

    
      
          
            
  
Welcome to Rain’s documentation!



	Overview
	What is in the box

	Future directions

	What we do NOT want to do

	Comparison with similar tools

	Roadmap





	Quickstart
	Introducing Rain Applications

	Writing your first Rain Application





	User’s Guide
	Basic terms

	Task definition and submission

	Fetching data objects

	Inter-task dependencies

	More outputs

	Object data types

	Object content types

	Constant data objects

	Built-in tasks

	Running external programs

	Python tasks

	Resources

	Attributes ‘spec’ and ‘info’

	Waiting for object(s) and task(s)

	Directories

	Mapping data objects onto filesystem

	Sessions





	Writing Own Executors
	Rust tasklib

	C++ tasklib

	Registration in governor

	Client API





	Installation, Running & Deployment
	Binaries

	Build via cargo

	Build from sources

	Starting infrastructure

	Arguments for program rain





	Examples
	Distributed cross-validation with libsvm





	Python API
	Client API

	Remote Python tasks





	Contributors’s Guide
	Scripts

	Testing

	Dashboard












Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Overview

Rain is an open-source distributed computational framework for large-scale
task-based pipelines.

Rain aims to lower the entry barrier to the world of distributed computing and
to do so efficiently and within any scale. Our intention is to develop a light
yet robust distributed framework that features an intuitive Python [https://www.python.org/] API,
straightforward installation and deployment with insightful monitoring on top.


Note

Despite that this is an early release of Rain, it is a fully functional
project that can be used out-of-the box. Being aware that there is still
a lot that can be improved and added, we are looking for external
users and collaborators to drive our future work, both enthusiasts, from the
industry and the scientific community. Talk to us online at Gitter [https://gitter.im/substantic/rain] or via email
and let us know what your project needs and use-cases, submit bugs or feature
requests at GitHub [https://github.com/substantic/rain] or even contribute with pull requests.




	Dataflow programming. Computation in Rain is defined as a flow graph of
tasks. Tasks may be built-in functions, Python code, or an external
applications, short and light or long-running and heavy. The system is
designed to integrate any code into a pipeline, respecting its resource
requirements, and to handle very large task graphs (hundreds thousands tasks).


	Easy to use. Rain was designed to be easy to deployed anywhere, ranging
from a single node deployments to large-scale distributed systems and clouds
ranging thousands of cores.


	Rust core, Python API. Rain is written in Rust [https://www.rust-lang.org/en-US/] for safety and efficiency
and has a high-level Python API to Rain core infrastructure, and even supports
Python tasks out-of-the-box. Nevertheless, Rain core infrastructure provides
a language-independent interface that does not prevent adding support for
other languages in the future.


	Tasks in Python/C++/Rust Rain provides a way to define user-defined tasks
in Python, C++, and Rust.


	Monitoring Rain is designed to support both online and postmortem
monitoring.




** Get started now. **


What is in the box

Rain infrastructure composes of a central server component and governor
components, that may run on different machines. A governor may spawn one or more
executors that are local processes that provides execution of an external
code. Rain is distributed with Python executor. Rain also provides libraries
for C++ and Rust for writing own specialized executors.

Users interacts with server via
client applications. Rain is distributed with Python client API.


[image: Connection between basic components of Rain]


Python Client



	Task-based programming model.


	High-level interface to Rain core infrastructure.


	Easy definition of various types of tasks and their inter-dependencies.


	Python3 module.










Rain Core Infrastructure



	Basic scheduling heuristic respecting inter-task dependencies.


	Rust implementation enabling easy build, deployment, and reliable run.


	Distributed as all-in-one binary.


	Direct governor-to-governor communication.


	Basic dashboard for execution monitoring.










Executors



	Possibility to define own tasks in Python, C++, and Rust












Future directions

There are many things to improve and even more new things to add. To work
efficiently we need to prioritize, and for that we need your feedback and use
cases. Which features would you like to see and put to good use? What kind of
pipelines do you run?


Better dashboard

Better interactive view on the current and past computation status, including
post-mortem analysis. Which stats and views give you the most insight?




Better scheduler

While surprisingly efficient, the current scheduler is currently mostly based on
heuristics and rules. We plan to replace it with an incremental global scheduler
based on belief propagation.




Resiliency

The current version supports and propagates some failures (remote python task
exceptions, external program errors) but other errors still cause server panic
(e.g. governor node failure). The near-term goal is to have better failure modes
for introspection and possibly recovery. The system is designed to allow
building resiliency against task or governor failures via checkpoints in the task
graph (keeping file copies). It is not clear how useful to our users this would
be but it is on our radar.




Resources

Currently, the only resources supported are CPU cores. We are working on also
supporting memory requirements, but other resources (GPUs, TPUs, disk space,
…) should be possible with enough work and interest.




Stream objects support

Some tasks work in a streaming fashion and it would be inefficient to wait for
their entire output before starting a consumer task. We plan to include
streaming data objects but there are semantic and usage issues about resources,
scheduling, multiple consumers and resiliency.




REST client interface

The capnp API is a bit heavy-handed for a client API. We plan to create a REST
API for the client applications, simplifying API creation in new languages, and
to unify it with the dashboard/status query API. External REST apis are
convenient for many users and they do not seem to be a performance bottleneck.




Easier Deployment in cloud settings

The Rust binary is already one statically linked file and one python-only
library, making distribution easy and running on PBS is already supported. We
would like to add better support for cloud settings, e.g. AWS and Kubernetes.






What we do NOT want to do

There are also some directions we do NOT intend to focus on in the scope of Rain.


Visual editor

We do not plan to support visual creation and editing of pipelines. The scale of
reasonably editable workflows is usually very small. We focus on clean and easy
client APIs and great visualization.




User isolation and task sandboxing

We do not plan to limit malicious users or tasks from doing any harm. Use
existing tools for task isolation. The system is lightweight enough to have one
instance per user if necessary.




Fair user scheduling, accounting and quotas

When running multiple sessions, there is no intention to fairly schedule or
prioritize them. The objective is only overall efficient resource usage.






Comparison with similar tools

TODO




Roadmap

https://github.com/substantic/rain/issues/26







          

      

      

    

  

    
      
          
            
  
Quickstart


Introducing Rain Applications

Rain Applications are programs defined on client side and executed on
Rain infrastructure using the Rain API. Rain automaticaly distributes
execution of the applications in a distributed environment.

Rain Applications follows the paradigm of task oriented programming. Basic
building blocks for every Rain App are tasks - generic abstraction units
representing various kinds of computations ranging from native Python tasks to
3rd party software.

Rain tasks may be arbitrarily* chained together and so provide complex
high-level functionality.




Writing your first Rain Application

This section demonstrate how to start Rain infrastructure locally and execute
a simple “Hello world” application.


	Start Rain infrastructue Although, the components of Rain (server and
governor(s)) can be started manually, in order to simplify this process, we
provide “rain start” command to do it for you automatically. The following
command starts server and one local governor. (Starting Rain infrastructure on
distributed systems is described in Starting infrastructure.):

$ rain start --simple







	Running “Hello World” example. The following Python program creates a task
that joins two strings (This example is more explained in Section
tasks-and-objs.):

from rain.client import Client, tasks, blob

# Connect to server
client = Client("localhost", 7210)

# Create a new session
with client.new_session() as session:

    # Create task (and two data objects)
    task = tasks.Concat((blob("Hello "), blob("world!"),))

    # Mark that the output should be kept after submit
    task.output.keep()

    # Submit all crated tasks to server
    session.submit()

    # Wait for completion of task and fetch results and get it as bytes
    result = task.output.fetch().get_bytes()

    # Prints 'Hello world!'
    print(result)















          

      

      

    

  

    
      
          
            
  
User’s Guide


Basic terms

Task is a basic unit of work in Rain, it reads inputs and produces outputs.
Tasks are executed on computational nodes (computers where Rain governors are
running). Tasks can be external programs, python functions, and basic built-in
operations.

