

RAJA User Guide

RAJA is a software library of C++ abstractions, developed at Lawrence Livermore
National Laboratory (LLNL), that enable architecture and programming model
portability for high performance computing (HPC) applications. RAJA has two
main goals:

	To enable application portability with manageable disruption to algorithms and programming styles.

	To achieve performance comparable to using various programming models (e.g., OpenMP, CUDA, etc.) directly.

RAJA targets portable, parallel loop execution by providing building blocks
that extend the generally-accepted parallel for idiom.

Background and Motivation

Many HPC applications must achieve high performance across a diverse
range of computer architectures including: Mac and Windows laptops,
parallel clusters of multicore commodity processors, and large-scale
supercomputers with advanced heterogeneous node architectures that combine
cutting edge CPU and accelerator (e.g., GPU) processors. Exposing fine-grained
parallelism in a portable, high performance manner on varied and
potentially disruptive architectures presents significant challenges to
developers of large-scale HPC applications. This is especially true at US
Department of Energy (DOE) laboratories where, for decades, large investments
have been made in highly-scalable MPI-only applications that have been in
service over multiple platform generations. Often, maintaining developer and
user productivity requires the ability to build single-source application
source code bases that can be readily ported to new architectures. RAJA is
one C++-based programming model abstraction layer that can help to meet this
performance portability challenge.

RAJA provides portable abstractions for simple and complex loops – as well
as a variety of loop transformations, reductions, scans, atomic operations,
data layouts and views, iteration spaces, etc. Currently available execution
patterns supported by different programming model back-ends include:
sequential,
SIMD [https://en.wikipedia.org/wiki/SIMD],
NVIDIA CUDA [https://developer.nvidia.com/about-cuda],
OpenMP [https://www.openmp.org] CPU multi-threading and target offload.
Support for Intel Threading Building Blocks (TBB) [https://www.threadingbuildingblocks.org] and AMD ROCm [https://rocm.github.io/] support are under
development and considered experimental.

RAJA uses standard C++11 – C++ is the predominant programming language in
many LLNL applications. RAJA requirements and design are rooted in a
decades of developer experience working on production mesh-based
multiphysics applications at LLNL. An important RAJA requirement is that
application developers can specialize RAJA concepts for different code
implementation patterns and C++ usage, since data structures and algorithms
vary widely across applications.

RAJA helps developers insulate application loop kernels from underlying
architecture and programming model-specific implementation details. Loop
bodies and loop execution are decoupled using C++ lambda expressions
(loop bodies) and C++ templates (loop execution methods). This approach
promotes the perspective that developers should focus on tuning
loop patterns rather than individual loops as much as possible. RAJA makes it
relatively straightforward to parameterize an application using execution
policy types so that it can be compiled in a specific configuration suitable
to a given architecture.

Interacting with the RAJA Team

If you are interested in keeping up with RAJA development and communicating
with developers and users, please join our Google Group [https://groups.google.com/forum/#!forum/raja-users], or contact the
development team via email at raja-dev@llnl.gov

If you have questions, find a bug, have ideas about expanding the
functionality or applicability, or wish to contribute
to RAJA development, please do not hesitate to contact us. We are always
interested in improving RAJA and exploring new ways to use it. A brief
description of how the RAJA team operates can be found in
Contributing to RAJA.

What’s In This Guide?

If you have some familiarity with RAJA and want to get up and running quickly,
check out Getting Started With RAJA. This guide contains information
about accessing the RAJA code, building it, and basic RAJA usage.

If you are completely new to RAJA, please check out the RAJA Tutorial.
It contains a discussion of essential C++ concepts and will walk you
through a sequence of code examples that show how to use key RAJA features.

See RAJA Features for a complete, high-level description of RAJA
features (like a reference guide).

Additional information about things to think about when considering whether
to use RAJA in an application can be found in Application Considerations.

	Getting Started With RAJA
	Requirements

	Get the Code

	Build and Install

	Learning to Use RAJA

	RAJA Features
	Elements of Loop Execution

	Policies

	Indices, Segments, and IndexSets

	View and Layout

	Reduction Operations

	Atomics

	Scans

	Local Array

	Loop Tiling

	Application Considerations

	RAJA Tutorial
	A Little C++ Lambda Background

	RAJA Examples

	Simple Loops and Basic RAJA Features

	Complex Loops: Transformations and Advanced RAJA Features

	Using RAJA in Your Application
	CMake Configuration File

	Build Configuration Options
	Setting Options

	Available Options and Defaults

	RAJA Host-Config Files

	Plugins
	CHAI

	Contributing to RAJA
	Forking RAJA

	Developing a New Feature

	Developing a Bug Fix

	Creating a Pull Request

	Tests

	RAJA License

Getting Started With RAJA

This section will help get you up and running with RAJA quickly.

Requirements

The primary requirement for using RAJA is a C++11 compliant compiler.
Accessing various programming model back-ends requires that they be supported
by the compiler you chose. Available options and how to enable or disable
them are described in Build Configuration Options. To build and use RAJA in its
simplest form requires:

	C++ compiler with C++11 support

	CMake [https://cmake.org/] version 3.8.2 or greater for most back-ends, and version 3.9 or greater for CUDA.

Get the Code

The RAJA project is hosted on GitHub [https://github.com/LLNL/RAJA].
To get the code, clone the repository into a local working space using
the command:

$ git clone --recursive https://github.com/LLNL/RAJA.git

The --recursive argument above is needed to pull in other projects
that we use as Git submodules. Currently, we have only two:

	BLT build system [https://github.com/LLNL/blt]

	NVIDIA CUB [https://github.com/NVlabs/cub]

You probably don’t need to know much about either of these projects to start
using RAJA. But, if you want to know more, click on the links above.

After running the clone command, a copy of the RAJA repository will reside in
a RAJA subdirectory where you ran the clone command. You will be on the
develop branch of RAJA, which is our default branch.

If you forget to pass the --recursive argument to the git clone
command, you can type the following commands after cloning:

$ cd RAJA
$ git submodule init
$ git submodule update

Either way, the end result is the same and you should be good to go.

Note

Any time you switch branches in RAJA, you need to re-run the
‘git submodule update’ command to set the Git submodules to
what is used by the new branch.

Build and Install

Building and installing RAJA can be very easy or more complicated, depending
on which features you want to use and how well you understand how to use
your system.

Building RAJA

RAJA uses CMake to configure a build. A basic configuration looks like:

$ mkdir build-dir && cd build-dir
$ cmake -DCMAKE_INSTALL_PREFIX=/path/to/install ../

Note

Builds must be out-of-source. RAJA does not allow building in
the source directory, so you must create a build directory.

When you run CMake, it will provide output about the compiler that has been
found and which features are discovered. Some RAJA features, like OpenMP
support are enabled if they are discovered. For a complete summary of
configuration options, please see Build Configuration Options.

After CMake successfully completes, you compile RAJA by executing the make
command in the build directory; i.e.,:

$ cd build-dir
$ make

If you have access to a multi-core system you can compile in parallel by running
make -j (to build with all available cores) or make -j N to build using
N cores.

Note

RAJA is configured to build its unit tests by default. If you do not
disable them with the appropriate CMake option, you can run them
after the build completes to check if everything compiled properly.
The easiest way to do this is to type:

$ make test

after the build completes.

You can also run individual tests by invoking individual test
executables directly. They live in subdirectories in the test
directory. RAJA tests use the
Google Test framework [https://github.com/google/googletest],
so you can also run tests via Google Test commands.

Installing RAJA

To install RAJA as a library, run the following command in your build
directory:

$ make install

This will copy RAJA header files to the include directory and the RAJA
library will be installed in the lib directory you specified using the
-DCMAKE_INSTALL_PREFIX CMake option.

Learning to Use RAJA

If you want to view and run a very simple RAJA example code, a good place to
start is located in the file: RAJA/examples/daxpy.cpp. After building
RAJA with the options you select, the executable for this code will reside
in the file: <build-dir>/examples/bin/daxpy. Simply type the name
of the executable in your build directory to run it; i.e.,:

$./examples/bin/daxpy

The RAJA/examples directory also contains many other RAJA example codes
you can run and experiment with.

For an overview of all the main RAJA features, see RAJA Features.
A full tutorial with a variety of examples showing how to use RAJA features
can be found in RAJA Tutorial.

RAJA Features

The following sections describe key aspects of the main RAJA features.

	Elements of Loop Execution
	Simple Loops (RAJA::forall)

	Complex Loops (RAJA::kernel)

	Policies
	RAJA Loop/Kernel Execution Policies

	RAJA IndexSet Execution Policies

	Parallel Region Policies

	Reduction Policies

	Atomic Policies

	Local Array Memory Policies

	RAJA Kernel Execution Policies

	Indices, Segments, and IndexSets
	Indices

	Segments

	IndexSets

	View and Layout
	RAJA View

	RAJA Layout

	RAJA Index Mapping

	Reduction Operations
	Reduction Types

	Reduction Policies

	Atomics
	Atomic Operations

	Atomic Policies

	Scans
	Scan Operations

	RAJA Inclusive Scans

	RAJA Exclusive Scans

	RAJA Scan Operators

	Scan Policies

	Local Array
	Memory Policies

	Loop Tiling

Elements of Loop Execution

In this section, we describe the basic elements of RAJA loop kernel execution.
RAJA::forall and RAJA::kernel template methods comprise the
RAJA interface for loop execution. RAJA::forall methods execute simple
loops (e.g., non-nested loops) while RAJA::kernel methods support nested
loops and other complex loop kernels and transformations.

Note

	All forall and kernel methods are in the namespace RAJA.

	A RAJA::forall loop execution method is a template on an
execution policy type. A RAJA::forall method takes two
arguments:

	an iteration space object, and

	a lambda expression representing the loop body.

	Each RAJA::kernel method is a template on a policy that
contains statements with execution policy types appropriate for
the kernel structure; e.g., an execution policy for each level in a
loop nest. A RAJA::kernel method takes multiple arguments:

	a tuple of iteration space objects, and

	one or more lambda expressions representing portions of
the loop kernel body.

Various examples showing how to use RAJA::forall and RAJA::kernel
methods may be found in the RAJA Tutorial.

For more information on RAJA execution policies and iteration space constructs,
see Policies and Indices, Segments, and IndexSets, respectively.

Simple Loops (RAJA::forall)

As noted earlier, a RAJA::forall template executes simple
(e.g., non-nested) loops. For example, a C-style loop like:

double* a = ...;
double* b = ...;
double* c = ...;

for (int i = 0; i < N; ++i) {
 c[i] = a[i] + b[i];
}

may be written in a RAJA form as:

double* a = ...;
double* b = ...;
double* c = ...;

RAJA::forall<exec_policy>(iter_space I, [=] (index_type i) {
 c[i] = a[i] + b[i];
});

A RAJA::forall method is a template on an execution policy type and takes
two arguments: an object describing the loop iteration space, such as a RAJA
segment or index set, and a lambda expression for the loop body. Applying
different loop execution policies enables the loop to run in different ways;
e.g., using different programming model back-ends. Different iteration space
objects enable the loop iterates to be partitioned, reordered, run in
different threads, etc.

Note

Changing loop execution policy types and iteration space constructs
enable loops to run in different ways by recompiling the code and
without modifying the loop kernel code.

While loop execution using RAJA::forall methods is a subset of
RAJA::kernel functionality, described next, we maintain the
RAJA::forall interface for simple loop execution because the syntax is
simpler and less verbose.

Note

Data arrays in lambda expressions used with RAJA are typically
RAJA Views (see View and Layout) or bare pointers as shown in
the code snippets above. Using something like ‘std::vector’ is
non-portable (won’t work in CUDA kernels) and would add excessive
overhead for copying data into the lambda data environment.

Complex Loops (RAJA::kernel)

A RAJA::kernel template provides ways to compose and execute arbitrary
loop nests and other complex kernels. To introduce the RAJA kernel interface,
consider a (N+1)-level C-style loop nest:

for (index_type iN = 0; iN < NN; ++iN) {
 ...
 for (index_type i0 = 0; i0 < N0; ++i0) {s
 \\ inner loop body
 }
}

Note that we could write this by nesting RAJA::forall statements and
it would work, assuming the execution policies were chosen properly:

RAJA::forall<exec_policyN>(IN, [=] (index_type iN) {
 ...
 RAJA::forall<exec_policy0>(I0, [=] (index_type i0)) {
 \\ inner loop body
 }
 ...
}

However, this approach treats each loop level as an independent entity. This
makes it difficult to parallelize the levels in the loop nest together. So it
limits the amount of parallelism that can be exposed and the types of
parallelism that may be used. For example, if an OpenMP or CUDA
parallel execution policy is used on the outermost loop, then all inner loops
would be run sequentially in each thread. It also makes it difficult to perform
transformations like loop interchange and loop collapse.

The RAJA kernel interface facilitates parallel execution and transformations
of arbitrary loop nests and other complex loops. It can treat a complex loop
structure as a single entity, which simplifies the ability to apply kernel
transformations and different parallel execution patterns by changing one
execution policy type.

The loop nest may be written in a RAJA kernel form as:

using KERNEL_POL =
 RAJA::KernelPolicy< RAJA::statement::For<N, exec_policyN,
 ...
 RAJA::statement::For<0, exec_policy0,
 RAJA::statement::Lambda<0>
 >
 ...
 >
 >;

RAJA::kernel< KERNEL_POL >(
 RAJA::make_tuple(iter_space IN, ..., iter_space I0),

 [=] (index_type iN, ... , index_type i0) {
 // inner loop body
 }

);

A RAJA::kernel method takes a RAJA::KernelPolicy type template
parameter, and a tuple of iteration spaces and a sequence of lambda
expressions as arguments.

In the case we discuss here, the execution policy contains a nested sequence
of RAJA::statement::For statements, one for each level in the loop nest.
Each ‘For’ statement takes three template parameters:

	an integral index parameter that binds it to the item in the iteration
space tuple associated with that index,

	an execution policy type for the corresponding loop nest level, and

	an enclosed statement list (described in RAJA Kernel Execution Policies).

Note

The nesting of RAJA::statement::For types is analogous to the
nesting of for-statements in the C-style version of the loop nest.
A notable syntactic difference is that curly braces are replaced
with ‘<, >’ symbols enclosing the template parameter lists.

Here, the innermost type in the kernel policy is a
RAJA::statement::Lambda<0> type indicating that the first lambda expression
(argument zero of the sequence of lambdas passed to the RAJA::kernel method)
will comprise the inner loop body. We only have one lambda in this example
but, in general, we can have any number of lambdas and we can use any subset
of them, with RAJA::statement::Lambda types placed appropriately in the
execution policy, to construct a loop kernel. For example, placing
RAJA::statement::Lambda types between RAJA::statement::For statements
enables non-perfectly nested loops.

Each lambda expression passed to a RAJA::kernel method must take an
index argument for each iteration space in the tuple. However, any subset
of the arguments may actually be used in each lambda expression.

Note

The loop index arguments for each lambda expression used in a RAJA
kernel loop body must match the contents of the
iteration space tuple in number, order, and type. Not all index
arguments must be used in each lambda, but they all must appear
for the RAJA kernel to be well-formed. In particular, your code will
not compile if this is not done correctly. If an argument is unused
in a lambda expression, you may include its type and omit its name
in the argument list to avoid compiler warnings just as one would do
for a regular C++ method.

For RAJA nested loops implemented with RAJA::kernel, as shown here, the
loop nest ordering is determined by the order of the nested policies, starting
with the outermost loop and ending with the innermost loop.

Note

The integer value that appears as the first parameter in each
RAJA::statement::For template indicates which iteration space
tuple entry or lambda index argument it corresponds to. This
allows loop nesting order to be changed simply by changing the
ordering of the nested policy statements. This is analogous to
changing the order of ‘for-loop’ statements in C-style nested loop
code.

See Basic RAJA::kernel Variants for a complete example showing RAJA nested
loop functionality and Nested Loop Interchange for a detailed example
describing nested loop reordering.

A summary of all RAJA execution policies that may be used with RAJA::forall
or RAJA::kernel may be found in Policies. Also, a discussion
of how to construct RAJA::KernelPolicy types and available
RAJA::statement types can be found in RAJA Kernel Execution Policies.

Policies

This section describes various RAJA policies for loop kernel execution,
scans, reductions, atomics, etc. Each policy is a type that is passed to
a RAJA template method or class to specialize its behavior. Typically, the
policy indicates which programming model back-end to use and sometimes
provides additional information about the execution pattern, such as
number of CUDA threads per threadblock, whether execution is synchronous
or asynchronous, etc.

As RAJA functionality is expanded, new policies will be added and some may
be redefined and to work in new ways.

Note

	All RAJA policies are in the namespace RAJA.

RAJA Loop/Kernel Execution Policies

The following table summarizes RAJA policies for executing loops and kernels.

	Execution Policy

	Works with

	Brief description

	Sequential/SIMD

	
	

	seq_exec

	forall,
kernel (For),
scans

	Strictly sequential
execution

	simd_exec

	forall,
kernel (For),
scans

	Try to force generation of
SIMD instructions via
compiler hints in RAJA
internal implementation

	loop_exec

	forall,
kernel (For),
scans

	Allow compiler to generate
any optimizations, such as
SIMD, that may be
beneficial according to
its heuristics;
i.e., no loop decorations
(pragmas or intrinsics) in
RAJA implementation

	OpenMP CPU multithreading

	
	

	(see note below table)

	
	

	omp_parallel_for_exec

	forall,
kernel (For),
scans

	Create OpenMP parallel
region and execute with CPU
multithreading inside it;
i.e., apply omp parallel
for pragma on loop

	omp_for_exec

	forall,
kernel (For)

	Parallel execution with
OpenMP CPU multithreading
inside an existing
parallel region; i.e.,
apply omp for pragma
on loop

	omp_for_static<CHUNK_SIZE>

	forall,
kernel (For)

	Execute loop with OpenMP
CPU multithreading using
static schedule and given
chunk size inside an
existing parallel region;
i.e., apply omp for
schedule(static,
CHUNK_SIZE> pragma on
loop

	omp_for_nowait_exec

	forall,
kernel (For)

	Parallel execution with
OpenMP CPU multithreading
inside an existing parallel
region without
synchronization after loop;
i.e., apply
omp for nowait pragma

	Intel Threading Building Blocks

	
	

	(see note below table)

	
	

	tbb_for_exec

	forall,
kernel (For),
scans

	Execute loop iterations
as tasks in parallel using
TBB parallel_for method

	tbb_for_static<CHUNK_SIZE>

	forall,
kernel (For),
scans

	Same as above, but use
a static scheduler with
given chunk size

	tbb_for_dynamic

	forall,
kernel (For),
scans

	Same as above, but use
a dynamic scheduler

	CUDA

	
	

	(see notes below table)

	
	

	cuda_exec<BLOCK_SIZE>

	forall,
kernel (For),
scans

	Execute loop iterations
in a CUDA kernel launched
with given thread-block
size. If none given, use
default value of 256
threads/block

	cuda_thread_x_direct

	kernel (For)

	Map loop iterations to CUDA
threads in x-dimension

	cuda_thread_y_direct

	kernel (For)

	Map loop iterations to CUDA
threads in y-dimension

	cuda_thread_z_direct

	kernel (For)

	Map loop iterations to CUDA
threads in z-dimension

	cuda_thread_x_loop

	kernel (For)

	Extends thread-x-direct
policy by adding a
block-stride loop

	cuda_thread_y_loop

	kernel (For)

	Extends thread-y-direct
policy by adding a
block-stride loop

	cuda_thread_z_loop

	kernel (For)

	Extends thread-z-direct
policy by adding a
block-stride loop

	cuda_block_x_loop

	kernel (For)

	Map loop iterations to CUDA
thread blocks in
x-dimension

	cuda_block_y_loop

	kernel (For)

	Map loop iterations to CUDA
thread blocks in
y-dimension

	cuda_block_z_loop

	kernel (For)

	Map loop iterations to CUDA
thread blocks in
z-dimension

	OpenMP target

	
	

	omp_target_parallel_for_exec<NUMTEAMS>

	forall

	Create parallel target
region and execute with
given number of thread
teams inside it; i.e.,
apply omp teams
distribute parallel for
num_teams(NUMTEAMS)
pragma on loop

	omp_target_parallel_collapse_exec

	kernel
(Collapse)

	Similar to above, but
collapse perfectly-nested loops, which are specified
in arguments to RAJA
Collapse statement. Note:
compiler determines number
of thread teams and threads
per team

The following notes apply to the execution policies described in the table
above.

Note

To control the number of threads used by OpenMP policies
set the value of the environment variable ‘OMP_NUM_THREADS’ (which is
fixed for duration of run), or call the OpenMP routine
‘omp_set_num_threads(nthreads)’ (which allows changing number of
threads at runtime).

Note

To control the number of worker threads used by TBB policies:
set the value of the environment variable ‘TBB_NUM_WORKERS’ (which is
fixed for duration of run), or create a ‘task_scheduler_init’ object:

tbb::task_scheduler_init TBBinit(nworkers);

// do some parallel work

TBBinit.terminate();
TBBinit.initialize(new_nworkers);

// do some more parallel work

This allows changing number of workers at runtime.

Several notable constraints apply to RAJA CUDA thread-direct policies.

