Rally Documentation
Release 0.4.0

OpenStack Foundation

June 23, 2016

Contents

1 Contents 3
L1 OVEIVIEW . . o oot e e e e e e e e e e e e e e e e 3
1.2 Installation e e e e e e 9
1.3 Rallystep-by-step o e e e e e 12
1.4 Command Line Interface e 38
1.5 USErStOrieS . & v v v v v e 56
1.6 RallyPlugins o e 61
1.7 Rally Plugins Reference e e 68
1.8 Database upgrade/downgrade inRally 149
1.9 ContributetoRally 150
1.10 Rally OS Gates L e 153
1.11 Request New Features i it e e e e 155
1.12 ProjectInfo e e e e e e 160
[.13 Release NOtES i i e e e e e 164

Rally Documentation, Release 0.4.0

OpenStack is, undoubtedly, a really huge ecosystem of cooperative services. Rally is a benchmarking tool that
answers the question: “How does OpenStack work at scale?”. To make this possible, Rally automates and unifies
multi-node OpenStack deployment, cloud verification, benchmarking & profiling. Rally does it in a generic way,
making it possible to check whether OpenStack is going to work well on, say, a 1k-servers installation under high
load. Thus it can be used as a basic tool for an OpenStack CI/CD system that would continuously improve its SLA,
performance and stability.

Major Rally actions
A

Deploy endpaints
_— (oruse existing)
1 OpenStack cloud

T Verification
% results
Verify
(run tempest)
I \ OpenStack B
3 Profiling
| data from
Benchmark —“~_Ceilometer
(generate real ____/‘
user load)
| ———Benchmark
| results

¥

Generate report Get verification
based on results &
of verification, ft————— benchmark results
benchmarks &
profiling info

. J
Y

Major Rally actions

Contents 1

Rally Documentation, Release 0.4.0

2 Contents

CHAPTER 1

Contents

1.1 Overview

Rally is a benchmarking tool that automates and unifies multi-node OpenStack deployment, cloud verification,
benchmarking & profiling. It can be used as a basic tool for an OpenStack CI/CD system that would continuously
improve its SLA, performance and stability.

1.1.1 Who Is Using Rally

Here’s a small selection of some of the many companies using Rally:

WIRANTIS

O redhat

CAN@NICAL A _f
Qeﬁce .|||.|||.
(3 Commumcat\on \‘i’ CISCO.
2 . HUAWE nte
FLEXTRONICS »{ YarHoO! \/Symantec

Rally Documentation, Release 0.4.0

1.1.2 Use Cases

Let’s take a look at 3 major high level Use Cases of Rally:

Rally for Devs & QA:

Mot clear where is issue?
Just run another benchmark
or change load level

. Process & Make
Deploy Simulate real
OpenStack user load a?g:ﬁéle Opsgt?;?‘:k

Deploy new OpenStack with:

1) another configuration

2) code that fix performance issue
3) different third part components
(mysql or psql, rabbit or gpid)

Rally for DevOps:
With admin access
/(create temp users)\
. . Process & Ensure that
Use existing Simulate real
Rally cloud user load aggregate OpenStack

results pass SLA

without admin access j

use set of existing users

Rally CI/CD:

Improve
OpenStack
Deploy OpenStack on continuously

Rally Spgg:;fgt?;gg:ﬁi;nd Run specific set Store historical
) of benchmarks performance data
latest version of your
tool and code Track

OpenStack

Quality

Generally, there are a few typical cases where Rally proves to be of great use:
1. Automate measuring & profiling focused on how new code changes affect the OS performance;
2. Using Rally profiler to detect scaling & performance issues;
3. Investigate how different deployments affect the OS performance:
* Find the set of suitable OpenStack deployment architectures;
» Create deployment specifications for different loads (amount of controllers, swift nodes, etc.);

)

4. Automate the search for hardware best suited for particular OpenStack cloud;

4 Chapter 1. Contents

Rally Documentation, Release 0.4.0

5. Automate the production cloud specification generation:

¢ Determine terminal loads for basic cloud operations: VM start & stop, Block Device create/destroy &
various OpenStack API methods;

* Check performance of basic cloud operations in case of different loads.

1.1.3 Real-life examples

To be substantive, let’s investigate a couple of real-life examples of Rally in action.

How does amqp_rpc_single_reply_queue affect performance?

Rally allowed us to reveal a quite an interesting fact about Nova. We used NovaServers.boot_and_delete benchmark
scenario to see how the amgp_rpc_single_reply_queue option affects VM bootup time (it turns on a kind of fast RPC).
Some time ago it was shown that cloud performance can be boosted by setting it on, so we naturally decided to check
this result with Rally. To make this test, we issued requests for booting and deleting VMs for a number of concurrent
users ranging from 1 to 30 with and without the investigated option. For each group of users, a total number of 200
requests was issued. Averaged time per request is shown below:

200 times Start and Delete VM, with different
amgp_rpc_single_reply_queue values

o
(a1

B turn off
B turn on

)
=
o &0
[¥]
1]
W
£
=
£
@ -
X 35
o
]
[s]
AL
=]
2
g 20
=

5

[}
1+
s
o
[
[7¥)

i)
]

Concurrent users

So Rally has unexpectedly indicated that setting the *famqp_rpc_single_reply_queue* option apparently affects
the cloud performance, but in quite an opposite way rather than it was thought before.

1.1. Overview 5

https://docs.google.com/file/d/0B-droFdkDaVhVzhsN3RKRlFLODQ/edit?pli=1

Rally Documentation, Release 0.4.0

Performance of Nova list command

Another interesting result comes from the NovaServers.boot_and_list_server scenario, which enabled us to we
launched the following benchmark with Rally:

* Benchmark environment (which we also call “Context’): 1 temporary OpenStack user.
* Benchmark scenario: boot a single VM from this user & list all VMs.

* Benchmark runner setting: repeat this procedure 200 times in a continuous way.

During the execution of this benchmark scenario, the user has more and more VMs on each iteration. Rally has shown
that in this case, the performance of the VM list command in Nova is degrading much faster than one might expect:

Duration (seconds)

@ Stacked (QStream (O Expanded (O nova.boot_server nova.list_servers
4.56

4.00
3.50
3.00
2.50
2.00
1.50
1.00

0.50

0.00
50 100 150 200

Iteration (order number of method's call)

Complex scenarios

In fact, the vast majority of Rally scenarios is expressed as a sequence of “atomic’ actions. For example, No-
vaServers.snapshot is composed of 6 atomic actions:

1.

6.

A

boot VM

snapshot VM

delete VM

boot VM from snapshot
delete VM

delete snapshot

Rally measures not only the performance of the benchmark scenario as a whole, but also that of single atomic actions.
As aresult, Rally also plots the atomic actions performance data for each benchmark iteration in a quite detailed way:

Chapter 1. Contents

Rally Documentation, Release 0.4.0

@ Stacked (O Stream (O Expanded @ nova.boot_server nova.create_image
@ nova.delete_server nova.boot_server

® nova.delete_server nova.delete_image
33.79

30.00
25.00
20.00

15.00

Duration (seconds)

60
Iteration (order number of method's call)

1.1.4 Architecture
Usually OpenStack projects are implemented “as-a-Service”, so Rally provides this approach. In addition, it imple-
ments a CLI-driven approach that does not require a daemon:

1. Rally as-a-Service: Run rally as a set of daemons that present Web Ul (work in progress) so 1 RaaS could be
used by a whole team.

2. Rally as-an-App: Rally as a just lightweight and portable CLI app (without any daemons) that makes it simple
to use & develop.

The diagram below shows how this is possible:

1.1. Overview 7

Rally Documentation, Release 0.4.0

Rally as a APP Rally Core

Rally CLI

BT PO G Pytihon-ap Magic that verifies

benchmarks & deploys
OpenStack
Rally as a Service
local
(in single logal
process)
Rally CLI local
Rally Manager
local orchestrator
local Managor
RPC API ¢
Rally Rall:y'thB API
python lib AMQP i
remote
ITEIP RPC AP r;
oslo
messaging
REST API DBMS
pecan AMQP mysgq / postgres / sqlite

The actual Rally core consists of 4 main components, listed below in the order they go into action:

1. Server Providers - provide a unified interface for interaction with different virtualization technologies (LXS,

Virsh etc.) and cloud suppliers (like Amazon): it does so via ssh access and in one L3 network;

2. Deploy Engines - deploy some OpenStack distribution (like DevStack or FUEL) before any benchmarking

procedures take place, using servers retrieved from Server Providers;

3. Verification - runs Tempest (or another specific set of tests) against the deployed cloud to check that it works

correctly, collects results & presents them in human readable form;

4. Benchmark Engine - allows to write parameterized benchmark scenarios & run them against the cloud.

It should become fairly obvious why Rally core needs to be split to these parts if you take a look at the following
diagram that visualizes a rough algorithm for starting benchmarking OpenStack at scale. Keep in mind that there

might be lots of different ways to set up virtual servers, as well as to deploy OpenStack to them.

Chapter 1. Contents

Rally Documentation, Release 0.4.0

Going
to benchmark OpenStack Do you have
OpenStack cloud required one?
at scale?
(Benchmark It!

You have zillion Deploy OpenStack
servers Yes on them
A
Your company Y — Create a lot of VMs

has a big cloud

You are very
rich!

Yos—n Buy a bunch of (virtual) servers

. Create a lot of LXC containers on
No - hardware that you have

1.2 Installation

1.2.1 Automated installation

The easiest way to install Rally is by executing its installation script

wget —gq —O- https://raw.githubusercontent.com/openstack/rally/master/install_rally.sh | bash
or using curl
curl https://raw.githubusercontent.com/openstack/rally/master/install_rally.sh | bash

The installation script will also check if all the software required by Rally is already installed in your system; if run as
root user and some dependency is missing it will ask you if you want to install the required packages.

