation no changes to the supplied ids are allowed.

	Parameters

	
	c_prd_ids – ndarray
1D array containing integers indicating the ids of selected consumed products

	s_cntr_ids – ndarray
1D array containing integers indicating the ids of the selected countries selling final products

	p_prd_ids – ndarray
1D array containing integers indicating the ids of the selected produced products

	p_cntr_ids – 1D array containing integers indicating the ids of the selected producing countries

	
get_consumed_product_ids()

	Get the ids of the selected consumed products

Based on the ids of the selected consumed products and the ids of the
selected countries selling final products the ids of all selected products
in the final demand vector are generated. It allows
to make a full selection of the selected consumed products from
a final demand vector. A full selection means that if the id of the product bread
was selected, now the ids of bread from Italy, bread from Belgium etc
are generated as long as Italy, Belgium etc are within the ids of countries
selling final products. The ids are zero based.

	Returns

	one dimensional numpy array with ids of type int

	
get_country_count()

	Get the number of countries and regions in EXIOBASE

	Returns

	integer object with the number of countries/regions.

	
get_full_selected_c_product_count()

	Get the full number of consuming products selected.

Products in different countries are counted as unique items, i.e.
bread from Belgium and bread from Italy consumed in a particular country
are considered two items.

	Returns

	integer object with the full count of consumed products selected.

	
get_full_selected_p_product_count()

	Get the full number of produced products selected.

Products in different countries are counted as unique items, i.e.
cars produced in France and cars produced in Germany are considered two items.

	Returns

	integer object with the full count of produced products selected.

	
get_produced_product_ids()

	Get the ids of the selected produced products

Based on the ids of the selected produced products and the ids of the
selected producing countries the ids of all selected produced products
are generated. It allows to make a full selection of the selected produced products from
the output vector. A full selection means that if the id of the product car
was selected, now the ids of car from Germany, car from France etc
are generated as long as Germany, France etc are within the ids of selected producing
countries. The ids are zero based.

	Returns

	one dimensional numpy array with ids of type int

	
get_product_count()

	Get the number of products per country in EXIOBASE

	Returns

	integer object with the number of products.

	
get_selected_c_product_count()

	Get the number of consumed products selected.

	Returns

	integer object with the number of consumed products selected.

	
get_selected_p_country_count()

	Get the number of selected producing countries.

	Returns

	integer object with the number of producing countries selected.

	
get_selected_p_product_count()

	Get the number of selected produced products.

	Returns

	integer object with the number of produced products selected.

	
get_selected_s_country_count()

	Get the number of selected countries selling final products.

	Returns

	integer object with the number of contries selling final products selected.

6.1.8. ramascene.querymanagement module

	
ramascene.querymanagement.clean_indicators(idx_lst)

	Clean data as preprocessing step for calculation.

Clean the selected indicator by converting to integers and applying offset of -1.

	Parameters

	idx_lst (list [https://docs.python.org/3/library/stdtypes.html#list]) – indicators

	Returns

	indicators(processed)

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
ramascene.querymanagement.clean_local_leafs(a_list)

	Clean data as preprocessing step for calculation.

Clean the country or product data for calculations by splitting and converting to integers.

	Parameters

	a_list (str [https://docs.python.org/3/library/stdtypes.html#str]) – country or product string of coordinates separated by #

	Returns

	country or product list of coordinates as integers

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
ramascene.querymanagement.clean_single_leafs(leaf, OFFSET)

	Clean data as preprocessing step for calculation.

Clean the country or product data for calculations by splitting, applying offset (-1) and converting to integers.

	Parameters

	leaf (str [https://docs.python.org/3/library/stdtypes.html#str]) – single country or product coordinate (non-processed)

	Returns

	country or product list of coordinates (single element, processed)

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
ramascene.querymanagement.convert_to_numpy(products, countries, indicators)

	Clean data as preprocessing step for calculation.

Convert processed country,product, indicator lists to numpy array.

	Parameters

	
	products (list [https://docs.python.org/3/library/stdtypes.html#list]) – pre-processed product list

	countries (list [https://docs.python.org/3/library/stdtypes.html#list]) – pre-processed country list

	indicators (list [https://docs.python.org/3/library/stdtypes.html#list]) – pre-processed indicator list

	Returns

	numpy arrays of products, countries, indicator coordinates

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
ramascene.querymanagement.get_aggregations_countries(querySelection, result_data)

	Sum to construct aggregates results for countries.