Note

	Repeating thread direct policies with the same thread dimension in perfectly nested loops is not recommended. Your code may do something, but likely will not do what you expect and/or be correct.

	If multiple thread direct policies are used in a kernel (using different thread dimensions), the product of sizes of the corresponding iteration spaces must be \(\leq\) 1024. You cannot launch a CUDA kernel with more than 1024 threads per block.

	Thread-direct policies are recommended only for certain loop patterns, such as tiling.

Several notes regarding CUDA thread and block loop policies are also good to
know.

Note

	There is no constraint on the product of sizes of the associated loop iteration space.

	These polices allow having a larger number of iterates than threads in the x, y, or z thread dimension.

	Cuda thread and block loop policies are recommended for most loop patterns.

RAJA IndexSet Execution Policies

When an IndexSet iteration space is used in RAJA, such as passing an IndexSet
to a RAJA::forall method, an index set execution policy is required. An
index set execution policy is a two-level policy: an ‘outer’ policy for
iterating over segments in the index set, and an ‘inner’ policy used to
execute the iterations defined by each segment. An index set execution policy
type has the form:

RAJA::ExecPolicy< segment_iteration_policy, segment_execution_policy>

See IndexSets for more information.

In general, any policy that can be used with a RAJA::forall method
can be used as the segment execution policy. The following policies are
available to use for the segment iteration policy:

	Execution Policy

	Brief description

	Serial

	

	seq_segit

	Iterate over index set segments
sequentially

	OpenMP CPU multithreading

	

	omp_parallel_segit

	Create OpenMP parallel region and
iterate over segments in parallel inside it; i.e., apply omp parallel for
pragma on loop over segments

	omp_parallel_for_segit

	Same as above

	Intel Threading Building Blocks

	

	tbb_segit

	Iterate over index set segments in
parallel using a TBB ‘parallel_for’
method

Parallel Region Policies

The following policies may only be used with the RAJA::region method.
RAJA::forall and RAJA::kernel methods may be used within a parallel
region created with the RAJA::region construct.

	seq_region - Create a sequential region (see note below).

	omp_parallel_region - Create an OpenMP parallel region.

For example, the following code will execute two consecutive loops in parallel
in an OpenMP parallel region without synchronizing threads between them:

RAJA::region<RAJA::omp_parallel_region>([=]() {

 RAJA::forall<RAJA::omp_for_nowait_exec>(
 RAJA::RangeSegment(0, N), [=](int i) {
 // loop body #1
 });

 RAJA::forall<RAJA::omp_for_nowait_exec>(
 RAJA::RangeSegment(0, N), [=](int i) {
 // loop body #2
 });

}); // end omp parallel region

Note

The sequential region specialization is essentially a pass through
operation. It is provided so that if you want to turn off OpenMP in
your code, you can simply replace the region policy type and you do
not have to change your algorithm source code.

Reduction Policies

Each RAJA reduction object must be defined with a ‘reduction policy’
type. Reduction policy types are distinct from loop execution policy types.
It is important to note the following constraints about RAJA reduction usage:

Note

To guarantee correctness, a reduction policy must be consistent
with the loop execution policy used. For example, a CUDA
reduction policy must be used when the execution policy is a
CUDA policy, an OpenMP reduction policy must be used when the
execution policy is an OpenMP policy, and so on.

The following table summarizes RAJA reduction policy types:

	Reduction Policy

	Loop Policies
to Use With

	Brief description

	seq_reduce

	seq_exec,
loop_exec

	Non-parallel (sequential) reduction

	omp_reduce

	any OpenMP
policy

	OpenMP parallel reduction

	omp_reduce_ordered

	any OpenMP
policy

	OpenMP parallel reduction with result
guaranteed to be reproducible

	omp_target_reduce

	any OpenMP
target policy

	OpenMP parallel target offload reduction

	tbb_reduce

	any TBB
policy

	TBB parallel reduction

	cuda_reduce

	any CUDA
policy

	Parallel reduction in a CUDA kernel
(device synchronization will occur when
reduction value is finalized)

	cuda_reduce_atomic

	any CUDA
policy

	Same as above, but reduction may use CUDA
atomic operations

Note

RAJA reductions used with SIMD execution policies are not
guaranteed to generate correct results at present.

Atomic Policies

Each RAJA atomic operation must be defined with an ‘atomic policy’
type. Atomic policy types are distinct from loop execution policy types.

Note

An atomic policy type must be consistent with the loop execution
policy for the kernel in which the atomic operation is used. The
following table summarizes RAJA atomic policies and usage.

	Atomic Policy

	Loop Policies
to Use With

	Brief description

	seq_atomic

	seq_exec,
loop_exec

	Atomic operation performed in a non-parallel
(sequential) kernel

	omp_atomic

	any OpenMP
policy

	Atomic operation performed in an OpenMP
multithreading or target kernel; i.e.,
apply omp atomic pragma

	cuda_atomic

	any CUDA
policy

	Atomic operation performed in a CUDA kernel

	builtin_atomic

	seq_exec,
loop_exec,
any OpenMP
policy

	Compiler builtin atomic operation

	auto_atomic

	seq_exec,
loop_exec,
any OpenMP
policy,
any CUDA
policy

	Atomic operation compatible with loop
execution policy. See example below.

Here is an example illustrating use of the auto_atomic policy:

RAJA::forall< RAJA::cuda_exec >(RAJA::RangeSegment seg(0, N),
 [=] RAJA_DEVICE (RAJA::Index_type i) {

 RAJA::atomic::atomicAdd< RAJA::auto_atomic >(&sum, 1);

});

In this case, the atomic operation knows that it is used in a CUDA kernel
context and the CUDA atomic operation is applied. Similarly, if an OpenMP
execution policy was used, the OpenMP version of the atomic operation would
be used.

Note

	There are no RAJA atomic policies for TBB (Intel Threading Building
Blocks) execution contexts at present.

	The builtin_atomic policy may be preferable to the
omp_atomic policy in terms of performance.

Local Array Memory Policies

RAJA::LocalArray types must use a memory policy indicating
where the memory for the local array will live. These policies are described
in Local Array.

The following memory policies are available to specify memory allocation
for RAJA::LocalArray objects:

	RAJA::cpu_tile_mem - Allocate CPU memory on the stack

	RAJA::cuda_shared_mem - Allocate CUDA shared memory

	RAJA::cuda_thread_mem - Allocate CUDA thread private memory

RAJA Kernel Execution Policies

RAJA kernel execution policy constructs form a simple domain specific language
for composing and transforming complex loops that relies
solely on standard C++11 template support.
RAJA kernel policies are constructed using a combination of Statements and
Statement Lists. A RAJA Statement is an action, such as execute a loop,
invoke a lambda, set a thread barrier, etc. A StatementList is an ordered list
of Statements that are composed in the order that they appear in the kernel
policy to construct a kernel. A Statement may contain an enclosed StatmentList. Thus, a RAJA::KernelPolicy type is really just a StatementList.

The main Statement types provided by RAJA are RAJA::statement::For and
RAJA::statement::Lambda, that we have shown above. A ‘For’ Statement
indicates a for-loop structure and takes three template arguments:
‘ArgId’, ‘ExecPolicy’, and ‘EnclosedStatements’. The ArgID identifies the
position of the item it applies to in the iteration space tuple argument to the
RAJA::kernel method. The ExecPolicy is the RAJA execution policy to
use on that loop/iteration space (similar to RAJA::forall).
EnclosedStatements contain whatever is nested within the template parameter
list to form a StatementList, which will be executed for each iteration of
the loop. The RAJA::statement::Lambda<LambdaID> invokes the lambda
corresponding to its position (LambdaID) in the sequence of lambda expressions
in the RAJA::kernel argument list. For example, a simple sequential
for-loop:

for (int i = 0; i < N; ++i) {
 // loop body
}

can be represented using the RAJA kernel interface as:

using KERNEL_POLICY =
 RAJA::KernelPolicy<
 RAJA::statement::For<0, RAJA::seq_exec,
 RAJA::statement::Lambda<0>
 >
 >;

RAJA::kernel<KERNEL_POLICY>(
 RAJA::make_tuple(N_range),
 [=](int i) {
 // loop body
 }
);

Note

All RAJA::forall functionality can be done using the
RAJA::kernel interface. We maintain the RAJA::forall
interface since it is less verbose and thus more convenient
for users.

RAJA::kernel Statement Types

The list below summarizes the current collection of statement types that
can be used with RAJA::kernel and RAJA::kernel_param. More detailed
explanation along with examples of how they are used can be found in
RAJA Tutorial.

Note

	
	All of these statement types are in the namespace RAJA.

	
	RAJA::kernel_param functions similar to RAJA::kernel except that its second argument is a tuple of parameters used in a kernel
for local arrays, thread local variables, tiling information, etc.

	statement::For< ArgId, ExecPolicy, EnclosedStatements > abstracts a for-loop associated with kernel iteration space at tuple index ‘ArgId’, to be run with ‘ExecPolicy’ execution policy, and containing the ‘EnclosedStatements’ which are executed for each loop iteration.

	statement::Lambda< LambdaId > invokes the lambda expression that appears at position ‘LambdaId’ in the sequence of lambda arguments.

	statement::Collapse< ExecPolicy, ArgList<...>, EnclosedStatements > collapses multiple perfectly nested loops specified by tuple iteration space indices in ‘ArgList’, using the ‘ExecPolicy’ execution policy, and places ‘EnclosedStatements’ inside the collapsed loops which are executed for each iteration. Note that this only works for CPU execution policies (e.g., sequential, OpenMP).It may be available for CUDA in the future if such use cases arise.

	statement::CudaKernel< EnclosedStatements> launches ‘EnclosedStatements’ as a CUDA kernel; e.g., a loop nest where the iteration spaces of each loop level are associated with threads and/or thread blocks as described by the execution policies applied to them.

	statement::CudaSyncThreads provides CUDA ‘__syncthreads’ barrier. Note that a similar thread barrier for OpenMP will be added soon.

	statement::InitLocalMem< MemPolicy, ParamList<...>, EnclosedStatements > allocates memory for a RAJA::LocalArray object used in kernel. The ‘ParamList’ entries indicate which local array objects in a tuple will be initialized. The ‘EnclosedStatements’ contain the code in which the local array will be accessed; e.g., initialization operations.

	statement::Tile< ArgId, TilePolicy, ExecPolicy, EnclosedStatements > abstracts an outer tiling loop containing an inner for-loop over each tile. The ‘ArgId’ indicates which entry in the iteration space tuple to which the tiling loop applies and the ‘TilePolicy’ specifies the tiling pattern to use, including its dimension. The ‘ExecPolicy’ and ‘EnclosedStatements’ are similar to what they represent in a statement::For type.

	statement::TileTCount< ArgId, ParamId, TilePolicy, ExecPolicy, EnclosedStatements > abstracts an outer tiling loop containing an inner for-loop over each tile, where it is necessary to obtain the tile number in each tile. The ‘ArgId’ indicates which entry in the iteration space tuple to which the loop applies and the ‘ParamId’ indicates the position of the tile number in the parameter tuple. The ‘TilePolicy’ specifies the tiling pattern to use, including its dimension. The ‘ExecPolicy’ and ‘EnclosedStatements’ are similar to what they represent in a statement::For type.

	statement::tile_fixed<TileSize> partitions loop iterations into tiles of a fixed size specified by ‘TileSize’. This statement type can be used as the ‘TilePolicy’ template paramter in the Tile statements above.

	statement::ForICount< ArgId, ParamId, ExecPolicy, EnclosedStatements > abstracts an inner for-loop within an outer tiling loop where it is necessary to obtain the local iteration index in each tile. The ‘ArgId’ indicates which entry in the iteration space tuple to which the loop applies and the ‘ParamId’ indicates the position of the tile index parameter in the parameter tuple. The ‘ExecPolicy’ and ‘EnclosedStatements’ are similar to what they represent in a statement::For type.

	RAJA::statement::Reduce< ReducePolicy, Operator, ParamId, EnclosedStatements > reduces a value across threads to a single thread. The ‘ReducePolicy’ is similar to what it represents for RAJA reduction types. ‘ParamId’ specifies the position of the reduction value in the parameter tuple passed to the RAJA::kernel_param method. ‘Operator’ is the binary operator used in the reduction; typically, this will be one of the operators that can be used with RAJA scans (see RAJA Scan Operators. After the reduction is complete, the ‘EnclosedStatements’ execute on the thread that received the final reduced value.

	statement::If< Conditional > chooses which portions of a policy to run based on run-time evaluation of conditional statement; e.g., true or false, equal to some value, etc.

	statement::Hyperplane< ArgId, HpExecPolicy, ArgList<...>, ExecPolicy, EnclosedStatements > provides a hyperplane (or wavefront) iteration pattern over multiple indices. A hyperplane is a set of multi-dimensional index values: i0, i1, … such that h = i0 + i1 + … for a given h. Here, ‘ArgId’ is the position of the loop argument we will iterate on (defines the order of hyperplanes), ‘HpExecPolicy’ is the execution policy used to iterate over the iteration space specified by ArgId (often sequential), ‘ArgList’ is a list of other indices that along with ArgId define a hyperplane, and ‘ExecPolicy’ is the execution policy that applies to the loops in ArgList. Then, for each iteration, everything in the ‘EnclosedStatements’ is executed.

Examples that show how to use a variety of these statement types can be found
in Complex Loops: Transformations and Advanced RAJA Features.

Indices, Segments, and IndexSets

Loop variables and their associated iteration spaces are fundamental to
writing loop kernels in RAJA. RAJA provides some basic iteration space types
that serve as flexible building blocks that can be used to form a variety
of loop iteration patterns. These types can be used to define a particular
order for loop iterates, aggregate and partition iterates, as well as other
configurations. In this section, we introduce RAJA index and iteration space
concepts and types.

More examples of RAJA iteration space usage can be found in the
Iteration Spaces: IndexSets and Segments and Mesh Vertex Sum Example: Iteration Space Coloring sections of the tutorial.

Note

All RAJA iteration space types described here are located in the
namespace RAJA.

Indices

Just like traditional C and C++ for-loops, RAJA uses index variables to
identify loop iterates. Any lambda expression that represents all or part of
a loop body passed to a RAJA::forall or RAJA::kernel method will
take at least one loop index variable argument. RAJA iteration space types
and methods are templates that allow users to use any integral type for an
index variable. The index variable type may be explicitly specified by a user.
RAJA also provides a RAJA::Index_type type, which is used as a default
in some circumstances for convenience by allowing use of a common type
alias to typed constructs without explicitly specifying the type.
The RAJA::Index_type type is an alias to the C++ type ‘std::ptrdiff_t’,
which is appropriate for most compilers to generate useful loop-level
optimizations.

Note

Users can change the type of RAJA::Index_type by editing the RAJA
RAJA/include/RAJA/util/types.hpp header file.

Segments

A RAJA Segment represents a set of loop indices that one wants to
execute as a unit. RAJA provides Segment types for contiguous index ranges,
constant (non-unit) stride ranges, and arbitrary lists of indices.

Stride-1 Segments

A RAJA::TypedRangeSegment is the fundamental type for representing a
stride-1 (i.e., contiguous) range of indices.

[image: ../_images/RangeSegment.png]
A range segment defines a stride-1 index range [beg, end).

One can create an explicitly-typed range segment or one with the default
RAJA::Index_type index type. For example,:

// A stride-1 index range [beg, end) using type int.
RAJA::TypedRangeSegment<int> int_range(beg, end);

// A stride-1 index range [beg, end) using the RAJA::Index_type default type
RAJA::RangeSegment default_range(beg, end);

Note

When using a RAJA range segment, no loop iterations will be run when
begin is greater-than-or-equal-to end.

Strided Segments

A RAJA::TypedRangeStrideSegment defines a range with a constant stride
that is given explicitly stride, including negative stride.

[image: ../_images/RangeStrideSegment.png]
A range-stride segment defines an index range with arbitrary stride [beg, end, stride).

One can create an explicitly-typed strided range segment or one with the
default RAJA::Index_type index type. For example,:

// A stride-2 index range [beg, end, 2) using type int.
RAJA::TypedRangeStrideSegment<int> stride2_range(beg, end, 2);

// A index range with -1 stride [0, N-1, -1) using the RAJA::Index_type default type
RAJA::RangeStrideSegment neg1_range(N-1, -1, -1);

Using a range with a stride of ‘-1’ as above in a RAJA loop traversal template
will run the loop indices in reverse order. That is, using ‘neg1_range’
from above:

RAJA::forall< RAJA::seq_exec >(neg1_range, [=] (RAJA::Index_type i) {
 printf("%ld ", i);
});

will print the values:

N-1 N-2 N-3 1 0

RAJA strided ranges support both positive and negative stride values. The
following items are worth noting:

Note

When using a RAJA strided range, no loop iterations will be run
under the following conditions:

	Stride > 0 and begin > end

	Stride < 0 and begin < end

	Stride == 0

List Segments

A RAJA::TypedListSegment is used to define an arbitrary set of loop
indices, akin to an indirection array.

[image: ../_images/ListSegment.png]
A list segment defines an arbitrary collection of indices. Here, we have a list segment with 5 irregularly-spaced indices.

A list segment is created by passing an array of integral values to a list
segment constructor. For example:

// Create a vector holding some integer index values
std::vector<int> idx = {0, 2, 3, 4, 7, 8, 9, 53};

// Create list segment with these loop indices
RAJA::TypedListSegment<int> idx_list(&idx[0], static_cast<int>(idx.size()));

Similar to range segment types, RAJA provides RAJA::ListSegment, which is
a type alias to RAJA::TypedListSegment using RAJA::Index_type as the
template type parameter.

Segment Types and Iteration

It is worth noting that RAJA segment types model C++ iterable interfaces.
In particular, each segment type defines three methods:

	begin()

	end()

	size()

and two types:

	iterator (essentially a random access iterator type)

	value_type

Thus, any iterable type that defines these methods and types appropriately
can be used as a segment with RAJA traversal templates.

IndexSets

A RAJA::TypedIndexSet is a container that can hold an arbitrary collection
of segment objects of arbitrary type as illustrated in the following figure,
where we have two contiguous ranges and an irregularly-spaced list of indices.

[image: ../_images/IndexSet.png]
An index set with 2 range segments and one list segment.

We can create an index set that describes such an iteration space:

// Create an index set that can hold range and list segments with the
// default index type
RAJA::TypedIndexSet< RAJA::RangeSegment, RAJA::ListSegment > iset;

// Add two range segments and one list segment to the index set
iset.push_back(RAJA::RangeSegment(...));
iset.push_back(RAJA::ListSegment(...));
iset.push_back(RAJA::RangeSegment(...));

Now that we’ve created this index set object, we can pass it to any RAJA
loop execution template to execute the indices defined by its segments:

// Define an index set execution policy type that will iterate over
// its segments in parallel (OpenMP) and execute each segment sequentially
using ISET_EXECPOL = RAJA::ExecPolicy< RAJA::omp_parallel_segit,
 RAJA::seq_exec >;

// Run a kernel with iterates defined by the index set
RAJA::forall<ISET_EXECPOL>(iset, [=] (int i) { ... });

Note

Iterating over the indices of all segments in a RAJA index set
requires a two-level execution policy. The outer level specifies
how to iterate over the seqments. The inner level specifies how
each segment will execute. See RAJA IndexSet Execution Policies for
more information about IndexSet execution policies.

In this example, the loop iterations will execute in three chunks defined by
the two range segments and one list segment. The segments will be iterated
over in parallel using OpenMP, and each segment will execute sequentially.

Note

It is the responsibility of the user to ensure that segments are
defined properly when using RAJA index sets. For example, if the
same index appears in multiple segments, the corresponding loop
iteration will be run multiple times.

View and Layout

Matrix and tensor objects are naturally expressed in
scientific computing applications as multi-dimensional arrays. However,
for efficiency in C and C++, they are usually allocated as one-dimensional
arrays. For example, a matrix \(A\) of dimension \(N_r \times N_c\) is
typically allocated as:

double* A = new double [N_r * N_c];

Using a one-dimensional array makes it necessary to convert
two-dimensional indices (rows and columns of a matrix) to a one-dimensional
pointer offset index to access the corresponding array memory location. One
could introduce a macro such as:

#define A(r, c) A[c + N_c * r]

to access a matrix entry in row r and column c. However, this solution has
limitations; e.g., additional macro definitions are needed when adopting a
different matrix data layout or when using other matrices. To facilitate
multi-dimensional indexing and different indexing layouts, RAJA provides
RAJA::View and RAJA::Layout classes.

