

Welcome to RadioKit Engine’s documentation!

RadioKit Engine is a cloud computing platform for building multimedia, mainly
audio-oriented applications. You can think about it as of “Amazon Web Services
for Audio”.

Instead of building complicated infrastructure from scratch, you can take
existing “building blocks” and build your app on top of them. Then RadioKit takes
care about what’s hidden from the users, and you can focus on what is your core
business and brings the most value to your users.

Platform is API-oriented. That means that most of the functionality is available
only through programming interfaces. There are some user interfaces for management,
but they show only part of the potential.

The API is mostly based on the REST API convention; so all communication with
the system is done over HTTPS protocol, which is the most widely adopted Internet
application protocol in the world. Data is serialized as JSON. That makes it
effectively platform-independent, it does not matter what language or technology
different parts of the system use, as they talk to each other with universal protocol.

Pieces composing RadioKit Engine are built as micro services. There are several
backends responsible for various tasks. Technically speaking they are separate
applications (although still speaking with the same protocol). That allows us to
keep system modular, create derivatives that fit specific clients’ needs, use different
languages for different purposes and makes system more reliable.

As most broadcasting applications have demand of high availability, we run our
software only within credible, reliable datacentres and providers such as:

	Heroku (the biggest Platform-as-a-Service platform, itself hosted at Amazon Web Services),

	OVH (the biggest European datacentre),

	Microsoft Azure (cloud computing platform from Microsoft).

It is however, possible to host it within users’ datacentre if certain technical
requirements are met.

We utilize worldwide Content Delivery Network CloudFlare which provides us geocaching,
speed optimization, encryption and protects the whole infrastructure from DDoS attacks.

Contents

	Services
	Agenda (Schedule Manager)

	Auth (Authentication & Authorization provider)

	Plumber (Live Audio Mixer)

	Official RadioKit REST API

	Vault (Repository of Media Files)

	Support

Services

Contents:

	Agenda (Schedule Manager)
	Broadcast Channel
	Broadcast channel data

	Fields That Can/Must Be Specified During Creation

	Fields That Can Be Updated After Creation

	Fields That Can Be Used in Conditions

	Other Records That Can Be Used for Join

	Auth (Authentication & Authorization provider)

	Plumber (Live Audio Mixer)

	Official RadioKit REST API
	Official RadioKit REST API
	Resources

	URL

	Listing records

	Record data
	Example

	Example

	Record Methods

	Limiting number of returned records by using conditions
	Example

	Joining other related records
	Example

	Model Common Fields

	Vault (Repository of Media Files)
	Importing

	Uploading
	RadioKit JavaScript API
	Example

	Resumable.JS
	Example

Agenda (Schedule Manager)

Contents:

	Broadcast Channel
	Broadcast channel data

	Fields That Can/Must Be Specified During Creation

	Fields That Can Be Updated After Creation

	Fields That Can Be Used in Conditions

	Other Records That Can Be Used for Join

Broadcast Channel

Broadcast.Channel is a model in Agenda microservice which is a kind of
superior container for broadcast streams and contents.

Broadcast channel records are accessible using Official RadioKit REST Api [http://docs.radiokit.org/projects/engine/en/latest/services/restapi.html].
The following URL should be used to obtain Broadcast.Channel records:

https://agenda.backend.url/api/rest/v1.0/broadcast/channel

Broadcast channel data

The following broadcast channel data fields are available for the user for index
and show MVC action:

	Field
	Type
	Description

	id
	UUID
	Refer to: Model Common Fields [http://docs.radiokit.org/projects/engine/en/latest/services/rest/common_fields.html].

	name
	string
	Refer to: Model Common Fields [http://docs.radiokit.org/projects/engine/en/latest/services/rest/common_fields.html].

	slug
	string
	

	timezone
	string
	Timezone used for the channel

	description
	string
	Channel’s description

	media_routing_group_id
	UUID
	

	homepage_url
	string
	Homepage’s URL

	genre
	string
	Channel’s genre

	references
	map
	Refer to: Model Common Fields [http://docs.radiokit.org/projects/engine/en/latest/services/rest/common_fields.html].

	extra
	map
	Refer to: Model Common Fields [http://docs.radiokit.org/projects/engine/en/latest/services/rest/common_fields.html].

	inserted_at
	DateTime
	Refer to: Model Common Fields [http://docs.radiokit.org/projects/engine/en/latest/services/rest/common_fields.html].

	updated_at
	DateTime
	Refer to: Model Common Fields [http://docs.radiokit.org/projects/engine/en/latest/services/rest/common_fields.html].

Fields That Can/Must Be Specified During Creation

During creation of the record user can specify values for some of the fields. Some
of them are required for the creation of the record ad some of them are optional.
Not specifying all the required fields for the creation of the record will result in
request being rejected.