Data objects are objects that are read and created by tasks. Data objects
are immutable, once they are created they cannot be modified. They are generic
data blobs or directories with accompanying metadata. It is upto tasks to
interpret the data object content.




Task definition and submission

Rain represents your computation as a graph of tasks and data objects. Tasks are
not eagerly executed during the graph construction. Instead, the actual
execution is managed by Rain infrastructure after an explicit submission. This
leads to a programming model in which you first only define a graph and then
execute it.

Let us consider the following example, where two constant objects are created
and merged together:

from rain.client import Client, tasks, blob

client = Client("localhost", 7210)  # Create a connection to the server
                                    # running at localhost:7210

with client.new_session() as session:  # Creates a session

    a = blob("Hello ")    # Create a definition of data object in the current session
    b = blob("world!")    # Create a definition of data object in the current session
    tasks.Concat([a, b])  # Create a task definition in the current session
                          # that concatenates input data objects

    session.submit()      # Send the created graph into the server, where the computation
                          # is performed.
    session.wait_all()    # Wait until all submitted tasks are completed





The graph composed in the session looks as follows:


[image: Example of task graph]

When the graph is constructed, all created objects and tasks are put into the
active session. In many cases, it is sufficient just to create one session for
whole program lifetime, with one submit at the end. However, it is possible to
create more sessions or built a graph gradually with more submits. More details
are covered in Section Sessions.




Fetching data objects

Data objects produced by tasks are not transferred back to the client
automatically. If needed, this can be done using the fetch() method. It
returns rain.common.DataInstance that wraps data together with some
additional information. To get raw bytes from rain.common.DataInstance
you can call method get_bytes().

In the following example, we download the result back to the Python client
code. Expression t.output refers to the data object that is the output
of task t:

from rain.client import Client, tasks, blob

client = Client("localhost", 7210)

with client.new_session() as session:
    a = blob("Hello ")
    b = blob("world!")
    t = tasks.Concat((a, b))
    t.output.keep()            # Tell server to keep result of task

    session.submit()           # Submit task graph

    result = t.output.fetch()  # Download result from the server
    print(result.get_bytes())  # Prints b'Hello world!'





By default, Rain automatically removes data objects that are no longer needed
for further computation. Method keep() sets a flag to a given data object
that instructs the server to keep the object until the client does not
explicitly frees it. An object can be freed when the session is closed or when
unkeep() method is called. Method keep() may be called only before the
submit. Method unkeep() may be called on any “kept” object any time.

If method fetch() is called and the object has not been finished yet, the
method blocks until the object is not finished. Note that this is the reason,
why we did not use wait_all() in this example.




Inter-task dependencies

Naturally, an output of a task may be used as an input for another task. This
is demonstrated by the following example. In the example, we use
tasks.Sleep(O, T) that creates a task taking an arbitrary data object O
and waits for T seconds and then returns O as its output. Being aware
that such task is not very useful in practice, we find it useful as an
intuitive example to demostrate the concept of task chaining:

from rain.client import Client, tasks, blob

client = Client("localhost", 7210)

with client.new_session() as session:
    a = blob("Hello ")
    b = blob("world!")
    t1 = tasks.Sleep(b, 1.0)   # Wait for one second and then returns 'b'
    t2 = tasks.Concat((a, t1.output))
    t2.output.keep()

    session.submit()           # Submit task graph

    result = t2.output.fetch()  #  It will wait around 1 second
                                #  and then returns b'Hello world'





If a task produces only a single output, we can ommit .output and directly
use the task as an input for another task. In our example, we can define t2
as follows:

t2 = tasks.Concat((a, t1))





This shortened notation is used in the rest of the text.




More outputs

A task may generally create zero, one, or more outputs. All outputs are
accessible via attribute outputs. That contains an instance of
rain.common.LabeledList. It is an extension of a standard list
(indexed from zero), that also allows to be accessed via string labels.

# The following task creates two outputs labeled "output1" and "output2" with
# an equivalent of 'cat data | tee output1 > output2'.
t = tasks.Execute(["tee", Output("output1")], stdout="output2", stdin=data)

t.outputs["output1"]  # Access to output "output1"
t.outputs["output2"]  # Access to output "output2"

# There is also some helper functions:
# Keep all outputs (equivalent to: for o in t.outputs: o.keep())
t.keep_outputs()

# After submit
# Fetch all outputs (equivalent to: [o.fetch() for o in t.outputs])
t.fetch_outputs()





If a task has more than one output or zero outputs, then accessing attribute
.output throws an exception. Attribute .outputs is always availble
independently on the number of outputs.




Object data types

Every data object represents either a single binary data blob or a directory.
Since these two object data types behave very differently, they are
distinguished and checked already when constructing the computation graph.
The data type may be one of:


	‘blob’ - Binary data block. May have a Object content types specified.


	‘dir’ - Directory structure, see section Directories.




We consider developing other data object “modes”, e.g. streams.




Object content types

Binary data objecs represent different type of data in different formats.
The Rain infrastructure treats all data objects as raw binary blobs,
and it is up to tasks to interpret them. Content type is a string identifier
of the format of the data in tasks and clients. Python code also recognize
some of content types and allows to deserialize them directly.

Currently recognized content types are:



	‘’ - Raw binary data, unknown or unspecified content type


	‘pickle’ - Serialized Python object


	‘cloudpickle’ - Serialized Python object via Cloudpickle


	‘json’ - Object serialized into JSON


	‘cbor’ - Object serialized into CBOR


	‘arrow’ - Object serialized with Apache Arrow


	‘text’ - UTF-8 string.


	‘text-<ENCODING>’ - Text with specified encoding


	‘mime/<MIME>’ - Content type defined as MIME type


	‘user/<TYPE>’ - User defined type, <TYPE> may be arbitrary string







An object may have two different content-types: First, a type is specified
when constructing the task graph. Second, the type may be set by the task
executor dynamically (e.g. depending on some input data).
If present, the latter is taken to be the actual content type and must
be a sub-type of the former.
Any type is considered a subtype of the unspecified type.




Constant data objects

Function rain.client.blob() serves for a creation of a constant data
object. The content of the data object is uploaded to the server together with
the task graph.

from rain.client import blob, pickled
blob(b"Raw data")  # Creates a data object with a defined content
blob(b"Raw data", label="input data")  # Data with a non-default label
                                       # (Default label is 'const')
blob("String data")  # Creates a data object from a string, the content type
                     # is set to 'text'
blob("[1, 2, 3, 4]", content_type="json")  # Data with a specified content type
blob([1, 2, 3, 4], encode="json")  # Serialize python object to JSON and set
                                   # content type to "json"
blob([1, 2, 3, 4], encode="pickle")  # Serialize python object by pickle
                                     # content type to "pickle"
pickled([1, 2, 3, 4])  # Short-cut for blob(..., encode="pickle")








Built-in tasks

The following tasks are supported directly by the Rain governor:


	Concat (rain.client.tasks.Concat)

	Concatencates inputs into one resulting blob.



	Load, LoadDir (rain.client.tasks.Load, rain.client.tasks.LoadDir)

	Creates data object from an external file or direftory.
(Note: The current version does not support tracking external resources;
therefore, this operation “internalizes” the file, i.e. it makes a copy
of it into the working directory.)



	Store (rain.client.tasks.Store)

	Saves data object to a filesystem.
The data are saved into local file system of the governor on which the
task is executed. This task is usually used for saving files to
a distributed file system, hence it does not matter which governor
performs the task.



	Sleep (rain.client.tasks.Sleep)

	Task that forwards its input as its
output after a specified delay. Mostly for testing and benchmarking.