1.2. Installation 9

https://raw.githubusercontent.com/stackforge/rally/master/install_rally.sh

Rally Documentation, Release 0.4.0

By default it will install Rally in a virtualenv in ~/rally when run as standard user, or install system wide when run
as root. You can install Rally in a venv by using the option ——target:

./install_rally.sh —--target /foo/bar

You can also install Rally system wide by running script as root and without ——target option:

sudo ./install_rally.sh

Run ./install_rally.sh with option ——help to have a list of all available options:

$./install_rally.sh —--help
Usage: install_rally.sh [options]

This script will install rally either in the system (as root) or in a virtual environment.

Options:
-h, —-help Print this help text
-v, ——-verbose Verbose mode
-s, ——system Instead of creating a virtualenv, install as

system package.
-d, —-—-target DIRECTORY Install Rally virtual environment into DIRECTORY.
(Default: $HOME/rally).

-f, ——overwrite Remove target directory if it already exists.

-y, —-yes Do not ask for confirmation: assume a 'yes' reply
to every question.

-D, ——-dbtype TYPE Select the database type. TYPE can be one of

'sglite', 'mysqgl', 'postgres'.
Default: sqglite
—-—db-user USER Database user to use. Only used when —--dbtype
is either 'mysgl' or 'postgres'.
——db-password PASSWORD Password of the database user. Only used when
——dbtype is either 'mysgl' or 'postgres'.

—-—db-host HOST Database host. Only used when —--dbtype is
either 'mysgl' or 'postgres'
—-—db—-name NAME Name of the database. Only used when --dbtype is
either 'mysgl' or 'postgres'
-p, ——python EXE The python interpreter to use. Default: /usr/bin/python.

Notes: the script will check if all the software required by Rally is already installed in your system. If this is not the
case, it will exit, suggesting you the command to issue as root in order to install the dependencies.

You also have to set up the Rally database after the installation is complete:

rally—-manage db recreate

1.2.2 Rally with DevStack all-in-one installation

It is also possible to install Rally with DevStack. First, clone the corresponding repositories:

git clone https://git.openstack.org/openstack-dev/devstack
git clone https://github.com/openstack/rally

Then, configure DevStack to run Rally. First, create your Local. conf file:

cd devstack
cp samples/local.conf local.conf

10 Chapter 1. Contents

Rally Documentation, Release 0.4.0

Next, edit local.conf: add enable_plugin rally https://github.com/openstack/rally master
to [[local|localrc]] section.

Finally, run DevStack as usually:

./stack.sh

1.2.3 Rally & Docker

First you need to install Docker; Docker supplies installation instructions for various OSes.

You can either use the official Rally Docker image, or build your own from the Rally source. To do that, change
directory to the root directory of the Rally git repository and run:

docker build -t myrally

If you build your own Docker image, substitute myrally for rallyforge/rally in the commands below.

The Rally Docker image is configured to store local settings and the database in the user’s home directory. For
persistence of these data, you may want to keep this directory outside of the container. This may be done by the
following steps:

sudo mkdir /var/lib/rally_container
sudo chown 65500 /var/lib/rally_container
docker run -it -v /var/lib/rally_container:/home/rally rallyforge/rally

Note: In order for the volume to be accessible by the Rally user (uid: 65500) inside the container, it must be accessible
by UID 65500 outside the container as well, which is why it is created in /var/1lib/rally. Creating it in your

home directory is only likely to work if your home directory has excessively open permissions (e.g., 0755), which is
not recommended.

All task samples, docs and certification tasks you could find at /opt/rally/. Also you may want to save the last command
as an alias:

echo 'alias dock_rally="docker run -it -v /var/lib/rally_container:/home/rally rallyforge/rally"' >>

After executing dock_rally, or docker run ..., you will have bash running inside the container with Rally
installed. You may do anything with Rally, but you need to create the database first:

user@box:~/rally$ dock_rally

rally@lcc98e0b5941:~$ rally-manage db recreate
rally@lcc98e0b5941:~$ rally deployment list

There are no deployments. To create a new deployment, use:
rally deployment create

rally@lcc98e0b5941:~$

In case you have SELinux enabled and Rally fails to create the database, try executing the following commands to put
SELinux into Permissive Mode on the host machine

sed —-i 's/SELINUX=enforcing/SELINUX=permissive/' /etc/selinux/config
setenforce permissive

Rally currently has no SELinux policy, which is why it must be run in Permissive mode for certain configurations. If
you can help create an SELinux policy for Rally, please contribute!

More about docker: https://www.docker.com/

1.2. Installation 11

https://docs.docker.com/installation/
https://www.docker.com/

Rally Documentation, Release 0.4.0

1.3 Rally step-by-step

In the following tutorial, we will guide you step-by-step through different use cases that might occur in Rally, starting
with the easy ones and moving towards more complicated cases.

1.3.1 Step 0. Installation

The easiest way to install Rally is by running its installation script:

wget —g —-O- https://raw.githubusercontent.com/openstack/rally/master/install_rally.sh | bash
or using curl:
curl https://raw.githubusercontent.com/openstack/rally/master/install_rally.sh | bash

If you execute the script as regular user, Rally will create a new virtual environment in ~/rally/ and install in it
Rally, and will use sqlite as database backend. If you execute the script as root, Rally will be installed system wide.
For more installation options, please refer to the installation page.

Note: Rally requires Python version 2.7 or 3.4.

Now that you have rally installed, you are ready to start benchmarking OpenStack with it!

1.3.2 Step 1. Setting up the environment and running a benchmark from samples

* Registering an OpenStack deployment in Rally
* Benchmarking
* Report generation

In this demo, we will show how to perform some basic operations in Rally, such as registering an OpenStack cloud,
benchmarking it and generating benchmark reports.

We assume that you have a Rally installation and an already existing OpenStack deployment with Keystone available
at <KEYSTONE_AUTH_URL>.

Registering an OpenStack deployment in Rally

First, you have to provide Rally with an OpenStack deployment it is going to benchmark. This should be done either
through OpenRC files or through deployment configuration files. In case you already have an OpenRC, it is extremely
simple to register a deployment with the deployment create command:

$. openrc admin admin

$ rally deployment create —--fromenv --name=existing

e st B ettt T o o
| uuid | created_at | name | status

e e o o
| 28f90d74-d940-4874-a8ee—-04fda59576da | 2015-01-18 00:11:38.059983 | existing | deploy->finished
f——_—————————————————————— —————————————— o Fm

Using deployment : <Deployment UUID>

Alternatively, you can put the information about your cloud credentials into a JSON configuration file (let’s call it
existing.json). The deployment create command has a slightly different syntax in this case:

12 Chapter 1. Contents

https://raw.githubusercontent.com/openstack/rally/master/install_rally.sh
http://docs.openstack.org/user-guide/content/cli_openrc.html
https://github.com/openstack/rally/tree/master/samples/deployments
https://github.com/openstack/rally/blob/master/samples/deployments/existing.json

Rally Documentation, Release 0.4.0

$ rally deployment create —--file=existing.json —-name=existing
- -
| uuid | created_at
- +—_
| 28£90d74-d940-4874-a8ee-04£fda59576da | 2015-01-18 00:11:38.059983
e T

Using deployment <Deployment UUID>

Note the last line in the output. It says that the just created deployment is now used by Rally; that means that all the
benchmarking operations from now on are going to be performed on this deployment. Later we will show how to

switch between different deployments.

Finally, the deployment check command enables you to verify that your current deployment is healthy and ready to be

benchmarked:

$ rally deployment check

keystone endpoints are valid and following services are available:

o o o +
| services | type | status
o o o ———— +
| cinder | volume | Available

| cinderv2 | volumev2 | Available

| ec2 | ec2 | Available

| glance | image | Available

| heat | orchestration | Available

| heat-cfn | cloudformation | Available

| keystone | identity | Available

| nova | compute | Available

| novav2l | computev2l | Available

| s3 | s3 | Available
o o o +

Benchmarking

Now that we have a working and registered deployment, we can start benchmarking it. The sequence of benchmarks
to be launched by Rally should be specified in a benchmark task configuration file (either in JSON or in YAML format).
Let’s try one of the sample benchmark tasks available in samples/tasks/scenarios, say, the one that boots and deletes
multiple servers (samples/tasks/scenarios/nova/boot-and-delete.json):

{

"NovaServers.boot_and_delete_server":

{

[

"args": {
"flavor": {
"name": "ml.tiny"
}I
"image": {
"name": "“cirros.xuec$"
}I
"force_delete": false
}I
"runner":
"type": "constant",
"times": 10,
"concurrency": 2

by

1.3. Rally step-by-step

13

https://github.com/openstack/rally/tree/master/samples/tasks/scenarios

Rally Documentation, Release 0.4.0

"context": {
"users": {
"tenants": 3,
"users_per_tenant": 2

To start a benchmark task, run the task start command (you can also add the -v option to print more logging informa-

tion):

$ rally task start samples/tasks/scenarios/nova/boot-and-delete. json

Input task is:
<Your task config here>

Task 6£fd9%9al9f-5cf8-4£f76-ab72-2e34bbl1d4996: started

Benchmarking... This can take a while...
To track task status use:
rally task status

or
rally task detailed

test scenario NovaServers.boot_and_delete_server

args position 0

args values:

{u'args': {u'flavor': {u'name': u'ml.tiny'},
u'force_delete': False,

u'image': {u'name': u'”“cirros.xuecS$'}},
u'context': {u'users': {u'project_domain': u'default',
u'resource_management_workers':
u'tenants': 3,
u'user_domain': u'default',

u'users_per_tenant':

u'runner': {u'concurrency': 2, u'times': 10,
e o —— o ——
| action | min (sec) | avg (sec)
o o o
| nova.boot_server | 7.99 | 9.047

| nova.delete_server | 4.427 | 4.574

| total | 12.556 | 13.621
B o —— o ——

Load duration: 70.1310448647
Full duration: 87.545541048

21},

30,

u'type': u'constant'}}

b
90 percentile | 95 percentile
_______________ +______________._

9.747 | 10.805
4.677 | 4.725
14.252 | 15.311

+

14

Chapter 1. Contents

+ = — — + — +

Rally Documentation, Release 0.4.0

HINTS:
x To plot HTML graphics with this data, run:
rally task report 6£d9al9f-5cf8-4f76-ab72-2e34bb1d4996 —--out output.html