	Field
	Type
	Required

	name
	string
	yes

	slug
	string
	yes

	timezone
	string
	yes

	description
	string
	no

	media_routing_group_id
	UUID
	yes

	homepage_url
	string
	no

	genre
	string
	no

	references
	map
	no

	extra
	map
	no

Fields That Can Be Updated After Creation

There are some fields for which the value can be updated after the record is created.
Crucial fields can be assigned a value only during creation and they cannot be
changed later. The following fields can be updated by the user after record creation:

	Field
	Type

	name
	string

	timezone
	string

	description
	string

	homepage_url
	string

	genre
	string

	references
	map

	extra
	map

Fields That Can Be Used in Conditions

The following broacast channel data fields can be used in conditions in
index and show MVC actions:

	Field
	Type

	name
	string

	slug
	string

Other Records That Can Be Used for Join

The following records can be used for join operation in index and show MVC actions:

	Field
	Model
	Description

	schedule_content_types
	Agenda.Broadcast.ContentType
	Content types that belong to
broadcast channel

	broadcast_streams
	Agenda.Broadcast.Stream
	Broadcast streams that
belong to broadcast channel

Auth (Authentication & Authorization provider)

Contents:

Plumber (Live Audio Mixer)

Contents:

Official RadioKit REST API

Contents:

	Official RadioKit REST API
	Resources

	URL

	Listing records

	Record data

	Record Methods

	Limiting number of returned records by using conditions

	Joining other related records

	Model Common Fields

Official RadioKit REST API

Official RadioKit REST API is query-like interface to most of the resources
provided to the users by RadioKit microservices.

Resources

Microservices provide resources stored as records in the database. Records
of particular type are defined by models.

Resources of a given model can be obtained using HTTP methods with an URL
specific for the given model.

URL

The general URL specifying both microservice and model:

https://<microservice>.backend.url/api/rest/v1.0/<model_path>

For example records for Broadcast.Channel model defined in Agenda microservice
are obtainable via the following URL:

https://agenda.backend.url/api/rest/v1.0/broadcast/channel

Listing records

Listing records corresponds to index action in MVC design pattern and can
be obtained using HTTP GET method on general model URL.

In general HTTP request GET https://agenda.backend.url/api/rest/v1.0/broadcast/channel
should return JSON containing all broadcast channels defined in agenda microservice:

{
 meta: {},
 data: [
 // records here
]
}

The same can be obtained using JavaScript wrapper:

radiokit
 .query(“agenda”, “Broadcast.Channel”)
 .where(“name”, “eq”, “something”)
 .order(“name”, “asc”)
 .on(“fetch”, (_event, _query, data)) => {
 // data is already wrapped in Immutable.js array
 })
 .fetch();

Please note that at least one data field of the record must be specified in the
request in order to verify this request as correct one.

Request which does not specify any data field is treated as incorrect and is rejected.

Record data

User can specify which record data should be returned in a response from server
using ‘a’ parameter.

This allows to modify the server’s response to only this data that is of user’s
interest.

Documentation for each model specifies which record data can be obtained by the
user.

Example

GET https://agenda.backend.url/api/rest/v1.0/broadcast/channel?a[]=id

Above HTTP request will return all broadcast channels and each returned record will
have only ‘id’ field specified.

Example

GET https://agenda.backend.url/api/rest/v1.0/broadcast/channel?a[]=id&a[]=name

Above HTTP request will return all broadcast channels and each returned record will
have both ‘id’ and ‘name’ fields specified.

At least one data field must be specified in the request.

Record Methods

Some of the records provide methods that can be applied for a given record.

Methods are applied in the same manner as record data and the result of
execution for given method is applied to the server response.

Documentation for each model specifies record methods available for given
model.

Limiting number of returned records by using conditions

User can limit number of returned records to the ones that fulfill the condition
specified in the request. Condition can be defined using ‘c’ parameter.

In order to specify the condition in the request the following syntax should
be used:

?c[<field_name>][]=<operator>%20<specified_value>

The following operators can be used in conditions:

	Operator
	Description

	in
	checks if field’s value is included in specified_value

	eq
	checks if field’s value is equal to specified_value

	neq
	checks if field’s value is not equal to specified_value

	lt
	checks if field’s value is less than specified_value

	gt
	checks if field’s value is greater than specified_value

	lte
	checks if field’s value is less than or equal

	gte
	checks if field’s value is greater than or equal

	isnull
	checks if field’s value is is null

	notnull
	checks if field’s value is is not null

	any
	

	deq
	

	dneq
	

Example

GET https://agenda.backend.url/api/rest/v1.0/broadcast/channel?a[]=id&c[name][]=eq%20Jazz

Above HTTP request will return all broadcast channels for which ‘name’ field is equal
to ‘Jazz’ and each returned record will have only ‘id’ field specified.

Joining other related records

User can request adding other related records to server response by using
‘j’ parameter in the request. The following syntax applies:

?j[]=<model_name_in_plural>

Example

GET https://agenda.backend.url/api/rest/v1.0/broadcast/channel?a[]=id&a[]=name&j[]=broadcast_streams

Above HTTP request will return all broadcast channels and each returned record will
have both ‘id’ and ‘name’ fields specified. Additionally for each of broadcast records
belonging broadcast streams will be added to the server’s response.