	Execute (rain.client.tasks.SliceDirectory)

	Run an external program with given inputs, parameters and resources.
See rain.client.Program if you execute a program repeatedly
with different data.



	MakeDirectory (rain.client.tasks.MakeDirectory)

	Tasks that creates a directory combining the inputs under given paths.



	SliceDirectory (rain.client.tasks.SliceDirectory)

	Tasks that extracts a file or subdirectory from a directory object.





# This example demonstrates usage of four built-in tasks
from rain.client import tasks, Client, blob

client = Client("localhost", 7210)

with client.new_session() as session:

    # Create tasks opening an external file
    data1 = tasks.Load("/path/to/data")

    # Create a constant object
    data2 = blob("constant data")

    # Merge two objects
    merge = tasks.Concat((data1, data2))

    # Sleep for 1s
    result = tasks.Sleep(merge, 1.0)

    # Write result into file
    tasks.Store(result, "/path/to/result")

    session.submit()
    session.wait_all()





(Examples for the directory-related tasks are in section Directories)




Running external programs


Task tasks.Execute

The whole functionality is built around built-in task
rain.client.tasks.Execute. When a program is executed through
rain.client.tasks.Execute, then a new temporary directory is created.
This directory will be removed at the end of program execution. The current
working directory of the program is set to this directory.

The idea is that this directory is program’s sandbox where input data objects
are mapped and files created in this directory may be moved out as new data
objects when computation completes. Therefore, in contrast with many other
workflow systems, programs in rain should not be called with absolute paths in
arguments but use relative paths (to stay in its working directory).
Governors try to avoid unnecessary data object replication in the cases when
a data object is used by multiple tasks that run on the same governor.

If the executed program terminates with a non-zero code, then tasks fails and
content of standard error output is written into the error message.

The simple example looks as follow:

tasks.Execute("sleep 1")





This creates a task with no inputs and no outputs executing program “sleep”
with argument “1”. Arguments are parsed in shell-like manner.
Arguments can be also specified explicitly as a list:

tasks.Execute(("sleep",  "1"))





Command may be also interpreted by shell, if the argument shell=True is
provided:

tasks.Execute("sleep 1 && sleep 1", shell=True)








Outputs

Files created during task execution or task standard output can be used as the
output of rain.client.tasks.Execute. The following example calls program
wget that downloads web page at https://github.com/ and saves it as
index.html. The created file is forwarded as the output of the task.

from rain.client import Client, task, Output

client = Client("localhost", 7210)

with client.new_session() as session:
    t = tasks.Execute("wget https://github.com/",
                       output_paths=[Output("index", path="index.html")])
    t.output.keep()

    session.submit()
    result = t.output.fetch().get_bytes()





The class rain.client.Output allows to configure the outputs.
The first argument is the label of the output. The argument path sets the
path to the file used as output.
It is a relative path w.r.t. the working directory of the
task. If the path is not defined, then label is used as path; e.g.
Output("my_output") is equivalent to Output("my_output",
path="my_output"). The Output instance can be also used for specification of
additional attributes such content type or size hint. Please see the class
documentation for more details.

If we do not want to configure the output, it is possible to use just a string
instead of instance of Output. It creates the output with the same label
and path as the given string.
Therefore we can create the previous task as follows:

t = tasks.Execute("wget https://github.com/", output_paths=["index.html"])





The only difference is that label of the output is now “index.html” (not
“index”).

Of course, more than one output may be specified. Program wget allows to
redirect its log to a file through --output-file option:

t = tasks.Execute("wget https://github.com/ --output-file log",
                  outputs_paths=["index.html", "log"])





This creates a task with two outputs with labels “index.html” and “log”.
The outputs are available using standard syntax, e.g. t.outputs["log"].

Outputs can be also passed directly as program arguments.
This is a shortcut for two actions: passing the output path as an argument
and putting output into output_paths.
The example above can be written as follows:

t = tasks.Execute(["wget", "https://github.com/", "--output-file", Output("log")],
                  output_paths=["index.html"])





The argument stdout allows to use program’s standard output:

# Creates output from stdout labelled "stdout"
tasks.Execute("ls /", stdout=True)

# Creates output from stdout with label "my_label"
tasks.Execute("ls /", stdout="my_label")

# Creates output through Output object, argument 'path' is not allowed
tasks.Execute("ls /", stdout=Output("my_label"))








Inputs

Data objects can be mapped into the working directory of
rain.client.tasks(). The simplest case is to use a data object directly
as arguments for a program. In such case, the data object is mapped into
randomly named file and the name is placed into program arguments.
Note that files are by default mapped only for reading (and proctected by
setting file permissions). More options of mapping is described in
Mapping data objects onto filesystem.

from rain.client import Client, task, blob

client = Client("localhost", 7210)

with client.new_session() as session:
    data = blob(b"It is\nrainy day\n")

    # Maps 'data' into file XXX where is a random name and executes
    # "grep rain XXX"
    task = tasks.Execute(["grep", "rain", data], stdout=True)
    task.output.keep()

    session.submit()
    print(task.output.fetch().get_bytes())  # Prints b"rainy day"





For additional settings and file name control, there is
rain.client.Input, that is a counter-part for
rain.client.Output. It can be used as follows:

from rain.client import Client, task, Input

...

# It executes a program "a-program" with arguments "argument1" and "myfile"
# and while it maps dataobject in variable 'data' into file 'myfile'
my_data = ... # A data object
task = tasks.Execute(["a-program", "argument1",
                      Input("my_label", path="myfile", dataobj=my_data)])





The argument input_paths of rain.client.tasks.Execute serves to map
a data object into file without putting its filename into the program
arguments:

# It executes a program "a-program" with arguments "argument1"
# and while it maps dataobject in variable 'data' into file 'myfile'
tasks.Execute(["a-program", "argument1"],
              input_paths=[Input("my_label", path="myfile", dataobj=my_data)])





The argument stdin serves to map a data object on the standard input of the
program:

# Executes a program "a-program" with argument "argument1" while mapping
# a data object on the standard input
tasks.Execute(["a-program", "argument1"], stdin=my_data)








Factory Program

In many cases, we need to call the same program with the same argument set.
Class rain.client.Program serves as a factory for
rain.client.tasks.Execute for this purpose. An instance of Program
can be called as a function that takes data objects; the call creates a task in
the active session.

from rain.client import Client, blob, Program, Input

rain_grep = Program(["grep", "rain", Input("my_input", path="my_file")], stdout=True)

client = Client("localhost", 7210)

with client.new_session() as session:
    data = blob(b"It is\nrainy day\n")

    # Creates a task that executes "grep rain my_file" where dataobject in variable
    # 'data' is mapped into <FILE>
    task = rain_grep(my_input=data)





Program accepts the same arguments as execute, including
input_paths, output_paths, stdin, and stdout. The only
difference is that in all places where data object could be used, Input
instance (without dataobj argument) has to be used, since Program
defines “pattern” indepedently on a particular session.






Python tasks

In addition to built-in tasks, Rain allows to run additional types of tasks via
executors. Rain is shipped with Python executor, that allows to execute
arbitrary Python code.


Decorator @remote

Decorator rain.client.remote() turns a python function into a
Rain task. Let us consider the following example:

from rain.client import Client, remote

@remote()
def hello(ctx):
    return "Hello world!"

client = Client("localhost", 7210)

with client.new_session() as session:
    t = hello()                # Create a task
    t.output.keep()
    session.submit()
    result = t.output.fetch()
    print(result)              # Prints b'Hello world!'





The decorator changes the behavior of the decorated function in a way that
calling it no longer executes it in the client but creates a task that executes
the function in a python executor. Governor starts and manages executors as
necessary, there is no need of any action from the user.

The decorated function should accept at least one argument. As the first
argument, the context of the execution is passed to the function. Context
enables some actions within the task. It is a convention to name this argument
as ctx.




