
rabbitpy Documentation
Release 1.0.0

Gavin M. Roy

October 28, 2016

Contents

1 Installation 3

2 API Documentation 5
2.1 Simple API Methods . 5
2.2 AMQP Adapter . 8
2.3 Channel . 13
2.4 Connection . 15
2.5 Exceptions . 17
2.6 Exchange . 20
2.7 Message . 23
2.8 Queue . 26
2.9 Transactions . 30

3 Examples 33
3.1 Message Consumer . 33
3.2 Message Getter . 33
3.3 Declaring HA Queues . 34
3.4 Mandatory Publishing . 34
3.5 Transactional Publisher . 34

4 Issues 37

5 Source 39

6 Version History 41

7 Inspiration 43

8 Indices and tables 45

Python Module Index 47

i

ii

rabbitpy Documentation, Release 1.0.0

rabbitpy is a pure python, thread-safe 1, and pythonic BSD Licensed AMQP/RabbitMQ library that supports Python
2.6+ and 3.2+. rabbitpy aims to provide a simple and easy to use API for interfacing with RabbitMQ, minimizing the
programming overhead often found in other libraries.

1 If you’re looking to use rabbitpy in a multi-threaded application, you should the notes about multi-threaded use in threads.

Contents 1

rabbitpy Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Installation

rabbitpy is available from the Python Package Index and can be installed by running easy_install rabbitpy
or pip install rabbitpy

3

https://preview-pypi.python.org/project/rabbitpy/

rabbitpy Documentation, Release 1.0.0

4 Chapter 1. Installation

CHAPTER 2

API Documentation

rabbitpy is designed to have as simple and pythonic of an API as possible while still remaining true to RabbitMQ
and to the AMQP 0-9-1 specification. There are two basic ways to interact with rabbitpy, using the simple wrapper
methods:

2.1 Simple API Methods

rabbitpy’s simple API methods are meant for one off use, either in your apps or in the python interpreter. For example,
if your application publishes a single message as part of its lifetime, rabbitpy.publish() should be enough for
almost any publishing concern. However if you are publishing more than one message, it is not an efficient method
to use as it connects and disconnects from RabbitMQ on each invocation. rabbitpy.get() also connects and
disconnects on each invocation. rabbitpy.consume() does stay connected as long as you’re iterating through
the messages returned by it. Exiting the generator will close the connection. For a more complete api, see the rabbitpy
core API. Wrapper methods for easy access to common operations, making them both less complex and less verbose
for one off or simple use cases.

class rabbitpy.simple.SimpleChannel(uri)
The rabbitpy.simple.Channel class creates a context manager implementation for use on a single channel where
the connection is automatically created and managed for you.

Example:

import rabbitpy

with rabbitpy.SimpleChannel('amqp://localhost/%2f) as channel:
queue = rabbitpy.Queue(channel, 'my-queue')

Parameters uri (str) – The AMQP URI to connect with. For URI options, see the Connection
class documentation.

rabbitpy.simple.consume(uri=None, queue_name=None, no_ack=False, prefetch=None, prior-
ity=None)

Consume messages from the queue as a generator:

for message in rabbitpy.consume('amqp://localhost/%2F', 'my_queue'):
message.ack()

Parameters

• uri (str) – AMQP connection URI

5

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

rabbitpy Documentation, Release 1.0.0

• queue_name (str) – The name of the queue to consume from

• no_ack (bool) – Do not require acknowledgements

• prefetch (int) – Set a prefetch count for the channel

• priority (int) – Set the consumer priority

Return type Iterator

Raises py:class:ValueError

rabbitpy.simple.create_direct_exchange(uri=None, exchange_name=None, durable=True)
Create a direct exchange with RabbitMQ. This should only be used for one-off operations.

Parameters

• uri (str) – AMQP URI to connect to

• exchange_name (str) – The exchange name to create

• durable (bool) – Exchange should survive server restarts

Raises ValueError

Raises rabbitpy.RemoteClosedException

rabbitpy.simple.create_fanout_exchange(uri=None, exchange_name=None, durable=True)
Create a fanout exchange with RabbitMQ. This should only be used for one-off operations.

Parameters

• uri (str) – AMQP URI to connect to

• exchange_name (str) – The exchange name to create

• durable (bool) – Exchange should survive server restarts

Raises ValueError

Raises rabbitpy.RemoteClosedException

rabbitpy.simple.create_headers_exchange(uri=None, exchange_name=None, durable=True)
Create a headers exchange with RabbitMQ. This should only be used for one-off operations.

Parameters

• uri (str) – AMQP URI to connect to

• exchange_name (str) – The exchange name to create

• durable (bool) – Exchange should survive server restarts

Raises ValueError

Raises rabbitpy.RemoteClosedException

rabbitpy.simple.create_queue(uri=None, queue_name=’‘, durable=True, auto_delete=False,
max_length=None, message_ttl=None, expires=None,
dead_letter_exchange=None, dead_letter_routing_key=None,
arguments=None)

Create a queue with RabbitMQ. This should only be used for one-off operations. If a queue name is omitted,
the name will be automatically generated by RabbitMQ.

Parameters

• uri (str) – AMQP URI to connect to

• queue_name (str) – The queue name to create

6 Chapter 2. API Documentation

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

rabbitpy Documentation, Release 1.0.0

• durable (bool) – Indicates if the queue should survive a RabbitMQ is restart

• auto_delete (bool) – Automatically delete when all consumers disconnect

• max_length (int) – Maximum queue length

• message_ttl (int) – Time-to-live of a message in milliseconds

• expires (int) – Milliseconds until a queue is removed after becoming idle

• dead_letter_exchange (str) – Dead letter exchange for rejected messages

• dead_letter_routing_key (str) – Routing key for dead lettered messages

• arguments (dict) – Custom arguments for the queue

Raises ValueError

Raises rabbitpy.RemoteClosedException

rabbitpy.simple.create_topic_exchange(uri=None, exchange_name=None, durable=True)
Create an exchange from RabbitMQ. This should only be used for one-off operations.

Parameters

• uri (str) – AMQP URI to connect to

• exchange_name (str) – The exchange name to create

• durable (bool) – Exchange should survive server restarts

Raises ValueError

Raises rabbitpy.RemoteClosedException

rabbitpy.simple.delete_exchange(uri=None, exchange_name=None)
Delete an exchange from RabbitMQ. This should only be used for one-off operations.