Model Common Fields

There is a number of fields that are common for all the models in all the RadioKit microservices.
This chapter describes those fields in details.

	Field
	Type
	Description

	id
	UUID string
	Unique identifier of each record.

For more information about UUID type refer to
Ecto.UUID [https://hexdocs.pm/ecto/Ecto.UUID.html].

	name
	string
	Name of record

	references
	map
	ID of the record in another microservice. Used to express
relation between records in different microservices

	extra
	map
	Container used to store all data that do not fit to
predefined fields of the model

	inserted_at
	DateTime
	Date and time of the last udpate for the record

	updated_at
	DateTime
	Date and time when the record was created

Vault (Repository of Media Files)

Contents:

	Importing

	Uploading
	RadioKit JavaScript API

	Resumable.JS

Importing

TODO

Uploading

There are several ways to upload media files into Vault. Depending on the context
and desired integration with other applications you may want to push the whole
file at once, ask service to pull it or upload it in chunks. Each of them has
its benefits and drawbacks, described below.

Please note that uploading refers to action initiated by user or another
application. You also may want to take a look about importing features that
can be used to automatically fetch content from existing applications without
necessity to trigger such operation.

RadioKit JavaScript API

Official RadioKit JavaScript API provides methods for handling uploads. It
encapsulates them in high-level wrappers and ensures that any future changes
to the underlying architecture will be reflected without necessity to modify
your code.

It encapsulates authentication procedures, provides ability to queue files,
upload them in parallel (but by default it will upload only them one after another),
restart uploads and the most importantly, divide them into chunks. This is a
quite reliable way to create uploader that handles large files even on weak
network connections.

This is the preferred way to do uploads through web browser. Please note that
this API does not handle server-side JavaScript as it needs access to the DOM.

Example

import { Data } from "radiokit-api";

var data = new Data();
var upload;

data.on("auth::success", () => {
 upload = data.upload("80332F34-F903-11E5-A3E1-3E19FDC8A409", { autoStart: true })
 upload.assignBrowse(document.getElementById("#uploadButton"));
 upload.assignDrop(document.getElementById("#uploadDropzone"));
 upload.on("added", (_eventName, queue) => { console.log(queue.getQueue()); });
 upload.on("progress", (_eventName, queue) => { console.log(queue.getQueue()); });
 upload.on("retry", (_eventName, queue) => { console.log(queue.getQueue()); });
 upload.on("error", (_eventName, queue) => { console.log(queue.getQueue()); });
});

data.signIn(); // This will redirect to the authentication service

Resumable.JS

Vault also provides interface for uploading via Resumable.JS [http://resumablejs.com/]
JavaScript library. This is an alternative way to import files through web browser.
It is however, quite low-level, and especially authentication may be tricky
as you have to get and refresh OAuth2 access token on your own. It is however
still possible if you don’t want to use official RadioKit API due to any reason.

Resumable.JS provides ability to queue files, upload them in parallel, restart
uploads and the most importantly, divide them into chunks. This is a quite reliable
way to create uploader that handles large files even on weak network connections.

The endpoint for uploading is https://vault.radiokitapp.org/api/upload/v1.0/resumablejs.
Maximum chunk size is 4MB. Testing if chunks are already present (the testChunks
option) is not supported. You must pass some additional headers and parameters
to the requests:

	Authorization header with valid OAuth2 access token (see: Authentication)

	
	radiokit query parameter that contains:

	
	record_repository_id with valid Repository ID (see: Repositories)

Please refer to Resumable.JS documentation for further information.

Example

var r = new Resumable({
 target: "https://vault.radiokitapp.org/api/upload/v1.0/resumablejs",
 query: {
 radiokit: {
 record_repository_id: "80332F34-F903-11E5-A3E1-3E19FDC8A409"
 }
 },
 headers: {
 Authorization: "Bearer 123"
 },
 testChunks: false,
});

if(!r.support) {
 alert("Chunked upload is not supported, upgrade your web browser.");
}

r.assignDrop(document.getElementById("#uploadDropzone"))
r.assignBrowse(document.getElementById("#uploadButton"), false);

r.fileAdded(() => { r.upload() });

Support

If you need any support while developing services on top of the Engine and
encounter any issues, our team of experts is ready to help.

Don’t hesitate to contact us at admin@radiokit.org

Index

 _static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		Welcome to RadioKit Engine's documentation!

 		Services

 		Agenda (Schedule Manager)

 		Broadcast Channel

 		Auth (Authentication & Authorization provider)

 		Plumber (Live Audio Mixer)

 		Official RadioKit REST API

 		Official RadioKit REST API

 		Model Common Fields

 		Vault (Repository of Media Files)

 		Importing

 		Uploading

 		Support

_static/up.png