Inputs

Decorated function may take more parameters than ctx; these parameters
define inputs of the task. By default, they can be arbitrary Python objects and
they are serialized via cloudpickle. If the decorated function is called
with a data object, it is invokend with rain.common.DataInstance that
contains data defined by the object:

from rain.client import Client, remote, blob

@remote()
def hello(ctx, data1, data2):
    return data1 + data2.get_bytes()

client = Client("localhost", 7210)
with client.new_session() as s:

    # Create data object
    data = blob("Rain!")

    # Creates a task calling function 'hello' in governor
    t = hello(b"Hello ", data)

    t.output.keep()
    s.submit()
    s.wait_all()

    # Prints b'Hello Rain!"
    print(t.output.fetch().get_bytes())





In remotely executed Python code, Rain data objects are replaced with actual
data instances. All occurences of data objects are replaced, even those
encapsulated in own data structures:

class MyClass:

    def __init__(self, my_data):
        self.my_data = my_data


 @remote()
 def my_call(ctx, input):
     # If we assume a call of this function as below,
     # we obtain an instance of MyClass where attribute 'my_data'
     # is list of instances of DataInstance
     return b""

 ...

 my_instance = MyClass([blob(b"data1"), blob(b"data2"), blob(b"data3")])
 task = my_call(my_instance)






Note

It is possible to pass also generators as arguments to remote functions, and
it works as expected. However, Rain has to include all data objects occuring
in related expressions as task dependencies. Therefore, you may create more
dependencies then expected. To avoid this problems, we recommend to evaluate
generators before passing to remote functions, especiialy if it is a
filtering kind of generator.



All metadata of data objects (including content type) are passed to the data
instances occuring in remote functions. Therefore, it is possible to call
method load() on data instances to deserialize objects according to
their content types:

@remote()
def fn1(ctx, data):
    # Load according content type. Throws an error if content type is not provided
    loaded_data = data.load()
    ...

# Automatically call load() on specific argument
@remote(inputs={"data": Input(load=True)})
def fn2(ctx, data):
    ....

# Automatically call load() on all arguments
@remote(auto_load=True)
def fn3(ctx, data):
    ....

# Example of calling:
data = blob([1,2,3,4], encode="json")
fn1(data)





The second case uses rain.client.Input to configure individual
parameters. It can be also used for additional configurations, like data-object
size hints for Rain scheduler, or content type specification:

# The following function asks for a dataobject with content type "json" as
# its argument. If the function is called the following happens:
# 1) If the input dataobject has content type "json", it is passed as it is
# 2) If the input dataobject has no content type (None), then content type "json"
     is set as the object content type
# 3) If the input dataobject has content type different from "json", the task fails

@remote(inputs={"data": Input(content_type="json")})
def fn1(ctx, data):
    pass








Outputs

By default, it is expected that a remote function returns one data object. It
may return an instance of bytes or str that will be used as content of
the resulting data object. If an instance of bytes is returned then the content
type of resulting object is None, if a string is returned then the content
type is set to “text”. A remote function may also return a data instance, when
you want to set additional attributes of data object. More outputs may be
configured via outputs attribute of remote:

@remote()
def fn1(ctx):
    return b"Returning bytes"

@remote()
def fn2(ctx):
    return "Returning string"

# Configuring more unlabaled outputs
@remote(outputs=3)
def fn3(ctx):
    (b"data1", b"data2", b"data3")

# No output
@remote(outputs=0)
def fn4(ctx):
     pass

# Configuring labeled outputs
@remote(outputs=("label1", "label2"))
def fn5(ctx):
     return {"label1": b"data1", "label2": b"data2"}

# Set content types of resulting objects
@remote(outputs=(Output(content_type="json"), Output(content_type="json"))
def fn6(ctx):
    return ("[1, 2, 3]", "{'x': 123}")

# Automatically encode resulting objects
@remote(outputs=(Output(encode="pickle"), Output(encode="json"))
def fn7(ctx):
    return ([1, 2, 3], {"x": 123})








Debug stream

Method debug on the context allows to write messages into debug stream that
can be found in task attribute “debug” and it is also part of an error message
when the task fails.

@remote()
def remote_fn(ctx):
    a = 11
    b = a + 10
    ctx.debug("Variable a = {}", a)
    ctx.debug("Variable b = {}", b)
    raise Exception("Error occured!")

# When this task is executed, you get the following error message:
#
# Exception: Error occured!
#
# Debug:
# Variable a = 11
# Variable b = 21








Type hints

If you are using sufficiently new Python (>=3.5), you can use type hints
to define outputs and inputs, e.g.:

@remote
def test1(ctx, a : Input(content_type="json")) -> Output(encode='pickle', label='test_pickle');
    pass










Resources

In the current version, the only resource that can be configured is the number
of cpus. This following example shows how to request a a specific number of
cpus for a task:

# Reserve 4 CPUs for execution of a program
tasks.Execute("a-parallel-program", cpus=4)

# Resere 4 CPUs for a Python task
@remote(cpus=4)
def myfunction(ctx):
    pass








Attributes ‘spec’ and ‘info’

Most of the information about the tasks and data objects falls into
two categories:


	The user-created specification data (spec).


	The information about the task execution and object computation (info).




These are stored and transmitted separately. Once the objects and tasks
are submitted, the spec is immutable. The info is initially empty
and is set by the governor (and in part by the task executor). When
a task or object is finished, info is also immutable.

The data is transmitted as JSON, attributes with values None,
empty strings and empty lists may be omitted when encoding.

A client may ask for info attributes of any task/object as long as session
is open; “keep” flag is not necessary. Attributes are not updated
automatically, fetch() or update() has to be called to update
attributes.


Error, debugn and user

The task info and object info share error attribute. When non-empty,
the task is assumed to have failed. You may specify error
of an object to indicate the error more precisely, but it usually
indicates a failure of the generating task.
Note that empty error is assumedto mean success even if explicitly present.

The debug attribute is intended for any log messages from Rain or the user,
especially for internal and external debugging. General node progress is
normally not logged here as it is contained in the Rain event log.
This is the only attribute that is not immutable once set and may be appended
to.

Both task and object info and spec have a user dictionary intended
for any JSON-serializable data for any purpose. The keys prefixed with _
are used internally in testing and development.




Task spec and info

Task spec ( ::rain.common.attributes.TaskSpec in Python)
has the following attributes:


	id - Task ID tuple, type rain.common.ID.


	task_type - The task-type identificator (e.g. “executor/method”).


	config - Any task-type specific configuration data, JSON-serializable.


	inputs - A list of input object IDs and labels as
::rain.common.attributes.TaskSpecInput
* id - Input object ID.
* label - Optional label.


	outputs - List of output object IDs.


	resources - Dictionary with resource specification.


	user - Arbitrary user json-serializable attributes.




Task info (::rain.common.attributes.TaskInfo in Python)
has the following attributes:


	error - Error message. Non-empty error indicates failure.


	start_time - Time the task was started.


	duration - Real-time duration in seconds (floating-point number).


	governor - The ID of the governor that executed this task.


	debug - Debugging log, usually empty.


	user - Arbitrary json-serializable objects.







Data object spec and info

Data object spec (::rain.common.attributes.ObjectSpec in Python)
has the following attributes:


	id - Object ID tuple, type rain.common.ID.


	label - Label (role) of this output at the generating task.


	content_type - Specified content type name, see content type.


	data_type - Object data type, "blob" or "dir".


	user - Arbitrary user json-serializable attributes.




Data object info (::rain.common.attributes.ObjectInfo in Python)
has the following attributes:


	error - Error message. Non-empty error indicates failure.


	size - Final size in bytes (approximate for directories).


	content_type - Content type after execution. Note that this must
be a sub-type of spec.content_type.


	debug - Debugging log, usually empty.


	user - Arbitrary json-serializable objects.