* To get raw JSON output of task results, run:
rally task results 6£fd9%9al9f-5cf8-4£f76-ab72-2e34bb1d4996

Using task: 6fd9%9al9f-5cf8-4f76-ab72-2e34bb1d4996

Note that the Rally input task above uses regular expressions to specify the image and flavor name to be used for
server creation, since concrete names might differ from installation to installation. If this benchmark task fails, then
the reason for that might a non-existing image/flavor specified in the task. To check what images/flavors are available
in the deployment you are currently benchmarking, you might use the rally show command:

$ rally show images

o e o +
| UulbD | Name | Size (B) |
o e it Fomm +
| 8dfd6098-0c26-4cb5-8e77-1ecb2db0b8ae | CentOS 6.5 (x86_64) | 344457216
| 2b8d119e-9461-48fc—-885b-1477abe2edc5 | Cirr0OS 0.3.4 (x86_64) | 13287936
o e et Fomm +

$ rally show flavors

Flavors for user “admin’ in tenant ~admin’ :

+———t————— - o t—————— t—————— +
| ID | Name | vCPUs | RAM (MB) | Swap (MB) | Disk (GB) |
et ———— - o ——— o ————— t————————— +
1	ml.tiny	1	512		1
2	ml.small	1	2048		20
3	ml.medium	2	4096		40
4	ml.large	4	8192		80
5	ml.xlarge	8	16384		160
et ———— - o ——— t——————— t——————— +

Report generation

One of the most beautiful things in Rally is its task report generation mechanism. It enables you to create illustrative
and comprehensive HTML reports based on the benchmarking data. To create and open at once such a report for the
last task you have launched, call:

rally task report —--out=reportl.html --open
This will produce an HTML page with the overview of all the scenarios that you’ve included into the last benchmark

task completed in Rally (in our case, this is just one scenario, and we will cover the topic of multiple scenarios in one
task in the next step of our tutorial):

1.3. Rally step-by-step 15

Rally Documentation, Release 0.4.0

Benchmark overview

Input file

Scenario & Load duration (s) Full duration (s) Rterations Runner Errors Success (SLA)

¥ NovaServers NovaServers, bool_and_delete_server 70.131 87.546 10 constant 0 ’

boot_and_delete_server

This aggregating table shows the duration of the load produced by the corresponding scenario (“Load duration”), the
overall benchmark scenario execution time, including the duration of environment preparation with contexts (“Full
duration”), the number of iterations of each scenario (“Iterations”), the type of the load used while running the
scenario (“Runner”), the number of failed iterations (“Errors”) and finally whether the scenario has passed certain
Success Criteria (“SLA”) that were set up by the user in the input configuration file (we will cover these criteria in one
of the next steps).

By navigating in the left panel, you can switch to the detailed view of the benchmark results for the only scenario we
included into our task, namely NovaServers.boot_and_delete_server:

benchmark results

Benchmark overview NovaServers.boot_and_delete_server (87.546s)

Input file
Overview Details Input task
¥ NovaServers

Load duration: 70.131 s Full duration: 87.546 s lterations: 10 Failures: 0

Total durations

Action Min (sec) Avg (sec) Max (sec) a0 a5 Count
nova. boot_server 7.99 9.047 11.862 8747 10.805 100.0% 10
nova.delete_server 4.427 4574 4772 4677 4725 100.0% 10
total 12.556 13.621 16.37 14.252 15311 100.0% 10

Charts for the Total durations

@stacked (O Stream () Expanded @ duration idle_duration

1 2 3 4 5 & T 8 -} 10
Meration (order number of method's call)

This page, along with the description of the success criteria used to check the outcome of this scenario, shows some
more detailed information and statistics about the duration of its iterations. Now, the “Total durations” table splits
the duration of our scenario into the so-called ““atomic actions”: in our case, the “boot_and_delete_server’’ scenario
consists of two actions - “boot_server” and “delete_server”. You can also see how the scenario duration changed
throughout is iterations in the “Charts for the total duration” section. Similar charts, but with atomic actions detaliza-
tion, will arise if you switch to the “Details” tab of this page:

16 Chapter 1. Contents

Rally Documentation, Release 0.4.0

benchmark results

Benchmark overview NovaServers.boot_and_delete_ server (87.546s)
Input file

Overview Details Input task
¥ NovaServers

Charts for each Atomic Action

@ Stacked () Stream () Expanded @ nova boot_server nova.delete_server

1 2 3 4 5 - 7 8 8 10
Iteration (order number of method's call)

Note that all the charts on the report pages are very dynamic: you can change their contents by clicking the switches
above the graph and see more information about its single points by hovering the cursor over these points.

Take some time to play around with these graphs and then move on to the next step of our tutorial.

1.3.3 Step 2. Rally input task format

» Basic input task syntax
* Multiple benchmarks in a single task
» Multiple configurations of the same scenario

Basic input task syntax

Rally comes with a really great collection of plugins and in most real-world cases you will use multiple plugins to test
your OpenStack cloud. Rally makes it very easy to run different test cases defined in a single task. To do so, use the
following syntax:

{
"<ScenarioNamel>": [<benchmark_config>, <benchmark_config2>, ...]
"<ScenarioName2>": [<benchmark_config>, ...]

}

where <benchmark_config>, as before, is a dictionary:

{

"args": { <scenario-specific arguments> 1},
"runner": { <type of the runner and its specific parameters> },
"context": { <contexts needed for this scenario> },

"sla": { <different SLA configs> }

1.3. Rally step-by-step 17

Rally Documentation, Release 0.4.0

Multiple benchmarks in a single task

As an example, let’s edit our configuration file from step I so that it prescribes Rally to launch not only the No-
vaServers.boot_and_delete_server scenario, but also the KeystoneBasic.create_delete_user scenario. All we have
to do is to append the configuration of the second scenario as yet another top-level key of our json file:

multiple-scenarios.json

{

"NovaServers.boot_and_delete_server": |
{
"args": {
"flavor": {
"name": "ml.tiny"
}I
"image": {
"name": "“cirros.=xuec$S"
}I
"force_delete": false
by
"runner": {
"type": "constant",
"times": 10,
"concurrency": 2
}I
"context": {
"users": {
"tenants": 3,
"users_per_tenant": 2

1,
"KeystoneBasic.create_delete_user": |

{

"args": {1},

"runner":
"type": "constant",
"times": 10,

"concurrency": 3

Now you can start this benchmark task as usually:

$ rally task start multiple-scenarios. json

o o
| action | min (sec) | avg (sec)
o o o
| nova.boot_server | 8.06 | 11.354
| nova.delete_server | 4.364 | 5.054
| total | 12.572 | 16.408
o o o

Load duration: 84.1959171295
Full duration: 102.033041

+ - — — 4+ — +

_______________ e
90 percentile | 95 percentile
,,,,,,,,,,,,,,, b

18.54 | 18.567
6.805 | 6.821
25.374 | 25.385

+

18

Chapter 1. Contents

+ — — — 4+ — +

_________ +-
success |
,,,,,,,,, +-
100.0% |

100.0%
100.0% |
_________ +-

Rally Documentation, Release 0.4.0

o o o o o ——— o ——
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile
t—————————— o o o o o
| keystone.create_user | 0.676 | 0.875 | 1.03 | 1.02 | 1.025

| keystone.delete_user | 0.407 | 0.647 | 0.84 | 0.739 | 0.79

| total | 1.082 | 1.522 | 1.757 | 1.724 | 1.741
o o o o o ———— o ———

Load duration: 5.72119688988
Full duration: 10.0808410645

Note that the HTML reports you can generate by typing rally task report —out=report_name.html after your bench-
mark task has completed will get richer as your benchmark task configuration file includes more benchmark scenarios.
Let’s take a look at the report overview page for a task that covers all the scenarios available in Rally:

rally task report —--out=report_multiple_scenarios.html —--open

benchmark results

Benchmark overview

Input file

Scenario & Load duration (s} Full duration (s) Iterations Runner Errors Success (SLA)
» KeystoneBasic KeystoneBasic.create_delete_user 5721 10.081 10 constant 4] «
NovaServers boot_and_delete_server 84.196 102.033 10 constant o #

» NovaServers

Multiple configurations of the same scenario

Yet another thing you can do in Rally is to launch the same benchmark scenario multiple times with different
configurations. That’s why our configuration file stores a list for the key “NovaServers.boot_and_delete_server”:
you can just append a different configuration of this benchmark scenario to this list to get it. Let’s say, you want to run
the boot_and_delete_server scenario twice: first using the “m1.tiny” flavor and then using the “m/.small” flavor:

multiple-configurations.json

{
"NovaServers.boot_and_delete_server": [
{
"args": {
"flavor": {
"name": "ml.tiny"
}I
"image": {
"name": "“cirros.x*uecs$"
}I
"force_delete": false
}I
"runner": {...},
"context": {...}
}!
{

1.3. Rally step-by-step 19

Rally Documentation, Release 0.4.0

"args": |
"flavor": {
"name": "ml.small"
}I
"image": {
"name": "“cirros.xuec$"
}I
"force_delete": false
}I
"runner": {...},
"context": {...}

That’s it! You will get again the results for each configuration separately:

$ rally task start —--task=multiple-configurations.json
o e ————— e —————— e ————— +
| action | min (sec) | avg (sec) | max (sec)
o — o e o +
nova.boot_server	7.896	9.433	13.14
nova.delete_server	4.435	4.898	6.975
total	12.404	14.331	17.979
o Fmm————— e ———— e ———— +
Load duration: 73.2339417934

Full duration: 91.1692159176

o fom e fom e e +
| action | min (sec) | avg (sec) | max (sec)
o Fmm fom Fmm +
nova.boot_server	8.207	8.91	9.823
nova.delete_server	4.405	4.767	6.477
total	12.735	13.677	16.301
o fom e fom e e +
Load duration: 71.029528141

Full duration: 88.0259010792

The HTML report will also look similar to what we have seen before:

rally task report —--out=report_multiple_configuraions.html

777777777777777 B e it E
90 percentile | 95 percentile | success |

——————————————— B e e
11.329 | 12.234 | 100.0% |
5.144 | 6.059 | 100.0% |
16.72 | 17.349 | 100.0%

777777777777777 B et

——————————————— e
90 percentile | 95 percentile | success |

777777777777777 B it
9.692 | 9.758 | 100.0% |
4.904 | 5.691 | 100.0% |
14.596 | 15.449 | 100.0%

——————————————— Bt it T
—-—open

benchmark results

Benchmark overview

Input file

‘Scenario . Load duration (s) Full duration (s}
¥ NovaServers NovaServers boot_and_delete_server Ta.234 91.169
NovaServers booi_and_delete_server-2 71.030 86.026

boot_and_delete_server

boot_and_delete_server [2]

lterations. Runner Errors Success (SLA)

10 constant o o

10 constant] -

20

Chapter 1. Contents

Rally Documentation, Release 0.4.0

1.3.4 Step 3. Benchmarking OpenStack with existing users

* Motivation
* Registering existing users in Rally
* Running benchmark scenarios with existing users

Motivation

There are two very important reasons from the production world of why it is preferable to use some already existing
users to benchmark your OpenStack cloud:

1. Read-only Keystone Backends: creating temporary users for benchmark scenarios in Rally is just impossible in
case of r/o Keystone backends like LDAP and AD.