Invoked at Celery tasks to sum values that belong to a certain aggregate.

	Parameters

	
	querySelection (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – original querySelection from user

	result_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of result_data from calculation

	Returns

	dicitonary of result_data, but with aggregations if there are any

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
ramascene.querymanagement.get_aggregations_products(querySelection, result_data)

	Sum to construct aggregates results for products.

Invoked at Celery tasks to sum values that belong to a certain aggregate.

	Parameters

	
	querySelection (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – original querySelection from user

	result_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of result_data from calculation

	Returns

	dicitonary of result_data, but with aggregations if there are any

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
ramascene.querymanagement.get_calc_names_country(country_result_data)

	Get name of countries.

Uses the database/model to fetch names, used inside calculation as conversion step

	Parameters

	country_result_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – key/value pair product with key as global_id

	Returns

	key/value pair country with key as name corresponding to querySelection global_id

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
ramascene.querymanagement.get_calc_names_product(prod_result_data)

	Get name of products.

Uses the database/model to fetch names, used inside calculation as conversion step

	Parameters

	prod_result_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – key/value pair product with key as global_id

	Returns

	key/value pair product with key as name corresponding to querySelection global_id

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
ramascene.querymanagement.get_leafs(product_global_ids, country_global_ids)

	Returns the leaf nodes of a given global id

Uses the database/model to fetch leaf nodes.

	Parameters

	
	product_global_ids (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of user selected product global ids

	country_global_ids (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of user selected country global ids

	Returns

	complete list of leaf ids (minus a offset of -1 for calculation purposes)

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
ramascene.querymanagement.get_names(prod_ids, country_ids, indicator_ids)

	Get name of countries, products and indicators

Uses the database/model to fetch names, used for sending selection information to front-end

	Parameters

	
	prod_ids (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of products by global id

	country_ids (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of countries by global id

	indicator_ids (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of indicators by global id

	Returns

	lists of products,countries and indicators as names

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
ramascene.querymanagement.identify_country(country_id)

	Helper function.

Does database check on countries if the global_id the user selected is an aggregate or not

	Parameters

	country_id (int [https://docs.python.org/3/library/functions.html#int]) – global id

	Returns

	identifier e.g. LEAF or AGG or TOTAL

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
ramascene.querymanagement.identify_product(prod_id)

	Helper function.

Does database check on products if the global_id the user selected is an aggregate or not

	Parameters

	prod_id (int [https://docs.python.org/3/library/functions.html#int]) – global id

	Returns

	identifier e.g. LEAF or AGG or TOTAL

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

6.1.9. ramascene.tasks module

	
ramascene.tasks.async_send(channel_name, job)

	Send job message to front-end.

uses the channel_name and Job object. Send success or failure status.

	Parameters

	
	channel_name (object [https://docs.python.org/3/library/functions.html#object]) – websocket channel name

	job (object [https://docs.python.org/3/library/functions.html#object]) – model object of the job

	
ramascene.tasks.calcOneHandler(job_name, job_id, channel_name, ready_querySelection, querySelection)

	invokes Celery function.

Handler for invoking Celery method.

	Parameters

	
	job_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the job

	job_id (int [https://docs.python.org/3/library/functions.html#int]) – the id of the job

	channel_name (object [https://docs.python.org/3/library/functions.html#object]) – the websocket channel name

	ready_querySelection (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the querySelection preprocessed (only needs convertion to numpy array)

	querySelection (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the original querySelection used for aggregations at later stage

	
ramascene.tasks.job_update(job_id)

	Update job status to completion.

Update the job status by reference job id.
:param job_id: job id
:type job_id: int

6.1.10. ramascene.views module

	
ramascene.views.ajaxHandling(request)

	AJAX handler.

