
radproc Documentation
Release 0.1.0

Kreklow

May 30, 2018

Contents

1 Radproc’s Main Features 3
1.1 Raw Data processing . 3
1.2 Data Exchange with ArcGIS . 3
1.3 Analysis . 4

1.3.1 Getting Started . 4
1.3.2 Tutorials . 5
1.3.3 Library Reference . 15
1.3.4 Indices and tables . 29

Python Module Index 31

i

ii

radproc Documentation, Release 0.1.0

Release 0.1.0

Date May 30, 2018

Radproc is an open source Python library intended to faciliate precipitation data processing and analysis for ArcGIS-
users. It provides functions for processing, analysis and export of RADOLAN (Radar Online Adjustment) composites
and rain gauge data in MR90 format. The German Weather Service (DWD) provides the RADOLAN-Online RW
composites for free in the Climate Data Center (ftp://ftp-cdc.dwd.de/pub/CDC/grids_germany/hourly/radolan/) but
the data processing represents a big challenge for many potential users. Radproc’s goal is to lower the barrier for using
these data, especially in conjunction with ArcGIS. Therefore, radproc provides an automated ArcGIS-compatible data
processing workflow based on pandas DataFrames and HDF5. Moreover, radproc’s arcgis module includes a collection
of functions for data exchange between pandas and ArcGIS.

Contents 1

ftp://ftp-cdc.dwd.de/pub/CDC/grids_germany/hourly/radolan/

radproc Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Radproc’s Main Features

1.1 Raw Data processing

• Support for the reanalyzed RADOLAN products RW (60 min), YW and RY (both 5 min. resolution)

• Automatically reading in all binary RADOLAN composites from a predefined directory structure

• Optionally clipping the composites to a study area in order to reduce data size

• Default data structure: Monthly pandas DataFrames with full support for time series analysis and spatial location
of each pixel

• Efficient data storage in HDF5 format with fast data access and optional data compression

• Easy downsampling of time series

• Reading in DWD rain gauge data in MR90 format into the same data structure as RADOLAN.

1.2 Data Exchange with ArcGIS

• Export of single RADOLAN composites or analysis results into projected raster datasets or ESRI grids for your
study area

• Export of all DataFrame rows into raster datasets in a new file geodatabase, optionally including several statistics
rasters

• Import of dbf tables (stand-alone or attribute tables of feature classes) into pandas DataFrames

• Joining DataFrame columns to attribute tables

• Extended value extraction from rasters to points (optionally including the eight surrounding cells)

• Extended zonal statistics

3

radproc Documentation, Release 0.1.0

1.3 Analysis

• Calculation of precipitation sums for arbitrary periods of time

• Heavy rainfall analysis, e.g. identification, counting and export of rainfall intervals exceeding defined thresholds

• Data quality assessment

• Comparison of RADOLAN and rain gauge data

• In preparation: Erosivity analysis, e.g. calculation of monthly, seasonal or annual R-factors

1.3.1 Getting Started

System requirements

To be able to use all features offered by radproc, you need. . .

• a 64-Bit operating system (32-Bit systems can not allocate more than 3 GB memory, which is not sufficient for
radar data processing)

• Python version 2.7 (64-Bit). It is strongly recommended to use the Anaconda distribution since this already
includes all needed scientific site-packages.

• ArcMap version 10.4 or newer

• ArcGIS 64-Bit background processing

• for processing of RADOLAN data in 5-minute resolution at least 16 GB RAM are recommended

Installation

First, install ArcMap for Desktop and its extension 64-Bit background processing.

Next, download and install the latest Anaconda distribution from https://www.anaconda.com/download/ (Windows,
64-Bit, Python version 2.7).

radproc is currently distributed as wheel file for Python version 2.7 on Windows operating systems (64-Bit only!). You
can download the radproc wheel from the GitHub repository at https://github.com/jkreklow/radproc/tree/0.1.0/dist

To install radproc using Anaconda and pip. . .

1. Open the Windows terminal by typing CMD into the Windows search (Administrator rights may be necessary!).

2. Type:

pip install C:\path\to\wheelfile\radproc_wheel.whl

Now radproc is automatically installed into your Anaconda root environment. You can check by opening Spyder
or Jupyter Notebook and entering:

import radproc

3. To enable your Anaconda distribution to “see” the arcpy package from your separate ArcGIS
Python installation, you need to copy the Path file DTBGGP64.pth which is usually located at
C:\Python27\ArcGISx6410.4\Lib\site-packages into the corresponding site-packages folder of your Anaconda
distribution, e.g. C:\ProgramData\Anaconda2\Lib\site-packages

To check if arcpy is now visible for Anaconda, import arcpy to Spyder or Jupyter Notebook:

4 Chapter 1. Radproc’s Main Features

https://www.anaconda.com/download/
https://github.com/jkreklow/radproc/tree/0.1.0/dist

radproc Documentation, Release 0.1.0

import arcpy

File system description

File system and processing workflow used by radproc.

1.3.2 Tutorials

These tutorials aim to help you getting started with radproc. More tutorials are in progress. . .

Tutorial 1: Raw Data Processing with Radproc

This tutorial will show you how to get started with RADOLAN processing and import your raw hourly RW data into
HDF5.

Note: For this approach ArcMap is required!

1. Import radproc

In [1]: import radproc as rp

2. Unzip Raw Data Archives

The RADOLAN RW product is usually provided as monthly tar.gz archives by the German Weather Service (DWD).
These have to be unzipped in order to import the contained hourly binary files. The radproc function

1.3. Analysis 5

radproc Documentation, Release 0.1.0

unzip_RW_binaries(zipFolder, outFolder)

can be used to unzip all archives in one directory into the directory tree format needed by the following radproc
functions. Moreover, as the binary files themselves might not be zipped, all binary files are automatically compressed
to .gz files to save disk space.

In [2]: RW_original = r"O:\Data\RW_archives"
RW_unzipped = r"O:\Data\RW_unzipped"

rp.unzip_RW_binaries(zipFolder=RW_original, outFolder=RW_unzipped)

Side Note: To unzip the YW or RY products, which might be provided as monthly archives which contain daily
archives with the actual binary files, you can use the function

unzip_YW_binaries(zipFolder, outFolder)

The further processing workflow is the same for all products except that you need more memory space and patience
(or a smaller study area) to process the products with higher temporal resolution.

Side Note: If you already have unpacked binary files (e.g. after download of recent RADOLAN-Online files from
Climate Data Center) you can skip this step, but you need to make sure that the files are saved in monthly directories
(if you have data for more than one month) to make all functions of radproc work correctly.

3. Import Unzipped Data into HDF5

To import all RW data you have just unzipped into an HDF5 file - optionally clipping the data to a study area - you
can apply

create_idraster_and_process_radolan_data(inFolder, HDFFile, clipFeature=None,
→˓complevel=9)

Behind the scenes, this function will. . .

• create an ID-raster for Germany in ArcGIS, called idras_ger,

• if you specified a Shapefile or Feature-Class as clipFeature: Clip the german ID-raster to the extent of the
clipFeature and create a second ID-raster called idras,

• import all RADOLAN binary files in a directory tree,

• select the data for your study area based on the generated ID-raster,

• convert the selected data into monthly pandas DataFrames and

• store all DataFrames in the specified HDF5 file.

The result of this function is a HDF5 file with all RADOLAN data of your study area ready for further analysis.