RAJA View

A RAJA::View object wraps a pointer and enables various indexing schemes
based on the definition of a RAJA::Layout object. We can
create a RAJA::View for a matrix with dimensions \(N_r \times N_c\)
using a RAJA View and a default RAJA two-dimensional Layout as follows:

double* A = new double [N_r * N_c];

const int DIM = 2;
RAJA::View<double, RAJA::Layout<DIM> > Aview(A, N_r, N_c);

The RAJA::View constructor takes a pointer to the matrix data and the
extent of each matrix dimension as arguments. The template parameters to
the RAJA::View type define the pointer type and the Layout type; here,
the Layout just defines the number of index dimensions. Using the resulting
view object, one may access matrix entries in a row-major fashion (the
default RAJA layout) through the View parenthesis operator:

// r - row index of a matrix
// c - column index of a matrix
// equivalent to indexing as A[c + r * N_c]
Aview(r, c) = ...;

A RAJA::View can support any number of index dimensions:

const int DIM = n+1;
RAJA::View< double, RAJA::Layout<DIM> > Aview(A, N0, ..., Nn);

By default, entries corresponding to the right-most index are contiguous
in memory; i.e., unit-stride access. Each other index is offset by the
product of the extents of the dimensions to its right. For example, the loop:

// iterate over index n and hold all other indices constant
for (int in = 0; in < Nn; ++in) {
 Aview(i0, i1, ..., in) = ...
}

accesses array entries with unit stride. The loop:

// iterate over index j and hold all other indices constant
for (int j = 0; j < Nj; ++j) {
 Aview(i0, i1, ..., j, ..., iN) = ...
}

access array entries with stride N n * N (n-1) * … * N (j+1).

RAJA Layout

RAJA::Layout objects support other indexing patterns with different
striding orders, offsets, and permutations. In addition to layouts created
using the default Layout constructor, as shown above, RAJA provides other
methods to generate layouts for different indexing patterns. We describe
these next.

Permuted Layout

The RAJA::make_permuted_layout method creates a RAJA::Layout object
with permuted index strides. That is, the indices with shortest to
longest stride are permuted. For example,:

std::array< RAJA::idx_t, 3> perm {{1, 2, 0}};
RAJA::Layout<3> layout =
 RAJA::make_permuted_layout({{5, 7, 11}}, perm);

creates a three-dimensional layout with index extents 5, 7, 11 with
indices permuted so that the first index (index 0 - extent 5) has unit
stride, the third index (index 2 - extent 11) has stride 5, and the
second index (index 1 - extent 7) has stride 55 (= 5*11).

Note

If a permuted layout is created with the identity permutation
(e.g., {0,1,2}, the layout is the same as if it were created by
calling the Layout constructor directly with no permutation.

The first argument to RAJA::make_permuted_layout is a C++ array whose
entries define the extent of each index dimension. The double braces are
required to prevent compilation errors/warnings about issues trying to
initialize a sub-object. The second argument is the striding permutation.

In the next example, we create the same permuted layout, then create
a RAJA::View with it in a way that tells the View which index has
unit stride:

const int s0 = 5; // extent of dimension 0
const int s1 = 7; // extent of dimension 1
const int s2 = 11; // extent of dimension 2

double* B = new double[s0 * s1 * s2];

std::array< RAJA::idx_t, 3> perm {{1, 2, 0}};
RAJA::Layout<3> layout =
 RAJA::make_permuted_layout({{s0, s1, s2}}, perm);

// The Layout template parameters are dimension, 'linear index' type,
// and the index with unit stride
RAJA::View<double, RAJA::Layout<3, RAJA::Index_type, 0> > Bview(B, layout);

// Equivalent to indexing as: B[i + j * s0 * s2 + k * s0]
Bview(i, j, k) = ...;

Note

Telling a view which index has unit stride makes the
multi-dimensional index calculation more efficient by avoiding
multiplication by ‘1’ when it is unnecessary. This must be done
so that the layout permutation and unit-stride index specification
are the same to prevent incorrect indexing.

Offset Layout

The RAJA::make_offset_layout method creates a RAJA::Layout object
with offsets applied to the indices. For example,:

double* C = new double[11];

RAJA::Layout<1> layout = RAJA::make_offset_layout<1>({{-5}}, {{5}});

RAJA::View<double, RAJA::Layout<1> > Cview(C, layout);

creates a one-dimensional view with a layout that allows one to index into
it using indices in \([-5, 5]\). In other words, one can use the loop:

for (int i = -5; i < 6; ++i) {
 CView(i) = ...;
}

to initialize the values of the array. Each ‘i’ loop index value is converted
to array offset access index by subtracting the lower offset to it; i.e., in
the loop, each ‘i’ value has ‘-5’ subtracted from it to properly access the
array entry.

The arguments to the RAJA::make_offset_layout method are C++ arrays that
hold the start and end values of the indices. RAJA offset layouts support
any number of dimensions; for example:

RAJA::Layout<2> layout = RAJA::make_offset_layout<2>({{-1, -5}}, {{2, 5}});

defines a two-dimensional layout that enables one to index into a view using
indices \([-1, 2]\) in the first dimension and indices \([-5, 5]\) in
the second dimension. As we remarked earlier, double braces are needed to
prevent compilation errors/warnings about issues trying to initialize a
sub-object.

Permuted Offset Layout

The RAJA::make_permuted_offset_layout method creates a RAJA::Layout
object with permutations and offsets applied to the indices. For example,:

std::array< RAJA::idx_t, 2> perm {{1, 0}};
RAJA::Layout<2> layout =
 RAJA::make_permuted_offset_layout<2>({{-1, -5}}, {{2, 5}}, perm);

Here, the two-dimensional index space is \([-1, 2] \times [-5, 5]\), the
same as above. However, the index strides are permuted so that the first
index (index 0) has unit stride and the second index (index 1) has stride 4,
since the first index dimension has length 4.

Complete examples illustrating RAJA::Layouts and RAJA::Views may
be found in the Stencil Computations (View Offsets) and Batched Matrix-Multiply (Permuted Layouts)
tutorial sections.

RAJA Index Mapping

RAJA::Layout objects can also be used to map multi-dimensional indices
to linear indices (i.e., pointer offsets) and vice versa. This
section describes basic Layout methods that are useful for converting between
such indices. Here, we create a three-dimensional layout
with dimension extents 5, 7, and 11 and illustrate mapping between a
three-dimensional index space to a one-dimensional linear space:

// Create a 5 x 7 x 11 three-dimensional layout object
RAJA::Layout<3> layout(5, 7, 11);

// Map from 3-D index (2, 3, 1) to the linear index
// Note that there is no striding permutation, so rightmost is stride-1
int lin = layout(2, 3, 1); // lin = 188 (= 1 + 3 * 11 + 2 * 11 * 7)

// Map from linear index to 3-D index
int i, j, k;
layout.toIndices(lin, i, j, k); // i,j,k = {2, 3, 1}

RAJA::Layout also supports projections, where one or more dimension
extent is zero. In this case, the linear index space is invariant for
those multi-dimensional index entries; thus, the ‘toIndicies(…)’ method
will always return zero for each dimension with zero extent. For example:

// Create a layout with second dimension extent zero
RAJA::Layout<3> layout(3, 0, 5);

// The second (j) index is projected out
int lin1 = layout(0, 10, 0); // lin1 = 0
int lin2 = layout(0, 5, 1); // lin2 = 1

// The inverse mapping always produces a 0 for j
int i,j,k;
layout.toIndices(lin2, i, j, k); // i,j,k = {0, 0, 1}

Reduction Operations

RAJA does not provide separate loop execution methods for loops containing
reduction operations like some other C++ loop programming abstraction models do.
Instead, RAJA provides reduction types that allow users to perform reduction
operations in RAJA::forall and RAJA::kernel methods in a portable,
thread-safe manner. Users may use as many reduction objects in a loop kernel
as they need. Available RAJA reduction types are described in this section.

A detailed example of RAJA reduction usage can be found in
Reductions.

Note

All RAJA reduction types are located in the namespace RAJA.

Also

Note

	Each RAJA reduction type is templated on a reduction policy
and a reduction value type for the reduction variable.

	Each RAJA reduction type accepts an initial reduction value at
construction.

	Each RAJA reduction type has a ‘get’ method to access its reduced
value after kernel execution completes.

Reduction Types

RAJA supports five common reduction types:

	ReduceSum< reduce_policy, data_type > - Sum of values.

	ReduceMin< reduce_policy, data_type > - Min value.

	ReduceMax< reduce_policy, data_type > - Max value.

	ReduceMinLoc< reduce_policy, data_type > - Min value and a loop index where the minimum was found.

	ReduceMaxLoc< reduce_policy, data_type > - Max value and a loop index where the maximum was found.

Note

	When RAJA::ReduceMinLoc and RAJA::ReduceMaxLoc are used
in a sequential execution context, the loop index of the
min/max is the first index where the min/max occurs.

	When the ‘loc’ reductions are used in a parallel execution context,
the loop index given for the reduction value may be any index
where the min or max occurs.

Here is a simple RAJA reduction example that shows how to use a sum reduction
type and a min-loc reduction type:

const int N = 1000;

//
// Initialize array of length N with all ones. Then, set some other
// values to make the example mildly interesting...
//
int vec[N] = {1};
vec[100] = -10; vec[500] = -10;

// Create sum and min-loc reduction objects with initial values
RAJA::ReduceSum< RAJA::omp_reduce, int > vsum(0);
RAJA::ReduceMinLoc< RAJA::omp_reduce, int > vminloc(100, -1);

RAJA::forall<RAJA::omp_parallel_for_exec>(RAJA::RangeSegment(0, N),
 [=](RAJA::Index_type i) {

 vsum += vec[i];
 vminloc.minloc(vec[i], i);

});

int my_vsum = static_cast<int>(vsum.get());

int my_vmin = static_cast<int>(vminloc.get());
int my_vminloc = static_cast<int>(vminloc.getLoc());

The results of these operations will yield the following values:

	my_vsum == 978 (= 998 - 10 - 10)

	my_vmin == -10

	my_vminloc == 100 or 500

Note that the location index for the minimum array value can be one of two
values depending on the order of the reduction finalization since the loop
is run in parallel.

Reduction Policies

For more information about available RAJA reduction policies and guidance
on which to use with RAJA execution policies, please see
Reduction Policies.

Atomics

RAJA provides portable atomic operations that can be used to update values
at arbitrary memory locations while avoiding data races. They are described
in this section.

A complete working example code that shows RAJA atomic usage can be found in
Computing a Histogram with Atomic Operations.

Note

	All RAJA atomic operations are in the namespace RAJA::atomic.

Atomic Operations

RAJA atomic support includes a variety of the most common atomic operations.

Note

	Each RAJA atomic operation is templated on an atomic policy.

	Each method described in the table below returns the value of
the potentially modified argument (i.e., *acc) immediately before
the atomic operation is applied, in case it is needed by a user.

Arithmetic

	atomicAdd< atomic_policy >(T* acc, T value) - Add value to *acc.

	atomicSub< atomic_policy >(T* acc, T value) - Subtract value from *acc.

Min/max

	atomicMin< atomic_policy >(T* acc, T value) - Set *acc to min of *acc and value.

	atomicMax< atomic_policy >(T* acc, T value) - Set *acc to max of *acc and value.

Increment/decrement

	atomicInc< atomic_policy >(T* acc) - Add 1 to *acc.

	atomicDec< atomic_policy >(T* acc) - Subtract 1 from *acc.

	atomicInc< atomic_policy >(T* acc, T compare) - Add 1 to *acc if *acc < compare, else set *acc to zero.

	atomicDec< atomic_policy >(T* acc, T compare) - Subtract 1 from *acc if *acc != 0 and *acc <= compare, else set *acc to compare.

Bitwise operations

	atomicAnd< atomic_policy >(T* acc, T value) - Bitwise ‘and’ equivalent: Set *acc to *acc & value. Only works with integral data types.

	atomicOr< atomic_policy >(T* acc, T value) - Bitwise ‘or’ equivalent: Set *acc to *acc | value. Only works with integral data types.

	atomicXor< atomic_policy >(T* acc, T value) - Bitwise ‘xor’ equivalent: Set *acc to *acc ^ value. Only works with integral data types.

Replace

	atomicExchange< atomic_policy >(T* acc, T value) - Replace *acc with value.

	atomicCAS< atomic_policy >(T* acc, Tcompare, T value) - Compare and swap: Replace *acc with value if and only if *acc is equal to compare.

Here is a simple example that shows how to use an atomic operation to compute
an integral sum on a CUDA GPU device:

//
// Use CUDA UM to share data pointer with host and device code.
// RAJA mechanics work the same way if device data allocation
// and host-device copies are done with traditional cudaMalloc
// and cudaMemcpy.
//
int* sum = nullptr;
cudaMallocManaged((void **)&sum, sizeof(int));
cudaDeviceSynchronize();
*sum = 0;

RAJA::forall< RAJA::cuda_exec >(RAJA::RangeSegment(0, N),
 [=] RAJA_DEVICE (RAJA::Index_type i) {

 RAJA::atomic::atomicAdd< RAJA::cuda_atomic >(sum, 1);

});

After this kernel executes, ‘*sum’ will be equal to ‘N’.

AtomicRef

RAJA also provides an atomic interface similar to the C++20 ‘std::atomic_ref’,
but which works for arbitrary memory locations. The class
RAJA::atomic::AtomicRef provides an object-oriented interface to the
atomic methods described above. For example, after the following operations:

double val = 2.0;
RAJA::atomic::AtomicRef<double, RAJA::omp_atomic > sum(&val);

sum++;
++sum;
sum += 1.0;

the value of ‘val’ will be 5.

Atomic Policies

For more information about available RAJA atomic policies, please see
Atomic Policies.

Scans

RAJA provides portable parallel scan operations, which are basic
parallel algorithm building blocks. They are described in this section.

A few important notes:

Note

	All RAJA scan operations are in the namespace RAJA.

	Each RAJA scan operation is a template on an execution policy
parameter. The same policy types used for RAJA::forall methods
may be used for RAJA scans.

	RAJA scan operations accept an optional operator argument so
users can perform different types of scan operations. If
no operator is given, the default is a ‘plus’ operation and
the result is a prefix-sum.

Also:

Note

For scans using the CUDA back-end, RAJA uses the implementations
provided by the NVIDIA cub library, which is available in the
RAJA source repository as a Git submodule. The CMake variable
CUB_DIR will be automatically set to the location of the cub
library when CUDA is enabled; to use a different version of the
cub library, install it and set the CUB_DIR variable to the
desired location when running CMake.

Please see the Parallel Scan Operations tutorial section for usage examples of RAJA
scan operations.

Scan Operations

In general, a scan operation takes a sequence of numbers ‘x’ and a binary
associative operator ‘op’ as input and produces another sequence of
numbers ‘y’ as output. Each element of the output sequence is formed by
applying the operator to a subset of the input. Scans come in
two flavors: inclusive and exclusive.

An inclusive scan takes the input sequence

x = { x0, x1, x2, … }

and calculates the output sequence:

y = { y0, y1, y2, … }

using the recursive definition

y0= x0

yi= yi-1op xi, for each i > 0

An exclusive scan is similar, but the output of an exclusive scan is
different from the output of an inclusive scan in two ways. First, the first
element of the output is the identity of the operator used. Second, the
rest of the output sequence is the same as inclusive scan, but shifted one
position to the right; i.e.,

y0= opidentity

yi= yi-1 op xi-1, for each i > 0

If you would like more information about scan operations, a good overview of
what they are and why they are useful can be found in
Blelloch Scan Lecture Notes [https://www.cs.cmu.edu/~blelloch/papers/Ble93.pdf]. A nice presentation that describes how parallel scans are implemented is Va Tech Scan Lecture [http://people.cs.vt.edu/yongcao/teaching/cs5234/spring2013/slides/Lecture10.pdf]

RAJA Inclusive Scans

RAJA inclusive scan operations look like the following:

	RAJA::inclusive_scan< exec_policy >(in, in + N, out)

	RAJA::inclusive_scan< exec_policy >(in, in + N, out, operator)

Here, ‘in’ and ‘out’ are pointers to arrays of some numeric scalar type whose
elements are the input and output sequences of the scan, respectively. The
scalar type must be the same for both arrays. The first scan operation above
will be a prefix-sum since there is no operator argument given; i.e., the
output array will contain partial sums of the input array. The second scan
will apply the operator that is passed.

RAJA also provides in-place scans:

	RAJA::inclusive_scan_inplace< exec_policy >(in, in + N)

	RAJA::inclusive_scan_inplace< exec_policy >(in, in + N, <operator>)

An in-place scan generates the same output sequence as a non-inplace scan.
However, an in-place scan does not take separate input and output arrays and
the result of the scan operation will appear in-place in the input array.

RAJA Exclusive Scans

Using RAJA exclusive scans is essentially the same as for inclusive scans:

	RAJA::exclusive_scan< exec_policy >(in, in + N, out)

	RAJA::exclusive_scan< exec_policy >(in, in + N, out, operator)

	RAJA::exclusive_scan_inplace< exec_policy >(in, in + N)

	RAJA::exclusive_scan_inplace< exec_policy >(in, in + N, <operator>)

RAJA Scan Operators

RAJA provides a variety of operators that can be used to perform different
types of scans, such as:

	RAJA::operators::plus<T>

	RAJA::operators::minus<T>

	RAJA::operators::multiplies<T>

	RAJA::operators::divides<T>

	RAJA::operators::minimum<T>

	RAJA::operators::maximum<T>

Note

	All RAJA scan operators are in the namespace RAJA::operators.

Scan Policies

For information about RAJA execution policies to use with scan operations,
please see Policies.

Local Array

This section introduces RAJA local arrays. A RAJA::LocalArray is a
multi-dimensional array object whose memory is allocated when a RAJA kernel
is executed and only lives within the scope of the kernel execution. To
motivate the concept and usage, consider a simple C++ example
in which we construct and use two arrays in nested loops:

for(int k = 0; k < 7; ++k) { //k loop

 int a_array[7][5];
 int b_array[5];

 for(int j = 0; j < 5; ++j) { //j loop
 a_array[k][j] = 5*k + j;
 b_array[j] = 7*j + k;
 }

 for(int j = 0; j < 5; ++j) { //j loop
 printf("%d %d \n",a_array[k][j], b_array[j]);
 }

}

Here, two stack-allocated arrays are defined inside the outer ‘k’ loop and
used in both inner ‘j’ loops. This loop pattern may be also be expressed
using RAJA local arrays in a RAJA::kernel_param kernel. We show a
RAJA variant below, which matches the implementation above, and then discuss
its constituent parts:

//
// Define two local arrays
//

using RAJA_a_array = RAJA::LocalArray<int, RAJA::Perm<0, 1>, RAJA::SizeList<5,7> >;
RAJA_a_array kernel_a_array;

using RAJA_b_array = RAJA::LocalArray<int, RAJA::Perm<0>, RAJA::SizeList<5> >;
RAJA_b_array kernel_b_array;

//
// Define the kernel execution policy
//

using POL = RAJA::KernelPolicy<
 RAJA::statement::For<1, RAJA::loop_exec,
 RAJA::statement::InitLocalMem<RAJA::cpu_tile_mem, RAJA::ParamList<0, 1>,
 RAJA::statement::For<0, RAJA::loop_exec,
 RAJA::statement::Lambda<0>
 >,
 RAJA::statement::For<0, RAJA::loop_exec,
 RAJA::statement::Lambda<1>
 >
 >
 >
 >;

//
// Define the kernel
//

RAJA::kernel_param<POL> (RAJA::make_tuple(RAJA::RangeSegment(0,5),
 RAJA::RangeSegment(0,7)),
 RAJA::make_tuple(kernel_a_array, kernel_b_array),

 [=] (int j, int k, RAJA_a_array& kernel_a_array, RAJA_b_array& kernel_b_array) {
 a_array(k, j) = 5*k + j;
 b_array(j) = 5*k + j;
 },

 [=] (int j, int k, RAJA_a_array& a_array, RAJA_b_array& b_array) {
 printf("%d %d \n", kernel_a_array(k, j), kernel_b_array(j));
 }

);

The RAJA version defines two RAJA::LocalArray types, one
two-dimensional and one one-dimensional and creates an instance of each type.
The template arguments for the RAJA::LocalArray types are:

	Array data type

	Index permutation (see View and Layout for more on layouts and permutations)

	Array dimensions

Note

RAJA::LocalArray types support arbitrary dimensions and sizes.

The kernel policy is a two-level nested loop policy (see
loop_elements-kernel-label` for more information) with a statement type
RAJA::statement::InitLocalMem inserted between the nested for-loops which
allocates the memory for the local arrays when the kernel executes.
The InitLocalMem statement type uses a ‘CPU tile’ memory type, for the
two entries ‘0’ and ‘1’ in the kernel parameter tuple (second argument to
RAJA::kernel_param). Then, the inner initialization loop and inner print
loops are run with the respective lambda bodies defined in the kernel.

Memory Policies

RAJA::LocalArray supports CPU stack-allocated memory and CUDA GPU shared
memory and thread private memory. See Local Array Memory Policies for a
discussion of available memory policies.

Loop Tiling

In this section, we discuss RAJA statements that can be used to tile nested
for-loops. Typical loop tiling involves partitioning an iteration space into
a collection of “tiles” and then iterating over tiles in outer loops and
entries within each tile in inner loops. Many scientific computing algorithms
can benefit from loop tiling due to more efficient cache usage and other
considerations.