Parameters

• uri (str) – AMQP URI to connect to

• exchange_name (str) – The exchange name to delete

Raises ValueError

Raises rabbitpy.RemoteClosedException

rabbitpy.simple.delete_queue(uri=None, queue_name=None)
Delete a queue from RabbitMQ. This should only be used for one-off operations.

Parameters

• uri (str) – AMQP URI to connect to

• queue_name (str) – The queue name to delete

Return type bool

Raises ValueError

Raises rabbitpy.RemoteClosedException

rabbitpy.simple.get(uri=None, queue_name=None)
Get a message from RabbitMQ, auto-acknowledging with RabbitMQ if one is returned.

Invoke directly as rabbitpy.get()

Parameters

2.1. Simple API Methods 7

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool

rabbitpy Documentation, Release 1.0.0

• uri (str) – AMQP URI to connect to

• queue_name (str) – The queue name to get the message from

Return type py:class:rabbitpy.message.Message or None

Raises py:class:ValueError

rabbitpy.simple.publish(uri=None, exchange_name=None, routing_key=None, body=None, prop-
erties=None, confirm=False)

Publish a message to RabbitMQ. This should only be used for one-off publishing, as you will suffer a perfor-
mance penalty if you use it repeatedly instead creating a connection and channel and publishing on that

Parameters

• uri (str) – AMQP URI to connect to

• exchange_name (str) – The exchange to publish to

• routing_key (str) – The routing_key to publish with

• body (str or unicode or bytes or dict or list) – The message body

• properties (dict) – Dict representation of Basic.Properties

• confirm (bool) – Confirm this delivery with Publisher Confirms

Return type bool or None

And by using the core objects:

2.2 AMQP Adapter

While the core rabbitpy API strives to provide an easy to use, Pythonic interface for RabbitMQ, some developers may
prefer a less opinionated AMQP interface. The rabbitpy.AMQP adapter provides a more traditional AMQP client
library API seen in libraries like pika.

New in version 0.26.

2.2.1 Example

The following example will connect to RabbitMQ and use the rabbitpy.AMQP adapter to consume and acknowl-
edge messages.

import rabbitpy

with rabbitpy.Connection() as conn:
with conn.channel() as channel:

amqp = rabbitpy.AMQP(channel)

for message in amqp.basic_consume('queue-name'):
print(message)

2.2.2 API Documentation

class rabbitpy.AMQP(channel)
The AMQP Adapter provides a more generic, non-opinionated interface to RabbitMQ by providing methods
that map to the AMQP API.

8 Chapter 2. API Documentation

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#bool
http://pika.readthedocs.org

rabbitpy Documentation, Release 1.0.0

Parameters channel (rabbitmq.channel.Channel) – The channel to use

basic_ack(delivery_tag=0, multiple=False)
Acknowledge one or more messages

This method acknowledges one or more messages delivered via the Deliver or Get-Ok methods. The client
can ask to confirm a single message or a set of messages up to and including a specific message.

Parameters

• delivery_tag (int|long) – Server-assigned delivery tag

• multiple (bool) – Acknowledge multiple messages

basic_cancel(consumer_tag=’‘, nowait=False)
End a queue consumer

This method cancels a consumer. This does not affect already delivered messages, but it does mean the
server will not send any more messages for that consumer. The client may receive an arbitrary number of
messages in between sending the cancel method and receiving the cancel- ok reply.

Parameters

• consumer_tag (str) – Consumer tag

• nowait (bool) – Do not send a reply method

basic_consume(queue=’‘, consumer_tag=’‘, no_local=False, no_ack=False, exclusive=False,
nowait=False, arguments=None)

Start a queue consumer

This method asks the server to start a “consumer”, which is a transient request for messages from a specific
queue. Consumers last as long as the channel they were declared on, or until the client cancels them.

This method will act as an generator, returning messages as they are delivered from the server.

Example use:

for message in basic_consume(queue_name):
print message.body
message.ack()

Parameters

• queue (str) – The queue name to consume from

• consumer_tag (str) – The consumer tag

• no_local (bool) – Do not deliver own messages

• no_ack (bool) – No acknowledgement needed

• exclusive (bool) – Request exclusive access

• nowait (bool) – Do not send a reply method

• arguments (dict) – Arguments for declaration

basic_get(queue=’‘, no_ack=False)
Direct access to a queue

This method provides a direct access to the messages in a queue using a synchronous dialogue that is
designed for specific types of application where synchronous functionality is more important than perfor-
mance.

Parameters

2.2. AMQP Adapter 9

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/stdtypes.html#dict

rabbitpy Documentation, Release 1.0.0

• queue (str) – The queue name

• no_ack (bool) – No acknowledgement needed

basic_nack(delivery_tag=0, multiple=False, requeue=True)
Reject one or more incoming messages.

This method allows a client to reject one or more incoming messages. It can be used to interrupt and cancel
large incoming messages, or return untreatable messages to their original queue. This method is also used
by the server to inform publishers on channels in confirm mode of unhandled messages. If a publisher
receives this method, it probably needs to republish the offending messages.

Parameters

• delivery_tag (int|long) – Server-assigned delivery tag

• multiple (bool) – Reject multiple messages

• requeue (bool) – Requeue the message

basic_publish(exchange=’‘, routing_key=’‘, body=’‘, properties=None, mandatory=False, imme-
diate=False)

Publish a message

This method publishes a message to a specific exchange. The message will be routed to queues as defined
by the exchange configuration and distributed to any active consumers when the transaction, if any, is
committed.

Parameters

• exchange (str) – The exchange name

• routing_key (str) – Message routing key

• body (str|bytes) – The message body

• properties (dict) – AMQP message properties

• mandatory (bool) – Indicate mandatory routing

• immediate (bool) – Request immediate delivery

Returns bool or None

basic_qos(prefetch_size=0, prefetch_count=0, global_flag=False)
Specify quality of service

This method requests a specific quality of service. The QoS can be specified for the current channel or for
all channels on the connection. The particular properties and semantics of a qos method always depend on
the content class semantics. Though the qos method could in principle apply to both peers, it is currently
meaningful only for the server.