2. Safety: Rally can be run from an isolated group of users, and if something goes wrong, this won’t affect the rest
of the cloud users.

Registering existing users in Rally

The information about existing users in your OpenStack cloud should be passed to Rally at the deployment initial-
ization step. You have to use the ExistingCloud deployment plugin that just provides Rally with credentials of an
already existing cloud. The difference from the deployment configuration we’ve seen previously is that you should
set up the “users” section with the credentials of already existing users. Let’s call this deployment configuration file
existing_users.json:

{
"type": "ExistingCloud",
"auth_url": "http://example.net:5000/v2.0/",
"region_name": "RegionOne",
"endpoint_type": "public",
"admin": {
"username": "admin",
"password": "pabS5word",
"tenant _name": "demo"
}I
"users": [
{
"username": "bl",
"password": "1234",
"tenant_name": "testing"

"username": "b2",
"password": "1234",
"tenant_name": "testing"

}

This deployment configuration requires some basic information about the OpenStack cloud like the region name, auth
url. admin user credentials, and any amount of users already existing in the system. Rally will use their credentials to
generate load in against this deployment as soon as we register it as usual:

1.3. Rally step-by-step 21

Rally Documentation, Release 0.4.0

$ rally deployment create —--file existings_users —-name our_cloud
e i et e Fom +

| uuid | created_at | name | status

o e Fom o +
| 1849a9bf-4b18-4£d5-89f0-ddcc56eaedc9 | 2015-03-28 02:43:27.759702 | our_cloud |
f————————— o Fom +

Using deployment: 1849a9bf-4b18-4£d5-89f0-ddcc56eaedc?
~/.rally/openrc was updated

After that, the rally show command lists the resources for each user separately:

$ rally show images

Images for user “admin’ in tenant "~ admin’:

Fo Fo it +
| UUID | Name | Size (B) |
Fo Fm Fom e +
| 041cfd70-0e90-4ed6-8c0c-ad9c12a94191 | cirros-0.3.4-x86_64—-uec | 25165824 |
| 87710f09-3625-4496-9d18-e20e34906b72 | Fedora-x86_64-20-20140618-sda | 209649664 |
| b0f269be-4859-48e0-a0ca-03fb80d14602 | cirros-0.3.4-x86_64-uec-ramdisk | 3740163 \
| d82eaf7a-ff63-4826-%9aa7-5fal105610e01 | cirros-0.3.4-x86_64-uec-kernel | 4979632 \
Fo Fom fomm +
Images for user "bl" in tenant “testing :

Fom fo B +
| UUID | Name | Size (B)
o it Fomm e +
| 041cfd70-0e90-4ed6-8c0c-ad9c12a94191 | cirros-0.3.4-x86_64-uec | 25165824 |
| 87710f09-3625-4496-9d18-e20e34906b72 | Fedora-x86_64-20-20140618-sda | 209649664 |
| b0f269be-4859-48e0-a0ca-03fb80d14602 | cirros-0.3.4-x86_64-uec-ramdisk | 3740163 \
| d82eaf7a-ff63-4826-9aa7-5fa105610e01 | cirros—-0.3.4-x86_64-uec-kernel | 4979632 \
Fm Fo Fom +
Images for user "'b2° in tenant “testing’:

Fo Fo Fomm +
| UUID | Name | Size (B)

Fo fo to—m +
| 041cfd70-0e90-4ed6-8c0c-ad9c12a94191 | cirros-0.3.4-x86_64-uec | 25165824 |
| 87710£09-3625-4496-9d18-e20e34906b72 | Fedora-x86_64-20-20140618-sda | 209649664 |
| b0f269be-4859-48e0-a0ca-03fb80d14602 | cirros-0.3.4-x86_64-uec—ramdisk | 3740163 \
| d82eaf7a-ff63-4826-%9aa7-5fal105610e01 | cirros-0.3.4-x86_64-uec-kernel | 4979632 \
o Fo Fomm e +

With this new deployment being active, Rally will use the already existing users “b1” and “b2” instead of creating
the temporary ones when launching benchmark task that do not specify the “users” context.

Running benchmark scenarios with existing users

After you have registered a deployment with existing users, don’t forget to remove the “users” context from your
benchmark task configuration if you want to use existing users, like in the following configuration file (boot-and-
delete.json):

{

"NovaServers.boot_and_delete_server": |
{
"args": {
"flavor": {

22 Chapter 1. Contents

Rally Documentation, Release 0.4.0

"name": "ml.tiny"
}I
"image": {
"name": "“cirros.xuecs$"

bo
"force_delete": false

s

"runner": {
"type": "constant",
"times": 10,

"concurrency": 2

by
"context": {}
}

When you start this task, it will use the existing users “b/” and “b2” instead of creating the temporary ones:

rally task start samples/tasks/scenarios/nova/boot-and-delete. json

It goes without saying that support of benchmarking with predefined users simplifies the usage of Rally for generating
loads against production clouds.

(based on: http://boris-42.me/rally-can-generate-load-with-passed-users-now/)

1.3.5 Step 4. Adding success criteria (SLA) for benchmarks

* SLA - Service-Level Agreement (Success Criteria)
* Checking SLA
* SLA in task report

SLA - Service-Level Agreement (Success Criteria)

Rally allows you to set success criteria (also called SLA - Service-Level Agreement) for every benchmark. Rally will
automatically check them for you.

To configure the SLA, add the “sla” section to the configuration of the corresponding benchmark (the check name is
a key associated with its target value). You can combine different success criteria:

{

"NovaServers.boot_and_delete_server": |

{

llargsll: {

by

"runner": {

by

"context": {

by

llslall: {
"max_seconds_per_iteration": 10,

1.3. Rally step-by-step 23

http://boris-42.me/rally-can-generate-load-with-passed-users-now/

Rally Documentation, Release 0.4.0

"failure_rate": {
"max": 25

}

Such configuration will mark the NovaServers.boot_and_delete_server benchmark scenario as not successful if
either some iteration took more than 10 seconds or more than 25% iterations failed.

Checking SLA

Let us show you how Rally SLA work using a simple example based on Dummy benchmark scenarios. These
scenarios actually do not perform any OpenStack-related stuff but are very useful for testing the behaviors of Rally.
Let us put in a new task, test-sla.json, 2 scenarios — one that does nothing and another that just throws an exception:

{

"Dummy . dummy" : [
{
"args": {},
"runner": ({
"type": "constant",
"times": 5,
"concurrency": 2
}I
"context": {
"users": {
"tenants": 3,
"users_per_tenant": 2
}
}I
"sla": {
"failure_rate": {"max": 0.0}
}
}
]I
"Dummy . dummy_exception": [
{
"args": {},
"runner": {
"type": "constant",

"times": 5,
"concurrency": 2
}I
"context": {
"users": {
"tenants": 3,
"users_per_tenant": 2

b
llslall: {
"failure rate": {"max": 0.0}

24 Chapter 1. Contents

Rally Documentation, Release 0.4.0

Note that both scenarios in these tasks have the maximum failure rate of 0% as their success criterion. We expect
that the first scenario will pass this criterion while the second will fail it. Let’s start the task:

rally task start test-sla.json

After the task completes, run rally task sla_check to check the results again the success criteria you defined in the task:

$ rally task sla_check

Maximum failure rate percent 0.0% failures, 1
Maximum failure rate percent 0.0% failures, 1

e +——— e F——— +
| benchmark | pos | criterion | status | detail
o +——— o ——— +—— +

| Dummy . dummy | 0 | failure_rate | PASS |

| Dummy.dummy_exception | 0O | failure_rate | FAIL |
o +——— o ——— +—— +

Exactly as expected.

SLA in task report

SLA checks are nicely visualized in task reports. Generate one:

rally task report —--out=report_sla.html —--open

Benchmark scenarios that have passed SLA have a green check on the overview page:

benchmark results

Benchmark overview

Input file

Scenario 4 Load duration (s) Full duration (s) Iterations Runner Errors Success (SLA)
» Dummy Dummy. dummy 0.186 4539 5 eonstant 0 v
Dummy.dummy_exception 0.110 6.013 5 constant 5 x

Somewhat more detailed information about SLA is displayed on the scenario pages:

benchmark results

e Dummy.dummy_exception (6.013s)
Input file

Overview Failures put task
¥ Dummy

Summy Load duration: 0.110 s Full duration: 6.013 s lterations: 5 Failures: 5

Service-level agreement

Criterion Detail

failure_rate Maximum failure rate percent 0.0% failures, minimum failure rate percent 0% failures, actually 100.0%

Total durations

Action Min (sec) Avg (sec) Max (sec) 90 percentile 25 percentile

Success

Success

False

Count

1.3. Rally step-by-step

Rally Documentation, Release 0.4.0

Success criteria present a very useful concept that enables not only to analyze the outcome of your benchmark tasks,
but also to control their execution. In one of the next sections of our tutorial, we will show how to use SLA to abort
the load generation before your OpenStack goes wrong.