Python API

In the client, the attributes are available as spec and info on
rain.client.Task and rain.client.DataObject.

An example of fetching and querying the attributes at the client:

with client.new_session() as s:
    task = tasks.Execute("sleep 1")
    s.submit()

    s.wait_all()

    # Download recent attributes
    task.update()

    # Print name of governor where task was executed
    print(task.info.governor)





In the python executor and remote tasks, the object attributes are
available on the input rain.common.DataInstance, the
task attributes on the execution context (::rain.executor.context.Context).

An example of remote attribute manipulation:

@remote()
def attr_demo(ctx):
   # read user defined attributes
   foo = ctx.spec.user["foo"]

   # setup new "user_info" attribute
   ctx.info.user["bar"] = [1, 2, foo]

   # Write some debug log
   ctx.debug("Running at governor", ctx.info.governor)
   return b"Result"

with client.new_session() as session:
    task = attr_demo()
    task.spec.user["foo"] = 42
    session.submit()
    session.wait_all()
    task.update()

    # prints: [1, 2, 42]
    print(task.info.user["bar"])

    # prints the debug log
    print(task.info.debug)










Waiting for object(s) and task(s)

Waiting for a completion of a single task/object is done using the wait()
method directly on awaited task or data object. Multiple tasks/objects can be
awaited at once using the wait method with a set of tasks/obejcts on
session:

with client.new_session() as session:
    a = blob("Hello world")
    t1 = tasks.Sleep(a, 1.0)
    t2 = tasks.Sleep(a, 2.0)
    session.submit()

    t1.wait()  # This blocks until t1 is finished, independently of t2
    t2.output.wait()  # Waits until a data object is not finished

    # The same as two lines above, but since we are doing it at once, it is
    # slightly more efficient
    session.wait([t1, t2.output])






Note

Note that in the case of wait() (in contrast with fetch()), object
does not have to be marked as “kept”.






Directories

Rain allows to use directories in the similar way to blobs. Rain allows to
create directory data objects that can be passed to tasks.Execute(), remote
python code, and other places without any differences. There are only two
specific features:



	If a directory dataobject is mapped to a file system it is mapped as directory
(not as a file as in the case of blobs).


	If a directory is viewed as raw bytes (e.g. method get_bytes on data
instance), tar file is returned.







A data type of an object (blob/directory) is a part of the
task graph and has to be determinated during its construction. To specify it in
places where Input and Output classes are used, there are classes
rain.client.InputDir and rain.client.OutputDir.

from rain import

from rain.client import Client, tasks, blob, OutputDir, directory

client = Client("localhost", 7210)

with client.new_session() as session:

    # Creates a directory object from client's local file system
    # Recursively collects all files and directories in /path/to/dir
    d = directory("/path/to/dir")

    # Create blob data objects
    data1 = blob(b"12345")
    data2 = blob(b"67890")

    # Task that creates a directory from data objects
    d2 = tasks.MakeDirectory(tasks.make_directory([
         ("myfile.txt", data1),  # Map 'data1' as file 'myfile.txt' into directory
         ("adir", d),  # Map directory 'd' as subdir named 'adir'
         ("a/deep/path/x", data2),  # Map 'data2' as a file 'x'; all subdirs on path is created
    ])

    # Task taking a file from a directory data object
    d3 = tasks.SliceDirectory(d2, "a/deep/path/x")

    # Task taking a directory from a directory data object
    # This is indicated by  '/' at the end of the path.
    d3 = tasks.SliceDirectory(d2, "a/deep/")

    # Taking directory as outpout of task.execute
    tasks.Execute("git clone https://github.com/substantic/rain",
                  output_paths=[OutputDir("rain")])








Mapping data objects onto filesystem

Rain knows two methods of maping a data objects onto filesystem.


	write - creates a fresh copy of data objects is created on filesystem that
can be freely modified. Changes of the file is not propagated back to data
object.


	link - symlink to the internal storage of governor. The user can only read
this data. This method may silently fall back to ‘write’ when governor has no file
system representation of the object.




Task rain.client.tasks.Execute() maps files by link method.
It can be changed by write argument of Input:

# Let 'obj' contains a data object

# THIS IS INVALID! You cannot modified linked objects
tasks.Execute("echo 'New line' >> myfile", shell=True,
              input_paths=[Input("myfile", dataobj=obj)])

# This is ok. Writable copy of 'obj' is created.
tasks.Execute("echo 'New line' >> myfile", shell=True,
              input_paths=[Input("myfile", dataobj=obj, write=True)])





Data instance has methods write(path) and link(path) that performs the
mapping to a given path. They can be used on both in executor and in client.
Let us note that in the current version link in the client always falls back
to write. Example:

@remote()
def my_remote_function(ctx, input1):
    input1.write("myfile")  # Writes data into 'myfile' that can be edited
                            # without change of the original object
    input1.link("myfile2")  # Creates a read-only file system representation
                            # of data object






Warning

Read-only property in linking method is forced by setting up file rights.
Therefore, as far you do not change permissions of files/directories, you are
proctected against accidental modifications of data objects. If you change
permissions or content of linked data objects, the behavior is undefined. Let
us remind that Rain is designed only for execution of trusted codes.
Obviously this kind of isolation is not a protection against malicious
users.






Sessions


Overview

The client allows to create one or more sessions. Sessions are the environment
scopes where application create task graphs and submit them into the server.
Sessions follows the following rules:



	Each client may manage multiple sessions. Tasks and data object in different
sessions are independent and they may be executed simultaneously.


	If a client disconnects, all sessions created by the client are terminated,
i.e. running tasks are stopped and data objects are removed.
(Persistent sessions are not supported in the current version)


	If any task in a session fails, the session is labeled as failed, and all
running tasks in the session are stopped. Any access to tasks/objects in the
session will throw an exception containing error that caused the problem.
Destroying the session is the only operation that does not throw the exception.
Other sessions are not affected.










Active session

Rain client maintains a global stack of sessions and with block moves a
session on the top of the stack and removes it from the stack when the block
ends. The session on the top of the stack is called active session. The
following example demonstrates when a session is active:

from rain.client import Client, tasks, blob

client = Client("localhost", 7210)

# no session is active
with client.new_session() as a:

    # 'a' is active

    with client.new_session() as b:
        # 'b' is active
        pass

    # 'b' is closed and 'a' is active again

# 'a' is closed and no session is active





Tasks and data objects are always created within the scope of active session.


Note

Which session is active is always a local information that only influences
tasks and data objects creation. This information is not propagated to the
server. Submitted tasks are running regardless the session is active or not.






Closing session

Session may be closed manually by calling method close(), dropping the
client connection or leaving with block. To suppress the last named
behavior you can use the bind_only() method as follows:

session = client.new_session()

with session.bind_only():
    # 'session' is active
    pass

# 'session' is not active here; however it is NOT closed





Once a session is closed, it is pernamently removed from the session stack and
cannot be reused again.


Note

The server holds tasks’ and objects’ metadata (e.g. performance information) as
long as a session is alive. If you use a long living client with many sessions,
sessions should be closed as soon as they are not needed.






Multiple submits

The task graph does not have to be submmited at once; multiple submmits may
occur during the lifetime of a session. Data objects from previous submits
may be used while constructing a new new submit, the only condition is that
they have to be marked as “kept” explicitly.

with client.new_session() as session:
   a = blob("Hello world")
   t1 = tasks.Sleep(a, 1.0)
   t1.output.keep()

   session.submit()  # First submit

   t2 = tasks.Sleep(t1.output, 1.0)

   session.submit()  # Second submit
   session.wait_all()  # Wait until everything is finished

   t3 = tasks.Sleep(t1.output, 1.0)

   session.submit()  # Third submit
   session.wait_all()  # Wait again until everything is finished





Let us remind that method wait_all() waits until all currently running task
are finished, regardless in which submit they arrived to the server.