For example, an operation performed using a for-loop with a range of [0, 10):

for (int i=0; i<10; ++i) {
 // loop body using index 'i'
}

May be expressed as a loop nest that iterates over five tiles of size two:

int numTiles = 5;
int tileDim = 2;
for (int t=0; t<numTiles; ++t) {
 for (int j=0; j<tileDim; ++j) {
 int i = j + tileDim*t; // Calculate global index 'i'
 // loop body using index 'i'
 }
}

Next, we show how this tiled loop can be represented using RAJA. Then, we
present variations on it that illustrate the usage of different RAJA kernel
statement types.

using KERNEL_EXEC_POL =
 RAJA::KernelPolicy<
 RAJA::statement::Tile<0, RAJA::statement::tile_fixed<2>, RAJA::seq_exec,
 RAJA::statement::For<0, RAJA::seq_exec,
 RAJA::statement::Lambda<0>
 >
 >
 >;

RAJA::kernel<KERNEL_EXEC_POL>(RAJA::make_tuple(RAJA::RangeSegment(0,10)),
 [=] (int i) {
 // loop body using index 'i'
});

In RAJA, the simplest way to tile an iteration space is to use RAJA
statement::Tile and statement::For statement types. A
statement::Tile type is similar to a statement::For type, but takes
a tile size as the second template argument. The Tile statement generates
the outer loop over tiles and the For statement iterates over each tile.
Nested together, as in the example, these statements will pass the global
index ‘i’ to the loop body in the lambda expression as in the non-tiled
version above.

Note

When using statement::Tile and statement::For types together
to define a tiled loop structure, the integer passed as the first
template argument to each statement type must be the same. This
indicates that they both apply to the same item in the iteration
space tuple passed to the RAJA::kernel methods.

RAJA also provides alternative Tile and For statements that provide the tile
number and local tile index, if needed inside the kernel body, as shown below:

using KERNEL_EXEC_POL2 =
 RAJA::KernelPolicy<
 RAJA::statement::TileTCount<0, RAJA::statement::Param<0>,
 RAJA::statement::tile_fixed<2>, RAJA::seq_exec,
 RAJA::statement::ForICount<0, RAJA::statement::Param<1>,
 RAJA::seq_exec,
 RAJA::statement::Lambda<0>
 >
 >
 >;

RAJA::kernel_param<KERNEL_EXEC_POL2>(RAJA::make_tuple(RAJA::RangeSegment(0,10)),
 RAJA::make_tuple((int)0, (int)0),
 [=](int i, int t, int j) {

 // i - global index
 // t - tile number
 // j - index within tile
 // Then, i = j + 2*t (2 is tile size)

 });

The statement::TileTCount type allows the tile number to be accessed as a
parameter and the statement::ForICount type allows the local tile loop
index to be accessed. These values are specified in the tuple, which is the
second argument passed to the RAJA::kernel_param method above. The
statement::Param<#> type appearing as the second template parameter for
each statement type indicates which parameter tuple entry the tile number
or local tile loop index is passed to the lambda, and in what order. Here,
the tile number is the second lambda argument (tuple parameter ‘0’) and the
local tile loop index is the third lambda argument (tuple parameter ‘1’).

Note

The global loop indices always appear as the first lambda expression
arguments. Then, the parameter tuples, identified by the integers
in the Param statement types given for the loop statement
types follow.

Application Considerations

Warning

Comming soon!! Stay tuned.

RAJA Tutorial

This RAJA tutorial introduces RAJA concepts and capabilities via a
sequence of examples of increasing complexity. Complete working codes for
the examples are located in the RAJA``examples directory.

To understand the discussion and code examples, a working knowledge of C++
templates and lambda expressions is required. So, before we begin, we provide
a bit of background discussion of basic aspects of C++ lambda expressions,
which are essential to using RAJA successfully.

To understand the GPU examples (e.g., CUDA), It is also important to know the
difference between CPU (host) and GPU (device) memory allocations and how
transfers between those memory spaces work. For a detailed discussion, see
Device Memory [http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#device-memory].

RAJA does not provide a memory model by design. Thus, users are responsible for
ensuring that data is properly allocated and initialized
on a GPU device when running GPU code. This can be done using explicit
host and device allocation and copying between host and device memory spaces
or via CUDA unified memory (UM), if available. RAJA developers also support a
library called CHAI [https://github.com/LLNL/CHAI] which complements
RAJA by providing a simple alternative to manual CUDA calls or UM. For more
information, see Plugins.

A Little C++ Lambda Background

RAJA is used most easily and effectively by employing C++ lambda expressions
for the bodies of loop kernels. Alternatively, C++ functors can be used, but
we don’t recommend them as they require more source code and have a potentially
significant negative impact on source code readability.

Elements of C++ Lambda Expressions

Here, we provide a brief description of the basic elements of C++ lambda
expressions. A more technical and detailed discussion is available here:
Lambda Functions in C++11 - the Definitive Guide [https://www.cprogramming.com/c++11/c++11-lambda-closures.html]

Lambda expressions were introduced in C++ 11 to provide a lexical-scoped
name binding; that is, a closure that stores a function with a data
environment. In particular, a lambda expression can capture variables from an
enclosing scope for use within the local scope of the function expression.

A C++ lambda expression has the following form:

[capture list] (parameter list) {function body}

The capture list specifies how variables outside the lambda scope are pulled
into the lambda data environment. The parameter list defines arguments
passed to the lambda function body – for the most part, lambda arguments
are just like arguments to a standard C++ method. Variables in the capture list
are initialized when the lambda expression is created, while those in the
parameter list are set when the lambda expression is called. The body of a
lambda expression is similar to the body of an ordinary C++ method.
RAJA templates, such as RAJA::forall and RAJA::kernel pass arguments
to lambdas based on usage and context; typically, these are loop indices.

A C++ lambda expression can capture variables in the capture list by value
or by reference. This is similar to how arguments to C++ methods are passed;
e.g., pass-by-reference or pass-by-value. However, there are some subtle
differences between lambda variable capture rules and those for ordinary
methods. Variables mentioned in the capture list with no extra symbols are
captured by value. Capture-by-reference is accomplished by using the
reference symbol ‘&’ before the variable name; for example:

int x;
int y = 100;
[&x, &y](){ x = y; };

generates a lambda expression that captures both ‘x’ and ‘y’ by reference
and assigns the value of ‘y’ to ‘x’ when called. The same outcome would be
achieved by writing:

[&](){ x = y; }; // capture all lambda arguments by reference...

or:

[=, &x](){ x = y; }; // capture 'x' by reference and 'y' by value...

Note that the following two attempts will generate compilation errors:

[=](){ x = y; }; // capture all lambda arguments by value...
[x, &y](){ x = y; }; // capture 'x' by value and 'y' by reference...

Specifically, it is illegal to assign a value to a variable ‘x’ that is
captured by value since it is read-only.

Notes About C++ Lambdas

There are several issues to note about C++ lambda expressions; in particular,
with respect to RAJA usage. We describe them here.

	Prefer by-value lambda capture.

We recommended capture by-value for all lambda loop bodies passed to
RAJA execution methods. To execute a RAJA loop on a non-CPU device, such
as a GPU, all variables accessed in the loop body must be passed into the
GPU device data environment. Using capture by-value for all RAJA-based
lambda usage will allow your code to be portable for either CPU or GPU
execution. In addition, the read-only nature of variables captured
by-value can help avoid incorrect CPU code since the compiler will report
incorrect usage.

	Must use ‘device’ annotation for CUDA device execution.

Any lambda passed to a CUDA execution context (or function called from a
CUDA device kernel, for that matter) must be decorated with
the __device__ annotation; for example:

RAJA::forall<RAJA::cuda_exec>(range, [=] __device__ (int i) { ... });

Without this, the code will not compile and generate compiler errors
indicating that a ‘host’ lambda cannot be called from ‘device’ code.

RAJA provides the macro RAJA_DEVICE that can be used to help switch
between host-only or device-only CUDA compilation.

	Avoid ‘host-device’ annotation on a lambda that will run in host code.

RAJA provides the macro RAJA_HOST_DEVICE to support the dual
CUDA annotation __ host__ __device__. This makes a lambda or function
callable from CPU or CUDA device code. However, when CPU performance is
important, the host-device annotation should not be used on a lambda that
is used in a host (i.e., CPU) execution context. Unfortunately, a loop
kernel containing a lambda annotated in this way will run noticeably
slower on a CPU than the same lambda with no annotation.

	Cannot use ‘break’ and ‘continue’ statements in a lambda.

In this regard, a lambda expression is similar to a function. So, if you
have loops in your code with these statements, they should be rewritten.

	Global variables are not captured in a lambda.

This fact is due to the C++ standard. If you need (read-only) access to a
global variable inside a lambda expression, one solution is to make a local
reference to it; for example:

double& ref_to_global_val = global_val;

RAJA::forall<RAJA::cuda_exec>(range, [=] __device__ (int i) {
 // use ref_to_global_val
});

	Local stack arrays are not captured by CUDA device lambdas.

Although this is inconsistent with the C++ standard, attempting to access
elements in a local stack array in a CUDA device lambda will generate a
compilation error. One solution to this problem is to wrap the array in a
struct; for example:

struct array_wrapper {
 int[4] array;
} bounds;

bounds.array = { 0, 1, 8, 9 };

RAJA::forall<RAJA::cuda_exec>(range, [=] __device__ (int i) {
 // access entries of bounds.array
});

RAJA Examples

The remainder of this tutorial illustrates how to use RAJA features using
various working code examples that are located in the RAJA/examples
directory. Additional information about the RAJA features
used can be found in RAJA Features.

The examples demonstrate CPU execution (sequential, SIMD, OpenMP
multi-threading) and CUDA GPU execution. Examples that show how to use
RAJA with other parallel programming model back-ends that are in
development will appear when we feel RAJA support for them is sufficiently
complete and robust. For adventurous users who wish to try experimental
features, usage is similar to what is shown in the examples here.

All RAJA programming model support features are enabled via CMake options,
which are described in Build Configuration Options.

For the purposes of discussion of each example, we assume that any and all
data used has been properly allocated and initialized. This is done in the
example code files, but is not discussed further here.

Simple Loops and Basic RAJA Features

The examples in this section illustrate how to use RAJA::forall methods
to execute simple loop kernels; i.e., non-nested loops. It also describes
iteration spaces, reductions, atomic operations, and scans.

	Vector Addition (Basic Loop Execution)

	Vector Dot Product (Sum Reduction)

	Iteration Spaces: IndexSets and Segments

	Mesh Vertex Sum Example: Iteration Space Coloring

	Reductions

	Computing a Histogram with Atomic Operations

	Parallel Scan Operations

Complex Loops: Transformations and Advanced RAJA Features

The examples in this section illustrate how to use RAJA::kernel methods
to execute complex loop kernels, such as nested loops. It also describes
how to construct kernel execution policies, use different view types and
tiling mechanisms to transform loop patterns.

	Matrix Multiplication (Nested Loops)

	Nested Loop Interchange

	Batched Matrix-Multiply (Permuted Layouts)

	Stencil Computations (View Offsets)

	Tiled Matrix Transpose

	Matrix Transpose with Local Array

Vector Addition (Basic Loop Execution)

Key RAJA features shown in this example:

	RAJA::forall loop execution template

	RAJA::RangeSegment iteration space construct

	RAJA execution policies

In the example, we add two vectors ‘a’ and ‘b’ of length N and
store the result in vector ‘c’. A simple C-style loop that does this is:

 for (int i = 0; i < N; ++i) {
 c[i] = a[i] + b[i];
 }

RAJA Variants

The RAJA variants of the vector addition operation illustrate how the
same kernel can be run with a variety of different programming model
back-ends by simply swapping out the execution policy. This can be done
by defining type aliases in a header file so that execution policy types
can be easily switched, and the code can be compiled to run differently,
without changing the loop kernel code. In the example code, we
make all execution policy types explicit for clarity.

For the RAJA variants, we replace the C-style for-loop with a call to the
RAJA::forall loop execution template method.
The method takes an iteration space and the vector addition loop body as
a C++ lambda expression. We pass a RAJA::RangeSegment object, which
describes a contiguous sequence of integral values [0, N) for the iteration
space (for more information about RAJA loop indexing concepts,
see Indices, Segments, and IndexSets). The loop execution template method requires an
execution policy template type that specifies how the loop is to run
(for more information about RAJA execution policies, see Policies).

For the RAJA sequential variant, we use the RAJA::seq_exec execution
policy type:

 RAJA::forall<RAJA::seq_exec>(RAJA::RangeSegment(0, N), [=] (int i) {
 c[i] = a[i] + b[i];
 });

The RAJA sequential execution policy enforces strictly sequential execution;
in particular, no SIMD vectorization instructions or other substantial
optimizations will be generated by the compiler. To attempt to force the
compiler to generate SIMD vector instructions, we would use the RAJA SIMD
execution policy:

RAJA::simd_exec

Alternatively, RAJA provides a loop execution policy:

RAJA::loop_exec

This policy allows the compiler to generate optimizations, such as SIMD if
compiler heuristics suggest that it is safe to do so and potentially
beneficial for performance, but the optimizations are not forced.

To run the kernel with OpenMP multi-threaded parallelism on a CPU, we use the
RAJA::omp_parallel_for_exec execution policy:

 RAJA::forall<RAJA::omp_parallel_for_exec>(RAJA::RangeSegment(0, N), [=] (int i) {
 c[i] = a[i] + b[i];
 });

This will distribute the loop iterations across CPU threads and run the
loop over threads in parallel.

Finally, to run the kernel on a CUDA GPU device, we use the RAJA::cuda_exec
policy:

 RAJA::forall<RAJA::cuda_exec<CUDA_BLOCK_SIZE>>(RAJA::RangeSegment(0, N),
 [=] RAJA_DEVICE (int i) {
 c[i] = a[i] + b[i];
 });

Note that the CUDA execution policy type accepts a template argument
CUDA_BLOCK_SIZE, which specifies that each CUDA thread block launched
to execute the kernel will have the given number threads in the block.
The thread block size parameter is optional; if not provided, the RAJA policy
provides a default of 256, which is a reasonable choice for most cases.

Since the lambda defining the loop body will be passed to a device kernel,
it must be decorated with the __device__ attribute when it is defined.
This can be done directly or by using the RAJA_DEVICE macro.

The file RAJA/examples/tut_add-vectors.cpp contains the complete
working example code.

Vector Dot Product (Sum Reduction)

Key RAJA features shown in this example:

	RAJA::forall loop execution template

	RAJA::RangeSegment iteration space construct

	RAJA execution policies

	RAJA::ReduceSum sum reduction template

	RAJA reduction policies

In the example, we compute a vector dot product, ‘dot = (a,b)’, where
‘a’ and ‘b’ are two vectors length N and ‘dot’ is a scalar. Typical
C-style code to compute the dot product and print its value afterward is:

 double dot = 0.0;

 for (int i = 0; i < N; ++i) {
 dot += a[i] * b[i];
 }

 std::cout << "\t (a, b) = " << dot << std::endl;

Note that this operation performs a reduction, a computational pattern that
produces a single result from a set of values. Reductions present a variety
of issues that must be addressed to operate properly in parallel.

RAJA Variants

Different programming models support parallel reduction operations differently.
Some models, such as CUDA, do not provide support for reductions at all and
so such operations must be explicitly coded by users. It can be challenging
to generate a correct and high performance implementation. RAJA provides
portable reduction types that make it easy to perform reduction operations
in loop kernels. The RAJA variants of the dot product computation show how
to use the RAJA::ReduceSum sum reduction template type. RAJA provides
other reduction types and also allows multiple reduction operations to be
performed in a single kernel along with other computation. Please see
Reductions for an example that does this.

Each RAJA reduction type takes a reduce policy template argument, which
must be compatible with the execution policy applied to the kernel
in which the reduction is used. Here is the RAJA sequential variant of the dot
product computation:

 RAJA::ReduceSum<RAJA::seq_reduce, double> seqdot(0.0);

 RAJA::forall<RAJA::seq_exec>(RAJA::RangeSegment(0, N), [=] (int i) {
 seqdot += a[i] * b[i];
 });

 dot = seqdot.get();
 std::cout << "\t (a, b) = " << dot << std::endl;

The sum reduction object is defined by specifying the reduction
policy RAJA::seq_reduce, which matches the loop execution policy, and
a reduction value type (i.e., ‘double’). An initial value of zero for the
sum is passed to the reduction object constructor. After the kernel executes,
we use the ‘get’ method to retrieve the reduced value.

The OpenMP multi-threaded variant of the loop is implemented similarly:

 RAJA::ReduceSum<RAJA::omp_reduce, double> ompdot(0.0);

 RAJA::forall<RAJA::omp_parallel_for_exec>(RAJA::RangeSegment(0, N), [=] (int i) {
 ompdot += a[i] * b[i];
 });

 dot = ompdot.get();
 std::cout << "\t (a, b) = " << dot << std::endl;

Here, we use the RAJA::omp_reduce reduce policy to match the OpenMP
loop execution policy.

Finally, the RAJA CUDA variant is achieved by using appropriate loop
execution and reduction policies:

 RAJA::ReduceSum<RAJA::cuda_reduce, double> cudot(0.0);

 RAJA::forall<RAJA::cuda_exec<CUDA_BLOCK_SIZE>>(RAJA::RangeSegment(0, N),
 [=] RAJA_DEVICE (int i) {
 cudot += a[i] * b[i];
 });

 dot = cudot.get();
 std::cout << "\t (a, b) = " << dot << std::endl;

Here, the CUDA reduce policy RAJA::cuda_reduce matches the CUDA
loop execution policy. Note that the CUDA thread block size is not
specified in the reduce policy as it will use the same value as the
loop execution policy.

It is worth noting how similar the code looks for each of these variants.
The loop body is identical for each and only the loop execution policy
and reduce policy types change.

The file RAJA/examples/tut_dot-product.cpp contains the complete
working example code.

Iteration Spaces: IndexSets and Segments

Key RAJA features shown in this example:

	RAJA::forall loop execution template

	RAJA::RangeSegment (i.e., RAJA::TypedRangeSegment) iteration space construct

	RAJA::TypedListSegment iteration space construct

	RAJA::IndexSet iteration construct and associated execution policies

The example uses a simple daxpy kernel and its usage of RAJA is similar to
previous simple loop examples. The example
focuses on how to use RAJA index sets and iteration space segments, such
as index ranges and lists of indices. These features are important for
applications and algorithms that use indirection arrays for irregular array
accesses. Combining different segment types, such as ranges and lists in an
index set allows a user to launch different iteration patterns in a single loop
execution construct (i.e., one kernel). This is something that is not
supported by other programming models and abstractions and is unique to RAJA.
Applying these concepts judiciously can increase performance by allowing
compilers to optimize for specific segment types (e.g., SIMD for range
segments) while providing the flexibility of indirection arrays for general
indexing patterns.

Note

For the following examples, it is useful to remember that all
RAJA segment types are templates, where the type of the index
value is the template argument. So for example, the basic RAJA
range segment type is RAJA::TypedRangeSegment<T>. The type
RAJA::RangeSegment used here (for convenience) is a type alias
for RAJA::TypedRangeSegment<RAJA::Index_type>, where the
template parameter is a default index type that RAJA defines.

For a summary discussion of RAJA segment and index set concepts, please
see Indices, Segments, and IndexSets.

RAJA Segments

In previous examples, we have seen how to define a contiguous range of loop
indices [0, N) with a RAJA::RangeSegment object and use it in a RAJA
loop execution template to run a loop kernel over the range. For example:

 RAJA::forall<RAJA::seq_exec>(RAJA::RangeSegment(0, N), [=] (IdxType i) {
 a[i] += b[i] * c;
 });

We can accomplish the same result by enumerating the indices in a
RAJA::TypedListSegment object. Here, we assemble the indices to a standard
vector, create a list segment from it, and then pass the list segment to the
forall execution template:

 std::vector<IdxType> idx;
 for (IdxType i = 0; i < N; ++i) {
 idx.push_back(i);
 }

 ListSegType idx_list(&idx[0], idx.size());

 RAJA::forall<RAJA::seq_exec>(idx_list, [=] (IdxType i) {
 a[i] += b[i] * c;
 });

Note that we are using the following type aliases here:

using IdxType = RAJA::Index_type;
using ListSegType = RAJA::TypedListSegment<IdxType>;

Recall from discussion in Indices, Segments, and IndexSets that RAJA::Index_type is
a default index type that RAJA defines and which is used in some RAJA
constructs as a convenience for users who want a simple mechanism to apply
index types consistently.

It is important to note what is really happening when a list segment is used.
During loop execution, indices stored in the list segment are passed to the
loop body one-by-one, effectively mimicking an indirection array except that
the indirection array does not appear in the loop body. For example, we can
reverse the order of the indices, run the loop with a new list segment object,
and get the same result since the loop is data-parallel:

 std::reverse(idx.begin(), idx.end());

 ListSegType idx_reverse_list(&idx[0], idx.size());

 RAJA::forall<RAJA::seq_exec>(idx_reverse_list, [=] (IdxType i) {
 a[i] += b[i] * c;
 });

Alternatively, we can also use a RAJA strided range segment to run the loop
in reverse by giving it a stride of -1. For example:

 RAJA::forall<RAJA::seq_exec>(RAJA::RangeStrideSegment(N-1, -1, -1), [=] (IdxType i) {
 a[i] += b[i] * c;
 });

RAJA IndexSets

The RAJA::TypedIndexSet template is a container that can hold
any number of segments of arbitrary type. An index set object
can be passed to a RAJA loop execution method, just like a segment, to
run a loop kernel. When the loop is run, the execution method iterates
over the segments and the loop indices in each segment. Thus, the loop
iterates can be grouped into different segments to partition the iteration
space and iterate over the loop kernel chunks (defined by segments), in
serial, in parallel, or in some specific dependency ordering. Individual
segments can be executed in serial or parallel.