1.3.6 Step 5. Rally task templates

* Basic template syntax
* Using the default values
* Advanced templates

Basic template syntax

A nice feature of the input task format used in Rally is that it supports the template syntax based on Jinja2. This turns
out to be extremely useful when, say, you have a fixed structure of your task but you want to parameterize this task in
some way. For example, imagine your input task file (fask.yaml) runs a set of Nova scenarios:

NovaServers.boot_and_delete_server:

args:
flavor:
name: "ml.tiny"
image:
name: "“cirros.xuecs$"
runner:
type: "constant"

times: 2
concurrency: 1
context:
users:
tenants: 1
users_per_tenant: 1

NovaServers.resize_server:

args:
flavor:
name: "ml.tiny"
image:
name: "“cirros.xuec$"
to_flavor:
name: "ml.small"
runner:

type: "constant"
times: 3
concurrency: 1
context:
users:
tenants: 1
users_per_tenant: 1

In all the three scenarios above, the ““cirros.*uec$” image is passed to the scenario as an argument (so that these
scenarios use an appropriate image while booting servers). Let’s say you want to run the same set of scenarios with

26 Chapter 1. Contents

https://pypi.python.org/pypi/Jinja2

Rally Documentation, Release 0.4.0

the same runner/context/sla, but you want to try another image while booting server to compare the performance. The
most elegant solution is then to turn the image name into a template variable:

NovaServers.boot_and_delete_server:

args:
flavor:
name: "ml.tiny"
image:
name: {{image_name}}
runner:
type: "constant"
times: 2
concurrency: 1
context:
users:

tenants: 1
users_per_tenant: 1

NovaServers.resize_server:
args:
flavor:
name: "ml.tiny"
image:
name: {{image_name}}
to_flavor:

name: "ml.small"
runner:
type: "constant"
times: 3
concurrency: 1
context:
users:

tenants: 1
users_per_tenant: 1

and then pass the argument value for {{image_name}} when starting a task with this configuration file. Rally provides
you with different ways to do that:

1. Pass the argument values directly in the command-line interface (with either a JSON or YAML dictionary):

rally task start task.yaml --task-args '{"image_name": "“cirros.xuec$"}'
rally task start task.yaml --task-args 'image_name: "“cirros.xuec$"'

2. Refer to a file that specifies the argument values (JSON/YAML):

rally task start task.yaml --task-args-file args.json
rally task start task.yaml --task-args-file args.yaml

where the files containing argument values should look as follows:
args.json:

{

"image_name": "“cirros.xuecS"

args.yaml:

1.3. Rally step-by-step 27

Rally Documentation, Release 0.4.0

image_name: "“cirros.xuecS"

Passed in either way, these parameter values will be substituted by Rally when starting a task:

$ rally task start task.yaml —--task—-args "image_name: "“cirros.xuecS""

Input task is:

NovaServers.boot_and_delete_server:

args:
flavor:
name: "ml.tiny"
image:
name: "“cirros.sxuec$
runner:
type: "constant"
times: 2
concurrency: 1
context:
users:

tenants: 1
users_per_tenant: 1

NovaServers.resize_server:
args:

flavor:

name: "ml.tiny"
image:

name: “cirros.=*uec$
to_flavor:

name: "ml.small"

runner:
type: "constant"
times: 3
concurrency: 1
context:
users:

tenants: 1
users_per_tenant: 1

Benchmarking... This can take a while...

Using the default values

Note that the Jinja2 template syntax allows you to set the default values for your parameters. With default values set,
your task file will work even if you don’t parameterize it explicitly while starting a task. The default values should be

28 Chapter 1. Contents

Rally Documentation, Release 0.4.0

set using the {% set ... %} clause (task.yaml):

{% set image_name = image_name or ""“cirros.xuec$" %}

NovaServers.boot_and_delete_server:

args:
flavor:
name: "ml.tiny"
image:
name: {{image_name}}
runner:
type: "constant"
times: 2
concurrency: 1
context:
users:

tenants: 1
users_per_tenant: 1

If you don’t pass the value for {{image_name}} while starting a task, the default one will be used:

$ rally task start task.yaml

Input task is:

NovaServers.boot_and_delete_server:

args:
flavor:
name: "ml.tiny"
image:
name: “cirros.=*uec$
runner:
type: "constant"

times: 2
concurrency: 1
context:
users:
tenants: 1
users_per_tenant: 1

Advanced templates
Rally makes it possible to use all the power of Jinja2 template syntax, including the mechanism of built-in functions.
This enables you to construct elegant task files capable of generating complex load on your cloud.

As an example, let us make up a task file that will create new users with increasing concurrency. The input task file
(task.yaml) below uses the Jinja2 for-endfor construct to accomplish that:

1.3. Rally step-by-step 29

Rally Documentation, Release 0.4.0

KeystoneBasic.create_user:
{% for i in range(2, 11, 2) %}
args: {}
runner:
type: "constant"
times: 10
concurrency: {{i}}
sla:
failure_rate:
max: 0
{% endfor %}

In this case, you don’t need to pass any arguments via —task-args/—task-args-file, but as soon as you start this task,
Rally will automatically unfold the for-loop for you:

$ rally task start task.yaml

Input task is:

KeystoneBasic.create_user:

args: {}
runner:
type: "constant"
times: 10
concurrency: 2
sla:
failure_rate:

max: 0
args: {}
runner:
type: "constant"

times: 10
concurrency: 4
sla:
failure_rate:
max: 0

args: {}
runner:
type: "constant"
times: 10
concurrency: 6
sla:
failure_rate:
max: 0

args: {}

30 Chapter 1. Contents

Rally Documentation, Release 0.4.0

runner:
type: "constant"
times: 10
concurrency: 8
sla:
failure_rate:
max: 0

args: {}
runner:
type: "constant"
times: 10
concurrency: 10
sla:
failure_rate:
max: 0

Task ea7e97e3-dd98-4a81-868a-5bb5b42b8610: started

Benchmarking... This can take a while...

As you can see, the Rally task template syntax is a simple but powerful mechanism that not only enables you to write
elegant task configurations, but also makes them more readable for other people. When used appropriately, it can
really improve the understanding of your benchmarking procedures in Rally when shared with others.

1.3.7 Step 6. Aborting load generation on success criteria failure

Benchmarking pre-production and production OpenStack clouds is not a trivial task. From the one side it’s important
to reach the OpenStack cloud’s limits, from the other side the cloud shouldn’t be damaged. Rally aims to make this
task as simple as possible. Since the very beginning Rally was able to generate enough load for any OpenStack cloud.
Generating too big a load was the major issue for production clouds, because Rally didn’t know how to stop the load
until it was too late.

With the “stop on SLA failure” feature, however, things are much better.

This feature can be easily tested in real life by running one of the most important and plain benchmark scenario called
“KeystoneBasic.authenticate”. This scenario just tries to authenticate from users that were pre-created by Rally. Rally
input task looks as follows (auth.yaml):

Authenticate.keystone:
runner:
type: "rps"
times: 6000
rps: 50
context:
users:
tenants: 5
users_per_tenant: 10
sla:
max_avg_duration: 5

In human-readable form this input task means: Create 5 tenants with 10 users in each, after that try to authenticate

1.3. Rally step-by-step 31

Rally Documentation, Release 0.4.0

to Keystone 6000 times performing 50 authentications per second (running new authentication request every 20ms).
Each time we are performing authentication from one of the Rally pre-created user. This task passes only if max
average duration of authentication takes less than 5 seconds.

Note that this test is quite dangerous because it can DDoS Keystone. We are running more and more simultaneously
authentication requests and things may go wrong if something is not set properly (like on my DevStack deployment in
Small VM on my laptop).

Let’s run Rally task with an argument that prescribes Rally to stop load on SLA failure:

$ rally task start —--abort-on-sla-failure auth.yaml

fom———— fom fom fom fom o + 1
| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success |
fo———— t——————— t—————— - o o o f—————— +
| total | 0.108 | 8.58 | 65.97 | 19.782 | 26.125 | 100.0% |
fomm fom e o —— o —— e F e + 1

On the resulting table there are 2 interesting things:

1. Average duration was 8.58 sec which is more than 5 seconds

2. Rally performed only 2495 (instead of 6000) authentication requests
To understand better what has happened let’s generate HTML report:

rally task report —--out auth_report.html

benchmark results

Benchmark overview Authenticate. keyS’[Oﬂe (90 6725)

Input file
Overview Input task

¥ Authenticate

Load duration: 86.158 s Full duration: 90.672 s lterations: 2495 Failures: 0

Service-level agreement

Criterion Detail Success

max_avg_duration Maximum average duration of one iteration 8.58s <= 5.00s - Failed False

Total durations

Action Min (sec) Avg (sec) Max (sec) 90 percentile 95 percentile Success Count

total 0.108 B.58 65.97 19.782 26.125 100.0% 2495

Charts for the Total durations

@Stacked O Stream O Expanded @ duration idle_duration
65.89
60.00
50,00
40.00
30.00

20,00

10.00

0.00 S
500 1000 1500 2000

Iteration (order number of method's call)

On the chart with durations we can observe that the duration of authentication request reaches 65 seconds at the end
of the load generation. Rally stopped load at the very last moment just before the mad things happened. The

32 Chapter 1. Contents

Rally Documentation, Release 0.4.0

reason why it runs so many attempts to authenticate is because of not enough good success criteria. We had to
run a lot of iterations to make average duration bigger than 5 seconds. Let’s chose better success criteria for this task

and run it one more time.

Authenticate.keystone:
runner:
type: "rps"
times: 6000
rps: 50
context:
users:
tenants: 5
users_per_tenant: 10
sla:
max_avg_duration: 5
max_seconds_per_iteration: 10
failure_rate:
max: 0

Now our task is going to be successful if the following three conditions hold:

1. maximum average duration of authentication should be less than 5 seconds

2. maximum duration of any authentication should be less than 10 seconds

3. no failed authentication should appear

Let’s run it!