Note: This function works with RADOLAN-Online data as well as with the reanalyzed RADOLAN climatology data,
which differ in data size and location. All necessary information are extracted from the RADOLAN metadata or are
inherently contained within radproc.

More detailed information on the four function parameters are available in the library reference of the function.

In [3]: outHDF = r"O:\Data\RW.h5"
studyArea = r"O:\Data\StudyArea.shp"

rp.create_idraster_and_process_radolan_data(inFolder=RW_unzipped, HDFFile=outHDF, clipFeature=studyArea, complevel=9)

O:\Data\RW_unzipped\2016\5 imported, clipped and saved

6 Chapter 1. Radproc’s Main Features

radproc Documentation, Release 0.1.0

Now you are ready to start analyzing your data!

Tutorial 2: Aggregation to Precipitation Sums

This tutorial will show you, how to calculate precipitation sums from the data stored in HDF5 and how to export the
results to ArcGIS.

To import your RADOLAN data into the necessary HDF5 file, please follow the tutorial on raw data processing.

Example 1: Annual Precipitation Sums

In this example, the annual precipitation sums for the time period from 2001 to 2016 are calculated and exported to
ArcGIS.

1. Import radproc

In [1]: import radproc as rp

2. Load Data from HDF5 and Aggregate to Annual Precipitation Sums

The following function loads precipitation data of the specified time period (2001-2016) from an HDF5 file and
generates a DataFrame with annual precipitation sums for every raster cell.

In [2]: HDF = r"O:\Data\RW_2001_2016.h5"

annualSum = rp.hdf5_to_years(HDFFile=HDF, year_start=2001, year_end=2016)
Display the first five rows of the new DataFrame
annualSum.head()

Out[2]: Rasterzellen-ID 427005 427006 427903 427904 \
Datum (UTC)
2001-12-31 00:00:00+00:00 783.400024 809.500000 763.299988 773.500000
2002-12-31 00:00:00+00:00 967.700012 980.799988 951.000000 935.500000
2003-12-31 00:00:00+00:00 597.200012 614.200012 578.000000 583.000000
2004-12-31 00:00:00+00:00 795.000000 801.000000 772.000000 768.099976
2005-12-31 00:00:00+00:00 728.099976 710.799988 678.500000 676.799988

Rasterzellen-ID 427905 427906 428803 428804 \
Datum (UTC)
2001-12-31 00:00:00+00:00 779.700012 788.500000 769.500000 780.400024
2002-12-31 00:00:00+00:00 947.200012 950.700012 956.000000 960.700012
2003-12-31 00:00:00+00:00 592.200012 592.299988 573.400024 587.700012
2004-12-31 00:00:00+00:00 776.600037 792.799988 746.500000 767.099976
2005-12-31 00:00:00+00:00 730.200012 681.399963 671.400024 664.099976

Rasterzellen-ID 428805 428806 ... 661855 \
Datum (UTC) ...
2001-12-31 00:00:00+00:00 778.700012 783.000000 ... 1066.599976
2002-12-31 00:00:00+00:00 938.700012 955.400024 ... 1491.599976
2003-12-31 00:00:00+00:00 587.299988 589.600037 ... 697.600037
2004-12-31 00:00:00+00:00 779.000000 792.900024 ... 851.599976
2005-12-31 00:00:00+00:00 658.799988 666.299988 ... 914.799988

Rasterzellen-ID 661856 661857 662752 662753 \

1.3. Analysis 7

radproc Documentation, Release 0.1.0

Datum (UTC)
2001-12-31 00:00:00+00:00 1098.699951 1125.400024 994.000000 998.700012
2002-12-31 00:00:00+00:00 1529.500000 1539.199951 1383.099976 1387.500000
2003-12-31 00:00:00+00:00 696.099976 683.700012 670.400024 652.599976
2004-12-31 00:00:00+00:00 872.200012 869.799988 803.000000 802.000000
2005-12-31 00:00:00+00:00 922.900024 911.099976 847.799988 861.500000

Rasterzellen-ID 662754 662755 662756 663652 \
Datum (UTC)
2001-12-31 00:00:00+00:00 1020.599976 1056.099976 1075.200073 989.200012
2002-12-31 00:00:00+00:00 1407.400024 1478.099976 1488.800049 1380.400024
2003-12-31 00:00:00+00:00 638.400024 663.599976 668.599976 663.099976
2004-12-31 00:00:00+00:00 804.099976 825.099976 841.599976 806.000000
2005-12-31 00:00:00+00:00 868.099976 893.200012 903.299988 850.799988

Rasterzellen-ID 663655
Datum (UTC)
2001-12-31 00:00:00+00:00 1039.500000
2002-12-31 00:00:00+00:00 1467.099976
2003-12-31 00:00:00+00:00 648.000000
2004-12-31 00:00:00+00:00 813.700012
2005-12-31 00:00:00+00:00 872.500000

[5 rows x 23320 columns]

Note: All of radproc’s aggregation functions are intended for analysis of longer time periods and currently only work
for entire years starting in January! To resample smaller time periods, you can e.g. import and resample months
with

May2016 = rp.load_months_from_hdf5(HDFFile=HDF, year=2016, months=[5])
freq = 'M' # 'M' for monthly sums, 'D' for daily sums, 'H' for hourly sums
monthSum = May2016.resample(frequency=freq, closed = 'right', label = 'right').sum()

3. Export Results into ArcGIS Geodatabase

The following function exports all rows from the DataFrame calculated above into raster datasets in an ArcGIS File
Geodatabase. Optionally, different statistics rasters can be created, e.g. the mean or the maximum value of each cell.

In [3]: idRaster = r"O:\Data\idras"
outGDBPath = r"O:\Data"
GDBName = "Years_01_16.gdb"
statistics = ["mean", "max"]

rp.export_dfrows_to_gdb(dataDF=annualSum, idRaster=idRaster, outGDBPath=outGDBPath, GDBName=GDBName, statistics=statistics)

The resulting geodatabase will look like this in ArcGIS:

Example 2: Monthly Precipitation Sums

In this example, the monthly precipitation sums for the year 2016 are calculated and exported to ArcGIS.

1. Import radproc

In [4]: import radproc as rp

8 Chapter 1. Radproc’s Main Features

radproc Documentation, Release 0.1.0

Fig. 1: YearGDB

2. Load Data from HDF5 and Aggregate to Monthly Precipitation Sums

The following function loads precipitation data of the year 2016 from your HDF5 file and generates a DataFrame with
monthly precipitation sums for every raster cell.