When an index set is defined, the segment types it may hold must be specified
as template arguments. For example, here we create an index set that can
hold list segments. Then, we add the first list segment from above to it,
and run the loop:

 RAJA::TypedIndexSet<ListSegType> is1;

 is1.push_back(idx_list); // use list segment created earlier.

 RAJA::forall<SEQ_ISET_EXECPOL>(is1, [=] (IdxType i) {
 a[i] += b[i] * c;
 });

You are probably asking: What is the ‘SEQ_ISET_EXECPOL’ type used for the
execution policy?

Well, it is like execution policy types we have seen up to this point,
except that it specifies a two-level policy – one for iterating over the
segments and one for executing the iterates defined by each segment. In the
example, we specify that we should do each of these operations sequentially
by defining the policy as follows:

 using SEQ_ISET_EXECPOL = RAJA::ExecPolicy<RAJA::seq_segit,
 RAJA::seq_exec>;

Next, we perform the daxpy operation by partitioning the iteration space into
two range segments:

 RAJA::TypedIndexSet<RAJA::RangeSegment> is2;
 is2.push_back(RAJA::RangeSegment(0, N/2));
 is2.push_back(RAJA::RangeSegment(N/2, N));

 RAJA::forall<SEQ_ISET_EXECPOL>(is2, [=] (IdxType i) {
 a[i] += b[i] * c;
 });

The first range segment is used to run the index range [0, N/2) and the
second is used to run the range [N/2, N).

We can also break up the iteration space into three segments, 2 ranges
and 1 list:

 std::vector<IdxType> idx1;
 for (IdxType i = N/3; i < 2*N/3; ++i) {
 idx1.push_back(i);
 }

 ListSegType idx1_list(&idx1[0], idx1.size());

 RAJA::TypedIndexSet<RAJA::RangeSegment, ListSegType> is3;
 is3.push_back(RAJA::RangeSegment(0, N/3));
 is3.push_back(idx1_list);
 is3.push_back(RAJA::RangeSegment(2*N/3, N));

 RAJA::forall<SEQ_ISET_EXECPOL>(is3, [=] (IdxType i) {
 a[i] += b[i] * c;
 });

The first range segment runs the index range [0, N/3), the list segment
enumerates the indices in the interval [N/3, 2*N/3), and the second range
segment runs the range [2*N/3, N). Note that we use the same execution
policy as before.

Before we end the discussion of these examples, we demonstrate a few more
index set execution policy variations. To run the previous three segment
example by iterating over the segments sequentially and executing each
segment in parallel using OpenMP multi-threading, we would use this policy
definition:

 using OMP_ISET_EXECPOL1 = RAJA::ExecPolicy<RAJA::seq_segit,
 RAJA::omp_parallel_for_exec>;

If we wanted to iterate over the segments in parallel using OpenMP
multi-threading and execute each segment sequentially, we would use a
policy like this:

 using OMP_ISET_EXECPOL2 = RAJA::ExecPolicy<RAJA::omp_parallel_for_segit,
 RAJA::seq_exec>;

Finally, to iterate over the segments sequentially and execute each segment in
parallel on a GPU by launching a CUDA kernel, we would define this policy:

 using OMP_ISET_EXECPOL3 = RAJA::ExecPolicy<RAJA::seq_segit,
 RAJA::cuda_exec<CUDA_BLOCK_SIZE>>;

The file RAJA/examples/tut_indexset-segments.cpp contains working code
for these examples.

Mesh Vertex Sum Example: Iteration Space Coloring

Key RAJA features shown in this example:

	RAJA::forall loop execution template method

	RAJA::ListSegment iteration space construct

	RAJA::IndexSet iteration space segment container and associated execution policies

The example computes a sum at each vertex on a logically-Cartesian 2D mesh
as shown in the figure.

[image: ../_images/vertexsum.jpg]
A portion of the area of each mesh element is summed to the vertices surrounding the element.

Each sum is an average of the area of the mesh elements that share the vertex.
In many “staggered mesh” applications, such an operation is common and is
often written in a way that presents the algorithm clearly but prevents
parallelization due to potential data races. That is, multiple loop iterates
over mesh elements may attempt to write to the same shared vertex memory
location at the same time. The example shows how RAJA constructs can be
used to enable one to express such an algorithm in parallel and have it
run correctly without fundamentally changing how it looks in source code.

After defining the number of elements in the mesh, necessary array offsets
and an array that indicates the mapping between an element and its four
surrounding vertices, a C-style version of the vertex sum calculation is:

 for (int j = 0 ; j < N_elem ; ++j) {
 for (int i = 0 ; i < N_elem ; ++i) {
 int ie = i + j*jeoff ;
 int* iv = &(elem2vert_map[4*ie]);
 vertexvol_ref[iv[0]] += elemvol[ie] / 4.0 ;
 vertexvol_ref[iv[1]] += elemvol[ie] / 4.0 ;
 vertexvol_ref[iv[2]] += elemvol[ie] / 4.0 ;
 vertexvol_ref[iv[3]] += elemvol[ie] / 4.0 ;
 }
 }

RAJA Sequential Variant

A nested loop RAJA variant of this kernel is:

 using EXEC_POL1 =
 RAJA::KernelPolicy<
 RAJA::statement::For<1, RAJA::seq_exec, // j
 RAJA::statement::For<0, RAJA::seq_exec, // i
 RAJA::statement::Lambda<0>
 >
 >
 >;

 RAJA::kernel<EXEC_POL1>(RAJA::make_tuple(RAJA::RangeSegment(0, N_elem),
 RAJA::RangeSegment(0, N_elem)),
 [=](int i, int j) {
 int ie = i + j*jeoff ;
 int* iv = &(elem2vert_map[4*ie]);
 vertexvol[iv[0]] += elemvol[ie] / 4.0 ;
 vertexvol[iv[1]] += elemvol[ie] / 4.0 ;
 vertexvol[iv[2]] += elemvol[ie] / 4.0 ;
 vertexvol[iv[3]] += elemvol[ie] / 4.0 ;
 });

Note that this version cannot be guaranteed to run correctly in parallel
by simply changing the loop execution policies as we have done in other
examples. We would like to use RAJA to enable parallel execution and without
changing the way the kernel looks in source code. By applying a RAJA index
set and suitably-defined list segments, we can accomplish this.

RAJA Parallel Variants

To enable the kernel to run safely in parallel, by eliminating the race
conditions, we partition the element iteration space into four subsets
(or colors) indicated by the numbers in the figure below, which represents
a portion of our logically-Cartesian 2D mesh.

	2

	3

	2

	3

	0

	1

	0

	1

	2

	3

	2

	3

	0

	1

	0

	1

Note that none of the elements with the same number share a common vertex.
Thus, we can iterate over all elements with the same number (i.e., color)
in parallel.

First, we define four vectors to gather the mesh element indices for each
color:

 std::vector<int> idx0;
 std::vector<int> idx1;
 std::vector<int> idx2;
 std::vector<int> idx3;

 for (int j = 0 ; j < N_elem ; ++j) {
 for (int i = 0 ; i < N_elem ; ++i) {
 int ie = i + j*jeoff ;
 if (i % 2 == 0) {
 if (j % 2 == 0) {
 idx0.push_back(ie);
 } else {
 idx2.push_back(ie);
 }
 } else {
 if (j % 2 == 0) {
 idx1.push_back(ie);
 } else {
 idx3.push_back(ie);
 }
 }
 }
 }

Then, we create a RAJA index set with four list segments, one for each color,
using the vectors:

 using SegmentType = RAJA::TypedListSegment<int>;

 RAJA::TypedIndexSet<SegmentType> colorset;

 colorset.push_back(SegmentType(&idx0[0], idx0.size()));
 colorset.push_back(SegmentType(&idx1[0], idx1.size()));
 colorset.push_back(SegmentType(&idx2[0], idx2.size()));
 colorset.push_back(SegmentType(&idx3[0], idx3.size()));

Now, we can use an index set execution policy that iterates over the
segments sequentially and executes each segment in parallel using OpenMP
multi-threading (and RAJA::forall):

 using EXEC_POL3 = RAJA::ExecPolicy<RAJA::seq_segit,
 RAJA::omp_parallel_for_exec>;

 RAJA::forall<EXEC_POL3>(colorset, [=](int ie) {
 int* iv = &(elem2vert_map[4*ie]);
 vertexvol[iv[0]] += elemvol[ie] / 4.0 ;
 vertexvol[iv[1]] += elemvol[ie] / 4.0 ;
 vertexvol[iv[2]] += elemvol[ie] / 4.0 ;
 vertexvol[iv[3]] += elemvol[ie] / 4.0 ;
 });

We no longer need to use the offset variable to compute the
element index in terms of ‘i’ and ‘j’ since the loop is no longer nested
and the element indices are directly encoded in the list segments.

For completeness, here is the RAJA variant where we iterate over the
segments sequentially, and execute each segment in parallel via a CUDA
kernel launch on a GPU:

 using EXEC_POL4 = RAJA::ExecPolicy<RAJA::seq_segit,
 RAJA::cuda_exec<CUDA_BLOCK_SIZE>>;

 RAJA::forall<EXEC_POL4>(colorset, [=] RAJA_DEVICE (int ie) {
 int* iv = &(elem2vert_map[4*ie]);
 vertexvol[iv[0]] += elemvol[ie] / 4.0 ;
 vertexvol[iv[1]] += elemvol[ie] / 4.0 ;
 vertexvol[iv[2]] += elemvol[ie] / 4.0 ;
 vertexvol[iv[3]] += elemvol[ie] / 4.0 ;
 });

Here, we have marked the lambda loop body with the ‘RAJA_DEVICE’ macro
and specified the number of threads in a CUDA thread block in the segment
execution policy.

The file RAJA/examples/tut_vertexsum-coloring.cpp contains the complete
working example code.

Reductions

Key RAJA features shown in this example:

	RAJA::forall loop execution template

	RAJA::RangeSegment iteration space construct

	RAJA reduction types

	RAJA reduction policies

In the Vector Dot Product (Sum Reduction) example, we showed how to use the RAJA sum
reduction type. The following example uses all supported RAJA reduction types:
min, max, sum, min-loc, max-loc.

Note

Multiple RAJA reductions can be combined in any RAJA loop kernel
execution method, and reduction operations can be combined with
any other kernel operations.

We start by allocating an array (the memory manager in the example uses
CUDA Unified Memory if CUDA is enabled) and initializing its values in a
manner that makes the example mildly interesting and able to show what the
different reduction types do. Specifically, the array is initialized to
a sequence of alternating values (‘1’ and ‘-1’). Then, two values near
the middle of the array are set to ‘-100’ and ‘100’:

//
// Define array length
//
 const int N = 1000000;

//
// Allocate array data and initialize data to alternating sequence of 1, -1.
//
 int* a = memoryManager::allocate<int>(N);

 for (int i = 0; i < N; ++i) {
 if (i % 2 == 0) {
 a[i] = 1;
 } else {
 a[i] = -1;
 }
 }

//
// Set min and max loc values
//
 const int minloc_ref = N / 2;
 a[minloc_ref] = -100;

 const int maxloc_ref = N / 2 + 1;
 a[maxloc_ref] = 100;

We also define a range segment to iterate over the array:

 RAJA::RangeSegment arange(0, N);

With these parameters and data initialization, all the code examples
presented below will generate the following results:

	the sum will be zero

	the min will be -100

	the max will be 100

	the min loc will be N/2

	the max loc will be N/2 + 1

A sequential kernel that exercises all RAJA sequential reduction types is:

 using EXEC_POL1 = RAJA::seq_exec;
 using REDUCE_POL1 = RAJA::seq_reduce;

 RAJA::ReduceSum<REDUCE_POL1, int> seq_sum(0);
 RAJA::ReduceMin<REDUCE_POL1, int> seq_min(std::numeric_limits<int>::max());
 RAJA::ReduceMax<REDUCE_POL1, int> seq_max(std::numeric_limits<int>::min());
 RAJA::ReduceMinLoc<REDUCE_POL1, int> seq_minloc(std::numeric_limits<int>::max(), -1);
 RAJA::ReduceMaxLoc<REDUCE_POL1, int> seq_maxloc(std::numeric_limits<int>::min(), -1);

 RAJA::forall<EXEC_POL1>(arange, [=](int i) {

 seq_sum += a[i];

 seq_min.min(a[i]);
 seq_max.max(a[i]);

 seq_minloc.minloc(a[i], i);
 seq_maxloc.maxloc(a[i], i);

 });

 std::cout << "\tsum = " << seq_sum.get() << std::endl;
 std::cout << "\tmin = " << seq_min.get() << std::endl;
 std::cout << "\tmax = " << seq_max.get() << std::endl;
 std::cout << "\tmin, loc = " << seq_minloc.get() << " , "
 << seq_minloc.getLoc() << std::endl;
 std::cout << "\tmax, loc = " << seq_maxloc.get() << " , "
 << seq_maxloc.getLoc() << std::endl;

Note that each reduction object takes an initial value at construction. Also,
within the kernel, updating each reduction is done via an operator or method
that is basically what you would expect (i.e., ‘+=’ for sum, ‘min()’ for min,
etc.). After the kernel executes, the reduced value computed by each reduction
object is retrieved after the kernel by calling a ‘get()’ method on the
reduction object. The min-loc/max-loc index values are obtained using
‘getLoc()’ methods.

For parallel multi-threading execution via OpenMP, the example can be run
by replacing the execution and reduction policies with:

 using EXEC_POL2 = RAJA::omp_parallel_for_exec;
 using REDUCE_POL2 = RAJA::omp_reduce;

Similarly, the kernel containing the reductions can be run in parallel
on a CUDA GPU using these policies:

 using EXEC_POL3 = RAJA::cuda_exec<CUDA_BLOCK_SIZE>;
 using REDUCE_POL3 = RAJA::cuda_reduce;

Note

Each RAJA reduction type requires a reduction policy that must
be compatible with the execution policy for the kernel in which
it is used.

The file RAJA/examples/tut_reductions.cpp contains the complete
working example code.

Computing a Histogram with Atomic Operations

Key RAJA features shown in this example:

	RAJA::forall loop execution template

	RAJA::RangeSegment iteration space construct

	RAJA atomic add operation

The example uses an integer array of length ‘N’ randomly initialized with
values in the interval [0, M). While iterating over the array, the kernel
accumulates the number of occurrences of each value in the array using atomic
add operations. Atomic operations allow one to update a memory location
referenced by a specific address in parallel without data races. The example
shows how to use RAJA portable atomic operations and that they are used
similarly for different programming model back-ends.

Note

Each RAJA reduction operation requires an atomic policy type
parameter that must be compatible with the execution policy for
the kernel in which it is used.

For a complete description of supported RAJA atomic operations and
atomic policies, please see Atomics.

All code snippets described below use the loop range:

 RAJA::TypedRangeSegment<int> array_range(0, N);

and the integer array ‘bins’ of length ‘M’ to accumulate the number of
occurrences of each value in the array.

Here is the OpenMP version:

 using EXEC_POL2 = RAJA::omp_parallel_for_exec;
 using ATOMIC_POL2 = RAJA::atomic::omp_atomic;

 RAJA::forall<EXEC_POL2>(array_range, [=](int i) {

 RAJA::atomic::atomicAdd<ATOMIC_POL2>(&bins[array[i]], 1);

 });

Each slot in the ‘bins’ array is incremented by one when a value associated
with that slot is encountered. Note that the RAJA::atomic::atomicAdd
operation uses an OpenMP atomic policy, which is compatible with the OpenMP
loop execution policy.

The CUDA version is similar:

 using EXEC_POL4 = RAJA::cuda_exec<CUDA_BLOCK_SIZE>;
 using ATOMIC_POL4 = RAJA::atomic::cuda_atomic;

 RAJA::forall<EXEC_POL4>(array_range, [=] RAJA_DEVICE(int i) {

 RAJA::atomic::atomicAdd<ATOMIC_POL4>(&bins[array[i]], 1);

 });

Here, the atomic add operation uses a CUDA atomic policy, which is compatible
with the CUDA loop execution policy.

Note that RAJA provides an auto_atomic policy for easier usage and
improved portability. This policy will do the right thing in most
circumstances. Specifically, if it is encountered in a CUDA execution
context, the CUDA atomic policy will be applied. If OpenMP is enabled, the
OpenMP atomic policy will be used, which should be correct in a sequential
execution context as well. Otherwise, the sequential atomic policy will be
applied.

For example, here is the CUDA version that uses the ‘auto’ atomic policy:

 using ATOMIC_POL5 = RAJA::atomic::auto_atomic;

 RAJA::forall<EXEC_POL4>(array_range, [=] RAJA_DEVICE(int i) {

 RAJA::atomic::atomicAdd<ATOMIC_POL5>(&bins[array[i]], 1);

 });

The same CUDA loop execution policy as in the previous example is used.

The file RAJA/examples/tut_atomic-binning.cpp contains the complete
working example code.

Parallel Scan Operations

Key RAJA features shown in this section:

	RAJA::inclusive_scan operation

	RAJA::inclusive_scan_inplace operation

	RAJA::exclusive_scan operation

	RAJA::exclusive_scan_inplace operation

	RAJA operators for different types of scans; e.g., plus, minimum, maximum, etc.

Below, we present examples of RAJA sequential, OpenMP,
and CUDA scan operations and show how different scan operations can be
performed by passing different RAJA operators to the RAJA scan template
methods. Each operator is a template type, where the template argument is
the type of the values it operates on. For a summary of RAJA scan
functionality, please see Parallel Scan Operations.

Note

RAJA scan operations use the same execution policy types that
RAJA::forall loop execution templates do.

Each of the examples below uses the same integer arrays for input
and output values. We set the input array and print them as follows:

//
// Define array length
//
 const int N = 20;

//
// Allocate and array vector data
//
 int* in = memoryManager::allocate<int>(N);
 int* out = memoryManager::allocate<int>(N);

 std::iota(in, in+N, -1);

 std::shuffle(in, in + N, std::mt19937{std::random_device{}()});
 std::cout << "\n in values...\n";
 printArray(in, N);
 std::cout << "\n";

This generates the following sequence of values in the ‘in’ array:

3 -1 2 15 7 5 17 9 6 18 1 10 0 14 13 4 11 12 8 16

Inclusive Scans

A sequential inclusive scan operation is performed by:

 RAJA::inclusive_scan<RAJA::seq_exec>(in, in + N, out);

Since no operator is passed to the scan method, the default ‘sum’ operation
is applied and the result generated in the ‘out’ array is a prefix-sum based
on the ‘in’ array. The resulting ‘out’ array contains the values:

3 2 4 19 26 31 48 57 63 81 82 92 92 106 119 123 134 146 154 170

We can be explicit about the operation used in the scan by passing the
‘plus’ operator to the scan method:

 RAJA::inclusive_scan<RAJA::seq_exec>(in, in + N, out,
 RAJA::operators::plus<int>{});

The result in the ‘out’ array is the same.

An inclusive parallel scan operation using OpenMP multi-threading is
accomplished similarly by replacing the execution policy type:

 RAJA::inclusive_scan<RAJA::omp_parallel_for_exec>(in, in + N, out,
 RAJA::operators::plus<int>{});

As is commonly done with RAJA, the only difference between this code and
the previous one is that the execution policy is different. If we want to
run the scan on a GPU using CUDA, we would use a CUDA execution policy. This
will be shown shortly.

Exclusive Scans

A sequential exclusive scan (plus) operation is performed by:

 RAJA::exclusive_scan<RAJA::seq_exec>(in, in + N, out,
 RAJA::operators::plus<int>{});

This generates the following sequence of values in the output array:

0 3 2 4 19 26 31 48 57 63 81 82 92 92 106 119 123 134 146 154

Note that the exclusive scan result is different than the inclusive scan
result in two ways. The first entry in the result is the identity of the
operator used (here, it is zero, since the operator is ‘plus’) and, after
that, the output sequence is shifted one position to the right.

Running the same scan operation on a GPU using CUDA is done by:

 RAJA::exclusive_scan<RAJA::cuda_exec<CUDA_BLOCK_SIZE>>(in, in + N, out,
 RAJA::operators::plus<int>{});

Note that we pass the number of threads per CUDA thread block as the template
argument to the CUDA execution policy as we do in other cases.

In-place Scans and Other Operators

In-place scan operations generate the same results as the scan operations
we have just described. However, the result is generated in the input array
directly so only one array is passed to in-place scan methods.

Here is a sequential inclusive in-place scan that uses the ‘minimum’ operator:

 std::copy_n(in, N, out);

 RAJA::inclusive_scan_inplace<RAJA::seq_exec>(out, out + N,
 RAJA::operators::minimum<int>{});

Note that, before the scan, we copy the input array into the output array so
the result is generated in the output array. Doing this, we avoid having to
re-initialize the input array to use it in other examples.