$ rally task start --abort-on-sla-failure auth.

o o o o o —— o o f—— +

| action | min (sec) | avg (sec) | max (sec) | 90 percentile | 95 percentile | success | count |

+——— o o o R o o F———— +

| total | 0.082 | 5.411 | 22.081 | 10.848 | 14.595 | 100.0% | 1410

= o o o o o ———— o f————— +
33

1.3. Rally step-by-step

Rally Documentation, Release 0.4.0

benchmark results

Benchmark overview Authenticate.keystone (45.040s)

Input file
Overview Input task
¥ Authenticate

Load duration: 40.631 s Full duration: 45.040 s lterations: 1410 Failures: 0

Service-level agreement

Criterion Detail

max_seconds_per_iteration Maximum seconds per iteration 22.08s<= 10.00s - Failed
failure_rate Failure rate criteria 0.00% <= 0.00% <= 0.00% - Passed
max_avg_duration Maximum average duration of one iteration 5.41s <= 5.00s - Failed

Total durations

Action Min (sec) Avg (sec) Max (sec) 90 percentile 95 percentile Success

total 0.082 5411 22.081 10.848 14.585 100.0%

Charts for the Total durations

@5tacked (O Stream O Expanded @ duration
2142
20,00

15.00
10.00

5.00

200 400 600 BOO 1000 1200
eration (order number of method's call)

Success
False
True

False

Count

1410

idle_duration

1400

This time load stopped after 1410 iterations versus 2495 which is much better. The interesting thing on this chart is

that first occurrence of “> 10 second” authentication happened on 950 iteration. The reasonable question:

“Why Rally

run 500 more authentication requests then?”. This appears from the math: During the execution of bad authentication
(10 seconds) Rally performed about 50 request/sec * 10 sec = 500 new requests as a result we run 1400 iterations

instead of 950.

(based on: http://boris-42.me/rally-tricks-stop-load-before-your-openstack-goes-wrong/)

1.3.8 Step 7. Working with multiple OpenStack clouds

Rally is an awesome tool that allows you to work with multiple clouds and can itself deploy them. We already know
how to work with a single cloud. Let us now register 2 clouds in Rally: the one that we have access to and the other

that we know is registered with wrong credentials.

$. openrc admin admin # openrc with correct credentials

$ rally deployment create —-fromenv —--name=cloud-1

e Fem Fmm Fem
| uuid | created_at | name | status
- - o -
| 4251b491-73b2-422a-aecb-695a94165b5e | 2015-01-18 00:11:14.757203 | cloud-1 | deploy->finished
- +-—— - -

Using deployment: 4251b491-73b2-422a-aecb-695a94165bbe
~/.rally/openrc was updated

34 Chapter 1

. Contents

http://boris-42.me/rally-tricks-stop-load-before-your-openstack-goes-wrong/

Rally Documentation, Release 0.4.0

$. bad_openrc admin admin # openrc with wrong credentials

$ rally deployment create —-—-fromenv —-name=cloud-2

f———————————— Fom Fom Fom e ———
| uuid | created_at | name | status
e i et et Fom e e
| 658b9%ae-1£9c-4036-9400-9e71e88864fc | 2015-01-18 00:38:26.127171 | cloud-2 | deploy->finished
Rttt o Fom e
Using deployment: 658b9%bae-1f9c-4036-9400-9e71e88864fc

~/.rally/openrc was updated

Let us now list the deployments we have created:

$ rally deployment list

o o Fom Fom e
| uuid | created_at | name | status
e et et L o o
| 4251b491-73b2-422a-aecb-695a94165b5e | 2015-01-05 00:11:14.757203 | cloud-1 | deploy->finished

| 658b9%ae-1£f9c-4036-9400-9e71e88864fc | 2015-01-05 00:40:58.451435 | cloud-2 | deploy->finished
e o Fom oo

Note that the second is marked as ‘““active” because this is the deployment we have created most recently. This means
that it will be automatically (unless its UUID or name is passed explicitly via the —deployment parameter) used by the
commands that need a deployment, like rally task start ... or rally deployment check:

$ rally deployment check
Authentication Issues: wrong keystone credentials specified in your endpoint properties. (HTTP 401).

$ rally deployment check —--deployment=cloud-1
keystone endpoints are valid and following services are available:

o o o +
| services | type | status |
o o o +
cinder	volume	Available
cinderv2	volumev2	Available
ec2	ec2	Available
glance	image	Available
heat	orchestration	Available
heat—-cfn	cloudformation	Available
keystone	identity	Available
nova	compute	Available
novav2l	computev2l	Available
s3	s3	Available
fomm o fom e +

You can also switch the active deployment using the rally deployment use command:

$ rally deployment use cloud-1
Using deployment: 658b9%bae-1£9c-4036-9400-9e71e88864fc
~/.rally/openrc was updated

$ rally deployment check
keystone endpoints are valid and following services are available:

fomm o fomm e +
| services | type | status |
o o —————— o +
| cinder | volume | Available |
| cinderv2 | volumev2 | Available |

1.3. Rally step-by-step 35

Rally Documentation, Release 0.4.0

ec2	ec2	Available
glance	image	Available
heat	orchestration	Available
heat-cfn	cloudformation	Available
keystone	identity	Available
nova	compute	Available
novav2l	computev2l	Available
s3	s3	Available
o o o +

Note the first two lines of the CLI output for the rally deployment use command. They tell you the UUID of the new
active deployment and also say that the ~/.rally/openrc file was updated — this is the place where the “active” UUID is
actually stored by Rally.

One last detail about managing different deployments in Rally is that the rally task list command outputs only those
tasks that were run against the currently active deployment, and you have to provide the —all-deployments parameter
to list all the tasks:

$ rally task list

e o ————— o —————— +
| uuid | deployment_name | created_at |
e o o +
| c2labecb-57b2-43d6-bbbb-d7a827f1b420 | cloud-1 | 2015-01-05 01:00:42.099596 |
| foedadeab-1a6d-450d-8981-f77062ce6efdf | cloud-1 | 2015-01-05 01:05:57.653253 |
e o o +
$ rally task list —--all-deployment

e e o +
| uuid | deployment_name | created_at |
e o ————— f———————————— +
c2labecb-57b2-43d6-bbbb-d7a827f1b420	cloud-1	2015-01-05 01:00:42.099596
f6dad6ab-1a6d-450d-8981-f77062c6efdf	cloud-1	2015-01-05 01:05:57.653253
6£d9al9f-5cf8-4£f76-ab72-2e34bb1d4996	cloud-2	2015-01-05 01:14:51.428958
e e o +

1.3.9 Step 8. Discovering more plugins in Rally

0:00:13.4192:
0:00:14.1604

0:00:13.4192:
0:00:14.1604
0:00:15.0422«

* Plugins in the Rally repository
* CLI: rally plugin show
e CLI: rally plugin list

Plugins in the Rally repository

Rally currently comes with a great collection of plugins that use the API of different OpenStack projects like Keystone,
Nova, Cinder, Glance and so on. The good news is that you can combine multiple plugins in one task to test your
cloud in a comprehensive way.

First, let’s see what plugins are available in Rally. One of the ways to discover these plugins is just to inspect their
source code. another is to use build-in rally plugin command.

CLI: rally plugin show

Rally plugin CLI command is much more convenient way to learn about different plugins in Rally. This command
allows to list plugins and show detailed information about them:

36 Chapter 1. Contents

https://github.com/openstack/rally/tree/master/rally/plugins/

Rally Documentation, Release 0.4.0

$ rally plugin show create_meter_and_get_stats

NAME
CeilometerStats.create_meter_and_get_stats
NAMESPACE
default
MODULE
rally.plugins.openstack.scenarios.ceilometer.stats
DESCRIPTION
Meter is first created and then statistics is fetched for the same
using GET /v2/meters/ (meter_name)/statistics.

PARAMETERS

= e +
| name | description

- o————————— +
| kwargs | contains optional arguments to create a meter |

| | \
- Fo————————— +

In case if multiple found benchmarks found command list all matches elements:

$ rally plugin show NovaKeypair

Multiple plugins found:

et e o
| name | namespace | title

o —————— o o
| NovaKeypair.boot_and_delete_server_with_keypair | default | Boot and delete server with keypair.
| NovaKeypair.create_and_delete_keypair | default | Create a keypair with random name an
| NovaKeypair.create_and_list_keypairs | default | Create a keypair with random name an
e e o

CLI: rally plugin list

This command can be used to list filtered by name list of plugins.

$ rally plugin list ——-name Keystone

user role,

Check Keystone Client.
Create a user role add to a user ant

add it and list u:

and delete keystone ec2-credcs
a user role and delete it.
and delete service.

and List all keystone ec2-cre

and list services.

a

a
a
a
a

keystone
keystone
keystone
keystone
keystone

tenant with randor
user with random 1
user with random 1
tenant with randor
tenant and severa

update and delete tenant.

a keystone user with random 1
a keystone user, enable or d:

e o B
| name | namespace | title
————————————— o +

| Authenticate.keystone | default |

| KeystoneBasic.add_and_remove_user_role | default |

| KeystoneBasic.create_add_and_list_user_roles | default | Create
| KeystoneBasic.create_and_delete_ec2credential | default | Create
| KeystoneBasic.create_and_delete_role | default | Create
| KeystoneBasic.create_and_delete_service | default | Create
| KeystoneBasic.create_and_list_ec2credentials | default | Create
| KeystoneBasic.create_and_list_services | default | Create
| KeystoneBasic.create_and_list_tenants | default | Create
| KeystoneBasic.create_and_list_users | default | Create
| KeystoneBasic.create_delete_user | default | Create
| KeystoneBasic.create_tenant | default | Create
| KeystoneBasic.create_tenant_with_users | default | Create
| KeystoneBasic.create_update_and_delete_tenant | default | Create,
| KeystoneBasic.create_user | default | Create
| KeystoneBasic.create_user_set_enabled_and_delete | default | Create
| KeystoneBasic.create_user_update_password | default | Create

user and update password for

1.3. Rally step-by-step

37

Rally Documentation, Release 0.4.0

| KeystoneBasic.get_entities | default | Get instance of a tenant, user, rol
e fmm e —————— e