In [5]: HDF = r"O:\Data\RW_2001_2016.h5"

monthlySum = rp.hdf5_to_months(HDFFile=HDF, year_start=2016, year_end=2016)
Display the first five rows of the new DataFrame
monthlySum.head()

Out[5]: Rasterzellen-ID 427005 427006 427903 427904 \
Datum (UTC)
2016-01-31 00:00:00+00:00 71.400002 71.900002 68.000000 69.099998
2016-02-29 00:00:00+00:00 68.699997 71.199997 61.500000 64.300003
2016-03-31 00:00:00+00:00 41.799999 41.299999 40.299999 39.900002
2016-04-30 00:00:00+00:00 55.700001 56.600002 51.799999 52.400002
2016-05-31 00:00:00+00:00 38.200001 40.600002 47.299999 44.799999

Rasterzellen-ID 427905 427906 428803 428804 \
Datum (UTC)
2016-01-31 00:00:00+00:00 70.099998 71.699997 65.500000 67.300003
2016-02-29 00:00:00+00:00 67.300003 68.400002 58.200001 61.700001
2016-03-31 00:00:00+00:00 40.099998 39.299999 37.700001 38.200001
2016-04-30 00:00:00+00:00 54.000000 55.299999 50.799999 51.200001
2016-05-31 00:00:00+00:00 39.400002 34.299999 46.799999 45.400002

Rasterzellen-ID 428805 428806 ... 661855 \
Datum (UTC) ...
2016-01-31 00:00:00+00:00 66.199997 69.800003 ... 128.199997
2016-02-29 00:00:00+00:00 65.000000 64.300003 ... 105.900002
2016-03-31 00:00:00+00:00 38.799999 37.500000 ... 65.500000
2016-04-30 00:00:00+00:00 52.799999 54.400002 ... 108.500000

1.3. Analysis 9

radproc Documentation, Release 0.1.0

2016-05-31 00:00:00+00:00 43.200001 38.500000 ... 121.299995

Rasterzellen-ID 661856 661857 662752 662753 \
Datum (UTC)
2016-01-31 00:00:00+00:00 129.500000 129.600006 120.199997 121.300003
2016-02-29 00:00:00+00:00 106.199997 110.099998 96.800003 96.699997
2016-03-31 00:00:00+00:00 64.400002 65.199997 70.000000 67.500000
2016-04-30 00:00:00+00:00 112.199997 115.400002 106.700005 106.500000
2016-05-31 00:00:00+00:00 119.300003 115.099998 128.100006 138.199997

Rasterzellen-ID 662754 662755 662756 663652 \
Datum (UTC)
2016-01-31 00:00:00+00:00 123.500000 125.699997 122.900002 118.099998
2016-02-29 00:00:00+00:00 100.099998 102.599998 101.400002 92.800003
2016-03-31 00:00:00+00:00 64.400002 65.099998 65.099998 69.800003
2016-04-30 00:00:00+00:00 107.699997 112.599998 114.300003 105.199997
2016-05-31 00:00:00+00:00 135.500000 124.300003 128.500000 130.199997

Rasterzellen-ID 663655
Datum (UTC)
2016-01-31 00:00:00+00:00 120.400002
2016-02-29 00:00:00+00:00 97.400002
2016-03-31 00:00:00+00:00 65.500000
2016-04-30 00:00:00+00:00 108.099998
2016-05-31 00:00:00+00:00 134.399994

[5 rows x 23320 columns]

3. Export Results into ArcGIS Geodatabase

The following function exports all rows from the DataFrame calculated above into raster datasets in an ArcGIS File
Geodatabase. Optionally, different statistics rasters can be created, in this case the mean, maximum and minimum
value of each cell as well as the range per cell.

In [6]: idRaster = r"O:\Data\idras"
outGDBPath = r"O:\Data"
GDBName = "Months_16.gdb"
statistics = ["mean", "max", "min", "range"]

rp.export_dfrows_to_gdb(dataDF=monthlySum, idRaster=idRaster, outGDBPath=outGDBPath, GDBName=GDBName, statistics=statistics)

The resulting geodatabase will look like this in ArcGIS:

Tutorial 3: Heavy Rainfall Analysis

This tutorial shows how to identify and count heavy rainfall intervals exceeding a specified threshold and export the
results to ArcGIS.

Example 1: Identification of Heavy Rainfall Intervals

1. Import radproc

In [1]: import radproc as rp

10 Chapter 1. Radproc’s Main Features

radproc Documentation, Release 0.1.0

Fig. 2: MonthGDB

2. Identify Heavy Rainfall Intervals

To identify and select all intervals exceeding a rainfall threshold x at least y times in season z, you can use the function

find_heavy_rainfalls(HDFFile, year_start, year_end, thresholdValue, minArea, season)

The following code will extract all intervals, in which an hourly precipitation of 30 mm is exceeded in at least five
cells (these don’t need to be adjacent cells!) in May 2016 in Hesse.

In [2]: HDF = r"O:\Data\RW.h5"

hr = rp.find_heavy_rainfalls(HDFFile=HDF, year_start=2016, year_end=2016, thresholdValue=30, minArea=5, season='May')
hr

Out[2]: Cell-ID 427005 427006 427903 427904 427905 427906 \
Date (UTC)
2016-05-27 16:50:00+00:00 0.0 0.0 0.0 0.0 0.0 0.0
2016-05-27 17:50:00+00:00 0.0 0.0 0.0 0.0 0.0 0.0
2016-05-28 14:50:00+00:00 0.0 0.0 0.1 0.1 0.0 0.0
2016-05-28 15:50:00+00:00 1.2 1.1 1.3 1.2 1.1 1.1
2016-05-28 17:50:00+00:00 0.0 0.0 0.0 0.0 0.0 0.0
2016-05-29 16:50:00+00:00 0.0 0.0 0.0 0.0 0.0 0.0
2016-05-29 23:50:00+00:00 0.0 0.2 0.3 0.2 0.2 0.1
2016-05-30 00:50:00+00:00 0.0 0.0 0.0 0.0 0.0 0.0

Cell-ID 428803 428804 428805 428806 ... 661855 \
Date (UTC) ...
2016-05-27 16:50:00+00:00 0.0 0.0 0.0 0.0 ... 0.0
2016-05-27 17:50:00+00:00 0.0 0.0 0.0 0.0 ... 0.0
2016-05-28 14:50:00+00:00 0.0 0.1 0.1 0.0 ... 0.1
2016-05-28 15:50:00+00:00 1.4 1.1 1.3 1.2 ... 4.7
2016-05-28 17:50:00+00:00 0.0 0.0 0.0 0.0 ... 4.2
2016-05-29 16:50:00+00:00 0.0 0.0 0.0 0.0 ... 0.0
2016-05-29 23:50:00+00:00 0.2 0.1 0.0 0.2 ... 4.9
2016-05-30 00:50:00+00:00 0.0 0.0 0.0 0.0 ... 4.5

1.3. Analysis 11

radproc Documentation, Release 0.1.0

Cell-ID 661856 661857 662752 662753 662754 662755 \
Date (UTC)
2016-05-27 16:50:00+00:00 0.0 0.0 0.0 0.0 0.0 0.0
2016-05-27 17:50:00+00:00 0.0 0.0 0.0 0.0 0.0 0.0
2016-05-28 14:50:00+00:00 0.9 1.7 0.4 0.5 0.5 0.6
2016-05-28 15:50:00+00:00 4.0 4.3 9.2 7.8 6.3 3.8
2016-05-28 17:50:00+00:00 4.4 4.3 4.5 5.1 4.5 4.7
2016-05-29 16:50:00+00:00 0.0 0.0 0.0 0.0 0.0 0.0
2016-05-29 23:50:00+00:00 3.9 4.0 4.3 4.4 4.2 4.2
2016-05-30 00:50:00+00:00 3.8 3.5 3.7 3.5 4.2 4.1

Cell-ID 662756 663652 663655
Date (UTC)
2016-05-27 16:50:00+00:00 0.0 0.0 0.0
2016-05-27 17:50:00+00:00 0.0 0.0 0.0
2016-05-28 14:50:00+00:00 1.1 0.7 0.6
2016-05-28 15:50:00+00:00 3.4 10.6 3.9
2016-05-28 17:50:00+00:00 4.3 5.3 5.2
2016-05-29 16:50:00+00:00 0.0 0.0 0.0
2016-05-29 23:50:00+00:00 3.4 4.3 3.8
2016-05-30 00:50:00+00:00 3.6 4.0 3.6

[8 rows x 23320 columns]

3. Export Results into ArcGIS Geodatabase

The following function exports all rows from the resampled daily DataFrame calculated above into raster datasets in an
ArcGIS File Geodatabase. Optionally, different statistics rasters can be created, in this case the sum and the maximum
value of each cell.