Parameters

• prefetch_size (int|long) – Prefetch window in octets

• prefetch_count (int) – Prefetch window in messages

• global_flag (bool) – Apply to entire connection

basic_recover(requeue=False)
Redeliver unacknowledged messages

This method asks the server to redeliver all unacknowledged messages on a specified channel. Zero or
more messages may be redelivered. This method replaces the asynchronous Recover.

Parameters requeue (bool) – Requeue the message

10 Chapter 2. API Documentation

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

rabbitpy Documentation, Release 1.0.0

basic_reject(delivery_tag=0, requeue=True)
Reject an incoming message

This method allows a client to reject a message. It can be used to interrupt and cancel large incoming
messages, or return untreatable messages to their original queue.

Parameters

• delivery_tag (int|long) – Server-assigned delivery tag

• requeue (bool) – Requeue the message

confirm_select()
This method sets the channel to use publisher acknowledgements. The client can only use this method on
a non-transactional channel.

exchange_bind(destination=’‘, source=’‘, routing_key=’‘, nowait=False, arguments=None)
Bind exchange to an exchange.

This method binds an exchange to an exchange.

Parameters

• destination (str) – The destination exchange name

• source (str) – The source exchange name

• routing_key (str) – The routing key to bind with

• nowait (bool) – Do not send a reply method

• arguments (dict) – Optional arguments

exchange_declare(exchange=’‘, exchange_type=’direct’, passive=False, durable=False,
auto_delete=False, internal=False, nowait=False, arguments=None)

Verify exchange exists, create if needed

This method creates an exchange if it does not already exist, and if the exchange exists, verifies that it is
of the correct and expected class.

Parameters

• exchange (str) – The exchange name

• exchange_type (str) – Exchange type

• passive (bool) – Do not create exchange

• durable (bool) – Request a durable exchange

• auto_delete (bool) – Automatically delete when not in use

• internal (bool) – Deprecated

• nowait (bool) – Do not send a reply method

• arguments (dict) – Arguments for declaration

exchange_delete(exchange=’‘, if_unused=False, nowait=False)
Delete an exchange

This method deletes an exchange. When an exchange is deleted all queue bindings on the exchange are
cancelled.

Parameters

• exchange (str) – The exchange name

• if_unused (bool) – Delete only if unused

2.2. AMQP Adapter 11

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool

rabbitpy Documentation, Release 1.0.0

• nowait (bool) – Do not send a reply method

exchange_unbind(destination=’‘, source=’‘, routing_key=’‘, nowait=False, arguments=None)
Unbind an exchange from an exchange.

This method unbinds an exchange from an exchange.

Parameters

• destination (str) – The destination exchange name

• source (str) – The source exchange name

• routing_key (str) – The routing key to bind with

• nowait (bool) – Do not send a reply method

• arguments (dict) – Optional arguments

queue_bind(queue=’‘, exchange=’‘, routing_key=’‘, nowait=False, arguments=None)
Bind queue to an exchange

This method binds a queue to an exchange. Until a queue is bound it will not receive any messages. In
a classic messaging model, store-and- forward queues are bound to a direct exchange and subscription
queues are bound to a topic exchange.

Parameters

• queue (str) – The queue name

• exchange (str) – Name of the exchange to bind to

• routing_key (str) – Message routing key

• nowait (bool) – Do not send a reply method

• arguments (dict) – Arguments for binding

queue_declare(queue=’‘, passive=False, durable=False, exclusive=False, auto_delete=False,
nowait=False, arguments=None)

Declare queue, create if needed

This method creates or checks a queue. When creating a new queue the client can specify various properties
that control the durability of the queue and its contents, and the level of sharing for the queue.

Parameters

• queue (str) – The queue name

• passive (bool) – Do not create queue

• durable (bool) – Request a durable queue

• exclusive (bool) – Request an exclusive queue

• auto_delete (bool) – Auto-delete queue when unused

• nowait (bool) – Do not send a reply method

• arguments (dict) – Arguments for declaration

queue_delete(queue=’‘, if_unused=False, if_empty=False, nowait=False)
Delete a queue

This method deletes a queue. When a queue is deleted any pending messages are sent to a dead-letter
queue if this is defined in the server configuration, and all consumers on the queue are cancelled.

Parameters

12 Chapter 2. API Documentation

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/stdtypes.html#dict

rabbitpy Documentation, Release 1.0.0

• queue (str) – The queue name

• if_unused (bool) – Delete only if unused

• if_empty (bool) – Delete only if empty

• nowait (bool) – Do not send a reply method

queue_purge(queue=’‘, nowait=False)
Purge a queue

This method removes all messages from a queue which are not awaiting acknowledgment.

Parameters

• queue (str) – The queue name

• nowait (bool) – Do not send a reply method

queue_unbind(queue=’‘, exchange=’‘, routing_key=’‘, arguments=None)
Unbind a queue from an exchange

This method unbinds a queue from an exchange.

Parameters

• queue (str) – The queue name

• exchange (str) – The exchange name

• routing_key (str) – Routing key of binding

• arguments (dict) – Arguments of binding

tx_commit()
Commit the current transaction

This method commits all message publications and acknowledgments performed in the current transaction.
A new transaction starts immediately after a commit.

tx_rollback()
Abandon the current transaction

This method abandons all message publications and acknowledgments performed in the current trans-
action. A new transaction starts immediately after a rollback. Note that unacked messages will not be
automatically redelivered by rollback; if that is required an explicit recover call should be issued.

tx_select()
Select standard transaction mode

This method sets the channel to use standard transactions. The client must use this method at least once
on a channel before using the Commit or Rollback methods.

2.3 Channel

A Channel is created on an active connection using the Connection.channel() method. Channels can act as
normal Python objects:

conn = rabbitpy.Connection()
chan = conn.channel()
chan.enable_publisher_confirms()
chan.close()

2.3. Channel 13

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/stdtypes.html#dict

rabbitpy Documentation, Release 1.0.0

or as a Python context manager (See PEP 0343):

with rabbitpy.Connection() as conn:
with conn.channel() as chan:

chan.enable_publisher_confirms()

When they are used as a context manager with the with statement, when your code exits the block, the channel will
automatically close, issuing a clean shutdown with RabbitMQ via the Channel.Close RPC request.