1.3.10 Step 9. Deploying OpenStack from Rally

Along with supporting already existing OpenStack deployments, Rally itself can deploy OpenStack automatically
by using one of its deployment engines. Take a look at other deployment configuration file samples. For example,
devstack-in-existing-servers.json is a deployment configuration file that tells Rally to deploy OpenStack with Devstack
on the existing servers with given credentials:

{
"type": "DevstackEngine",
"provider": {
"type": "ExistingServers",
"credentials": [{"user": "root", "host": "10.2.0.8"}]

}

You can try to deploy OpenStack in your Virtual Machine using this script. Edit the configuration file with your IP
address/user name and run, as usual:

$ rally deployment create —-—-file=samples/deployments/for_deploying_openstack_with_rally/devstack—in-—¢

Fo o Fom Fom +
| uuid | created_at | name | status |
- - - - +
| <Deployment UUID> | 2015-01-10 22:00:28.270941 | new-devstack | deploy—->finished |
f————— f————————— fo————— f————— +

Using deployment : <Deployment UUID>

1.4 Command Line Interface

1.4.1 Category: db

Commands for DB management.

rally-manage db create

Create Rally database.

rally-manage db downgrade

Downgrade Rally database.
Command arguments: —revision <revision> (ref)

Downgrade to specified revision UUID. Current revision of DB could be found by calling ‘rally-manage
db revision’

38 Chapter 1. Contents

https://github.com/openstack/rally/tree/master/samples/deployments

Rally Documentation, Release 0.4.0

rally-manage db recreate
Drop and create Rally database.
This will delete all existing data.
rally-manage db revision

Print current Rally database revision UUID.

rally-manage db upgrade

Upgrade Rally database to the latest state.

1.4.2 Category: deployment

Set of commands that allow you to manage deployments.

rally deployment check

Check keystone authentication and list all available services.

Command arguments: —deployment <uuid> (ref)

Note: The default value for the ——deployment argument is taken from the Rally environment. Usually, the default
value is equal to the UUID of the last successful runof rally deployment create,ifthe ——no-use argument

was not used.

Hint: You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of the deployment.
Type: str

rally deployment config

Display configuration of the deployment.
Output is the configuration of the deployment in a pretty-printed JSON format.

Command arguments: —deployment <uuid> (ref)

Note: The default value for the ——deployment argument is taken from the Rally environment. Usually, the default
value is equal to the UUID of the last successful runof rally deployment create,ifthe ——no-use argument

was not used.

Hint: You can set the default value by executing rally deployment use <uuid> (ref).

1.4. Command Line Interface 39

Rally Documentation, Release 0.4.0

UUID or name of the deployment.
Type: str

rally deployment create

Create new deployment.

This command will create a new deployment record in rally database. In the case of ExistingCloud deployment engine
it will use the cloud represented in the configuration. If the cloud doesn’t exist, Rally can deploy a new one for you
with Devstack or Fuel. Different deployment engines exist for these cases.

If you use the ExistingCloud deployment engine you can pass a deployment config by environment variables with
—-—fromenv:

OS_USERNAME OS_PASSWORD OS_AUTH_URL OS_TENANT_NAME OS_ENDPOINT
OS_REGION_NAME OS_CACERT OS_INSECURE

All other deployment engines need more complex configuration data, so it should be stored in a configuration file.

You can use physical servers, LXC containers, KVM virtual machines or virtual machines in OpenStack for deploying
the cloud. Except physical servers, Rally can create cluster nodes for you. Interaction with virtualization software,
OpenStack cloud or physical servers is provided by server providers.

Command arguments: —name <name> (ref)
Name of the deployment.
Type: str
—fromenv (ref)
Read environment variables instead of config file.
—filename <path> (ref)
Path to the configuration file of the deployment.
Type: str
Default: None
—no-use (ref)

Don’t set new deployment as default for future operations.

rally deployment destroy

Destroy existing deployment.

This will delete all containers, virtual machines, OpenStack instances or Fuel clusters created during Rally deployment
creation. Also it will remove the deployment record from the Rally database.

Command arguments: —deployment <uuid> (ref)

Note: The default value for the ——deployment argument is taken from the Rally environment. Usually, the default
value is equal to the UUID of the last successful runof rally deployment create,ifthe ——no-use argument

was not used.

Hint: You can set the default value by executing rally deployment use <uuid> (ref).

40 Chapter 1. Contents

Rally Documentation, Release 0.4.0

UUID or name of the deployment.
Type: str
rally deployment list

List existing deployments.

rally deployment recreate

Destroy and create an existing deployment.

Unlike ‘deployment destroy’, the deployment database record will not be deleted, so the deployment UUID stays the
same.

Command arguments: —deployment <uuid> (ref)

Note: The default value for the ——deployment argument is taken from the Rally environment. Usually, the default
value is equal to the UUID of the last successful runof rally deployment create,ifthe ——no-use argument

was not used.

Hint: You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of the deployment.
Type: str
rally deployment show

Show the credentials of the deployment.

Command arguments: —deployment <uuid> (ref)

Note: The default value for the ——deployment argument is taken from the Rally environment. Usually, the default
value is equal to the UUID of the last successful runof rally deployment create,ifthe ——no-use argument

was not used.

Hint: You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of the deployment.
Type: str
rally deployment use

Set active deployment.

Command arguments: —deployment <uuid> (ref)

1.4. Command Line Interface 41

Rally Documentation, Release 0.4.0

UUID or name of a deployment.
Type: str

1.4.3 Category: plugin

Set of commands that allow you to manage Rally plugins.

rally plugin list

List all Rally plugins that match name and namespace.
Command arguments: —name <name> (ref)
List only plugins that match the given name.
Type: str
Default: None

—namespace <namespace> (ref)

List only plugins that are in the specified namespace.

Type: str
Default: None

rally plugin show

Show detailed information about a Rally plugin.
Command arguments: —name <name> (ref)
Plugin name.
Type: str
—namespace <namespace> (ref)
Plugin namespace.

Type: str
Default: None

1.4.4 Category: show

Warning: Deprecated since 0.2.0

Show resources.

Set of commands that allow you to view resources, provided by OpenStack cloud represented by deploy-

ment.

42

Chapter 1. Contents

Rally Documentation, Release 0.4.0

rally show flavors

Display available flavors.

Command arguments: —deployment <uuid> (ref)

Note: The default value for the ——deployment argument is taken from the Rally environment. Usually, the default
value is equal to the UUID of the last successful runof rally deployment create,ifthe —-—no-use argument

was not used.

Hint: You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of a deployment.
Type: str
rally show images

Display available images.

Command arguments: —deployment <uuid> (ref)

Note: The default value for the ——deployment argument is taken from the Rally environment. Usually, the default
value is equal to the UUID of the last successful runof rally deployment create,ifthe ——no-use argument

was not used.

Hint: You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of a deployment.
Type: str
rally show keypairs

Display available ssh keypairs.

Command arguments: —deployment <uuid> (ref)

Note: The default value for the ——~deployment argument is taken from the Rally environment. Usually, the default
value is equal to the UUID of the last successful runof rally deployment create,ifthe ——no-use argument

was not used.

Hint: You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of a deployment.

Type: str

1.4. Command Line Interface 43

Rally Documentation, Release 0.4.0

rally show networks

Display configured networks.

Command arguments: —deployment <uuid> (ref)

Note: The default value for the ——deployment argument is taken from the Rally environment. Usually, the default
value is equal to the UUID of the last successful runof rally deployment create,ifthe —-—no-use argument

was not used.

Hint: You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of a deployment.
Type: str
rally show secgroups

Display security groups.

Command arguments: —deployment <uuid> (ref)

Note: The default value for the ——deployment argument is taken from the Rally environment. Usually, the default
value is equal to the UUID of the last successful runof rally deployment create,ifthe ——no-use argument

was not used.

Hint: You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of a deployment.
Type: str

1.4.5 Category: task

Set of commands that allow you to manage benchmarking tasks and results.

rally task abort

Abort a running benchmarking task.
Command arguments: —uuid <uuid> (ref)

UUID of task.

Type: str
—soft (ref)

Abort task after current scenario finishes execution.

44 Chapter 1. Contents

Rally Documentation, Release 0.4.0

rally task delete

Delete task and its results.

Command arguments: —force (ref)
force delete

—uuid <task-id> (ref)
UUID of task or a list of task UUIDs.
Type: str

rally task detailed

Print detailed information about given task.

Command arguments: —uuid <uuid> (ref)
UUID of task. If —uuid is “last” the results of the most recently created task will be displayed.
Type: str

—iterations-data (ref)

Print detailed results for each iteration.

rally task export

Export task results to the custom task’s exporting system.
Command arguments: —uuid <uuid> (ref)

UUID of a the task.

Type: str
—connection <connection> (ref)

Connection url to the task export system.

Type: str

rally task list

List tasks, started and finished.

Displayed tasks can be filtered by status or deployment. By default ‘rally task list’ will display tasks from the active
deployment without filtering by status.

Command arguments: —deployment <uuid> (ref)

Note: The default value for the ——deployment argument is taken from the Rally environment. Usually, the default
value is equal to the UUID of the last successful runof rally deployment create,ifthe ——no-use argument

was not used.

Hint: You can set the default value by executing rally deployment use <uuid> (ref).

1.4. Command Line Interface 45

Rally Documentation, Release 0.4.0

UUID or name of a deployment.
Type: str
—all-deployments (ref)
List tasks from all deployments.
—status <status> (ref)

List tasks with specified status. Available statuses: aborted, aborting, cleaning up, failed, finished, init,
paused, running, setting up, soft_aborting, verifying

Type: str

Default: None
—uuids-only (ref)

List task UUIDs only.

rally task report

Generate report file for specified task.

Command arguments: —tasks <tasks> (ref)
UUIDs of tasks, or JSON files with task results
Default: None

—out <path> (ref)

Path to output file.
Type: str
Default: None

—open (ref)

Open the output in a browser.

—html (ref)

Generate the report in HTML.

—html-static (ref)

Generate the report in HTML with embedded JS and CSS, so it will not depend on Internet availability.

—junit (ref)

Generate the report in the JUnit format.

rally task results

Display raw task results.
This will produce a lot of output data about every iteration.
Command arguments: —uuid <uuid> (ref)

UUID of task.