Checks if the request is a post. Uses from the request the task/job id to fetch the Celery unique identifier.
In turn it retrieves by using the Celery unique identifier the actual results

	Parameters

	object – request

	Returns

	JSON response of result calculation

	
ramascene.views.home(request)

	

6.1.11. Module contents

	
ramascene.activate_foreign_keys(sender, connection, **kwargs)

	

6.1.1.1. ramascene.management package

6.1.1.1.1. Subpackages

	6.1.1.1.1.1. ramascene.management.commands package
	6.1.1.1.1.1.1. Submodules

	6.1.1.1.1.1.2. ramascene.management.commands.clear_models module

	6.1.1.1.1.1.3. ramascene.management.commands.populateHierarchies module

	6.1.1.1.1.1.4. Module contents

6.1.1.1.2. Module contents

6.1.1.1.1.1. ramascene.management.commands package

6.1.1.1.1.1.1. Submodules

6.1.1.1.1.1.2. ramascene.management.commands.clear_models module

	
class ramascene.management.commands.clear_models.Command(stdout=None, stderr=None, no_color=False)

	Bases: django.core.management.base.BaseCommand

Clear database command

	
handle(*args, **options)

	The actual logic of the command. Subclasses must implement
this method.

6.1.1.1.1.1.3. ramascene.management.commands.populateHierarchies module

	
class ramascene.management.commands.populateHierarchies.Command(stdout=None, stderr=None, no_color=False)

	Bases: django.core.management.base.BaseCommand

Populate database with pre developed csv files residing in python_ini folder

	
handle(*args, **options)

	The actual logic of the command. Subclasses must implement
this method.

	
ramascene.management.commands.populateHierarchies.addCountry(name, code, global_id, parent_id, local_id, level, identifier, leaf_children_global, leaf_children_local)

	

	
ramascene.management.commands.populateHierarchies.addIndicator(name, unit, global_id, parent_id, local_id, level)

	

	
ramascene.management.commands.populateHierarchies.addProduct(name, code, global_id, parent_id, local_id, level, identifier, leaf_children_global, leaf_children_local)

	

	
ramascene.management.commands.populateHierarchies.getfile(myFile)

	

	
ramascene.management.commands.populateHierarchies.populate(data_obj, model_type)

	

6.1.1.1.1.1.4. Module contents

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 ramascene	

 	
 	
 ramascene.analyze	

 	
 	
 ramascene.consumers	

 	
 	
 ramascene.exceptions	

 	
 	
 ramascene.management	

 	
 	
 ramascene.management.commands	

 	
 	
 ramascene.management.commands.clear_models	

 	
 	
 ramascene.management.commands.populateHierarchies	

 	
 	
 ramascene.models	

 	
 	
 ramascene.productindexmanger	

 	
 	
 ramascene.querymanagement	

 	
 	
 ramascene.tasks	

 	
 	
 ramascene.views	

Index

 A
 | C
 | G
 | H
 | I
 | J
 | L
 | N
 | O
 | P
 | R
 | S
 | U
 | W

A

 	
 	activate_foreign_keys() (in module ramascene)

 	addCountry() (in module ramascene.management.commands.populateHierarchies)

 	addIndicator() (in module ramascene.management.commands.populateHierarchies)

 	
 	addProduct() (in module ramascene.management.commands.populateHierarchies)

 	ajaxHandling() (in module ramascene.views)

 	Analyze (class in ramascene.analyze)

 	async_send() (in module ramascene.tasks)

C

 	
 	calcOneHandler() (in module ramascene.tasks)

 	celery_id (ramascene.models.Job attribute)

 	celery_message() (ramascene.consumers.RamasceneConsumer method)

 	clean_indicators() (in module ramascene.querymanagement)

 	clean_local_leafs() (in module ramascene.querymanagement)

 	clean_single_leafs() (in module ramascene.querymanagement)

 	ClientError

 	code (ramascene.models.Country attribute)

 	(ramascene.models.Product attribute)

 	
 	Command (class in ramascene.management.commands.clear_models)

 	(class in ramascene.management.commands.populateHierarchies)

 	completed (ramascene.models.Job attribute)

 	convert_to_numpy() (in module ramascene.querymanagement)

 	Country (class in ramascene.models)

 	Country.DoesNotExist

 	Country.MultipleObjectsReturned

 	created (ramascene.models.Job attribute)