In [3]: idRaster = r"O:\Data\idras"
outGDBPath = r"O:\Data"
GDBName = "May16_30mm5c.gdb"
statistics = ["sum", "max"]

rp.export_dfrows_to_gdb(dataDF=hr, idRaster=idRaster, outGDBPath=outGDBPath, GDBName=GDBName, statistics=statistics)

The new Geodatabase looks like this in ArcGIS:

Fig. 3: HR_GDB

Side Note In this example, eight intervals meeting the given criteria have been identified at four days. The following
code can be used as a simple approach to obtain daily sums for these events. (Of course this does not take into account

12 Chapter 1. Radproc’s Main Features

radproc Documentation, Release 0.1.0

that the interval at May 30th is most likely part of the same precipitation event as the ones from May 29th. . . this is a
more complicated topic to be adressed in future versions of radproc)

In [4]: hr_daily = hr.resample('D').sum()
hr_daily

Out[4]: Cell-ID 427005 427006 427903 427904 427905 427906 \
Date (UTC)
2016-05-27 00:00:00+00:00 0.0 0.0 0.0 0.0 0.0 0.0
2016-05-28 00:00:00+00:00 1.2 1.1 1.4 1.3 1.1 1.1
2016-05-29 00:00:00+00:00 0.0 0.2 0.3 0.2 0.2 0.1
2016-05-30 00:00:00+00:00 0.0 0.0 0.0 0.0 0.0 0.0

Cell-ID 428803 428804 428805 428806 ... 661855 \
Date (UTC) ...
2016-05-27 00:00:00+00:00 0.0 0.0 0.0 0.0 ... 0.0
2016-05-28 00:00:00+00:00 1.4 1.2 1.4 1.2 ... 9.0
2016-05-29 00:00:00+00:00 0.2 0.1 0.0 0.2 ... 4.9
2016-05-30 00:00:00+00:00 0.0 0.0 0.0 0.0 ... 4.5

Cell-ID 661856 661857 662752 662753 662754 \
Date (UTC)
2016-05-27 00:00:00+00:00 0.0 0.0 0.000000 0.0 0.0
2016-05-28 00:00:00+00:00 9.3 10.3 14.099999 13.4 11.3
2016-05-29 00:00:00+00:00 3.9 4.0 4.300000 4.4 4.2
2016-05-30 00:00:00+00:00 3.8 3.5 3.700000 3.5 4.2

Cell-ID 662755 662756 663652 663655
Date (UTC)
2016-05-27 00:00:00+00:00 0.000000 0.0 0.0 0.0
2016-05-28 00:00:00+00:00 9.099999 8.8 16.6 9.7
2016-05-29 00:00:00+00:00 4.200000 3.4 4.3 3.8
2016-05-30 00:00:00+00:00 4.100000 3.6 4.0 3.6

[4 rows x 23320 columns]

For example, the resulting raster dataset for the sum of the two intervals on May 27th looks like this:

Example 2: Counting Heavy Rainfall Intervals

1. Identify and Count Heavy Rainfall Intervals

To count the number of times in which a rainfall threshold x is exceeded at every cell in season z, you can use the
function

count_heavy_rainfall_intervals(HDFFile, year_start, year_end, thresholdValue, minArea,
→˓ season)

If you specify a minimum area a > 1, only intervals in which the threshold x is exceeded in at least y cells are taken
into account.

The following code will count how many times an hourly precipitation of 10 mm is exceeded at every cell in May
2016 in Hesse.

In [5]: HDF = r"O:\Data\RW.h5"

hr_count = rp.count_heavy_rainfall_intervals(HDFFile=HDF, year_start=2016, year_end=2016, thresholdValue=10, minArea=1, season='May')
hr_count

1.3. Analysis 13

radproc Documentation, Release 0.1.0

Fig. 4: HR_20160527

14 Chapter 1. Radproc’s Main Features

radproc Documentation, Release 0.1.0

Out[5]: Cell-ID 427005 427006 427903 427904 427905 427906 \
Date (UTC)
2016-05-31 00:00:00+00:00 0 0 0 0 0 0

Cell-ID 428803 428804 428805 428806 ... 661855 \
Date (UTC) ...
2016-05-31 00:00:00+00:00 0 0 0 0 ... 1

Cell-ID 661856 661857 662752 662753 662754 662755 \
Date (UTC)
2016-05-31 00:00:00+00:00 1 0 1 1 1 1

Cell-ID 662756 663652 663655
Date (UTC)
2016-05-31 00:00:00+00:00 1 2 1

[1 rows x 23320 columns]

In [6]: # print the maximum value
hr_count.max(axis=1)

Out[6]: Date (UTC)
2016-05-31 00:00:00+00:00 4
Freq: M, dtype: int32

2. Export to Raster

As the output DataFrame only has one row (because we only analyzed one month), it can be exported directly with

export_to_raster(series, idRaster, outRaster)

In [7]: rp.export_to_raster(series=hr_count, idRaster=r"O:\Data\idras", outRaster=r"O:\Data\hrcount10mm")

Out[7]: 'O:\\Data\\hrcount10mm'

1.3.3 Library Reference

Raw Data Processing

Functions for raw data processing.

Unzip, import, clip and convert RADOLAN raw data and write DataFrames to HDF5.

unzip_RW_binaries Unzips RADOLAN RW binary data saved in monthly
.tar or tar.gz archives (e.g.

unzip_YW_binaries Unzips RADOLAN YW binary data.
radolan_binaries_to_dataframe Import all RADOLAN binary files in a directory into a

pandas DataFrame, optionally clipping the data to the
extent of an investigation area specified by an ID array.

radolan_binaries_to_hdf5 Wrapper for radolan_binaries_to_dataframe() to import
and clip all RADOLAN binary files of one month in a
directory into a pandas DataFrame and save the result-
ing DataFrame as a dataset to an HDF5 file.

Continued on next page

1.3. Analysis 15

radproc Documentation, Release 0.1.0

Table 1 – continued from previous page
create_idraster_and_process_radolan_dataConvert all RADOLAN binary data in directory tree

into an HDF5 file with monthly DataFrames for a given
study area.

process_radolan_data Converts all RADOLAN binary data into an HDF5 file
with monthly DataFrames for a given study area without
generating a new ID raster.

radproc.raw.unzip_RW_binaries

radproc.raw.unzip_RW_binaries(zipFolder, outFolder)
Unzips RADOLAN RW binary data saved in monthly .tar or tar.gz archives (e.g. RWrea_200101.tar.gz,
RWrea_200102.tar.gz).