          

      

      

    

  

    
      
          
            
  
Writing Own Executors


[image: Connection between basic components of Rain]

This section covers how to write a new executor, i.e. how to create a program
that introduces new tasks type to Rain. A governor spawns and stops executors
as needed according tasks that are assigned to it. Each tasks always specifies
what kind of executor it needs.

There are generally two types of executors: Universal executors and
Specialized executors. The universal one allows to execute an arbitrary code
and specialized offers a fix of tasks that they provide.

The current version of Rain supports universal executor for Python. This is how
@remote() decorator works. It serializes a decorated function into a data
object and creates a task that needs Python executor that executes it.

For languages where code cannot be simply transferred in a portable way, Rain
offers tasklibs, a libraries for writing specialized executors. The current
version provides tasklibs for C++ and Rust. A tasklib allows to create a
stand-alone program that know how to communicate with governor and provides a
set of functions.

This sections shows how to write new tasks using tasklibs for C++ and Rust and
how to create run this tasks from client.

Note: Governor itself also provides some of basic task types, that are provided
through a virtual executor called buildin. You may see this “executor” in
dashboard.


Rust tasklib

The documentation for writing executor in Rust can be found at
https://docs.rs/rain_task/. Registration of an executor into a governor and
using client API are same for all executors (Registration in governor and
Client API).




C++ tasklib


Note

C++ tasklib is not fully finished. It allows to write basic task types, but
some of more advanced features (e.g. working with attributes) are not
implemented yet.




Getting started

The following code shows how to create an executor named “example1” that
provides one task type “hello”. This task takes one blob as the input,
and returns one blob as the output.

#include <tasklib/executor.h>

int main()
{
  // Create executor, the argument is the name of the executor
  tasklib::Executor executor("example1");

  // Register task "hello"
  executor.add_task("hello", [](tasklib::Context &ctx, auto &inputs, auto &outputs) {

      // Check that we been called exactly with 1 argument.
      // If not, the error message is set to context
      if (!ctx.check_n_args(1)) {
          return;
      }

      // This is body of our task, in our case, it reads the input data object
      // inserts "Hello" before the input and appends "!"
      auto& input1 = inputs[0];
      std::string str = "Hello " + input1->read_as_string() + "!";

      // Create new data instance and set it as one (and only) result
      // of the task
      outputs.push_back(std::make_unique<tasklib::MemDataInstance>(str));
  });

  // Connect to governor and serve registered tasks
  // This function is never finished.
  executor.start();
}








Building

To compile the example we need to creating following file structure:


	myexecutor


	myexecutor.cpp  – Source code of our example


	CMakeFile.txt – CMake configuration file. The content is below.


	tasklib – Copy of tasklib from Rain repository (located in rain/cpp/tasklib)








Content of CMakeFile.txt is following:

cmake_minimum_required(VERSION 3.1)
project(myexecutor)

add_subdirectory(tasklib)

add_executable(myexecutor
              myexecutor.cpp)

target_include_directories(myexecutor PUBLIC ${CBOR_INCLUDE_DIRS} ${CMAKE_CURRENT_SOURCE_DIR}/src)
target_link_libraries (myexecutor tasklib ${CBOR_LIBRARIES} pthread)





Now, we can build the executor as follows:

$ cd myexecutor
$ mkdir _build
$ cd _build
$ cmake ..
$ make










Registration in governor

When you write your own executors, you have to registrate them in the governor.
For this purpose, you have to create a configuration file for governor.

As an example, let us assume that we want to register called “example1”.

[executors.example1]
    command = "/path/to/executor/binary"





The configuration is in TOML format. If we save it as /path/to/config.toml
we can provide the path to the governor by starting as follows:

rain governor <SERVER_ADDRESS> --config=/path/to/config.toml





or if you are using “rain start”:

rain start --simple --governor-config=/path/to/config





More about starting Rain can be found at Starting infrastructure.




Client API

This section describes how to call own tasks from Python API.

Each task contains a string value called task_type that specifies executor
and function. It has format <EXECUTOR>/<FUNCTION>. So far we have created
(and registered) own executor called example1 that provides task hello.
The task type is ``example1/hello`.

The followig code creates a class Hello that serves for calling our task:

from rain.client import Task


class Hello(Task):
    """ Task takes one blob as input and puts b"Hello " before
        and "!" after the input. """

    TASK_TYPE = "example1/hello"

    def __init__(self, obj):
         # Define task with one input and one output,
         # Outputs may be a (labelled) list of data objects or a number.
         # If a number is used than it creates the specified number of blob outputs
         super().__init__(inputs=(obj,), outputs=1)





This class can be used to create task in task graph in the same way as tasks
from module rain.client.tasks, e.g.:

with client.new_session() as session:
    a = blob("Hello world")
    t = Hello(a)
    session.submit()
    print(t.output.fetch().get_bytes())  # prints b"Hello WORLD!"











          

      

      

    

  

    
      
          
            
  
Installation, Running & Deployment

Rain Distributed Execution Framework consists is an all-in-one binary.
Rain API is a pure Python package with a set of dependencies installable via pip.


Binaries

Rain provides a binary distribution for Linux/x64. The binary is almost fully
statically linked. The only dynamic dependancies are libc and sqlite3 (for logging
purpose).

Latest release can be found at https://github.com/substantic/rain/releases.
It can be downloaded and unpacked as follows:

$ wget https://github.com/substantic/rain/releases/download/v0.3.0-pre/rain-v0.3.0-pre-linux-x64.tar.xz
$ tar xvf rain-v0.3.0-pre-linux-x64.tar.xz





Installation of Python API:

$ pip3 install rain-python








Build via cargo

If you have installed Rust toolchain, you can use cargo to build
Rust binaries and skip manual download:

$ cargo install rain_server





Note that you still have to install Python API through pip:

$ pip3 install rain-python








Build from sources

For building from sources, you need Rust and SQLite3 (for logging) and Capnp
compiler (for compiling protocol files) installed on your system.

# Example for installation of dependencies on Ubuntu

# Installation of latest Rust
$ curl https://sh.rustup.rs -sSf | sh

# Other dependencies
$ sudo apt-get install capnproto libsqlite3-dev





For building Rain, run the following commands:

$ git clone https://github.com/substantic/rain
$ cd rain
$ cargo build --release





After the installation, the final binary can be found rain/target/relase/rain.

Installation of Python API:

$ cd python
$ python setup.py install








Starting infrastructure


Starting local governors

The most simple case is running starting server and one governor with all
resources of the local machine. The following command do all work for you:

$ rain start --simple





If you want to start more local governors, you can use the following command.
It starts two governors with 4 assigned cpus and one with 2 assigned cpus:

$ rain start --local-wokers=[4,4,2]








Starting remote governors

If you have more machines that are reachable via SSH you can use the following
command. We assume that file my_hosts contains addresses of hosts, one per
line:

$ rain start --governor-host-file=my_hosts





Let us note, that current version assumes that assumes for each host that Rain
is placed in the same directory as on machine from which command is invoked.

If you are running Rain inside PBS scheduler (probably if you are using an HPC
machine), then you can simple run:

$ rain start --autoconf=pbs





It executes governor on each node allocated by PBS scheduler.


Note

We recommended to reserve one CPU for server unless you have long runnig
tasks. This reservation can be done through cgroups, or CPU pinning.

Another option (with less isolation) is to use option -S:

$ rain start -S --governor-host-file=my_hosts





If a remote machine is actually localhost (and therefore runs Rain server)
then --cpus=-1 argument is used for the governor on that machine, i.e. the
governor will consider one cpu less on that machine.