You should be aware that if you perform actions on a channel with exchanges, queues, messages or transactions that
RabbitMQ does not like, it will close the channel by sending an AMQP Channel.Close RPC request to your
application. Upon receipt of such a request, rabbitpy will raise the appropriate exception referenced in the request.

2.3.1 API Documentation

class rabbitpy.Channel(channel_id, server_capabilities, events, exception_queue, read_queue,
write_queue, maximum_frame_size, write_trigger, connection, block-
ing_read=False)

The Channel object is the communications object used by Exchanges, Messages, Queues, and Transactions. It
is created by invoking the rabbitpy.Connection.channel() method. It can act as a context manager,
allowing for quick shorthand use:

with connection.channel():
Do something

To create a new channel, invoke py:meth:~rabbitpy.connection.Connection.channel()

To improve performance, pass blocking_read to True. Note that doing so prevents
KeyboardInterrupt/CTRL-C from exiting the Python interpreter.

Parameters

• channel_id (int) – The channel # to use for this instance

• server_capabilities (dict) – Features the server supports

• events (rabbitpy.Events) – Event management object

• exception_queue (queue.Queue) – Exception queue

• read_queue (queue.Queue) – Queue to read pending frames from

• write_queue (queue.Queue) – Queue to write pending AMQP objs to

• maximum_frame_size (int) – The max frame size for msg bodies

• write_trigger (socket) – Write to this socket to break IO waiting

• blocking_read (bool) – Use blocking Queue.get to improve performance

Raises rabbitpy.exceptions.RemoteClosedChannelException

Raises rabbitpy.exceptions.AMQPException

close()
Close the channel, cancelling any active consumers, purging the read queue, while looking to see if a
Basic.Nack should be sent, sending it if so.

enable_publisher_confirms()
Turn on Publisher Confirms. If confirms are turned on, the Message.publish command will return a bool
indicating if a message has been successfully published.

14 Chapter 2. API Documentation

https://www.python.org/dev/peps/pep-0343
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/socket.html#module-socket
https://docs.python.org/2/library/functions.html#bool

rabbitpy Documentation, Release 1.0.0

id
Return the channel id

Return type int

maximum_frame_size
Return the AMQP maximum frame size

Return type int

open()
Open the channel, invoked directly upon creation by the Connection

prefetch_count(value, all_channels=False)
Set a prefetch count for the channel (or all channels on the same connection).

Parameters

• value (int) – The prefetch count to set

• all_channels (bool) – Set the prefetch count on all channels on the same connection

prefetch_size(value, all_channels=False)
Set a prefetch size in bytes for the channel (or all channels on the same connection).

Parameters

• value (int) – The prefetch size to set

• all_channels (bool) – Set the prefetch size on all channels on the same connection

publisher_confirms
Returns True if publisher confirms are enabled.

Return type bool

recover(requeue=False)
Recover all unacknowledged messages that are associated with this channel.

Parameters requeue (bool) – Requeue the message

2.4 Connection

rabbitpy Connection objects are used to connect to RabbitMQ. They provide a thread-safe connection to RabbitMQ
that is used to authenticate and send all channel based RPC commands over. Connections use AMQP URI syntax for
specifying the all of the connection information, including any connection negotiation options, such as the heartbeat
interval. For more information on the various query parameters that can be specified, see the official documentation.

A Connection is a normal python object that you use:

conn = rabbitpy.Connection('amqp://guest:guest@localhost:5672/%2F')
conn.close()

or it can be used as a Python context manager (See PEP 0343):

with rabbitpy.Connection() as conn:
Foo

When it is used as a context manager with the with statement, when your code exits the block, the connection will
automatically close.

If RabbitMQ remotely closes your connection via the AMQP Connection.Close RPC request, rabbitpy will raise the
appropriate exception referenced in the request.

2.4. Connection 15

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
http://www.rabbitmq.com/uri-spec.html
http://www.rabbitmq.com/uri-query-parameters.html
https://www.python.org/dev/peps/pep-0343

rabbitpy Documentation, Release 1.0.0

If heartbeats are enabled (default: 5 minutes) and RabbitMQ does not send a heartbeat request in >= 2 heartbeat
intervals, a ConnectionResetException will be raised.

2.4.1 API Documentation

class rabbitpy.Connection(url=None)
The Connection object is responsible for negotiating a connection and managing its state. When creating a new
instance of the Connection object, if no URL is passed in, it uses the default connection parameters of localhost
port 5672, virtual host / with the guest/guest username/password combination. Represented as a AMQP URL
the connection information is:

amqp://guest:guest@localhost:5672/%2F

To use a different connection, pass in a AMQP URL that follows the standard format:

[scheme]://[username]:[password]@[host]:[port]/[virtual_host]

The following example connects to the test virtual host on a RabbitMQ server running at 192.168.1.200 port
5672 as the user “www” and the password rabbitmq:

amqp://admin192.168.1.200:5672/test

Note: You should be aware that most connection exceptions may be raised during the use of all functionality
in the library.

Parameters url (str) – The AMQP connection URL

Raises rabbitpy.exceptions.AMQPException

Raises rabbitpy.exceptions.ConnectionException

Raises rabbitpy.exceptions.ConnectionResetException

Raises rabbitpy.exceptions.RemoteClosedException

args
Return the connection arguments.

Return type dict

blocked
Indicates if the connection is blocked from publishing by RabbitMQ.

This flag indicates communication from RabbitMQ that the connection is blocked using the Connec-
tion.Blocked RPC notification from RabbitMQ that was added in RabbitMQ 3.2.

Return type bool

capabilities
Return the RabbitMQ Server capabilities from the connection negotiation process.

Return type dict

channel(blocking_read=False)
Create a new channel

If blocking_read is True, the cross-thread Queue.get use will use blocking operations that lower resource
utilization and increase throughput. However, due to how Python’s blocking Queue.get is implemented,
KeyboardInterrupt is not raised when CTRL-C is pressed.

Parameters blocking_read (bool) – Enable for higher throughput

16 Chapter 2. API Documentation

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#bool

rabbitpy Documentation, Release 1.0.0

Raises rabbitpy.exceptions.AMQPException

Raises rabbitpy.exceptions.RemoteClosedChannelException

close()
Close the connection, including all open channels.

Raises rabbitpy.exceptions.ConnectionClosed

server_properties
Return the RabbitMQ Server properties from the connection negotiation process.