If necessary, extracted binary files are zipped to .gz archives to save memory space on disk. Creates directory
tree of style

<outFolder>/<year>/<month>/<binaries with hourly data as .gz files>

Parameters

zipFolder [string] Path of directory containing RW data as monthly tar / tar.gz archives to be un-
zipped. Archive names must contain year and month at end of basename: RWrea_200101.tar or
RWrea_200101.tar.gz

outFolder [string] Path of output directory.

Returns

No return value

radproc.raw.unzip_YW_binaries

radproc.raw.unzip_YW_binaries(zipFolder, outFolder)
Unzips RADOLAN YW binary data. Data have to be saved in monthly .tar or tar.gz archives (e.g.
YWrea_200101.tar.gz, YWrea_200102.tar.gz), which contain daily archives with binary files.

If necessary, extracted binary files are zipped to .gz archives to save memory space on disk. Creates directory
tree of style

<outFolder>/<year>/<month>/<binaries with data in temporal resolution of 5 minutes as .gz files>

Parameters

zipFolder [string] Path of directory containing YW data as monthly tar / tar.gz archives to be un-
zipped. Archive names must contain year and month at end of basename: YWrea_200101.tar or
YWrea_200101.tar.gz

outFolder [string] Path of output directory.

Returns

No return value

16 Chapter 1. Radproc’s Main Features

radproc Documentation, Release 0.1.0

radproc.raw.radolan_binaries_to_dataframe

radproc.raw.radolan_binaries_to_dataframe(inFolder, idArr=None)
Import all RADOLAN binary files in a directory into a pandas DataFrame, optionally clipping the data to the
extent of an investigation area specified by an ID array.

Parameters

inFolder [string] Path to the directory containing RADOLAN binary files. All files ending with ‘-
bin’ or ‘-bin.gz’ are read in. The input folder path does not need to have any particular directory
structure.

idArr [one-dimensional numpy array (optional, default: None)] containing ID values to select
RADOLAN data of the cells located in the investigation area. If no idArr is specified, the ID
array is automatically generated from RADOLAN metadata and RADOLAN precipitation data
are not clipped to any investigation area.

Returns

(df, metadata) [tuple with two elements:]

df [pandas DataFrame containing. . .]

• RADOLAN data of the cells located in the investigation area

• datetime row index with defined frequency depending on the RADOLAN product and
time zone UTC

• ID values as column names

metadata [dictionary] containing metadata from the last imported RADOLAN binary file

Format description and examples

Every row of the output DataFrame equals a precipitation raster of the investigation area at the spe-
cific date. Every column equals a time series of the precipitation at a specific raster cell.

Data can be accessed and sliced with the following Syntax:

df.loc[row_index, column_name]

with row index as string in date format ‘YYYY-MM-dd hh:mm’ and column names as integer values

Examples::

>>> df.loc['2008-05-01 00:50',414773] #--> returns single float value of
→˓specified date and cell
>>> df.loc['2008-05-01 00:50', :] #--> returns entire row (= raster) of
→˓specified date as one-dimensional DataFrame
>>> df.loc['2008-05-01', :] #--> returns DataFrame with all rows of
→˓specified day (because time of day is omitted)
>>> df.loc[, 414773] #--> returns time series of the specified cell as
→˓Series

radproc.raw.radolan_binaries_to_hdf5

radproc.raw.radolan_binaries_to_hdf5(inFolder, HDFFile, idArr=None, complevel=9)
Wrapper for radolan_binaries_to_dataframe() to import and clip all RADOLAN binary files of one month in

1.3. Analysis 17

radproc Documentation, Release 0.1.0

a directory into a pandas DataFrame and save the resulting DataFrame as a dataset to an HDF5 file. The name
for the HDF5 dataset is derived from the names of the input folder (year and month).

Parameters

inFolder [string] Path to the directory containing RADOLAN binary files. As the function derives
the HDF5 group and dataset names from the directory path, the latter is expected to have the
following format:

>>> inFolder = "C:/path/to/binaryData/YYYY/MM" # --> e.g. C:/Data/
→˓RADOLAN/2008/5

In this example for May 2008, the output dataset will have the path ‘2008/5’ within the HDF5
file.

HDFFile [string] Path and name of the HDF5 file. If the specified HDF5 file already exists, the new
dataset will be appended; if the HDF5 file doesn’t exist, it will be created.

idArr [one-dimensional numpy array (optional, default: None)] containing ID values to select
RADOLAN data of the cells located in the investigation area. If no idArr is specified, the ID
array is automatically generated from RADOLAN metadata and RADOLAN precipitation data
are not clipped to any investigation area.

complevel [interger (optional, default: 9)] defines the level of compression for the output HDF5 file.
complevel may range from 0 to 9, where 9 is the highest compression possible. Using a high
compression level reduces data size significantly, but writing data to HDF5 takes more time and
data import from HDF5 is slighly slower.

Returns

No return value

Function creates dataset in HDF5 file specified in parameter HDFFile.

radproc.raw.create_idraster_and_process_radolan_data

radproc.raw.create_idraster_and_process_radolan_data(inFolder, HDFFile, clipFea-
ture=None, complevel=9)

Convert all RADOLAN binary data in directory tree into an HDF5 file with monthly DataFrames for a given
study area.

First, an ID raster is generated and - if you specified a Shapefile or Feature-Class as clipFeature - clipped to your
study area. The national ID Raster (idras_ger) and the clipped one (idras) are saved in directory of HDF5 file.

Afterwards, all RADOLAN binary files in a directory tree are imported, clipped to study area, converted into
monthly pandas DataFrames and stored in an HDF5 file.

The names for the HDF5 datasets are derived from the names of the input folders (year and month). The
directory tree containing the raw binary RADOLAN data is expected to have the following format:

<inFolder>/<year>/<month>/<binaries with RADOLAN data>

–> <inFolder>/YYYY/MM

–> <inFolder>/2008/5 or <inFolder>/2008/05

–> e.g. C:/Data/RW/2008/5

18 Chapter 1. Radproc’s Main Features

radproc Documentation, Release 0.1.0

In this example, the output dataset will have the path 2008/5 within the HDF5 file. The necessary format is
automatically generated by the functions radproc.raw.unzip_RW_binaries() and radproc.raw.
unzip_YW_binaries().

If necessary, a textfile containing all directories which could not be processed due to data format errors is created
in directory of HDF5 file.

Parameters

inFolder [string] Path to the directory tree containing RADOLAN binary files. The di-
rectory tree is expected to have the following structure: <inFolder>/YYYY/MM –>
C:/Data/RADOLAN/2008/5

HDFFile [string] Path and name of the HDF5 file. If the specified HDF5 file already exists, the new
dataset will be appended; if the HDF5 file doesn’t exist, it will be created.

clipFeature [string (optional, default: None)] Path to the clip feature defining the extent of the study
area. File type may be Shapefile or Feature Class. The clip Feature does not need to be provided
in the RADOLAN projection. See below for further details. Default: None (Data are not clipped
to any study area)

complevel [interger (optional, default: 9)] defines the level of compression for the output HDF5 file.
complevel may range from 0 to 9, where 9 is the highest compression possible. Using a high
compression level reduces data size significantly, but writing data to HDF5 takes more time and
data import from HDF5 is slighly slower.

Returns

No return value Function creates datasets for every month in HDF5 file specified in parameter HDF-
File. Additionally, two ID Rasters and - if necessary - a textfile containing all directories which could
not be processed due to data format errors are created in directory of HDF5 file.