This generates the following sequence in the output array:

3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Here is a sequential exclusive in-place scan that uses the ‘maximum’ operator:

 std::copy_n(in, N, out);

 RAJA::exclusive_scan_inplace<RAJA::seq_exec>(out, out + N,
 RAJA::operators::maximum<int>{});

This generates the following sequence in the output array:

-2147483648 3 3 3 15 15 15 17 17 17 18 18 18 18 18 18 18 18 18 18

Note that the first value in the result is the negative of the max int value;
i.e., the identity of the maximum operator.

As you may expect at this point, running an exclusive in-place prefix-sum
operation using OpenMP is accomplished by:

 std::copy_n(in, N, out);

 RAJA::exclusive_scan_inplace<RAJA::omp_parallel_for_exec>(out, out + N,
 RAJA::operators::plus<int>{});

This generates the following sequence in the output array (as we saw earlier):

0 3 2 4 19 26 31 48 57 63 81 82 92 92 106 119 123 134 146 15

Lastly, we show a parallel inclusive in-place prefix-sum operation using CUDA:

 std::copy_n(in, N, out);

 RAJA::inclusive_scan_inplace<RAJA::cuda_exec<CUDA_BLOCK_SIZE>>(out, out + N,
 RAJA::operators::plus<int>{});

The file RAJA/examples/tut_scan.cpp contains the complete
working example code.

Matrix Multiplication (Nested Loops)

Key RAJA features shown in the following examples:

	RAJA::kernel template for nested-loop execution

	RAJA kernel execution policies

	RAJA::View multi-dimensional data access

	Basic RAJA nested-loop interchange

In this example, we present different ways to perform multiplication of two
square matrices ‘A’ and ‘B’ of dimension N x N and store the result in matrix
‘C’. To motivate the use of the RAJA::View abstraction that we use,
we define the following macros to access the matrix entries in the
C-version:

#define A(r, c) A[c + N * r]
#define B(r, c) B[c + N * r]
#define C(r, c) C[c + N * r]

Then, a typical C-style sequential matrix multiplication operation looks like
the following:

 for (int row = 0; row < N; ++row) {
 for (int col = 0; col < N; ++col) {

 double dot = 0.0;
 for (int k = 0; k < N; ++k) {
 dot += A(row, k) * B(k, col);
 }

 C(row, col) = dot;
 }
 }

For the RAJA variants of the matrix multiple operation, we use
RAJA::Range Segment objects to define the matrix row and column and dot
product iteration spaces:

 RAJA::RangeSegment row_range(0, N);
 RAJA::RangeSegment col_range(0, N);
 RAJA::RangeSegment dot_range(0, N);

We also use RAJA::View objects, which allow us to access matrix
entries in a multi-dimensional manner similar to the C-style version that
uses macros. We create a two-dimensional N x N ‘view’
for each of the three matrices:

 RAJA::View<double, RAJA::Layout<DIM>> Aview(A, N, N);
 RAJA::View<double, RAJA::Layout<DIM>> Bview(B, N, N);
 RAJA::View<double, RAJA::Layout<DIM>> Cview(C, N, N);

Although we only show very basic RAJA view usage here, RAJA views can be used to
encapsulate a variety of different data layouts and access patterns, including
permutations, strides, etc. For more information about
RAJA views, see View and Layout.

Should I Use RAJA::forall For Nested Loops?

We begin by walking through some RAJA versions of the matrix multiplication
operation that show RAJA usage that we do not recommend, but which helps
to motivate the RAJA::kernel interface. We noted some rationale behind
this preference in Complex Loops (RAJA::kernel). Here, we discuss this
in more detail.

Starting with the C-style kernel above, we first convert the outermost
‘row’ loop to a RAJA::forall method call with a sequential execution policy:

 RAJA::forall<RAJA::loop_exec>(row_range, [=](int row) {

 for (int col = 0; col < N; ++col) {

 double dot = 0.0;
 for (int k = 0; k < N; ++k) {
 dot += Aview(row, k) * Bview(k, col);
 }

 Cview(row, col) = dot;

 }

 });

Here, the lambda expression for the loop body contains the inner
‘col’ and ‘k’ loops.

Note that changing the RAJA execution policy to an OpenMP or CUDA policy
enables the outer ‘row’ loop to run in parallel. When this is done,
each thread executes the lambda expression body, which contains the ‘col’
and ‘k’ loops. Although this enables some parallelism, there is still more
available. In a bit, we will how the RAJA::kernel interface helps us to
expose all available parallelism.

Next, we nest a RAJA::forall method call for the ‘column’ loop inside the
outer lambda expression:

 RAJA::forall<RAJA::loop_exec>(row_range, [=](int row) {

 RAJA::forall<RAJA::loop_exec>(col_range, [=](int col) {

 double dot = 0.0;
 for (int k = 0; k < N; ++k) {
 dot += Aview(row, k) * Bview(k, col);
 }

 Cview(row, col) = dot;

 });

 });

Here, the innermost lambda expression contains the row-column dot product
initialization, the inner ‘k’ loop for the dot product, and the operation
that assigns the dot product to the proper location in the result matrix.

Note that we can replace either RAJA execution policy with an OpenMP
execution policy to parallelize either the ‘row’ or ‘col’ loop. For example,
we can use an OpenMP execution policy on the outer ‘row’ loop and the result
will be the same as using an OpenMP policy in the RAJA::forall statement in
the previous case.

We do not recommend using a parallel execution policy for both loops in
this type of kernel as the results may not be what is expected and RAJA
provides better mechanisms for parallelizing nested loops. Also, changing
the outer loop policy to a CUDA policy will not compile. This is by design
in RAJA since nesting forall statements inside lambdas in this way has limited
utility, is inflexible, and can hinder performance when compared to
RAJA::kernel constructs, which we describe next.

Basic RAJA::kernel Variants

Next, we show how to cast the matrix-multiplication operation
using RAJA::kernel nested-loop capabilities, which were introduced in
Complex Loops (RAJA::kernel). We first present a complete example, and
then describe its key elements, noting important differences between
RAJA::kernel and RAJA::forall loop execution interfaces.

 using EXEC_POL =
 RAJA::KernelPolicy<
 RAJA::statement::For<1, RAJA::loop_exec, // row
 RAJA::statement::For<0, RAJA::loop_exec, // col
 RAJA::statement::Lambda<0>
 >
 >
 >;

 RAJA::kernel<EXEC_POL>(RAJA::make_tuple(col_range, row_range),
 [=](int col, int row) {

 double dot = 0.0;
 for (int k = 0; k < N; ++k) {
 dot += Aview(row, k) * Bview(k, col);
 }

 Cview(row, col) = dot;

 });

Here, we use RAJA::kernel to express the outer ‘row’ and ‘col’ loops;
the inner ‘k’ loop is included in the lambda expression for the loop body.
Note that the RAJA::kernel template takes two arguments. Similar to
RAJA::forall, the first argument describes the iteration space and the
second argument is the lambda loop body. Unlike RAJA::forall, the
iteration space for RAJA::kernel is defined as a tuple of ranges
(created via the RAJA::make_tuple method), one for the ‘col’ loop and
one for the ‘row’ loop. Also, the lambda expression takes an iteration index
argument for entry in the iteration space tuple.

Note

The number and order of lambda arguments must match the number and
order of the elements in the tuple for this to be correct.

Another important difference between RAJA::forall and RAJA::kernel is
in the execution policy template parameter. The execution policy defined by the
RAJA::KernelPolicy type used here specifies a policy for each level in
the loop nest via nested RAJA::statement::For types. Here, the row and
column loops will both execute sequentially. The integer that appears as the
first template parameter to each ‘For’ statement corresponds to the position of
a range in the iteration space tuple and also to the associated iteration
index argument to the lambda. Here, ‘0’ is the ‘col’ range and ‘1’ is the
‘row’ range because that is the order those ranges appear in the tuple. The
innermost type RAJA::statement::Lambda<0> indicates that the first lambda
expression (the only one in this case!) argument passed to the
RAJA::kernel method after the index space tuple will be invoked inside
the nested loops.

The integer arguments to the RAJA::statement::For types are needed to
enable a variety of
kernel execution patterns and transformations. Since the kernel policy is a
single unified construct, it can be used to parallelize the nested loop
iterations together, which we will show later. Also, the levels in the loop
nest can be permuted by reordering the policy arguments; this is analogous
to how one would reorder C-style nested loops; i.e., reorder for-statements
for each loop nest level. These execution patterns and transformations can
be achieved by changing the policy and leaving the loop kernel code as is.

If we want to execute the row loop using OpenMP multi-threaded parallelism
and keep the column loop sequential, the policy we would use is:

 using EXEC_POL1 =
 RAJA::KernelPolicy<
 RAJA::statement::For<1, RAJA::omp_parallel_for_exec, // row
 RAJA::statement::For<0, RAJA::loop_exec, // col
 RAJA::statement::Lambda<0>
 >
 >
 >;

To swap the loop nest ordering and keep the same execution policy on each loop,
we would use the following policy, which swaps the RAJA::statement::For
types. The inner loop is now the ‘row’ loop and is run in parallel;
the outer loop is now the ‘col’ loop and is still sequential:

 using EXEC_POL2 =
 RAJA::KernelPolicy<
 RAJA::statement::For<0, RAJA::loop_exec, // col
 RAJA::statement::For<1, RAJA::omp_parallel_for_exec, // row
 RAJA::statement::Lambda<0>
 >
 >
 >;

Note

It is important to note that these kernel transformations, and others,
can be done by switching the RAJA::KernelPolicy type with no
changes to the loop kernel code.

In Nested Loop Interchange, we provide a more detailed discussion of the
mechanics of loop nest reordering. Next, we show other variations of the
matrix multiplication kernel that illustrate other RAJA::kernel features.

More Complex RAJA::kernel Variants

The matrix multiplication kernel variations described in this section use
execution policies to express the outer row and col loops as well as the
inner dot product loop using the RAJA kernel interface. They illustrate more
complex policy examples and show additional RAJA kernel features.

The first example uses sequential execution for all loops:

 using EXEC_POL6 =
 RAJA::KernelPolicy<
 RAJA::statement::For<1, RAJA::loop_exec,
 RAJA::statement::For<0, RAJA::loop_exec,
 RAJA::statement::Lambda<0>, // dot = 0.0
 RAJA::statement::For<2, RAJA::loop_exec,
 RAJA::statement::Lambda<1> // inner loop: dot += ...
 >,
 RAJA::statement::Lambda<2> // set C(row, col) = dot
 >
 >
 >;

 RAJA::kernel_param<EXEC_POL6>(
 RAJA::make_tuple(col_range, row_range, dot_range),

 RAJA::tuple<double>{0.0}, // thread local variable for 'dot'

 // lambda 0
 [=] (int /* col */, int /* row */, int /* k */, double& dot) {
 dot = 0.0;
 },

 // lambda 1
 [=] (int col, int row, int k, double& dot) {
 dot += Aview(row, k) * Bview(k, col);
 },

 // lambda 2
 [=] (int col, int row, int /* k */, double& dot) {
 Cview(row, col) = dot;
 }

);

Note that we use a RAJA::kernel_param method to execute the kernel. It is
similar to RAJA::kernel except that it accepts a tuple as its second
argument (between the iteration space tuple and the lambda expressions). The
tuple is a set of parameters that can be used in the kernel to pass data
into lambda expressions. Here, the parameter tuple holds a single scalar
thread-local variable for the dot product.

The remaining arguments include a sequence of lambda expressions representing
different parts of the inner loop body. We use three lambda expressions that:
initialize the dot product variable (lambda 0), define the ‘k’ inner loop
row-col dot product operations (lambda 1), and store the computed row-col dot
product in the proper location in the result matrix (lambda 2). Note that all
lambdas take the same arguments in the same order, which is required for the
kernel to be well-formed. In addition to the loop index variables, we pass
the scalar dot product variable into each lambda. This enables the same
variable to be used in all three lambdas. However, also note that not all
lambda expressions use all three index variables. They are declared, but left
unnamed to prevent compiler warnings.

The execution policy type passed to the RAJA::kernel_param method as a
template parameter describes how the statements and lambda expressions are
assembled to form the complete kernel. To illustrate this, we describe
various policies that enable the kernel to run in different ways. In each
case, the RAJA::kernel_param method call, including its arguments is
the same. The curious reader will inspect the example code to see that this
is indeed the case.

Next, we show how to collapse nested loops in an OpenMP parallel region
using a RAJA::statement::Collapse type in the execution policy. This
allows one to parallelize multiple levels in a loop nest using OpenMP
directives, for instance. The following policy will collapse the two outer
loops:

 using EXEC_POL7 =
 RAJA::KernelPolicy<
 RAJA::statement::Collapse<RAJA::omp_parallel_collapse_exec,
 RAJA::ArgList<1, 0>, // row, col
 RAJA::statement::Lambda<0>, // dot = 0.0
 RAJA::statement::For<2, RAJA::loop_exec,
 RAJA::statement::Lambda<1> // inner loop: dot += ...
 >,
 RAJA::statement::Lambda<2> // set C(row, col) = dot
 >
 >;

The RAJA::ArgList type indicates which loops in the nest are to be
collapsed and their nesting order within the collapse region. The integers
passed to ArgList are indices of entries in the tuple of iteration spaces
and indicate inner to outer loop levels when read from right to left (i.e.,
here ‘1, 0’ indicates the column loop is the inner loop and the row loop is
the outer). For this transformation there are no statement::For types
and policies for the individual loop levels inside the OpenMP collapse region.

Lastly, we describe how to use RAJA::statement::CudaKernel types to
generate a CUDA kernel launched with a particular thread-block decomposition.
We reiterate that although the policies are different, the kernels themselves
are identical to the sequential and OpenMP variants above.

Here is a policy that will distribute the row indices across CUDA thread
blocks and column indices across threads in each block:

 using EXEC_POL8 =
 RAJA::KernelPolicy<
 RAJA::statement::CudaKernel<
 RAJA::statement::For<1, RAJA::cuda_block_y_loop, // row
 RAJA::statement::For<0, RAJA::cuda_thread_x_loop, // col
 RAJA::statement::Lambda<0>, // dot = 0.0
 RAJA::statement::For<2, RAJA::seq_exec,
 RAJA::statement::Lambda<1> // dot += ...
 >,
 RAJA::statement::Lambda<2> // set C = ...
 >
 >
 >
 >;

This is equivalent to defining a CUDA kernel with the lambda body inside
it and defining row and column indices as:

int row = blockIdx.x;
int col = threadIdx.x;

and launching the kernel with appropriate CUDA grid and thread-block dimensions.

The following policy will tile row and col indices across two-dimensional
CUDA thread blocks with ‘x’ and ‘y’ dimensions defined by a ‘CUDA_BLOCK_SIZE’
parameter that can be set at compile time. Within each tile, the kernel
iterates are executed by CUDA threads.

 using EXEC_POL9 =
 RAJA::KernelPolicy<
 RAJA::statement::CudaKernel<
 RAJA::statement::Tile<1, RAJA::statement::tile_fixed<CUDA_BLOCK_SIZE>, RAJA::cuda_block_y_loop,
 RAJA::statement::Tile<0, RAJA::statement::tile_fixed<CUDA_BLOCK_SIZE>, RAJA::cuda_block_x_loop,
 RAJA::statement::For<1, RAJA::cuda_thread_y_loop, // row
 RAJA::statement::For<0, RAJA::cuda_thread_x_loop, // col
 RAJA::statement::Lambda<0>, // dot = 0.0
 RAJA::statement::For<2, RAJA::seq_exec,
 RAJA::statement::Lambda<1> // dot += ...
 >,
 RAJA::statement::Lambda<2> // set C = ...
 >
 >
 >
 >
 >
 >;

Note that the tiling mechanism requires a RAJA::statement::Tile type,
with a tile size and a tiling execution policy, plus a RAJA::statement::For
type with an execution execution policy for each tile dimension.

In Tiled Matrix Transpose and Matrix Transpose with Local Array,
we will discuss loop tiling in more detail including how it can be used to
improve performance of certain algorithms.

The file RAJA/examples/tut_matrix-multiply.cpp contains the complete
working code for all examples described in this section. It also contains
a raw CUDA version of the kernel for comparison.

Nested Loop Interchange

Key RAJA features shown in this example:

	RAJA::kernel loop iteration templates

	RAJA nested loop execution policies

	Nested loop reordering (i.e., loop interchange)

	RAJA strongly-types indices

In Complex Loops (RAJA::kernel), we introduced the basic mechanics in
RAJA for representing nested loops. In Matrix Multiplication (Nested Loops), we
presented a complete example using RAJA nested loop features. The following
example shows the nested loop interchange process in more detail.
Specifically, we describe how to reorder nested policy arguments and introduce
strongly-typed index variables that can help users write correct nested loop
code with RAJA. The example does not perform any actual computation; each
kernel simply prints out the loop indices in the order that the iteration
spaces are traversed. Thus, only sequential execution policies are used.
However, the mechanics work the same way for other RAJA execution policies.

Before we dive into the example, we note important features applied here that
represent the main differences between nested-loop RAJA and the
RAJA::forall loop construct for simple (i.e., non-nested) loops:

	An index space (e.g., range segment) and lambda index argument are
required for each level in a loop nest. This example contains
triply-nested loops, so there will be three ranges and three index
arguments.

	The index spaces for the nested loop levels are specified in a RAJA tuple
object. The order of spaces in the tuple must match the order of index
arguments to the lambda for this to be correct, in general. RAJA provides
strongly-typed indices to help with this, which we show here.

	An execution policy is required for each level in a loop nest. These
are specified as nested statements in the RAJA::KernelPolicy type.

	The loop nest ordering is specified in the nested kernel policy –
the first statement::For type identifies the outermost loop, the
second statement::For type identifies the loop nested inside the
outermost loop, and so on.

We begin by defining three named strongly-typed variables for the loop
index variables.

RAJA_INDEX_VALUE(KIDX, "KIDX");
RAJA_INDEX_VALUE(JIDX, "JIDX");
RAJA_INDEX_VALUE(IIDX, "IIDX");

We also define three typed range segments which bind the ranges to the
index variable types via template specialization:

 RAJA::TypedRangeSegment<KIDX> KRange(2, 4);
 RAJA::TypedRangeSegment<JIDX> JRange(1, 3);
 RAJA::TypedRangeSegment<IIDX> IRange(0, 2);

When these features are used as in this example, the compiler will
generate error messages if the lambda expression index argument ordering
and types do not match the index ordering in the tuple.

We present a complete example, and then describe its key elements:

 using KJI_EXECPOL = RAJA::KernelPolicy<
 RAJA::statement::For<2, RAJA::seq_exec, // k
 RAJA::statement::For<1, RAJA::seq_exec, // j
 RAJA::statement::For<0, RAJA::seq_exec,// i
 RAJA::statement::Lambda<0>
 >
 >
 >
 >;

 RAJA::kernel<KJI_EXECPOL>(RAJA::make_tuple(IRange, JRange, KRange),
 [=] (IIDX i, JIDX j, KIDX k) {
 printf(" (%d, %d, %d) \n", (int)(*i), (int)(*j), (int)(*k));
 });

Here, the RAJA::kernel execution template takes two arguments: a tuple of
ranges, one for each level in the loop nest, and the lambda expression loop
body. Note that the lambda has an index argument for each range and that
their order and types match.

The execution policy for the loop nest is specified in the
RAJA::KernelPolicy type. Each level in the loop nest is identified by a
statement::For type, which identifies the iteration space and
execution policy for the level. Here, each level uses a
sequential execution policy. This is for
illustration purposes; if you run the example code, you will see the loop
index triple printed in the exact order in which the loops are runs.
The integer that appears as the first template argument to each
statement::For type corresponds to the index of a range in the tuple
and also to the associated lambda index argument; i.e., ‘0’ is for ‘i’,
‘1’ is for ‘j’, and ‘2’ is for ‘k’. The integer arguments are needed so
that the levels in the loop nest can be reordered by changing the policy
while the kernel remains the same.

Here, the ‘k’ index corresponds to the outermost loop (slowest index),
the ‘j’ index corresponds to the middle loop, and the ‘i’ index is for the
innermost loop (fastest index). In other words, if written using C-style
for-loops, the loop would appear as:

for (int k = 2; k< 4; ++k) {
 for (int j = 1; j < 3; ++j) {
 for (int i = 0; j < 2; ++i) {
 // print loop index triple...
 }
 }
}

Next we permute the loop nest ordering so that the ‘j’ loop is the outermost,
the ‘i’ loop is in the middle, and the ‘k’ loop is the innermost with the
following policy:

 using JIK_EXECPOL = RAJA::KernelPolicy<
 RAJA::statement::For<1, RAJA::seq_exec, // j
 RAJA::statement::For<0, RAJA::seq_exec, // i
 RAJA::statement::For<2, RAJA::seq_exec,// k
 RAJA::statement::Lambda<0>
 >
 >
 >
 >;

Note that we have simply reordered the nesting of the RAJA::statement::For
types. This is analogous to reordering ‘for’ statements in traditional C-style
nested loops. Here, the analogous C-style loop nest would appear as:

for (int j = 1; j < 3; ++j) {
 for (int i = 0; i < 2; ++i) {
 for (int k = 2; k< 4; ++k) {
 // print loop index triple...
 }
 }
}

Finally, we permute the loops again so that the ‘i’ loop is the outermost,
the ‘k’ loop is in the middle, and the ‘j’ loop is the innermost with the
following policy:

 using IKJ_EXECPOL = RAJA::KernelPolicy<
 RAJA::statement::For<0, RAJA::seq_exec, // i
 RAJA::statement::For<2, RAJA::seq_exec, // k
 RAJA::statement::For<1, RAJA::seq_exec,// j
 RAJA::statement::Lambda<0>
 >
 >
 >
 >;

For completeness, analogous C-style loop nest would appear as:

for (int i = 0; j < 2; ++i) {
 for (int k = 2; k< 4; ++k) {
 for (int j = 1; j < 3; ++j) {
 // print loop index triple...
 }
 }
}

Hopefully, it should be clear how this works at this point. If not,
the typed indices and typed range segments can help by enabling the
compiler to let you know when something is not correct.