Return type dict

2.5 Exceptions

rabbitpy contains two types of exceptions, exceptions that are specific to rabbitpy and exceptions that are raises as the
result of a Channel or Connection closure from RabbitMQ. These exceptions will be raised to let you know when you
have performed an action like redeclared a pre-existing queue with different values. Consider the following example:

>>> import rabbitpy
>>>
>>> with rabbitpy.Connection() as connection:
... with connection.channel() as channel:
... queue = rabbitpy.Queue(channel, 'exception-test')
... queue.durable = True
... queue.declare()
... queue.durable = False
... queue.declare()
...
Traceback (most recent call last):

File "<stdin>", line 7, in <module>
File "rabbitpy/connection.py", line 131, in __exit__
self._shutdown_connection()

File "rabbitpy/connection.py", line 469, in _shutdown_connection
self._channels[chan_id].close()

File "rabbitpy/channel.py", line 124, in close
super(Channel, self).close()

File "rabbitpy/base.py", line 185, in close
self.rpc(frame_value)

File "rabbitpy/base.py", line 199, in rpc
self._write_frame(frame_value)

File "rabbitpy/base.py", line 311, in _write_frame
raise exception

rabbitpy.exceptions.AMQPPreconditionFailed: <pamqp.specification.Channel.Close object at 0x10e86bd50>

In this example, the channel that was created on the second line was closed and RabbitMQ is raising the
AMQPPreconditionFailed exception via RPC sent to your application using the AMQP Channel.Close method.

2.5.1 Exceptions that may be raised by rabbitpy during use

exception rabbitpy.exceptions.AMQPAccessRefused
The client attempted to work with a server entity to which it has no access due to security settings.

2.5. Exceptions 17

https://docs.python.org/2/library/stdtypes.html#dict

rabbitpy Documentation, Release 1.0.0

exception rabbitpy.exceptions.AMQPChannelError
The client attempted to work with a channel that had not been correctly opened. This most likely indicates a
fault in the client layer.

exception rabbitpy.exceptions.AMQPCommandInvalid
The client sent an invalid sequence of frames, attempting to perform an operation that was considered invalid by
the server. This usually implies a programming error in the client.

exception rabbitpy.exceptions.AMQPConnectionForced
An operator intervened to close the connection for some reason. The client may retry at some later date.

exception rabbitpy.exceptions.AMQPContentTooLarge
The client attempted to transfer content larger than the server could accept at the present time. The client may
retry at a later time.

exception rabbitpy.exceptions.AMQPException
Base exception of all AMQP exceptions.

exception rabbitpy.exceptions.AMQPFrameError
The sender sent a malformed frame that the recipient could not decode. This strongly implies a programming
error in the sending peer.

exception rabbitpy.exceptions.AMQPInternalError
The server could not complete the method because of an internal error. The server may require intervention by
an operator in order to resume normal operations.

exception rabbitpy.exceptions.AMQPInvalidPath
The client tried to work with an unknown virtual host.

exception rabbitpy.exceptions.AMQPNoConsumers
When the exchange cannot deliver to a consumer when the immediate flag is set. As a result of pending data on
the queue or the absence of any consumers of the queue.

exception rabbitpy.exceptions.AMQPNoRoute
Undocumented AMQP Soft Error

exception rabbitpy.exceptions.AMQPNotAllowed
The client tried to work with some entity in a manner that is prohibited by the server, due to security settings or
by some other criteria.

exception rabbitpy.exceptions.AMQPNotFound
The client attempted to work with a server entity that does not exist.

exception rabbitpy.exceptions.AMQPNotImplemented
The client tried to use functionality that is not implemented in the server.

exception rabbitpy.exceptions.AMQPPreconditionFailed
The client requested a method that was not allowed because some precondition failed.

exception rabbitpy.exceptions.AMQPResourceError
The server could not complete the method because it lacked sufficient resources. This may be due to the client
creating too many of some type of entity.

exception rabbitpy.exceptions.AMQPResourceLocked
The client attempted to work with a server entity to which it has no access because another client is working
with it.

exception rabbitpy.exceptions.AMQPSyntaxError
The sender sent a frame that contained illegal values for one or more fields. This strongly implies a programming
error in the sending peer.

18 Chapter 2. API Documentation

rabbitpy Documentation, Release 1.0.0

exception rabbitpy.exceptions.AMQPUnexpectedFrame
The peer sent a frame that was not expected, usually in the context of a content header and body. This strongly
indicates a fault in the peer’s content processing.

exception rabbitpy.exceptions.ActionException
Raised when an action is taken on a Rabbitpy object that is not supported due to the state of the object. An
example would be trying to ack a Message object when the message object was locally created and not sent by
RabbitMQ via an AMQP Basic.Get or Basic.Consume.

exception rabbitpy.exceptions.ChannelClosedException
Raised when an action is attempted on a channel that is closed.

exception rabbitpy.exceptions.ConnectionClosed
Raised if a connection.close() is invoked when the connection is not open.

exception rabbitpy.exceptions.ConnectionException
Raised when Rabbitpy can not connect to the specified server and if a connection fails and the RabbitMQ version
does not support the authentication_failure_close feature added in RabbitMQ 3.2.

exception rabbitpy.exceptions.ConnectionResetException
Raised if the socket level connection was reset. This can happen due to the loss of network connection or socket
timeout, or more than 2 missed heartbeat intervals if heartbeats are enabled.

exception rabbitpy.exceptions.MessageReturnedException
Raised if the RabbitMQ sends a message back to a publisher via the Basic.Return RPC call.

exception rabbitpy.exceptions.NoActiveTransactionError
Raised when a transaction method is issued but the transaction has not been initiated.

exception rabbitpy.exceptions.NotConsumingError
Raised Queue.cancel_consumer() is invoked but the queue is not actively consuming.

exception rabbitpy.exceptions.NotSupportedError
Raised when a feature is requested that is not supported by the RabbitMQ server.

exception rabbitpy.exceptions.RabbitpyException
Base exception of all rabbitpy exceptions.

exception rabbitpy.exceptions.RemoteCancellationException
Raised if RabbitMQ cancels an active consumer

exception rabbitpy.exceptions.RemoteClosedChannelException
Raised if RabbitMQ closes the channel and the reply_code in the Channel.Close RPC request does not have a
mapped exception in Rabbitpy.

exception rabbitpy.exceptions.RemoteClosedException
Raised if RabbitMQ closes the connection and the reply_code in the Connection.Close RPC request does not
have a mapped exception in Rabbitpy.

exception rabbitpy.exceptions.TooManyChannelsError
Raised if an application attempts to create a channel, exceeding the maximum number of channels (MAXINT
or 2,147,483,647) available for a single connection. Note that each time a channel object is created, it will take
a new channel id. If you create and destroy 2,147,483,648 channels, this exception will be raised.

exception rabbitpy.exceptions.UnexpectedResponseError
Raised when an RPC call is made to RabbitMQ but the response it sent back is not recognized.