Note

See also:

See File system description for further details on data processing. If you already have an ID Array available, use
radproc.raw.process_radolan_data() instead.

Note: The RADOLAN data are provided in a custom stereographic projection defined by the DWD and both ID
rasters will automatically be generated in this projection by this function. As there is no transformation method
available yet, it is not possible to directly perform any geoprocessing tasks with RADOLAN and geodata with
other spatial references. Nevertheless, ArcGIS is able to perform a correct on-the-fly transformation to display
the data together. The clip function implemented in radproc uses this as a work-around solution to “push” the
clip feature into the RADOLAN projection. Hence, the clipping works with geodata in different projections, but
the locations of the cells might be slightly inaccurate.

radproc.raw.process_radolan_data

radproc.raw.process_radolan_data(inFolder, HDFFile, idArr=None, complevel=9)
Converts all RADOLAN binary data into an HDF5 file with monthly DataFrames for a given study area without
generating a new ID raster.

All RADOLAN binary files in a directory tree are imported, clipped to study area, converted into monthly
pandas DataFrame and stored in an HDF5 file.

1.3. Analysis 19

radproc Documentation, Release 0.1.0

The names for the HDF5 datasets are derived from the names of the input folders (year and month). The
directory tree containing the raw binary RADOLAN data is expected to have the following format:

<inFolder>/<year>/<month>/<binaries with RADOLAN data>

–> <inFolder>/YYYY/MM

–> C:/Data/RADOLAN/2008/5

In this example, the output dataset will have the path 2008/5 within the HDF5 file.

Additionally, a textfile containing all directories which could not be processed due to data format errors is
created in directory of HDF5 file.

Parameters

inFolder [string] Path to the directory containing RADOLAN binary files stored in directory tree of
following structure:: <inFolder>/YYYY/MM –> C:/Data/RADOLAN/2008/5

HDFFile [string] Path and name of the HDF5 file. If the specified HDF5 file already exists, the new
dataset will be appended; if the HDF5 file doesn’t exist, it will be created.

idArr [one-dimensional numpy array (optional, default: None)] containing ID values to select
RADOLAN data of the cells located in the investigation area. If no idArr is specified, the ID
array is automatically generated from RADOLAN metadata and RADOLAN precipitation data
are not clipped to any investigation area.

complevel [interger (optional, default: 9)] defines the level of compression for the output HDF5 file.
complevel may range from 0 to 9, where 9 is the highest compression possible. Using a high
compression level reduces data size significantly, but writing data to HDF5 takes more time and
data import from HDF5 is slighly slower.

Returns

No return value Function creates datasets for every month in HDF5 file specified in parameter HDF-
File. Additionally, a textfile containing all directories which could not be processed due to data
format errors is created in HDFFolder.

Notes

See File system description for further details on data processing.

Core Functions and Data I/O

Core functions like coordinate conversion and import of ID-array from textfile. Data import from HDF5-file and
temporal data aggregation.

coordinates_degree_to_stereographic Converts geographic coordinates [°] to cartesian coordi-
nates [km] in stereographic RADOLAN projection.

save_idarray_to_txt Write cell ID values to text file.
import_idarray_from_txt Imports cell ID values from text file into one-

dimensional numpy-array.
load_months_from_hdf5 Imports the specified months of one year and merges

them to one DataFrame.
load_month Imports the dataset of specified month from HDF5.

Continued on next page

20 Chapter 1. Radproc’s Main Features

radproc Documentation, Release 0.1.0

Table 2 – continued from previous page
load_years_and_resample Imports all months of the specified years, merges them

together to one DataFrame and resamples the latter to
[annual | monthly | daily | hourly] precipitation sums.

hdf5_to_years Wrapper for load_years_and_resample() to import all
months of the specified years, merge them together to
one DataFrame and resample the latter to annual pre-
cipitation sums.

hdf5_to_months Wrapper for load_years_and_resample() to import all
months of the specified years, merge them together to
one DataFrame and resample the latter to monthly pre-
cipitation sums.

hdf5_to_days Wrapper for load_years_and_resample() to import all
months of the specified years, merge them together to
one DataFrame and resample the latter to daily precipi-
tation sums.

hdf5_to_hours Wrapper for load_years_and_resample() to import all
months of the specified years, merge them together to
one DataFrame and resample the latter to hourly precip-
itation sums.

hdf5_to_hydrologicalSeasons Calculates the precipitation sums of the hydrological
summer and winter seasons (May - October and Novem-
ber - April).

radproc.core.coordinates_degree_to_stereographic

radproc.core.coordinates_degree_to_stereographic(Lambda_degree, Phi_degree)
Converts geographic coordinates [°] to cartesian coordinates [km] in stereographic RADOLAN projection.

Parameters

Lambda_degree [float] Degree of latitude [°N / °S]

Phi_degree [Float] Degree of longitude [°E / °W]

Returns

(x, y) [Tuple with two elements of type float] Cartesian coordinates x and y in stereographic projec-
tion [km]

radproc.core.save_idarray_to_txt

radproc.core.save_idarray_to_txt(idArr, txtFile)
Write cell ID values to text file.

Parameters

idArr [one-dimensional numpy array] containing ID values of dtype int32

txtFile [string] Path and name of a new textfile to write cell ID values into. Writing format: One
value per line.

Returns

1.3. Analysis 21

radproc Documentation, Release 0.1.0

No return value

radproc.core.import_idarray_from_txt

radproc.core.import_idarray_from_txt(txtFile)
Imports cell ID values from text file into one-dimensional numpy-array.

Parameters

txtFile [string] Path to a textfile containing cell ID values. Format: One value per line.

Returns

idArr : one-dimensional numpy-array of dtype int32

radproc.core.load_months_from_hdf5

radproc.core.load_months_from_hdf5(HDFFile, year, months=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12])

Imports the specified months of one year and merges them to one DataFrame.

Parameters

HDFFile [string] Path and name of the HDF5 file containing monthly datasets.

year [integer] Year for which data are to be loaded.

months [list of integers (optional, default: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])] Months for which
data are to be loaded.

Returns

df : pandas DataFrame

radproc.core.load_month

radproc.core.load_month(HDFFile, year, month)
Imports the dataset of specified month from HDF5.

Parameters

HDFFile [string] Path and name of the HDF5 file containing monthly datasets.

year [integer] Year for which data are to be loaded.

month [integer] Month for which data are to be loaded.

Returns

df : pandas DataFrame

22 Chapter 1. Radproc’s Main Features

radproc Documentation, Release 0.1.0

radproc.core.load_years_and_resample

radproc.core.load_years_and_resample(HDFFile, year_start, year_end=0, freq=’years’)
Imports all months of the specified years, merges them together to one DataFrame and resamples the latter to
[annual | monthly | daily | hourly] precipitation sums.

Parameters

HDFFile [string] Path and name of the HDF5 file containing monthly datasets.

year_start [integer] First year for which data are to be loaded.

year_end [integer (optional, default: start_year)] Last year for which data are to be loaded.

freq [string (optional, default: “years”)] Target frequency. Available frequencies for downsampling:

“years”, “months”, “days”, “hours”

Returns

df [pandas DataFrame] resampled to the target frequency and containing [annual | monthly | daily |
hourly] precipitation sums.