For example, this version of the loop will generate a compilation error
(note that the kernel execution policy is the same as in the previous example):

 RAJA::kernel<IKJ_EXECPOL>(RAJA::make_tuple(IRange, JRange, KRange),
 [=] (JIDX i, IIDX j, KIDX k) {
 printf(" (%d, %d, %d) \n", (int)(*i), (int)(*j), (int)(*k));
 });

If you carefully compare the range ordering in the tuple to the
lambda argument types, you will see what’s wrong.

Do you see the problem?

The file RAJA/examples/tut_nested-loop-reorder.CPU contains the complete
working example code.

Batched Matrix-Multiply (Permuted Layouts)

Key RAJA features shown in the following example:

	RAJA::forall loop traversal template

	RAJA execution policies

	RAJA::View multi-dimensional data access

	RAJA::make_permuted_layout method to permute data ordering

This example performs batched matrix multiplication for a set of
\(3 \times 3\) matrices using two different data layouts.

Matrices \(A\) and \(B\) are multiplied with the product stored in
matrix \(C\). The notation \(A^{e}_{rc}\) indicates the row r and
column c entry of matrix e. We describe the two data layouts we use for two
matrices. The extension to more than two matrices is straightforward. Using
different data layouts, we can assess which performs best for a given
execution policy and computing environment.

Layout 1:
Entries in each matrix are grouped together with each each having row major
ordering; i.e.,

\[\begin{split}A = [A^{0}_{00}, A^{0}_{01}, A^{0}_{02},
 A^{0}_{10}, A^{0}_{11}, A^{0}_{12},
 A^{0}_{20}, A^{0}_{21}, A^{0}_{22},\\
 A^{1}_{00}, A^{1}_{01}, A^{1}_{02},
 A^{1}_{10}, A^{1}_{11}, A^{1}_{12},
 A^{1}_{20}, A^{1}_{21}, A^{1}_{22}];\end{split}\]

Layout 2:
Matrix entries are first ordered by matrix index,
then by column index, and finally by row index; i.e.,

\[\begin{split}A = [A^{0}_{00}, A^{1}_{00}, A^{0}_{01},
 A^{1}_{01}, A^{0}_{02}, A^{1}_{02},
 A^{0}_{10}, A^{1}_{10}, A^{0}_{11},\\
 A^{1}_{11}, A^{0}_{12}, A^{1}_{12},
 A^{0}_{20}, A^{1}_{20}, A^{0}_{21},
 A^{1}_{21}, A^{0}_{22}, A^{1}_{22}];\end{split}\]

Permuted Layouts

Next, we show how to construct the two data layouts using RAJA::View and
RAJA::Layout objects. For more details on these RAJA concepts, please
refer to View and Layout.

Layout 1 is constructed as follows:

// Dimensions of matrices
 const int N_c = 3;
 const int N_r = 3;

 std::array<RAJA::idx_t, 3> perm1 {{0, 1, 2}};
 auto layout1 =
 RAJA::make_permuted_layout({{N, N_r, N_c}}, perm1);
//
// RAJA::Layout objects may be templated on dimension, argument type, and
// index with unit stride. Here, the column index has unit stride (argument 2).
//
 RAJA::View<double, RAJA::Layout<3, Index_type, 2>> Aview(A, layout1);
 RAJA::View<double, RAJA::Layout<3, Index_type, 2>> Bview(B, layout1);
 RAJA::View<double, RAJA::Layout<3, Index_type, 2>> Cview(C, layout1);

The first argument to RAJA::make_permuted_layout is a C++ array
whose entries correspond to the size of each array dimension; i.e., we have
‘N’ \(N_r \times N_c\) matrices. The second argument describes the
striding order of the array dimensions. Note that since this case follows
the default RAJA ordering convention (see View and Layout), we use the
identity permutation ‘(0,1,2)’.

For each matrix, the column index (index 2) has unit stride and the row index
(index 1) has stride 3 (number of columns). The matrix index (index 0) has
stride 9 (\(N_c \times N_r\)).

Layout 2 is constructed similarly:

 std::array<RAJA::idx_t, 3> perm2 {{1, 2, 0}};
 auto layout2 =
 RAJA::make_permuted_layout({{N, N_r, N_c}}, perm2);

 RAJA::View<double, RAJA::Layout<3, Index_type, 0>> Aview2(A2, layout2);
 RAJA::View<double, RAJA::Layout<3, Index_type, 0>> Bview2(B2, layout2);
 RAJA::View<double, RAJA::Layout<3, Index_type, 0>> Cview2(C2, layout2);

Here, the first argument to RAJA::make_permuted_layout is the same as in
Layout 1 since we have the same number of matrices, matrix dimensions and we
will use the same indexing scheme to access the matrix entries. However, the
permutation we use is ‘(1,2,0)’.

This makes the matrix index (index 0) have unit stride, the column index
(index 2) for each matrix has stride N, which is the number of matrices, and
the row index (index 1) has stride \(N \times N_c\).

Example Code

A complete working example that runs the batched matrix-multiplication
computation for both layouts and various RAJA execution policies is located
in the file RAJA/examples/offset-layout.cpp. It compares the execution run
times of the two layouts using three RAJA back-ends (Sequential, OpenMP, and
CUDA). The code example below shows the OpenMP version:

 RAJA::forall<RAJA::omp_parallel_for_exec>(
 RAJA::RangeSegment(0, N), [=](Index_type e) {

 Cview(e, 0, 0) = Aview(e, 0, 0) * Bview(e, 0, 0)
 + Aview(e, 0, 1) * Bview(e, 1, 0)
 + Aview(e, 0, 2) * Bview(e, 2, 0);
 Cview(e, 0, 1) = Aview(e, 0, 0) * Bview(e, 0, 1)
 + Aview(e, 0, 1) * Bview(e, 1, 1)
 + Aview(e, 0, 2) * Bview(e, 2, 1);
 Cview(e, 0, 2) = Aview(e, 0, 0) * Bview(e, 0, 2)
 + Aview(e, 0, 1) * Bview(e, 1, 2)
 + Aview(e, 0, 2) * Bview(e, 2, 2);

 Cview(e, 1, 0) = Aview(e, 1, 0) * Bview(e, 0, 0)
 + Aview(e, 1, 1) * Bview(e, 1, 0)
 + Aview(e, 1, 2) * Bview(e, 2, 0);
 Cview(e, 1, 1) = Aview(e, 1, 0) * Bview(e, 0, 1)
 + Aview(e, 1, 1) * Bview(e, 1, 1)
 + Aview(e, 1, 2) * Bview(e, 2, 1);
 Cview(e, 1, 2) = Aview(e, 1, 0) * Bview(e, 0, 2)
 + Aview(e, 1, 1) * Bview(e, 1, 2)
 + Aview(e, 1, 2) * Bview(e, 2, 2);

 Cview(e, 2, 0) = Aview(e, 2, 0) * Bview(e, 0, 0)
 + Aview(e, 2, 1) * Bview(e, 1, 0)
 + Aview(e, 2, 2) * Bview(e, 2, 0);
 Cview(e, 2, 1) = Aview(e, 2, 0) * Bview(e, 0, 1)
 + Aview(e, 2, 1) * Bview(e, 1, 1)
 + Aview(e, 2, 2) * Bview(e, 2, 1);
 Cview(e, 2, 2) = Aview(e, 2, 0) * Bview(e, 0, 2)
 + Aview(e, 2, 1) * Bview(e, 1, 2)
 + Aview(e, 2, 2) * Bview(e, 2, 2);

 });

All versions use the exact same lambda loop body showing that data orderings
using RAJA can be altered similarly to execution policies without modifying
application source code directly.

Stencil Computations (View Offsets)

Key RAJA features shown in the following example:

	RAJA::Kernel loop execution template

	RAJA kernel execution policies

	RAJA::View multi-dimensional data access

	RAJA:make_offset_layout method to apply index offsets

This example applies a five-cell stencil sum to the interior cells of a
two-dimensional square lattice and stores the resulting sums in a second
lattice of equal size. The five-cell stencil accumulates values from each
interior cell and its four neighbors. We use RAJA::View and
RAJA::Layout constructs to simplify the multi-dimensional indexing so
that we can write the stencil operation as follows:

output(row, col) = input(row, col) +
 input(row - 1, col) + input(row + 1, col) +
 input(row, col - 1) + input(row, col + 1)

A lattice is assumed to have \(N_r \times N_c\) interior cells with unit
values surrounded by a halo of cells containing zero values for a total
dimension of \((N_r + 2) \times (N_c + 2)\). For example, when
\(N_r = N_c = 3\), the input lattice and values are:

	0

	0

	0

	0

	0

	0

	1

	1

	1

	0

	0

	1

	1

	1

	0

	0

	1

	1

	1

	0

	0

	0

	0

	0

	0

After applying the stencil, the output lattice and values are:

	0

	0

	0

	0

	0

	0

	3

	4

	3

	0

	0

	4

	5

	4

	0

	0

	3

	4

	3

	0

	0

	0

	0

	0

	0

For this \((N_r + 2) \times (N_c + 2)\) lattice case, here is our
(row, col) indexing scheme.

	(-1, 3)

	(0, 3)

	(1, 3)

	(2, 3)

	(3, 3)

	(-1, 2)

	(0, 2)

	(1, 2)

	(2, 2)

	(3, 2)

	(-1, 1)

	(0, 1)

	(1, 1)

	(2, 1)

	(3, 1)

	(-1, 0)

	(0, 0)

	(1, 0)

	(2, 0)

	(3, 0)

	(-1, -1)

	(0, -1)

	(1, -1)

	(2, -1)

	(3, -1)

Notably \([0, N_r) \times [0, N_c)\) corresponds to the interior index
range over which we apply the stencil, and \([-1,N_r] \times [-1, N_c]\)
is the full lattice index range.

RAJA Offset Layouts

We use the RAJA::make_offset_layout method to construct a
RAJA::OffsetLayout object that defines our two-dimensional indexing scheme.
Then, we create two RAJA::View objects for each of the input and output
lattice arrays.

 const int DIM = 2;

 RAJA::OffsetLayout<DIM> layout =
 RAJA::make_offset_layout<DIM>({{-1, -1}}, {{N_r, N_c}});

 RAJA::View<int, RAJA::OffsetLayout<DIM>> input_latticeView(input_lattice, layout);
 RAJA::View<int, RAJA::OffsetLayout<DIM>> output_latticeView(output_lattice, layout);

Here, the row index range is \([-1, N_r]\), and the column index
range is \([-1, N_c]\). The first argument to each call to the
RAJA::View constructor is a pointer to an array that holds the data for
the view; we assume the arrays are properly allocated before these calls.

The offset layout mechanics of RAJA allow us to write loops over
data arrays using non-zero based indexing and without having to manually
compute the proper offsets into the arrays. For more details on the
RAJA::View and RAJA::Layout concepts we use in this example, please
refer to View and Layout.

RAJA Kernel Implementation

For the RAJA implementations of the example computation, we use two
RAJA::RangeSegment objects to define the row and column iteration
spaces for the interior cells:

 RAJA::RangeSegment col_range(0, N_r);
 RAJA::RangeSegment row_range(0, N_c);

Here, is an implementation using RAJA::kernel multi-dimensional loop
execution with a sequential execution policy.

 using NESTED_EXEC_POL1 =
 RAJA::KernelPolicy<
 RAJA::statement::For<1, RAJA::seq_exec, // row
 RAJA::statement::For<0, RAJA::seq_exec, // col
 RAJA::statement::Lambda<0>
 >
 >
 >;

 RAJA::kernel<NESTED_EXEC_POL1>(RAJA::make_tuple(col_range, row_range),
 [=](int col, int row) {

 output_latticeView(row, col) =
 input_latticeView(row, col)
 + input_latticeView(row - 1, col)
 + input_latticeView(row + 1, col)
 + input_latticeView(row, col - 1)
 + input_latticeView(row, col + 1);
 });

Since the stencil operation is data parallel, any parallel execution policy
may be used. The file RAJA/examples/tut_offset-layout.cpp contains a
complete working example code with various parallel implementations. For more
details about RAJA::kernel concepts,
please see Complex Loops (RAJA::kernel).

Tiled Matrix Transpose

Key RAJA features shown in this example:

	RAJA::kernel usage with multiple lambdas

	RAJA::statement::Tile policy type

In this example, we compute the transpose of an input matrix
\(A\) of size \(N_r \times N_c\) and store the result in a second
matrix \(At\) of size \(N_c \times N_r\).

We compute the matrix transpose using a tiling algorithm, which iterates
over tiles of the matrix A and performs a transpose copy of a tile without
explicitly storing the tile. The algorithm is expressed as a collection
of outer and inner for-loops. Iterations of the inner loop will
transpose tile entries; while outer loops will iterate over
the tiles needed to compute the transpose.

We start with a non-RAJA C++ implementation, where we choose tile
dimensions smaller than the matrix dimensions. Note that we do not assume
that tiles divide evenly the number of rows and and columns of the matrix.
However, we do assume square tiles.

 const int N_r = 56;
 const int N_c = 75;
 const int TILE_DIM = 16;

Next, we calculate the number of tiles needed to carryout the transpose.

 const int outer_Dimc = (N_c - 1) / TILE_DIM + 1;
 const int outer_Dimr = (N_r - 1) / TILE_DIM + 1;

Then, the C++ implementation may look like the following:

 //
 // (0) Outer loops to iterate over tiles
 //
 for (int by = 0; by < outer_Dimr; ++by) {
 for (int bx = 0; bx < outer_Dimc; ++bx) {
 //
 // (1) Loops to iterate over tile entries
 //
 for (int ty = 0; ty < TILE_DIM; ++ty) {
 for (int tx = 0; tx < TILE_DIM; ++tx) {

 int col = bx * TILE_DIM + tx; // Matrix column index
 int row = by * TILE_DIM + ty; // Matrix row index

 // Bounds check
 if (row < N_r && col < N_c) {
 Atview(col, row) = Aview(row, col);
 }
 }
 }

 }

Note that we include a bounds check in the code to avoid indexing out of
bounds when the tile sizes do not divide the matrix dimensions evenly.

RAJA::kernel Variant

For the RAJA::kernel variant, we use RAJA::statement::Tile types
for the outer loop tiling, with RAJA::statement::tile_fixed parameters
which identify the tile dimensions. The RAJA::statement::Tile types
compute the number of tiles needed to iterate over all matrix entries in each
dimension and generate iteration index values within the bounds of the
associated iteration space. The complete sequential RAJA variant is given below:

 using KERNEL_EXEC_POL =
 RAJA::KernelPolicy<
 RAJA::statement::Tile<1, RAJA::statement::tile_fixed<TILE_DIM>, RAJA::seq_exec,
 RAJA::statement::Tile<0, RAJA::statement::tile_fixed<TILE_DIM>, RAJA::seq_exec,
 RAJA::statement::For<1, RAJA::seq_exec,
 RAJA::statement::For<0, RAJA::seq_exec,
 RAJA::statement::Lambda<0>
 >
 >
 >
 >
 >;

 RAJA::kernel<KERNEL_EXEC_POL>(RAJA::make_tuple(col_Range, row_Range),
 [=](int col, int row) {
 Atview(col, row) = Aview(row, col);
 });

The file RAJA/examples/tut_tiled-matrix-transpose.cpp contains the complete working example code for the examples described in this section, including
OpenMP and CUDA variants.

A more advanced version using RAJA local arrays for CPU cache blocking and
using GPU shared memory is discussed in Matrix Transpose with Local Array.

Matrix Transpose with Local Array

This section extends discussion in Tiled Matrix Transpose,
where only loop tiling is considered. Here, we combine loop tiling with
RAJA::LocalArray objects which enable CPU stack-allocated arrays, and
GPU thread local and shared memory to be used within kernels. For more
information about RAJA::LocalArray, please see Local Array.

Key RAJA features shown in this example:

	RAJA::kernel_param method with multiple lambda expressions

	RAJA::statement::Tile type

	RAJA::statement::ForICount type

	RAJA::LocalArray

As in Tiled Matrix Transpose, this example computes the transpose
of an input matrix \(A\) of size \(N_r \times N_c\) and stores the
result in a second matrix \(At\) of size \(N_c \times N_r\). The
operation uses a local memory tiling algorithm. The algorithm tiles the outer
loops and iterates over tiles in inner loops. The algorithm first loads
input matrix entries into a local stack-allocated two-dimensional array for
a tile, and then reads from the tile swapping the row and column
indices to generate the output matrix.

We start with a non-RAJA C++ implementation to show the algorithm pattern.
We choose tile dimensions smaller than the dimensions of the matrix and note
that it is not necessary for the tile dimensions to divide evenly the number
of rows and columns in the matrix A.

 const int N_r = 267;
 const int N_c = 251;

 const int TILE_DIM = 16;

Next, we calculate the number of tiles needed to perform the transpose.

 const int outer_Dimc = (N_c - 1) / TILE_DIM + 1;
 const int outer_Dimr = (N_r - 1) / TILE_DIM + 1;

The complete C++ implementation of the tiled transpose operation using
local memory is:

 //
 // (0) Outer loops to iterate over tiles
 //
 for (int by = 0; by < outer_Dimr; ++by) {
 for (int bx = 0; bx < outer_Dimc; ++bx) {

 // Stack-allocated local array for data on a tile
 int Tile[TILE_DIM][TILE_DIM];

 //
 // (1) Inner loops to read input matrix tile data into the array
 //
 // Note: loops are ordered so that input matrix data access
 // is stride-1.
 //
 for (int ty = 0; ty < TILE_DIM; ++ty) {
 for (int tx = 0; tx < TILE_DIM; ++tx) {

 int col = bx * TILE_DIM + tx; // Matrix column index
 int row = by * TILE_DIM + ty; // Matrix row index

 // Bounds check
 if (row < N_r && col < N_c) {
 Tile[ty][tx] = Aview(row, col);
 }
 }
 }

 //
 // (2) Inner loops to write array data into output array tile
 //
 // Note: loop order is swapped from above so that output matrix
 // data access is stride-1.
 //
 for (int tx = 0; tx < TILE_DIM; ++tx) {
 for (int ty = 0; ty < TILE_DIM; ++ty) {

 int col = bx * TILE_DIM + tx; // Matrix column index
 int row = by * TILE_DIM + ty; // Matrix row index

 // Bounds check
 if (row < N_r && col < N_c) {
 Atview(col, row) = Tile[ty][tx];
 }
 }
 }

 }
 }

Note

	To prevent indexing out of bounds, when the tile dimensions do not
divide evenly the matrix dimensions, we use a bounds check in the
inner loops.

	For efficiency, we order the inner loops so that reading from
the input matrix and writing to the output matrix both use
stride-1 data access.

RAJA::kernel Version

RAJA provides mechanisms to tile loops and use stack-allocated local arrays
in kernels so that algorithm patterns like we just described can be
implemented with RAJA. A RAJA::LocalArray type specifies an object whose
memory is created inside a kernel using a RAJA::statement type in a RAJA
kernel execution policy. The local array data is only usable within the kernel.
See Local Array for more information.

RAJA::kernel methods also support loop tiling statements which determine
the number of tiles needed to perform an operation based on tile size and
extent of the corresponding iteration space. Moreover, lambda expressions for
the kernel will not be invoked for iterations outside the bounds of an
iteration space when tile dimensions do not divide evenly the size of the
iteration space; thus, no conditional checks on loop bounds are needed
inside inner loops.

For the RAJA version of the matrix transpose kernel above, we define the
type of the RAJA::LocalArray used for matrix entries in a tile:

 using TILE_MEM =
 RAJA::LocalArray<int, RAJA::Perm<0, 1>, RAJA::SizeList<TILE_DIM, TILE_DIM>>;

The template parameters that define the type are: array data type, data stride
permutation for the array indices (here the identity permutation is given, so
the default RAJA conventions apply; i.e., the rightmost array index will be
stride-1), and the array dimensions.