2.5. Exceptions 19

rabbitpy Documentation, Release 1.0.0

2.6 Exchange

The Exchange class is used to work with RabbitMQ exchanges on an open channel. The following example shows
how you can create an exchange using the rabbitpy.Exchange class.

import rabbitpy

with rabbitpy.Connection() as connection:
with connection.channel() as channel:

exchange = rabbitpy.Exchange(channel, 'my-exchange')
exchange.declare()

In addition, there are four convenience classes (DirectExchange, FanoutExchange, HeadersExchange,
and TopicExchange) for creating each built-in exchange type in RabbitMQ.

2.6.1 API Documentation

class rabbitpy.Exchange(channel, name, exchange_type=’direct’, durable=False, auto_delete=False,
arguments=None)

Exchange class for interacting with an exchange in RabbitMQ including declaration, binding and deletion.

Parameters

• channel (rabbitpy.channel.Channel) – The channel object to communicate on

• name (str) – The name of the exchange

• exchange_type (str) – The exchange type

• durable (bool) – Request a durable exchange

• auto_delete (bool) – Automatically delete when not in use

• arguments (dict) – Optional key/value arguments

bind(source, routing_key=None)
Bind to another exchange with the routing key.

Parameters

• source (str or rabbitpy.Exchange) – The exchange to bind to

• routing_key (str) – The routing key to use

declare(passive=False)
Declare the exchange with RabbitMQ. If passive is True and the command arguments do not match, the
channel will be closed.

Parameters passive (bool) – Do not actually create the exchange

delete(if_unused=False)
Delete the exchange from RabbitMQ.

Parameters if_unused (bool) – Delete only if unused

unbind(source, routing_key=None)
Unbind the exchange from the source exchange with the routing key. If routing key is None, use the queue
or exchange name.

Parameters

• source (str or rabbitpy.Exchange) – The exchange to unbind from

20 Chapter 2. API Documentation

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

rabbitpy Documentation, Release 1.0.0

• routing_key (str) – The routing key that binds them

class rabbitpy.DirectExchange(channel, name, durable=False, auto_delete=False, argu-
ments=None)

The DirectExchange class is used for interacting with direct exchanges only.

Parameters

• channel (rabbitpy.channel.Channel) – The channel object to communicate on

• name (str) – The name of the exchange

• durable (bool) – Request a durable exchange

• auto_delete (bool) – Automatically delete when not in use

• arguments (dict) – Optional key/value arguments

bind(source, routing_key=None)
Bind to another exchange with the routing key.

Parameters

• source (str or rabbitpy.Exchange) – The exchange to bind to

• routing_key (str) – The routing key to use

declare(passive=False)
Declare the exchange with RabbitMQ. If passive is True and the command arguments do not match, the
channel will be closed.

Parameters passive (bool) – Do not actually create the exchange

delete(if_unused=False)
Delete the exchange from RabbitMQ.

Parameters if_unused (bool) – Delete only if unused

unbind(source, routing_key=None)
Unbind the exchange from the source exchange with the routing key. If routing key is None, use the queue
or exchange name.

Parameters

• source (str or rabbitpy.Exchange) – The exchange to unbind from

• routing_key (str) – The routing key that binds them

class rabbitpy.FanoutExchange(channel, name, durable=False, auto_delete=False, argu-
ments=None)

The FanoutExchange class is used for interacting with fanout exchanges only.

Parameters

• channel (rabbitpy.channel.Channel) – The channel object to communicate on

• name (str) – The name of the exchange

• durable (bool) – Request a durable exchange

• auto_delete (bool) – Automatically delete when not in use

• arguments (dict) – Optional key/value arguments

bind(source, routing_key=None)
Bind to another exchange with the routing key.

Parameters

2.6. Exchange 21

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/stdtypes.html#dict

rabbitpy Documentation, Release 1.0.0

• source (str or rabbitpy.Exchange) – The exchange to bind to

• routing_key (str) – The routing key to use

declare(passive=False)
Declare the exchange with RabbitMQ. If passive is True and the command arguments do not match, the
channel will be closed.

Parameters passive (bool) – Do not actually create the exchange

delete(if_unused=False)
Delete the exchange from RabbitMQ.

Parameters if_unused (bool) – Delete only if unused

unbind(source, routing_key=None)
Unbind the exchange from the source exchange with the routing key. If routing key is None, use the queue
or exchange name.

Parameters

• source (str or rabbitpy.Exchange) – The exchange to unbind from

• routing_key (str) – The routing key that binds them

class rabbitpy.HeadersExchange(channel, name, durable=False, auto_delete=False, argu-
ments=None)

The HeadersExchange class is used for interacting with direct exchanges only.

Parameters

• channel (rabbitpy.channel.Channel) – The channel object to communicate on

• name (str) – The name of the exchange

• durable (bool) – Request a durable exchange

• auto_delete (bool) – Automatically delete when not in use

• arguments (dict) – Optional key/value arguments

bind(source, routing_key=None)
Bind to another exchange with the routing key.

Parameters

• source (str or rabbitpy.Exchange) – The exchange to bind to

• routing_key (str) – The routing key to use

declare(passive=False)
Declare the exchange with RabbitMQ. If passive is True and the command arguments do not match, the
channel will be closed.

Parameters passive (bool) – Do not actually create the exchange

delete(if_unused=False)
Delete the exchange from RabbitMQ.

Parameters if_unused (bool) – Delete only if unused

unbind(source, routing_key=None)
Unbind the exchange from the source exchange with the routing key. If routing key is None, use the queue
or exchange name.