Starting governors manually

If you need a special setup that is not covered by rain start you can
simply start server and governors manually:

$ rain server                    # Start server
$ rain governor <SERVER-ADDRESS>   # Start governor










Arguments for program rain


Synopsis

rain start --simple [--listen=ADDRESS] [--http-listen=ADDRESS]
         [-S] [--runprefix=CMD] [--logdir=DIR] [--workdir=DIR]
         [--governor-config=PATH]
rain start --autoconf=CONF [--listen=ADDRESS] [--http-listen=ADDRESS]
         [-S] [--runprefix=CMD] [--logdir=DIR] [--workdir=DIR]
         [--governor-config=PATH] [--remote-init=COMMANDS]
rain start --local-governors [--listen=ADDRESS] [--http-listen=ADDRESS]
         [-S] [--runprefix=CMD] [--logdir=DIR] [--workdir=DIR]
         [--governor-config=PATH]
rain start --governor-host-file=FILE [-S] [--listen=ADDRESS]
         [--http-listen=ADDRESS]
         [-S] [--runprefix=CMD] [--logdir=DIR] [--workdir=DIR]
         [--governor-config=PATH] [--remote-init=COMMANDS]

rain server [--listen=LISTEN_ADDRESS] [--http-listen=LISTEN_ADDRESS]
            [--logdir=DIR] [--ready-file=<FILE>]
rain governor [--cpus=N] [--workdir=DIR] [--logdir=DIR]
            [--ready-file=FILE] [--config=PATH] SERVER_ADDRESS[:PORT]
rain --version | -v
rain --help | -h








Command: start

Starts Rain infrastructure (server & governors), makes sure that everything is
ready and terminates.


	–simple

	Starts server and one local governor that gains all resources of the local
machine.



	–autoconf=CONF

	Automatic configuration from the environment. Possible options are:


	pbs - If executed in an PBS job, it starts server on current node and
governor on each node.






	–local-governors=RESOURCES

	Start local with a given number of cpus. E.g. –local-governors=[4,4,2]
starts three governors: two with 4 cpus and one with 2 cpus.



	–governor-config=PATH

	Path to governor config. It is passed as –config argument for all governors.



	–governor-host-file=FILE

	Starts local server and remote governors. FILE should be file containing
name of hosts, one per line.

The current version assumes the following of each host:


	SSH server is running.


	Rain is installed in the same directory as on the machine
from which that rain start is executed.






	-S

	Serves for reserving a CPU on server node. If remote governor
detects that it is running on the same machine as server then it
is executed with --cpus=-1.

The detection is based on checking if the server PID exists on the remote
machine and program name is “rain”.



	–listen=(PORT|ADDRESS|ADDRESS:PORT)

	Set listening address of server. Default is 0.0.0.0:7210.



	–http-listen=(PORT|ADDRESS|ADDRESS:PORT)

	Set listening address of server for HTTP (dashboard). Default is 0.0.0.0:8080.



	–runprefix

	Set a command before rain programs. It is designed to used to run
analytical tools (e.g. –runprefix=”valgrind –tool=callgrind”)



	–logdir=DIR

	The option is unchanged propagated into the server and governors.



	–workdir=DIR

	The option is unchanged propagated into governors.



	–remote-init=COMMAND

	Commands executed on each remote connection. For example:
--remote-init="export PATH=$PATH:/path/bin".








Command: server

Runs Rain server.


	–listen=(PORT|ADDRESS|ADDRESS:PORT)

	Set listening address of server. Default is 0.0.0.0:7210.



	–logdir=DIR

	Set logging directory of server. Default is /tmp/rain/logs/server-<HOSTNAME>-PID.



	–ready-file=FILE

	Create file containing a single line “ready”, when the server is fully initialized
and ready to accept connections.








Command: governor

Runs Rain governor.


	SERVER_ADDRESS[:PORT]

	An address where a server listens. If the port is omitted than port 7210 is
used.



	–config=PATH

	Set a path for a governor config.



	–cpus=N

	Set a number of cpus available to the governor (default: ‘detect’)


	If ‘detect’ is used then the all cores in the machine is used.


	If a positive number is used then value is used as the number of available
cpus.


	If a negative number -X is used then the number of cores is detected and X
is subtracted from this number, the resulting number is used as the number
of available cpus.






	–listen=(PORT|ADDRESS|ADDRESS:PORT)

	Set listening address of governor for governor-to-governor connections. When port is
0 then a open random port is assigned. The default is 0.0.0.0:0.



	–logdir=DIR

	Set the logging directory for the governor. Default is
/tmp/rain/logs/governor-<HOSTNAME>-<PID>/logs.



	–ready-file=FILE

	Creates the file containing a single line “ready”, when the governor is
connected to server and ready to accept governor-to-governor connections.



	–workdir=DIR

	Set the working directory where the governor stores intermediate results.
The defautl is /tmp/rain/work/governor-<HOSTNAME>-<PID>


Warning

Rain assumes that working directory is placed on a fast device (ideally
ramdisk). Avoid placing workdir on a network file system.















          

      

      

    

  

    
      
          
            
  
Examples


Distributed cross-validation with libsvm

# =======================================================
# This example creates a simple cross-validation pipeline
# for libsvm tools over IRIS data set
#
# Requirements:
# 1) Installed svm-train and svm-predict
#    (libsvm-tools package on Debian)
# 2) IRIS data set in CSV format, e.g.:
#    https://raw.githubusercontent.com/pandas-dev/pandas/master/pandas/tests/data/iris.csv
# =======================================================

import os
from rain.client import Client, tasks, Program, Input, Output, remote

THIS_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_FILE = os.path.join(THIS_DIR, "iris.csv")
CHUNKS = 3


# Convert .csv to libsvm format
@remote()
def convert_to_libsvm_format(ctx, data):
    lines = [line.split(",") for line in data.get_str().rstrip().split("\n")]
    lines = lines[1:]  # Skip header
    labels = sorted(set(line[-1] for line in lines))

    result = "\n".join("{} 1:{} 2:{} 3:{} 4:{}".format(
        labels.index(line[4]),
        line[0], line[1], line[2], line[3]) for line in lines)
    return result


def main():

    # Program: SVM train
    # svm-train has following usage: svm-train <trainset> <model>
    # It reads <trainset> and creates file <model> with trained model
    train = Program(("svm-train", Input("data"), Output("output")))

    # Porgram: SVM predict
    # svm-predict has following usage: svm-predict <testdata> <model> <prediction>
    # It reads files <testdata> and <model> and creates file with prediction and
    # prints accuracy on standard output
    predict = Program(("svm-predict", Input("testdata"), Input("model"), Output("prediction")),
                    stdout=Output("accuracy"))

    # Connect to rain server
    client = Client("localhost", 7210)
    with client.new_session() as session:

        # Load data - this is already task, so load is performed on governor
        input_data = tasks.Load(DATA_FILE)

        # Convert data - note that the function is marked @remote
        # so it is not executed now, but on a governor
        converted_data = convert_to_libsvm_format(input_data)

        # Using unix command "sort" to shuffle dataset
        randomized_data = tasks.Execute(("sort", "--random-sort", converted_data), stdout=True)

        # Create chunks via unix command "split"
        chunks = tasks.Execute(("split", "-d", "-n", "l/{}".format(CHUNKS), randomized_data),
                            output_files=["x{:02}".format(i) for i in range(CHUNKS)]).outputs
                            # Note that we are taking "outputs" of the task here ==> ^^^^^^^^

        # Make folds
        train_sets = [tasks.Concat(chunks[:i] + chunks[i+1:]) for i, c in enumerate(chunks)]

        # Train models
        models = [train(data=train_set) for train_set in train_sets]

        # Compute predictions
        predictions = [predict(model=model, testdata=data) for model, data in zip(models, chunks)]

        # Set "keep" flag for "accuracy" output on predictions
        for p in predictions:
            p.outputs["accuracy"].keep()

        # Submit and wait until everything is not completed
        session.submit()
        session.wait_all()

        # Print predictions
        for p in predictions:
            print(p.outputs["accuracy"].fetch().get_str())


if __name__ == "__main__":
    main()











          

      

      

    

  

    
      
          
            
  
Python API

The Rain Pyton API consists of two domains that observe the
workflow graph differently, although the concepts are similar
and some classes are used in both contexts.