G

 	
 	get_aggregations_countries() (in module ramascene.querymanagement)

 	get_aggregations_products() (in module ramascene.querymanagement)

 	get_calc_names_country() (in module ramascene.querymanagement)

 	get_calc_names_product() (in module ramascene.querymanagement)

 	get_consumed_product_ids() (ramascene.productindexmanger.ProductIndexManager method)

 	get_country_count() (ramascene.productindexmanger.ProductIndexManager method)

 	get_full_selected_c_product_count() (ramascene.productindexmanger.ProductIndexManager method)

 	get_full_selected_p_product_count() (ramascene.productindexmanger.ProductIndexManager method)

 	get_leafs() (in module ramascene.querymanagement)

 	get_names() (in module ramascene.querymanagement)

 	get_next_by_created() (ramascene.models.Job method)

 	
 	get_previous_by_created() (ramascene.models.Job method)

 	get_produced_product_ids() (ramascene.productindexmanger.ProductIndexManager method)

 	get_product_count() (ramascene.productindexmanger.ProductIndexManager method)

 	get_selected_c_product_count() (ramascene.productindexmanger.ProductIndexManager method)

 	get_selected_p_country_count() (ramascene.productindexmanger.ProductIndexManager method)

 	get_selected_p_product_count() (ramascene.productindexmanger.ProductIndexManager method)

 	get_selected_s_country_count() (ramascene.productindexmanger.ProductIndexManager method)

 	getfile() (in module ramascene.management.commands.populateHierarchies)

 	global_id (ramascene.models.Country attribute)

 	(ramascene.models.Indicator attribute)

 	(ramascene.models.Product attribute)

H

 	
 	handle() (ramascene.management.commands.clear_models.Command method)

 	(ramascene.management.commands.populateHierarchies.Command method)

 	
 	home() (in module ramascene.views)

I

 	
 	id (ramascene.models.Country attribute)

 	(ramascene.models.Indicator attribute)

 	(ramascene.models.Job attribute)

 	(ramascene.models.Product attribute)

 	identifier (ramascene.models.Country attribute)

 	(ramascene.models.Product attribute)

 	
 	identify_country() (in module ramascene.querymanagement)

 	identify_product() (in module ramascene.querymanagement)

 	Indicator (class in ramascene.models)

 	Indicator.DoesNotExist

 	Indicator.MultipleObjectsReturned

J

 	
 	Job (class in ramascene.models)

 	Job.DoesNotExist

 	
 	Job.MultipleObjectsReturned

 	job_update() (in module ramascene.tasks)

L

 	
 	leaf_children_global (ramascene.models.Country attribute)

 	(ramascene.models.Product attribute)

 	leaf_children_local (ramascene.models.Country attribute)

 	(ramascene.models.Product attribute)

 	level (ramascene.models.Country attribute)

 	(ramascene.models.Indicator attribute)

 	(ramascene.models.Product attribute)

 	
 	local_id (ramascene.models.Country attribute)

 	(ramascene.models.Indicator attribute)

 	(ramascene.models.Product attribute)

N

 	
 	name (ramascene.models.Country attribute)

 	(ramascene.models.Indicator attribute)

 	(ramascene.models.Job attribute)

 	(ramascene.models.Product attribute)

O

 	
 	objects (ramascene.models.Country attribute)

 	(ramascene.models.Indicator attribute)

 	(ramascene.models.Job attribute)

 	(ramascene.models.Product attribute)

P

 	
 	parent_id (ramascene.models.Country attribute)

 	(ramascene.models.Indicator attribute)

 	(ramascene.models.Product attribute)

 	populate() (in module ramascene.management.commands.populateHierarchies)

 	
 	Product (class in ramascene.models)

 	Product.DoesNotExist

 	Product.MultipleObjectsReturned

 	ProductIndexManager (class in ramascene.productindexmanger)

R

 	
 	ramascene (module)

 	ramascene.analyze (module)

 	ramascene.consumers (module)

 	ramascene.exceptions (module)

 	ramascene.management (module)

 	ramascene.management.commands (module)

 	ramascene.management.commands.clear_models (module)

 	ramascene.management.commands.populateHierarchies (module)

 	ramascene.models (module)

 	
 	ramascene.productindexmanger (module)

 	ramascene.querymanagement (module)

 	ramascene.tasks (module)

 	ramascene.views (module)

 	RamasceneConsumer (class in ramascene.consumers)

 	route_four() (ramascene.analyze.Analyze method)

 	route_one() (ramascene.analyze.Analyze method)

 	route_three() (ramascene.analyze.Analyze method)

 	route_two() (ramascene.analyze.Analyze method)

S

 	
 	status (ramascene.models.Job attribute)

U

 	
 	unit (ramascene.models.Indicator attribute)

W

 	
 	websocket_connect() (ramascene.consumers.RamasceneConsumer method)

 	
 	websocket_disconnect() (ramascene.consumers.RamasceneConsumer method)

 	websocket_receive() (ramascene.consumers.RamasceneConsumer method)