Parameters

• source (str or rabbitpy.Exchange) – The exchange to unbind from

22 Chapter 2. API Documentation

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

rabbitpy Documentation, Release 1.0.0

• routing_key (str) – The routing key that binds them

class rabbitpy.TopicExchange(channel, name, durable=False, auto_delete=False, arguments=None)
The TopicExchange class is used for interacting with topic exchanges only.

Parameters

• channel (rabbitpy.channel.Channel) – The channel object to communicate on

• name (str) – The name of the exchange

• durable (bool) – Request a durable exchange

• auto_delete (bool) – Automatically delete when not in use

• arguments (dict) – Optional key/value arguments

bind(source, routing_key=None)
Bind to another exchange with the routing key.

Parameters

• source (str or rabbitpy.Exchange) – The exchange to bind to

• routing_key (str) – The routing key to use

declare(passive=False)
Declare the exchange with RabbitMQ. If passive is True and the command arguments do not match, the
channel will be closed.

Parameters passive (bool) – Do not actually create the exchange

delete(if_unused=False)
Delete the exchange from RabbitMQ.

Parameters if_unused (bool) – Delete only if unused

unbind(source, routing_key=None)
Unbind the exchange from the source exchange with the routing key. If routing key is None, use the queue
or exchange name.

Parameters

• source (str or rabbitpy.Exchange) – The exchange to unbind from

• routing_key (str) – The routing key that binds them

2.7 Message

The Message class is used to create messages that you intend to publish to RabbitMQ and is created when a message
is received by RabbitMQ by a consumer or as the result of a Queue.get() request.

2.7.1 API Documentation

class rabbitpy.Message(channel, body_value, properties=None, auto_id=False, opinionated=False)
Created by both rabbitpy internally when a message is delivered or returned from RabbitMQ and by implement-
ing applications, the Message class is used to publish a message to and access and respond to a message from
RabbitMQ.

When specifying properties for a message, pass in a dict of key value items that match the AMQP Ba-
sic.Properties specification with a small caveat.

2.7. Message 23

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str

rabbitpy Documentation, Release 1.0.0

Due to an overlap in the AMQP specification and the Python keyword type, the type property is referred to
as message_type.

The following is a list of the available properties:

•app_id

•content_type

•content_encoding

•correlation_id

•delivery_mode

•expiration

•headers

•message_id

•message_type

•priority

•reply_to

•timestamp

•user_id

Automated features

When passing in the body value, if it is a dict or list, it will automatically be JSON serialized and the content
type application/json will be set on the message properties.

When publishing a message to RabbitMQ, if the opinionated value is True and no message_id value was
passed in as a property, a UUID will be generated and specified as a property of the message.

Additionally, if opinionated is True and the timestamp property is not specified when passing in
properties, the current Unix epoch value will be set in the message properties.

Note: As of 0.21.0 auto_id is deprecated in favor of

opinionated and it will be removed in a future version. As of 0.22.0 opinionated is defaulted to False.

Parameters

• channel (rabbitpy.channel.Channel) – The channel object for the message ob-
ject to act upon

• body_value (str|bytes|unicode|memoryview|dict|json) – The message
body

• properties (dict) – A dictionary of message properties

• auto_id (bool) – Add a message id if no properties were passed in.

• opinionated (bool) – Automatically populate properties if True

Raises KeyError – Raised when an invalid property is passed in

ack(all_previous=False)
Acknowledge receipt of the message to RabbitMQ. Will raise an ActionException if the message was not
received from a broker.

24 Chapter 2. API Documentation

https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

rabbitpy Documentation, Release 1.0.0

Raises ActionException

delivery_tag
Return the delivery tag for a message that was delivered or gotten from RabbitMQ.

Return type int or None

exchange
Return the source exchange for a message that was delivered or gotten from RabbitMQ.

Return type string or None

json()
Deserialize the message body if it is JSON, returning the value.

Return type any

nack(requeue=False, all_previous=False)
Negatively acknowledge receipt of the message to RabbitMQ. Will raise an ActionException if the mes-
sage was not received from a broker.

Parameters

• requeue (bool) – Requeue the message

• all_previous (bool) – Nack all previous unacked messages up to and including this
one

Raises ActionException

pprint(properties=False)
Print a formatted representation of the message.

Parameters properties (bool) – Include properties in the representation

publish(exchange, routing_key=’‘, mandatory=False, immediate=False)
Publish the message to the exchange with the specified routing key.

In Python 2 if the message is a unicode value it will be converted to a str using
str.encode(’UTF-8’). If you do not want the auto-conversion to take place, set the body to a
str or bytes value prior to publishing.

In Python 3 if the message is a str value it will be converted to a bytes value using
bytes(value.encode(’UTF-8’)). If you do not want the auto-conversion to take place, set the
body to a bytes value prior to publishing.

Parameters

• exchange (str or rabbitpy.Exchange) – The exchange to publish the message to

• routing_key (str) – The routing key to use

• mandatory (bool) – Requires the message is published

• immediate (bool) – Request immediate delivery

Returns bool or None

Raises rabbitpy.exceptions.MessageReturnedException

redelivered
Indicates if this message may have been delivered before (but not acknowledged)”

Return type bool or None

2.7. Message 25

https://docs.python.org/2/library/functions.html#any
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

rabbitpy Documentation, Release 1.0.0

reject(requeue=False)
Reject receipt of the message to RabbitMQ. Will raise an ActionException if the message was not received
from a broker.

Parameters requeue (bool) – Requeue the message

Raises ActionException

routing_key
Return the routing_key for a message that was delivered or gotten from RabbitMQ.

Return type int or None

2.8 Queue

The Queue class is used to work with RabbitMQ queues on an open channel. The following example shows how you
can create a queue using the Queue.declare method.

import rabbitpy

with rabbitpy.Connection() as connection:
with connection.channel() as channel:

queue = rabbitpy.Queue(channel, 'my-queue')
queue.durable = True
queue.declare()

To consume messages you can iterate over the Queue object itself if the defaults for the Queue.__iter__()
method work for your needs:

with conn.channel() as channel:
for message in rabbitpy.Queue(channel, 'example'):

print 'Message: %r' % message
message.ack()

or by the Queue.consume() method if you would like to specify no_ack, prefetch_count, or priority:

with conn.channel() as channel:
queue = rabbitpy.Queue(channel, 'example')
for message in queue.consume():

print 'Message: %r' % message
message.ack()

Warning: If you use either the Queue as an iterator method or Queue.consume() method of consuming
messages in PyPy, you must manually invoke Queue.stop_consuming(). This is due to PyPy not predictably
cleaning up after the generator used for allowing the iteration over messages. Should your code want to test to see
if the code is being executed in PyPy, you can evaluate the boolean rabbitpy.PYPY constant value.