Examples

The mean annual precipitation sum can be calculated with the following syntax:

>>> import radproc as rp
>>> meanPrecip = rp.load_years_and_resample(r"C:\Data\RADOLAN.h5", 2010, 2015,
→˓"years").mean()
The resulting pandas Series can be exported to an ESRI Grid:
>>> rp.export_to_raster(series=meanPrecip, idRaster=rp.import_idarray_from_
→˓raster(r"C:\Data\idras"), outRaster=r"P:\GIS_data\N_mean10_15")

Note: All resampling functions set the label of aggregated intervals at the right, hence every label describes the
precipitation accumulated in the previous interval period.

radproc.core.hdf5_to_years

radproc.core.hdf5_to_years(HDFFile, year_start, year_end=0)
Wrapper for load_years_and_resample() to import all months of the specified years, merge them together to one
DataFrame and resample the latter to annual precipitation sums.

Parameters

HDFFile [string] Path and name of the HDF5 file containing monthly datasets.

year_start [integer] First year for which data are to be loaded.

year_end [integer (optional, default: start_year)] Last year for which data are to be loaded.

Returns

df [pandas DataFrame] resampled to annual precipitation sums.

1.3. Analysis 23

radproc Documentation, Release 0.1.0

Note: All resampling functions set the label of aggregated intervals at the right, hence every label describes the
precipitation accumulated in the previous interval period.

radproc.core.hdf5_to_months

radproc.core.hdf5_to_months(HDFFile, year_start, year_end=0)
Wrapper for load_years_and_resample() to import all months of the specified years, merge them together to one
DataFrame and resample the latter to monthly precipitation sums.

Parameters

HDFFile [string] Path and name of the HDF5 file containing monthly datasets.

year_start [integer] First year for which data are to be loaded.

year_end [integer (optional, default: year_start)] Last year for which data are to be loaded.

Returns

df [pandas DataFrame] resampled to monthly precipitation sums.

Note: All resampling functions set the label of aggregated intervals at the right, hence every label describes the
precipitation accumulated in the previous interval period.

radproc.core.hdf5_to_days

radproc.core.hdf5_to_days(HDFFile, year_start, year_end=0)
Wrapper for load_years_and_resample() to import all months of the specified years, merge them together to one
DataFrame and resample the latter to daily precipitation sums.

Parameters

HDFFile [string] Path and name of the HDF5 file containing monthly datasets.

year_start [integer] First year for which data are to be loaded.

year_end [integer (optional, default: start_year)] Last year for which data are to be loaded.

Returns

df [pandas DataFrame] resampled to daily precipitation sums.

Note: All resampling functions set the label of aggregated intervals at the right, hence every label describes the
precipitation accumulated in the previous interval period.

24 Chapter 1. Radproc’s Main Features

radproc Documentation, Release 0.1.0

radproc.core.hdf5_to_hours

radproc.core.hdf5_to_hours(HDFFile, year_start, year_end=0)
Wrapper for load_years_and_resample() to import all months of the specified years, merge them together to one
DataFrame and resample the latter to hourly precipitation sums.

Parameters

HDFFile [string] Path and name of the HDF5 file containing monthly datasets.

year_start [integer] First year for which data are to be loaded.

year_end [integer (optional, default: start_year)] Last year for which data are to be loaded.

Returns

df [pandas DataFrame] resampled to hourly precipitation sums.

Note: All resampling functions set the label of aggregated intervals at the right, hence every label describes the
precipitation accumulated in the previous interval period.

Note: For comparisons between hourly RW data and gauge data/YW data resampled to hours, keep in mind,
that hours in RW always start at hh-1:50 whereas the resampled hours begin at hh:00.

radproc.core.hdf5_to_hydrologicalSeasons

radproc.core.hdf5_to_hydrologicalSeasons(HDFFile, year_start, year_end=0)
Calculates the precipitation sums of the hydrological summer and winter seasons (May - October and November
- April).

Imports all months of the specified years, resamples them to monthly precipitation sums, merges them together
to one DataFrame and resamples the latter to half-annual precipitation sums. Note: The Data are truncated to
the period May of year_start to October of year_end before resampling!

Parameters

HDFFile [string] Path and name of the HDF5 file containing monthly datasets.

year_start [integer] First year for which data are to be loaded. The months January to April of this
year are not contained in the precipitation sums!

year_end [integer (optional, default: start_year)] Last year for which data are to be loaded. The
months November and December of this year are not contained in the precipitation sums!

Returns

df [pandas DataFrame] resampled to precipitation sums of hydrological summer and winter seasons.
In contrast to most other resampling functions from radproc, the index labels the beginning of
each resampling period, e.g. the index 2001-05-01 describes the period from May to October
2001.

1.3. Analysis 25

radproc Documentation, Release 0.1.0

Note: All resampling functions set the label of aggregated intervals at the right, hence every label describes the
precipitation accumulated in the previous interval period.

Heavy Rainfall Analysis

Module for heavy rainfall analysis.

• identify and select all intervals in which a specified precipitation threshold is exceeded

• count the number of threshold exceedances

find_heavy_rainfalls Creates a DataFrame containing all heavy rainfalls (in-
tervals) exceeding a specified threshold intensity value.

count_heavy_rainfall_intervals Creates a DataFrame containing the sum of all heavy
rainfalls intervals exceeding a specified threshold inten-
sity value.

radproc.heavyrain.find_heavy_rainfalls

radproc.heavyrain.find_heavy_rainfalls(HDFFile, year_start, year_end, thresholdValue,
minArea, season)

Creates a DataFrame containing all heavy rainfalls (intervals) exceeding a specified threshold intensity value.

• rainfall intensity

• minimum area (number of cells) where intensity has to be exceeded

• season / time period

Parameters

HDFFile [string] Path and name of the HDF5 file containing monthly pandas DataFrames with
precipitation data.

year_start [integer] First year for which data are to be loaded.

year_end [integer] Last year for which data are to be loaded.

thresholdValue [integer] Rainfall intensity threshold value.

minArea [integer] Minimum area where intensity threshold value has to be exceeded.

season [string or list] Season / Time period to analyse. Can be a list with integer values from 1 to 12
or a string describing the season. The following strings are possible: [“Year” | “May - October” |
“November - April” | “January/December” | “Jan” | “Feb” | “Mar” | “Apr” | “May” | “Jun” | “Jul”
| “Aug” | “Sep” | “Oct” | “Nov” | “Dec”]

Returns

heavy_rains [pandas DataFrame] containing all intervals meeting the given criteria.

26 Chapter 1. Radproc’s Main Features

radproc Documentation, Release 0.1.0

radproc.heavyrain.count_heavy_rainfall_intervals

radproc.heavyrain.count_heavy_rainfall_intervals(HDFFile, year_start, year_end,
thresholdValue, minArea, season)

Creates a DataFrame containing the sum of all heavy rainfalls intervals exceeding a specified threshold intensity
value.

Search parameters are

• rainfall intensity

• minimum area (number of cells) where intensity has to be exceeded

• season / time period

Parameters

HDFFile [string] Path and name of the HDF5 file containing monthly pandas DataFrames with
precipitation data.

year_start [integer] First year for which data are to be loaded.

year_end [integer] Last year for which data are to be loaded.

thresholdValue [integer] Rainfall intensity threshold value.

minArea [integer] Minimum area (number of cells) where intensity threshold value has to be ex-
ceeded.

season [string or list] Season / Time period to analyse. Can be a list with integer values from 1 to 12
or a string describing the season. The following strings are possible: [“Year” | “May - October” |
“November - April” | “January/December” | “Jan” | “Feb” | “Mar” | “Apr” | “May” | “Jun” | “Jul”
| “Aug” | “Sep” | “Oct” | “Nov” | “Dec”]

Returns

interval_count [pandas DataFrame] containing the sum of all intervals meeting the given criteria.
Temporal resolution depending on the given season.