 _static/up-pressed.png

_static/up.png

_images/graph_overview.png
Consumers

querySelection

L Cleaned data for calculation

Back-end <-> client interfacing

update
@ e) status:"Started" -+) Websocket response (({‘}}))

Job/Task ID

Start Notify for job ID:
querymanagement tasks ¢calculation status: "complete”
Process
query data Celery task
Calculations
AL
Clean
Save Job
models %% Ysave) ,
VIews
Fetch
<celery id

Retrieve database objects

AAxPoST ()
& JSON response

Get data

: Save Job Update
attributes lv obat

Store | results
results
complete

Country table
DB Product table
Indicator table

Job table
PK: JobID
FK: CelerylD

Celery Result
Table

PK: CelerylD

Results: JSON object

_images/image003.png
L=(I-4)"

_images/image013.png
Y11 Yz Vi3
Y=|Ya Y22 J’23)

Y31 Y3z Yaz

_images/image015.png
.

Y11
Y21
Y31

0 Yz
0 y23
0 ya3

)

_images/image009.png
M = BLY

_images/image011.png
consumption production
view view

compare compare compare compare
products countries products countries

Route 1 Route 2 Route 3 Route 4

_images/image019.png
ys = Ysi

_images/image020.png
ys = Ysi

_static/plus.png

_static/image052.png

_static/minus.png

_images/image026.png

nav.xhtml

 Table of Contents

 		
 RaMa-Scene developers documentation

_images/image033.png

_images/image037.png
Mggr =MG

_images/image029.png

_images/image032.png

_images/image047.png
x =Ly

_images/image052.png

_images/image038.png
Mggr =MG

_images/image041.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/graph_overview.png
Consumers

querySelection

L Cleaned data for calculation

Back-end <-> client interfacing

update
@ e) status:"Started" -+) Websocket response (({‘}}))

Job/Task ID

Start Notify for job ID:
querymanagement tasks ¢calculation status: "complete”
Process
query data Celery task
Calculations
AL
Clean
Save Job
models %% Ysave) ,
VIews
Fetch
<celery id

Retrieve database objects

AAxPoST ()
& JSON response

Get data

: Save Job Update
attributes lv obat

Store | results
results
complete

Country table
DB Product table
Indicator table

Job table
PK: JobID
FK: CelerylD

Celery Result
Table

PK: CelerylD

Results: JSON object

_static/image001.png

_static/file.png

_static/image003.png
L=(I-4)"

_static/image004.png
L=(I-4)"

_static/image002.png

_static/image007.png

_static/image008.png

_static/image005.png

_static/image006.png

_static/image011.png
consumption production
view view

compare compare compare compare
products countries products countries

Route 1 Route 2 Route 3 Route 4

_static/image009.png
M = BLY

_static/image010.png
M = BLY

_static/image014.png
Y11 Yz Vi3
Y=|Ya Y22 J’23)

Y31 Y3z Yaz

_static/image015.png
.

Y11
Y21
Y31

0 Yz
0 y23
0 ya3

)

_static/image012.png
consumption production
view view

compare compare compare compare
products countries products countries

Route 1 Route 2 Route 3 Route 4

_static/image013.png
Y11 Yz Vi3
Y=|Ya Y22 J’23)

Y31 Y3z Yaz

_static/image018.png

_static/image019.png
ys = Ysi

_static/image016.png
.

Y11
Y21
Y31

0 Yz
0 y23
0 ya3

)

_static/image017.png

_static/image020.png
ys = Ysi

_static/image021.png

_static/image025.png

_static/image026.png

_static/image023.png

_static/image024.png

_static/image029.png

_static/image030.png

_static/image027.png

_static/image028.png

_static/image031.png

_static/image022.png

_static/image036.png

_static/image037.png
Mggr =MG

_static/image034.png

_static/image035.png

_static/image040.png

_static/image041.png

_static/image038.png
Mggr =MG

_static/image039.png

_static/image032.png

_static/image033.png

_static/image047.png
x =Ly

_static/image048.png
x =Ly

_static/image045.png
o

Y11
Y21
Y31

0 Yz
0 y23
0 ya3

)

_static/image046.png
o

Y11
Y21
Y31

0 Yz
0 y23
0 ya3

)

_static/image051.png

_static/image049.png

_static/image050.png

_static/image043.png

_static/image044.png

_static/image042.png