Here is the complete RAJA implementation for sequential CPU execution
with kernel execution policy and kernel:

 using SEQ_EXEC_POL =
 RAJA::KernelPolicy<
 RAJA::statement::Tile<1, RAJA::statement::tile_fixed<TILE_DIM>, RAJA::loop_exec,
 RAJA::statement::Tile<0, RAJA::statement::tile_fixed<TILE_DIM>, RAJA::loop_exec,

 RAJA::statement::InitLocalMem<RAJA::cpu_tile_mem, RAJA::ParamList<2>,

 RAJA::statement::ForICount<1, RAJA::statement::Param<0>, RAJA::loop_exec,
 RAJA::statement::ForICount<0, RAJA::statement::Param<1>, RAJA::loop_exec,
 RAJA::statement::Lambda<0>
 >
 >,

 RAJA::statement::ForICount<0, RAJA::statement::Param<1>, RAJA::loop_exec,
 RAJA::statement::ForICount<1, RAJA::statement::Param<0>, RAJA::loop_exec,
 RAJA::statement::Lambda<1>
 >
 >

 >
 >
 >
 >;

 RAJA::kernel_param<SEQ_EXEC_POL>(RAJA::make_tuple(RAJA::RangeSegment(0, N_c),
 RAJA::RangeSegment(0, N_r)),

 RAJA::make_tuple((int)0, (int)0, RAJA_Tile),

 [=](int col, int row, int tx, int ty, TILE_MEM &RAJA_Tile) {
 RAJA_Tile(ty, tx) = Aview(row, col);
 },

 [=](int col, int row, int tx, int ty, TILE_MEM &RAJA_Tile) {
 Atview(col, row) = RAJA_Tile(ty, tx);

 });

The RAJA::statement::Tile types at the start of the execution policy define
tiling of the outer ‘row’ (iteration space tuple index ‘1’) and ‘col’
(iteration space tuple index ‘0’) loops, including tile sizes
(RAJA::statement::tile_fixed types) and loop execution policies. Next,
the RAJA::statement::InitLocalMem type initializes the local stack array
based on the memory policy type (RAJA::cpu_tile_mem). The
RAJA::ParamList<2> parameter indicates that the local array object is
associated with position ‘2’ in the parameter tuple argument passed to the
RAJA::kernel_param method. Finally, we have two sets of nested inner loops
for reading the input matrix entries into the local array and writing them
out to the output matrix transpose. The inner bodies of each of these loop nests
are identified by lambda expression arguments ‘0’ and ‘1’, respectively.

A couple of notes about the nested inner loops are worth emphasizing. First, the
loops use RAJA::statement::ForICount types rather than
RAJA::statement::For types that we have seen in earlier RAJA::kernel
nested loop examples. The RAJA::statement::ForICount type generates
local tile indices that are passed to lambda loop body expressions. As
the observant reader will observe, there is no local tile index computation
needed in the lambdas for the RAJA version of the kernel as a result. The
first integer template parameter for each RAJA::statement::ForICount type
indicates the item in the iteration space tuple passed to the
RAJA::kernel_param method to which it applies; this is similar to
RAJA::statement::For usage. The second template parameter for each
RAJA::statement::ForICount type indicates the position in the parameter
tuple passed to the RAJA::kernel_param method that will hold the
associated local tile index. The loop execution policy template
argument that follows works the same as in RAJA::statement::For usage.
For more detailed discussion of RAJA loop tiling statement types, please see
Loop Tiling.

Now that we described the execution policy in some detail, let’s pull
everything together by briefly walking though the call to the
RAJA::kernel_param method. The first argument is a tuple of iteration
spaces that define the iteration pattern for each level in the loop nest.
Again, the first integer parameters given to the RAJA::statement::Tile and
RAJA::statement::ForICount types identify the tuple entry they apply to.
The second argument is a tuple of data parameters that will hold the local
tile indices and RAJA::LocalArray tile memory. The tuple entries are
associated with various statements in the execution policy as we described
earlier. Next, two lambda expression arguments are passed to the
RAJA::kernel_param method for reading and writing the input and output
matrix entries, respectively.

Note that each lambda expression takes five arguments. The first two are
the matrix column and row indices associated with the iteration space tuple.
The next three arguments correspond to the parameter tuple entries. The first
two of these are the local tile indices used to access entries in the
RAJA::LocalArray object memory. The last argument is a reference to the
RAJA::LocalArray object itself.

The file RAJA/examples/tut_matrix-transpose-local-array.cpp contains the
complete working example code for the examples described in this section along
with OpenMP and CUDA variants.

Using RAJA in Your Application

Using RAJA in an application requires two things: ensuring the header files
are visible, and linking against the RAJA library.

CMake Configuration File

As part of the RAJA installation, we provide a RAJA-config.cmake file. If
your application uses CMake, this can be used with CMake’s find_package
capability to import RAJA into your CMake project.

To use the configuration file, you can add the following command to your CMake
project:

find_package(RAJA)

Then, pass the path of RAJA to CMake when you configure your code:

cmake -DRAJA_DIR=<path-to-raja>/share/raja/cmake

The RAJA-config.cmake file provides the following variables:

	Variable

	Default

	RAJA_INCLUDE_DIR

	Include directory for RAJA headers.

	RAJA_LIB_DIR

	Library directory for RAJA.

	RAJA_COMPILE_FLAGS

	C++ flags used to compile RAJA.

	RAJA_NVCC_FLAGS

	CUDA flags used to compile RAJA.

It also provides the RAJA target, that can be used natively by CMake to add
a dependency on RAJA. For example:

add_executable(my-app.exe
 my-app.cpp)

target_link_libraries(my-app.exe RAJA)

target_include_directories(my-app.exe ${RAJA_INCLUDE_DIR}

Build Configuration Options

RAJA uses BLT [https://github.com/LLNL/blt], a CMake-based build system.
In Getting Started With RAJA, we described how to run CMake to configure
RAJA with its default option settings. In this section, we describe all RAJA
configuration options, their defaults, and how to enable or disable features.

Setting Options

The RAJA configuration can be set using standard CMake variables along with
BLT and RAJA-specific variables. For example, to make a release build with
some system default GNU compiler and then install the RAJA header files and
libraries in a specific directory location, you could do the following in
the top-level RAJA directory:

$ mkdir build-gnu-release
$ cd build-gnu-release
$ cmake \
 -DCMAKE_BUILD_TYPE=Release \
 -DCMAKE_C_COMPILER=gcc \
 -DCMAKE_CXX_COMPILER=g++ \
 -DCMAKE_INSTALL_PREFIX=../install-gnu-release ../
$ make
$ make install

Following CMake conventions, RAJA supports three build types: Release,
RelWithDebInfo, and Debug. Similar to other CMake systems, when you
choose a build type that includes debug information, you do not have to specify
the ‘-g’ compiler flag to generate debugging symbols.

All RAJA options are set like standard CMake variables. For example, to enable
RAJA OpenMP functionality, pass the following argument to cmake:

-DENABLE_OPENMP=On

All RAJA settings for default options, compilers, flags for optimization, etc.
can be found in files in the RAJA/cmake directory. Next, we
summarize the available options and their defaults

Available Options and Defaults

RAJA uses a variety of custom variables to control how it is compiled. Many
of these are used internally to control RAJA compilation and do
not need to be set by users. Others can be used to enable or disable certain
RAJA features. Most variables get translated to
compiler directives and definitions in the RAJA config.hpp file that is
generated when CMake runs. The config.hpp header file is included in other
RAJA headers as needed so all options propagate consistently through the
build process for all of the code. Each RAJA variable has a special prefix
to distinguish it as being specific to RAJA; i.e., it is not a BLT variable
or a standard CMake variable.

The following tables describe which variables set RAJA options and
and their default settings:

	Examples, tests, warnings, etc.

Variables that control whether RAJA tests and examples are built when
the library is compiled are:

	Variable

	Default

	ENABLE_TESTS

	On

	ENABLE_EXAMPLES

	On

RAJA can also be configured to build with compiler warnings reported as
errors, which may be useful when using RAJA in an application:

	Variable

	Default

	ENABLE_WARNINGS_AS_ERRORS

	Off

	Programming models and compilers

Variables that control which RAJA programming model back-ends are enabled
are (names are descriptive of what they enable):

	Variable

	Default

	ENABLE_OPENMP

	On

	ENABLE_TARGET_OPENMP

	Off

	ENABLE_CUDA

	Off

	ENABLE_TBB

	Off

Other compilation options are available via the following:

	Variable

	Default

	ENABLE_CLANG_CUDA

	Off

	ENABLE_CUB

	On (when CUDA enabled)

Turning the ‘ENABLE_CLANG_CUDA’ variable on will build CUDA code with
the native support in the Clang compiler. When using it, the
‘ENABLE_CUDA’ variable must also be turned on.

The ‘ENABLE_CUB’ variable is used to enable NVIDIA CUB library support
for RAJA CUDA scans. Since the CUB library is included in RAJA as a
Git submodule, users should not have to set this in most scenarios.

Note

When using the NVIDIA nvcc compiler for RAJA CUDA functionality,
the variable ‘RAJA_NVCC_FLAGS’ should be used to pass flags to nvcc.

	Data types, sizes, alignment, etc.

RAJA provides type aliases that can be used to parameterize floating
point types in applications, which makes it easy to switch between types.

The following variables are used to set the data type for the type
alias RAJA::Real_type:

	Variable

	Default

	RAJA_USE_DOUBLE

	On

	RAJA_USE_FLOAT

	Off

Similarly, the ‘RAJA::Complex_type’ can be enabled to support complex
numbers if needed:

	Variable

	Default

	RAJA_USE_COMPLEX

	Off

When turned on, the RAJA Complex_type is ‘std::complex<Real_type>’.

There are several variables to control the definition of the RAJA
floating-point data pointer type RAJA::Real_ptr. The base data type
is always Real_type. When RAJA is compiled for CPU execution
only, the defaults are:

	Variable

	Default

	RAJA_USE_BARE_PTR

	Off

	RAJA_USE_RESTRICT_PTR

	On

	RAJA_USE_RESTRICT_ALIGNED_PTR

	Off

	RAJA_USE_PTR_CLASS

	Off

When RAJA is compiled with CUDA enabled, the defaults are:

	Variable

	Default

	RAJA_USE_BARE_PTR

	On

	RAJA_USE_RESTRICT_PTR

	Off

	RAJA_USE_RESTRICT_ALIGNED_PTR

	Off

	RAJA_USE_PTR_CLASS

	Off

The meaning of these variables is:

	Variable

	Meaning

	RAJA_USE_BARE_PTR

	Use standard C-style pointer

	RAJA_USE_RESTRICT_PTR

	Use C-style pointer with restrict
qualifier

	RAJA_USE_RESTRICT_ALIGNED_PTR

	Use C-style pointer with restrict
qualifier and alignment attribute
(see RAJA_DATA_ALIGN below)

	RAJA_USE_PTR_CLASS

	Use pointer class with overloaded []
operator that applies restrict and
alignment intrinsics. This is useful
when a compiler does not support
attributes in a typedef.

RAJA internally uses parameters to define platform-specific constants
for index ranges and data alignment. The variables that control these
are:

	Variable

	Default

	RAJA_RANGE_ALIGN

	4

	RAJA_RANGE_MIN_LENGTH

	32

	RAJA_DATA_ALIGN

	64

What these variables mean:

	Variable

	Meaning

	RAJA_RANGE_ALIGN

	Constrain alignment of begin/end indices
of range segments generated by index set
builder methods; i.e., begin and end
indices of such segments will be
multiples of this value.

	RAJA_RANGE_MIN_LENGTH

	Sets minimum length of range segments
generated by index set builder methods.
This should be an integer multiple of
RAJA_RANGE_ALIGN.

	RAJA_DATA_ALIGN

	Specifies data alignment used in
intrinsics and typedefs;
units of bytes.

For details on the options in this section are used, please see the
header file RAJA/include/RAJA/util/types.hpp.

	Timer Options

RAJA provides a simple portable timer class that is used in RAJA
example codes to determine execution timing and can be used in other apps
as well. This timer can use any of three internal timers depending on
your preferences, and one should be selected by setting the ‘RAJA_TIMER’
variable. If the ‘RAJA_CALIPER’ variable is turned on (off by default),
the timer will also offer caliper-based region annotations.

	Variable

	Values

	RAJA_TIMER

	chrono (default)
gettime
clock

What these variables mean:

	Value

	Meaning

	chrono

	Use the std::chrono library from the
C++ standard library

	gettime

	Use timespec from the C standard
library time.h file

	clock

	Use clock_t from time.h

	Other RAJA Features

RAJA contains some features that are used mainly for development or may
not be of general interest to RAJA users. These are turned off be default.
They are described here for reference and completeness.

	Variable

	Meaning

	ENABLE_CHAI

	Enable/disable RAJA internal support for
CHAI [https://github.com/LLNL/CHAI]

	ENABLE_FT

	Enable/disable RAJA experimental
loop-level fault-tolerance mechanism

	RAJA_REPORT_FT

	Enable/disable a report of fault-
tolerance enabled run (e.g., number of
faults detected, recovered from,
recovery overhead, etc.)

RAJA Host-Config Files

The RAJA/host-configs directory contains subdirectories with files that
define configurations for various platforms and compilers at LLNL.
These serve as examples of CMake cache files that can be passed to CMake
using the ‘-C’ option. This option initializes the CMake cache with the
configuration specified in each file. For examples of how they are used for
specific CMake configurations, see the build scripts in RAJA/scripts
subdirectories that can be used to drive the RAJA ‘host-config’ files.

Plugins

RAJA provides a plugin mechanism to support optional components that provide
additional functionality to make writing applications easier. Currently,
there is only one RAJA plugin that we support, CHAI.

CHAI

RAJA provides abstractions for parallel execution, but does not support
a memory model for managing data in heterogeneous memory spaces.
CHAI is an array abstraction that can be used to copy data transparently from
one memory space to another as needed to run a RAJA-based kernel.
The data can be accessed inside any RAJA kernel, and regardless of where
that kernel executes, CHAI will make the data available.

To build RAJA with CHAI integration, you need to download and install CHAI.
Please see the CHAI project [https://github.com/LLNL/CHAI] for details.

After CHAI is installed, RAJA can be configured to use it by passing two
additional arguments to CMake:

$ cmake -DRAJA_ENABLE_CHAI=On -Dchai_DIR=/path/to/chai

After RAJA has been built with CHAI support enabled, applications can use
chai::ManangedArray objects to access data inside RAJA kernels; for
example:

chai::ManagedArray<float> array(1000);

RAJA::forall<RAJA::cuda_exec<16> >(0, 1000, [=] __device__ (int i) {
 array[i] = i * 2.0f;
});

RAJA::forall<RAJA::seq_exec>(0, 1000, [=] (int i) {
 std::cout << "array[" << i << "] is " << array[i] << std::endl;
});

Here, the data held by array is allocated on the host CPU. Then, it is
initialized on a CUDA GPU device. CHAI sees that the data lives on the CPU
and is needed in a GPU device data environment. So it copies the data from
CPU to GPU, making it available for access in the first RAJA kernel. Next,
it is printed in the second kernel which runs on the CPU. So CHAI copies the
data back to the host CPU. All necessary data copies are done
transparently on demand as needed for each kernel.

Contributing to RAJA

This section is intended for folks who want to contribute new features or
bugfixes to RAJA. It assumes you are familiar with Git and GitHub. It
describes what a good pull request (PR) looks like, and the tests that your
PR must pass before it can be merged into RAJA.

Forking RAJA

If you aren’t a RAJA developer at LLNL, then you won’t have permission to push
new branches to the repository. First, you should create a fork of the repo [https://github.com/LLNL/RAJA#fork-destination-box]. This will create a copy
of the RAJA repository that you own, and will ensure you can push your changes
to GitHub and create pull requests.

Developing a New Feature

New features should be based on the RAJA develop branch. When you want to
create a new feature, first ensure you have an up-to-date copy of the
develop branch:

$ git checkout develop
$ git pull origin develop

Then, create a new branch to develop your feature on:

$ git checkout -b feature/<name-of-feature>

Proceed to develop your feature on this branch pushing changes with
reasonably-sized atomic commits, and add tests that will exercise your new
code. If you are creating new methods or classes, please
add Doxygen documentation.

Once your feature is complete and your tests are passing, you can push your
branch to GitHub and create a PR.

Developing a Bug Fix

First, check if the change you want to make has been addressed in the RAJA
develop branch. If so, we suggest you either start using the develop
branch, or temporarily apply the fix to whichever version of RAJA you are using.

Assuming there is an unsolved bug, first make sure you have an up-to-date copy
of the develop branch:

$ git checkout develop
$ git pull origin develop

Then create a new branch for your bugfix:

$ git checkout -b bugfix/<name-of-bug>

First, add a test that reproduces the bug you have found. Then develop your
bugfix as normal, and ensure to make test to check your changes actually
fix the bug.

Once you are finished, you can push your branch to GitHub, then create a PR.

Creating a Pull Request

You can create a new PR here [https://github.com/LLNL/RAJA/compare]. GitHub
has a good guide [https://help.github.com/articles/about-pull-requests/] on
PR basics if you want more information. Ensure that your PR base is the
develop branch of RAJA.

Add a descriptive title explaining the bug you fixed or the feature you have
added, and put a longer description of the changes you have made in the comment
box.

Once your PR has been created, it will be run through our automated tests and
also be reviewed by RAJA team members. Providing the branch passes both the
tests and reviews, it will be merged into RAJA.

Tests

RAJA uses Travis CI for continuous integration tests. Our tests are
automatically run against every new pull request, and passing all tests is a
requirement for merging your PR. If you are developing a bugfix or a new
feature, please add a test that checks the correctness of your new code. RAJA
is used on a wide variety of systems with a number of configurations, and
adding new tests helps ensure that all features work as expected across these
environments.

All RAJA tests are in the RAJA/test directory and are split up by
programming model back-end and feature.

RAJA License

Copyright (c) 2016-19, Lawrence Livermore National Security, LLC.

Produced at the Lawrence Livermore National Laboratory.

All rights reserved. See additional details below.

Unlimited Open Source - BSD Distribution

LLNL-CODE-689114

OCEC-16-063

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the disclaimer below.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the disclaimer (as noted below) in the
documentation and/or other materials provided with the distribution.

	Neither the name of the LLNS/LLNL nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL LAWRENCE LIVERMORE NATIONAL SECURITY, LLC,
THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Additional BSD Notice

1. This notice is required to be provided under our contract with the U.S.
Department of Energy (DOE). This work was produced at Lawrence Livermore
National Laboratory under Contract No. DE-AC52-07NA27344 with the DOE.

2. Neither the United States Government nor Lawrence Livermore National
Security, LLC nor any of their employees, makes any warranty, express or
implied, or assumes any liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe
privately-owned rights.

3. Also, reference herein to any specific commercial products, process,
or services by trade name, trademark, manufacturer or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Index

 _images/ListSegment.png

_images/RangeSegment.png
beg end-1

_images/IndexSet.png

_static/ajax-loader.gif

_images/RangeStrideSegment.png
beg S“}de end-1

_images/vertexsum.jpg
&

x /
o\

PO

p1

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 RAJA User Guide

 		
 Getting Started With RAJA

 		
 Requirements

 		
 Get the Code

 		
 Build and Install

 		
 Building RAJA

 		
 Installing RAJA

 		
 Learning to Use RAJA

 		
 RAJA Features

 		
 Elements of Loop Execution

 		
 Simple Loops (RAJA::forall)

 		
 Complex Loops (RAJA::kernel)

 		
 Policies

 		
 RAJA Loop/Kernel Execution Policies

 		
 RAJA IndexSet Execution Policies

 		
 Parallel Region Policies

 		
 Reduction Policies

 		
 Atomic Policies

 		
 Local Array Memory Policies

 		
 RAJA Kernel Execution Policies

 		
 Indices, Segments, and IndexSets

 		
 Indices

 		
 Segments

 		
 IndexSets

 		
 View and Layout

 		
 RAJA View

 		
 RAJA Layout

 		
 RAJA Index Mapping

 		
 Reduction Operations

 		
 Reduction Types

 		
 Reduction Policies

 		
 Atomics

 		
 Atomic Operations

 		
 Atomic Policies

 		
 Scans

 		
 Scan Operations

 		
 RAJA Inclusive Scans

 		
 RAJA Exclusive Scans

 		
 RAJA Scan Operators

 		
 Scan Policies

 		
 Local Array

 		
 Memory Policies

 		
 Loop Tiling

 		
 Application Considerations

 		
 RAJA Tutorial

 		
 A Little C++ Lambda Background

 		
 Elements of C++ Lambda Expressions

 		
 Notes About C++ Lambdas

 		
 RAJA Examples

 		
 Simple Loops and Basic RAJA Features

 		
 Vector Addition (Basic Loop Execution)

 		
 Vector Dot Product (Sum Reduction)

 		
 Iteration Spaces: IndexSets and Segments

 		
 Mesh Vertex Sum Example: Iteration Space Coloring

 		
 Reductions

 		
 Computing a Histogram with Atomic Operations

 		
 Parallel Scan Operations

 		
 Complex Loops: Transformations and Advanced RAJA Features

 		
 Matrix Multiplication (Nested Loops)

 		
 Nested Loop Interchange

 		
 Batched Matrix-Multiply (Permuted Layouts)

 		
 Stencil Computations (View Offsets)

 		
 Tiled Matrix Transpose

 		
 Matrix Transpose with Local Array

 		
 Using RAJA in Your Application

 		
 CMake Configuration File

 		
 Build Configuration Options

 		
 Setting Options

 		
 Available Options and Defaults

 		
 RAJA Host-Config Files

 		
 Plugins

 		
 CHAI

 		
 Contributing to RAJA

 		
 Forking RAJA

 		
 Developing a New Feature

 		
 Developing a Bug Fix

 		
 Creating a Pull Request

 		
 Tests

 		
 RAJA License

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