RADOLAN Binary File Import

Copy of all functions necessary for reading in RADOLAN composite files, taken from module wradlib.io (ver-
sion=0.9.0)

(Heistermann, M., Jacobi, S., and Pfaff, T. 2013: Technical Note: An open source library for processing weather radar
data (wradlib), Hydrol. Earth Syst. Sci., 17, 863-871)

Copying these functions was necessary in order to reduce number of dependencies and avoid conflicts arising between
different GDAL installations required for other wradlib modules and ArcGIS.

read_RADOLAN_composite Read quantitative radar composite format of the German
Weather Service

1.3. Analysis 27

radproc Documentation, Release 0.1.0

radproc.wradlib_io.read_RADOLAN_composite

radproc.wradlib_io.read_RADOLAN_composite(fname, missing=-9999, loaddata=True)
Read quantitative radar composite format of the German Weather Service

The quantitative composite format of the DWD (German Weather Service) was established in the course of the
RADOLAN project and includes several file types, e.g. RW, YW, RY, RX, RZ, and many, many more. (see
format description on the RADOLAN project homepage).

Originally, the national RADOLAN composite was a 900 x 900 grid with 1 km resolution and in polar-
stereographic projection. But for the reanalysis within the radar climatology project finished in 2017 the national
grid was extended to 1100 x 900 cells. There are other grid resolutions for other composites, too (e.g. PC, PG).

This function already evaluates and applies the so-called PR factor which is specified in the header sec-
tion of the RADOLAN files. The raw values in an RY oder YW file are in the unit 0.01 mm/5min, while
read_RADOLAN_composite returns values in mm/5min (i. e. factor 100 higher). The factor is also returned as
part of attrs dictionary under keyword “precision”.

fname [string] path to the composite file

missing [int] value assigned to no-data cells

loaddata [bool] True | False, If False function returns (None, attrs)

output [tuple] tuple of two items (data, attrs):

• data : numpy array of shape (number of rows, number of columns)

• attrs : dictionary of metadata information from the file header

DWD MR90 Gauge Data Processing

Collection of functions for processing DWD rain gauge data in MR90 format.

Convert gauge data to pandas DataFrames with same format as RADOLAN data and saves them as HDF5 datasets.

stationfile_to_df Import a textfile with DWD rain gauge data in MR90
format into a one-column pandas DataFrame.

summarize_metadata_files Import all metafiles and summarizes metadata in a sin-
gle textfile.

dwd_gauges_to_hdf5 Import all textfiles containing DWD rain gauge data in
MR90 format from input folder into a DataFrame and
save it as monthly HDF5 datasets.

radproc.dwd_gauge.stationfile_to_df

radproc.dwd_gauge.stationfile_to_df(stationfile)
Import a textfile with DWD rain gauge data in MR90 format into a one-column pandas DataFrame.

Downsample frequency from 1 to 5-minute intervals to adjust temporal resolution to best-resolved RADOLAN
data produt YW. Convert time zone to UTC.

Parameters

stationfile [string] Path and name of textfile containing rain gauge measurements.

28 Chapter 1. Radproc’s Main Features

radproc Documentation, Release 0.1.0

Returns

df [one-column pandas DataFrame] with data imported from stationfile downsampled to 5-minute
intervals.

radproc.dwd_gauge.summarize_metadata_files

radproc.dwd_gauge.summarize_metadata_files(inFolder)
Import all metafiles and summarizes metadata in a single textfile.

Metadata include information on station number and name, geographic coordinates and height above sea level.

Parameters

inFolder [string] Path of directory containing metadata files for DWD gauges.

Returns

summaryFile [string] Path and name of output summary file created.

radproc.dwd_gauge.dwd_gauges_to_hdf5

radproc.dwd_gauge.dwd_gauges_to_hdf5(inFolder, HDFFile)
Import all textfiles containing DWD rain gauge data in MR90 format from input folder into a DataFrame and
save it as monthly HDF5 datasets.

Frequency is downsampled from 1 to 5-minute intervals to adjust temporal resolution to RADOLAN product
YW. Time zone is converted from MEZ to UTC.

Parameters

inFolder [string] Path of directory containing textfiles with DWD rain gauge data in MR90 format.

HDFFile [string] Path and name of the HDF5 file. If the specified HDF5 file already exists, the new
dataset will be appended; if the HDF5 file doesn’t exist, it will be created.

Returns

None Save monthly DataFrames to specified HDF5 file.

Note

To import gauge data from HDF5, you can use the same functions from radproc.core as for RADOLAN data
since both are stored the same data format and structure.

1.3.4 Indices and tables

• genindex

• modindex

• search

1.3. Analysis 29

radproc Documentation, Release 0.1.0

30 Chapter 1. Radproc’s Main Features

Python Module Index

r
radproc.core (Windows), 26
radproc.dwd_gauge (Windows), 29
radproc.heavyrain (Windows), 27
radproc.raw (Windows), 20
radproc.wradlib_io (Windows), 28

31

radproc Documentation, Release 0.1.0

32 Python Module Index

Index

C
coordinates_degree_to_stereographic() (in module rad-

proc.core), 21
count_heavy_rainfall_intervals() (in module rad-

proc.heavyrain), 27
create_idraster_and_process_radolan_data() (in module

radproc.raw), 18

D
dwd_gauges_to_hdf5() (in module radproc.dwd_gauge),

29

F
find_heavy_rainfalls() (in module radproc.heavyrain), 26

H
hdf5_to_days() (in module radproc.core), 24
hdf5_to_hours() (in module radproc.core), 25
hdf5_to_hydrologicalSeasons() (in module radproc.core),

25
hdf5_to_months() (in module radproc.core), 24
hdf5_to_years() (in module radproc.core), 23

I
import_idarray_from_txt() (in module radproc.core), 22

L
load_month() (in module radproc.core), 22
load_months_from_hdf5() (in module radproc.core), 22
load_years_and_resample() (in module radproc.core), 23

P
process_radolan_data() (in module radproc.raw), 19

R
radolan_binaries_to_dataframe() (in module rad-

proc.raw), 17
radolan_binaries_to_hdf5() (in module radproc.raw), 17

radproc.core (module), 20, 26
radproc.dwd_gauge (module), 28, 29
radproc.heavyrain (module), 26, 27
radproc.raw (module), 15, 20
radproc.wradlib_io (module), 27, 28
read_RADOLAN_composite() (in module rad-

proc.wradlib_io), 28

S
save_idarray_to_txt() (in module radproc.core), 21
stationfile_to_df() (in module radproc.dwd_gauge), 28
summarize_metadata_files() (in module rad-

proc.dwd_gauge), 29

U
unzip_RW_binaries() (in module radproc.raw), 16
unzip_YW_binaries() (in module radproc.raw), 16

33

	Radproc’s Main Features
	Raw Data processing
	Data Exchange with ArcGIS
	Analysis
	Getting Started
	Tutorials
	Library Reference
	Indices and tables

	Python Module Index