Type: str

46 Chapter 1. Contents

Rally Documentation, Release 0.4.0

rally task sla_check

Display SLA check results table.
Command arguments: —uuid <uuid> (ref)
UUID of task.
Type: str
—json (ref)
Output in JSON format.

rally task start

Start benchmark task.

If both task_args and task_args_file are specified, they will be merged. task_args has a higher priority so it will override
values from task_args_file.

Command arguments: —deployment <uuid> (ref)

Note: The default value for the ——deployment argument is taken from the Rally environment. Usually, the default
value is equal to the UUID of the last successful runof rally deployment create,ifthe ——no-use argument

was not used.

Hint: You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of a deployment.

Type: str
—task <path>, —filename <path> (ref)

Note: The default value for the ——task argument is taken from the Rally environment. Usually, the default value is
equal to the UUID of the last successful run of rally task start, if the -——no-use argument was not used.

Hint: You can set the default value by executing rally task use <uuid> (ref).

Path to the input task file

—task-args <json> (ref)
Input task args (JSON dict). These args are used to render the Jinja2 template in the input task.
Default: None

—task-args-file <path> (ref)

Path to the file with input task args (dict in JSON/YAML). These args are used to render the Jinja2 template
in the input task.

Default: None

—tag <tag> (ref)

1.4. Command Line Interface 47

Rally Documentation, Release 0.4.0

Tag for this task

Default: None
—no-use (ref)

Don’t set new task as default for future operations.
—abort-on-sla-failure (ref)

Abort the execution of a benchmark scenario whenany SLA check for it fails.

rally task status

Display the current status of a task.
Command arguments: —uuid <uuid> (ref)

UUID of task
Type: str

rally task use

Set active task.
Command arguments: —uuid <uuid> (ref)
UUID of the task
Type: str
—task (ref)
[Deprecated since Rally 0.2.0] Use ‘—uuid’ instead.

Type: str

rally task validate

Validate a task configuration file.

This will check that task configuration file has valid syntax and all required options of scenarios, contexts, SLA and
runners are set.

If both task_args and task_args_file are specified, they will be merged. task_args has a higher priority so it will override
values from task_args_file.

Command arguments: —deployment <uuid> (ref)

Note: The default value for the ——deployment argument is taken from the Rally environment. Usually, the default
value is equal to the UUID of the last successful runof rally deployment create,ifthe ——no-use argument

was not used.

Hint: You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of a deployment.
Type: str

48 Chapter 1. Contents

Rally Documentation, Release 0.4.0

—task <path>, —filename <path> (ref)

Note: The default value for the ——task argument is taken from the Rally environment. Usually, the default value is
equal to the UUID of the last successful run of rally task start, if the ——no—use argument was not used.

Hint: You can set the default value by executing rally task use <uuid> (ref).

Path to the input task file.

—task-args <json> (ref)
Input task args (JSON dict). These args are used to render the Jinja2 template in the input task.
Default: None

—task-args-file <path> (ref)

Path to the file with input task args (dict in JSON/YAML). These args are used to render the Jinja2 template
in the input task.

Default: None

1.4.6 Category: verify

Verify an OpenStack cloud via Tempest.

Set of commands that allow you to run Tempest tests.

rally verify compare

Compare two verification results.
Command arguments: —uuid-1 <uuid_1> (ref)
UUID of the first verification
Type: str
Default: None
—uuid-2 <uuid_2> (ref)
UUID of the second verification
Type: str
Default: None
—csv (ref)
Display results in CSV format
—html (ref)
Display results in HTML format
—json (ref)
Display results in JSON format
—output-file <output_file> (ref)

1.4. Command Line Interface 49

Rally Documentation, Release 0.4.0

Path to a file to save results
Type: str
Default: None
—threshold <threshold> (ref)
If specified, timing differences must exceed this percentage threshold to be included in output
Type: int
Default: 0

rally verify detailed

Display results table of a verification with detailed errors.

Command arguments: —uuid <uuid> (ref)

Note: The default value for the ——uuid argument is taken from the Rally environment. Usually, the default value is
equal to the UUID of the last successful run of rally verify start, rally verify import_results,

if the ——no—-use argument was not used.

Hint: You can set the default value by executing rally %$verify use <uuid> (ref).

UUID of a verification.
Type: str
—sort-by <sort_by> (ref)
Sort results by ‘name’ or ‘duration’

Default: name

rally verify discover

Show a list of discovered tests.

Command arguments: —deployment <uuid> (ref)

Note: The default value for the ——deployment argument is taken from the Rally environment. Usually, the default
value is equal to the UUID of the last successful runof rally deployment create,ifthe ——no-use argument

was not used.

Hint: You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of a deployment
Type: str
—pattern <pattern> (ref)

Test name pattern which can be used to match

50 Chapter 1. Contents

Rally Documentation, Release 0.4.0

Type: str
Default:

rally verify genconfig

Generate Tempest configuration file.

Command arguments: —deployment <uuid> (ref)

Note: The default value for the ——deployment argument is taken from the Rally environment. Usually, the default
value is equal to the UUID of the last successful runof rally deployment create,ifthe ——no-use argument

was not used.

Hint: You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of a deployment.
Type: str
—tempest-config <path> (ref)
User-specified Tempest config file location
Type: str
Default: None
—override (ref)

Override existing Tempest config file

rally verify import

Import Tempest tests results into the Rally database.

Command arguments: —deployment <uuid> (ref)

Note: The default value for the ——deployment argument is taken from the Rally environment. Usually, the default
value is equal to the UUID of the last successful runof rally deployment create,ifthe ——no-use argument

was not used.

Hint: You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of a deployment.
Type: str
—set <set_name> (ref)

Name of a Tempest test set. Available sets are full, scenario, smoke, baremetal, compute, database,
data_processing, identity, image, messaging, network, object_storage, orchestration, telemetry, volume

Type: str
Default:

1.4. Command Line Interface 51

Rally Documentation, Release 0.4.0

—file <path> (ref)
User specified Tempest log file location. Note, Tempest log file needs to be in subunit format
Type: str
Default: None

—no-use (ref)

Don’t set new task as default for future operations

rally verify install

Install Tempest.

Command arguments: —deployment <uuid> (ref)

Note: The default value for the ——deployment argument is taken from the Rally environment. Usually, the default
value is equal to the UUID of the last successful runof rally deployment create,ifthe ——no-use argument

was not used.

Hint: You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of a deployment.
Type: str

—source <source> (ref)

Path/URL to repo to clone Tempest from

Type: str
Default: None

—system-wide (ref)

Don’t create a virtual env for Tempest. Note that all Tempest requirements have to be already installed in
the local env!

rally verify list

List verification runs.

rally verify reinstall

Uninstall Tempest and install again.

Command arguments: —deployment <uuid> (ref)

Note: The default value for the ——deployment argument is taken from the Rally environment. Usually, the default
value is equal to the UUID of the last successful runof rally deployment create,ifthe ——no-use argument

was not used.

Hint: You can set the default value by executing rally deployment use <uuid> (ref).

52 Chapter 1. Contents

Rally Documentation, Release 0.4.0

UUID or name of a deployment.
Type: str
—tempest-config <path> (ref)

[Deprecated since Rally 0.3.2] User-specified Tempest config file location. Note that in the future this
argument will be removed! Use rally verify genconfig instead

Type: str
Default: None
—source <source> (ref)
Path/URL to repo to clone Tempest from
Type: str
Default: None
—system-wide (ref)

Don’t create a virtual env for Tempest. Note that all Tempest requirements have to be already installed in
the local env!

rally verify results

Display results of a verification.

Command arguments: —uuid <uuid> (ref)

Note: The default value for the ——uuid argument is taken from the Rally environment. Usually, the default value is
equal to the UUID of the last successful run of rally verify start, rally verify import_results,

if the ——no-use argument was not used.

Hint: You can set the default value by executing rally $verify use <uuid> (ref).

UUID of a verification.

Type: str
—html (ref)

Display results in HTML format.
—json (ref)

Display results in JSON format.
—output-file <path> (ref)

Path to a file to save results to.

Type: str
Default: None

1.4. Command Line Interface 53

Rally Documentation, Release 0.4.0

rally verify show

Display results table of a verification.

Command arguments: —uuid <uuid> (ref)

Note: The default value for the ——uuid argument is taken from the Rally environment. Usually, the default value is
equal to the UUID of the last successful run of rally verify start, rally verify import_results,

if the ——no—-use argument was not used.

Hint: You can set the default value by executing rally $%$verify use <uuid> (ref).

UUID of a verification
Type: str
—sort-by <query> (ref)
Sort results by ‘name’ or ‘duration’

Type: str

Default: name
—detailed (ref)

Display detailed errors of failed tests

rally verify showconfig

Show configuration file of Tempest.

Command arguments: —deployment <uuid> (ref)

Note: The default value for the ——~deployment argument is taken from the Rally environment. Usually, the default
value is equal to the UUID of the last successful runof rally deployment create,ifthe ——no-use argument

was not used.

Hint: You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of a deployment.
Type: str
rally verify start

Start verification (run Tempest tests).

Command arguments: —deployment <uuid> (ref)

Note: The default value for the ——deployment argument is taken from the Rally environment. Usually, the default
value is equal to the UUID of the last successful runof rally deployment create,ifthe —-——no-use argument

was not used.

54 Chapter 1. Contents

Rally Documentation, Release 0.4.0

Hint: You can set the default value by executing rally deployment use <uuid> (ref).

UUID or name of a deployment.
Type: str
—set <set_name> (ref)

Name of a Tempest test set. Available sets are full, scenario, smoke, baremetal, compute, database,
data_processing, identity, image, messaging, network, object_storage, orchestration, telemetry, volume

Type: str
Default:
—regex <regex> (ref)
Test name regular expression
Type: str
Default: None
—tests-file <path> (ref)
Path to a file with a list of Tempest tests
Type: str
Default: None
—tempest-config <path> (ref)
User-specified Tempest config file location
Type: str
Default: None
—xfails-file <path> (ref)
Path to a YAML file with a list of Tempest tests that are expected to fail
Type: str
Default: None
—no-use (ref)
Don’t s