	Code run at the client, creating sessions and task graphs,
executing and querying sessions. There, the tasks are only
created and declared, never actually executed.


	Python code that runs inside remote Pyhton tasks on the governors.
This code has access to the actual input data, but only sees the adjacent
data objects (input and output).





Client API


Client

One instance per connection to a server.




Session

One instance per a constructed graph (possibly with multiple submits).
Tied to one Client.




Data objects

Tied to a Session.




Tasks

Tied to a Session.




Attributes




Input and Output

These are helper objects are used to specify task
input and output attributes. In particular, specifying
an Output is the preferred way to set properties of the
output DataObject.




Builtin tasks and external programs

Native Rain tasks to be run at the governors.




Data instance objects

Tied to a session and a DataObject. Also used in Remote Python tasks.




Resources


Note

TODO: Describe and document task resources.






Labeled list






Remote Python tasks

API for creating routines to be run at the governors.
Created by the decorating with remote (preferred) or
by Remote.

Whe specifying the remote task in the client code, the relevant classes are
Remote, Input, Output, RainException, RainWarning, LabeledList
and the decorateor remote.

Inside the running remote task, only
RainException, RainWarning, LabeledList, DataInstance and Context
are relevant.

The inputs of a Remote task are arbitrary python objects
containing a DataInstance in place of every DataObject,
or loaded data object if autoload=True or load=True is
set on the Input.

The remote should return a list, tuple or LabeledList of
DataInstance (created by Context.blob()), bytes or string.







          

      

      

    

  

    
      
          
            
  
Contributors’s Guide

We welcome contributions of any kind. Do not hesitate to open an GitHub issue or
contant us via email; this part of documentation is quite sparse.


Scripts


	utils/checks/stylecheck.sh – Runs code style checks (flake8 & dry cargo fmt)


	utils/checks/fullcheck.sh – Runs stylecheck.sh + all available tests


	utils/dist/make_release.py – Compiles release binary of Rain, creates Python package and
publishes release on GitHub







Testing

Rain contains two sets of tests:



	Unittests (in Rust)


	Integration tests (in Python)








Python tests

Python tests are placed in /rain/tests/pytests.

To execute them simply run py.test-3 in the root directory of Rain. The logs
are stored in rain/tests/pytests/work.

Important notes:



	Make sure you are running Python 3 py.test.


	Working directory rain/tests/pytests/work is fully cleaned before every
test! Therefore, if you want to see logs, make sure that no other test is
executed after the test you want to see. See options -x and -k of
py.test-3


	By default, Python tests run with rain binary located in
rain/target/debug/ directory. This path can be modified using
RAIN_TEST_BIN environment variable.












Dashboard

Rain Dashboard is implement in JavaScript over NodeJs. However, we do not want
to have Node.js as a hard dependency when Rain is built from sources. Therefore,
compiled form of Dashboard is included in Rain git repository. Neverthless, if
you want to work on Dashboard, you need to install Node.js.


Installation

(We assume that you have already installed Node.js.)

cd dashboard
npm install








Development

For development, just run:

npm start





It starts on Rain dashboard on port 3000. Now you can just edit dashboard
sources, without recompiling Rain binary. Dashboard in the development mode
assumes, that http rain server is running at localhost:8080. If you need, you
can change the address in dashboard/src/utils/fetch.js, but do not commit
this change, please.




Deployment

All Dashboard resources (including JS source codes) are included into Rain
binary. When Rain is compiled, files in dashboard/dist are read. To generate
dist directory from actual dashboard sources, you need to run:

cd dashboard
sh make_dist.sh





Then you need rebuild Rain (e.g. cargo build). When you finish work on
dashboard, do not forget to include files in dist into repository.









          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/ajax-loader.gif





_static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/down.png





_static/file.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Rain’s documentation!
        


        		
          Overview
          
            		
              What is in the box
              
                		
                  Python Client
                


                		
                  Rain Core Infrastructure
                


                		
                  Executors
                


              


            


            		
              Future directions
              
                		
                  Better dashboard
                


                		
                  Better scheduler
                


                		
                  Resiliency
                


                		
                  Resources
                


                		
                  Stream objects support
                


                		
                  REST client interface
                


                		
                  Easier Deployment in cloud settings
                


              


            


            		
              What we do NOT want to do
              
                		
                  Visual editor
                


                		
                  User isolation and task sandboxing
                


                		
                  Fair user scheduling, accounting and quotas
                


              


            


            		
              Comparison with similar tools
            


            		
              Roadmap
            


          


        


        		
          Quickstart
          
            		
              Introducing Rain Applications
            


            		
              Writing your first Rain Application
            


          


        


        		
          User’s Guide
          
            		
              Basic terms
            


            		
              Task definition and submission
            


            		
              Fetching data objects
            


            		
              Inter-task dependencies
            


            		
              More outputs
            


            		
              Object data types
            


            		
              Object content types
            


            		
              Constant data objects
            


            		
              Built-in tasks
            


            		
              Running external programs
              
                		
                  Task tasks.Execute
                


                		
                  Outputs
                


                		
                  Inputs
                


                		
                  Factory Program
                


              


            


            		
              Python tasks
              
                		
                  Decorator @remote
                


                		
                  Inputs
                


                		
                  Outputs
                


                		
                  Debug stream
                


                		
                  Type hints
                


              


            


            		
              Resources
            


            		
              Attributes ‘spec’ and ‘info’
              
                		
                  Error, debugn and user
                


                		
                  Task spec and info
                


                		
                  Data object spec and info
                


                		
                  Python API
                


              


            


            		
              Waiting for object(s) and task(s)
            


            		
              Directories
            


            		
              Mapping data objects onto filesystem
            


            		
              Sessions
              
                		
                  Overview
                


                		
                  Active session
                


                		
                  Closing session
                


                		
                  Multiple submits
                


              


            


          


        


        		
          Writing Own Executors
          
            		
              Rust tasklib
            


            		
              C++ tasklib
              
                		
                  Getting started
                


                		
                  Building
                


              


            


            		
              Registration in governor
            


            		
              Client API
            


          


        


        		
          Installation, Running & Deployment
          
            		
              Binaries
            


            		
              Build via cargo
            


            		
              Build from sources
            


            		
              Starting infrastructure
              
                		
                  Starting local governors
                


                		
                  Starting remote governors
                


                		
                  Starting governors manually
                


              


            


            		
              Arguments for program rain
              
                		
                  Synopsis
                


                		
                  Command: start
                


                		
                  Command: server
                


                		
                  Command: governor
                


              


            


          


        


        		
          Examples
          
            		
              Distributed cross-validation with libsvm
            


          


        


        		
          Python API
          
            		
              Client API
              
                		
                  Client
                


                		
                  Session
                


                		
                  Data objects
                


                		
                  Tasks
                


                		
                  Attributes
                


                		
                  Input and Output
                


                		
                  Builtin tasks and external programs
                


                		
                  Data instance objects
                


                		
                  Resources
                


                		
                  Labeled list
                


              


            


            		
              Remote Python tasks
            


          


        


        		
          Contributors’s Guide
          
            		
              Scripts
            


            		
              Testing
              
                		
                  Python tests
                


              


            


            		
              Dashboard
              
                		
                  Installation
                


                		
                  Development
                


                		
                  Deployment
                


              


            


          


        


      


    
  

_static/up-pressed.png





_static/minus.png





_static/plus.png





_static/up.png