2.8.1 API Documentation

class rabbitpy.Queue(channel, name=’‘, durable=False, exclusive=False, auto_delete=False,
max_length=None, message_ttl=None, expires=None,
dead_letter_exchange=None, dead_letter_routing_key=None, arguments=None)

Create and manage RabbitMQ queues.

Parameters

26 Chapter 2. API Documentation

https://docs.python.org/2/library/functions.html#bool

rabbitpy Documentation, Release 1.0.0

• channel (Channel) – The channel object to communicate on

• name (str) – The name of the queue

• exclusive (bool) – Queue can only be used by this channel and will auto-delete once
the channel is closed.

• durable (bool) – Indicates if the queue should survive a RabbitMQ is restart

• auto_delete (bool) – Automatically delete when all consumers disconnect

• max_length (int) – Maximum queue length

• message_ttl (int) – Time-to-live of a message in milliseconds

• expires (int) – Milliseconds until a queue is removed after becoming idle

• dead_letter_exchange (str) – Dead letter exchange for rejected messages

• dead_letter_routing_key (str) – Routing key for dead lettered messages

• arguments (dict) – Custom arguments for the queue

Raises RemoteClosedChannelException

Raises RemoteCancellationException

__init__(channel, name=’‘, durable=False, exclusive=False, auto_delete=False,
max_length=None, message_ttl=None, expires=None, dead_letter_exchange=None,
dead_letter_routing_key=None, arguments=None)

Create a new Queue object instance. Only the rabbitpy.Channel object is required.

Warning: You should only use a single Queue instance per channel when consuming or getting
messages. Failure to do so can have unintended consequences.

__iter__()
Quick way to consume messages using defaults of no_ack=False, prefetch and priority not set.

Warning: You should only use a single Queue instance per channel when consuming messages.
Failure to do so can have unintended consequences.

Yields Message

__len__()
Return the pending number of messages in the queue by doing a passive Queue declare.

Return type int

__setattr__(name, value)
Validate the data types for specific attributes when setting them, otherwise fall throw to the parent __se-
tattr__

Parameters

• name (str) – The attribute to set

• value (mixed) – The value to set

Raises ValueError

bind(source, routing_key=None, arguments=None)
Bind the queue to the specified exchange or routing key.

Parameters

2.8. Queue 27

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str

rabbitpy Documentation, Release 1.0.0

• source (str or rabbitpy.exchange.Exchange exchange) – The exchange to bind
to

• routing_key (str) – The routing key to use

• arguments (dict) – Optional arguments for for RabbitMQ

Returns bool

consume(no_ack=False, prefetch=None, priority=None)
Consume messages from the queue as a generator:

You can use this method instead of the queue object as an iterator if you need to alter the prefect count, set
the consumer priority or consume in no_ack mode.

New in version 0.26.

Warning: You should only use a single Queue instance per channel when consuming messages.
Failure to do so can have unintended consequences.

Parameters

• no_ack (bool) – Do not require acknowledgements

• prefetch (int) – Set a prefetch count for the channel

• priority (int) – Consumer priority

Return type generator

Raises RemoteCancellationException

consume_messages(no_ack=False, prefetch=None, priority=None)
Consume messages from the queue as a generator.

Warning: This method is deprecated in favor of Queue.consume() and will be removed in future
releases.

Deprecated since version 0.26.

You can use this message instead of the queue object as an iterator if you need to alter the prefect count,
set the consumer priority or consume in no_ack mode.

Parameters

• no_ack (bool) – Do not require acknowledgements

• prefetch (int) – Set a prefetch count for the channel

• priority (int) – Consumer priority

Return type Generator

Raises RemoteCancellationException

consumer(no_ack=False, prefetch=None, priority=None)
Method for returning the contextmanager for consuming messages. You should not use this directly.

Warning: This method is deprecated and will be removed in a future release.

Deprecated since version 0.26.

Parameters

• no_ack (bool) – Do not require acknowledgements

28 Chapter 2. API Documentation

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool

rabbitpy Documentation, Release 1.0.0

• prefetch (int) – Set a prefetch count for the channel

• priority (int) – Consumer priority

Returns None

declare(passive=False)
Declare the queue on the RabbitMQ channel passed into the constructor, returning the current message
count for the queue and its consumer count as a tuple.

Parameters passive (bool) – Passive declare to retrieve message count and consumer count
information

Returns Message count, Consumer count

Return type tuple(int, int)

delete(if_unused=False, if_empty=False)
Delete the queue

Parameters

• if_unused (bool) – Delete only if unused

• if_empty (bool) – Delete only if empty

get(acknowledge=True)
Request a single message from RabbitMQ using the Basic.Get AMQP command.

Warning: You should only use a single Queue instance per channel when getting messages. Failure
to do so can have unintended consequences.

Parameters acknowledge (bool) – Let RabbitMQ know if you will manually acknowledge
or negatively acknowledge the message after each get.

Return type Message or None

ha_declare(nodes=None)
Declare a the queue as highly available, passing in a list of nodes the queue should live on. If no nodes are
passed, the queue will be declared across all nodes in the cluster.

Parameters nodes (list) – A list of nodes to declare. If left empty, queue will be declared
on all cluster nodes.

Returns Message count, Consumer count

Return type tuple(int, int)

purge()
Purge the queue of all of its messages.

stop_consuming()
Stop consuming messages. This is usually invoked if you want to cancel your consumer from outside the
context manager or generator.

If you invoke this, there is a possibility that the generator method will return None instead of a
rabbitpy.Message.

unbind(source, routing_key=None)
Unbind queue from the specified exchange where it is bound the routing key. If routing key is None, use
the queue name.

Parameters

2.8. Queue 29

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#list

rabbitpy Documentation, Release 1.0.0

• source (str or rabbitpy.exchange.Exchange exchange) – The exchange to un-
bind from

• routing_key (str) – The routing key that binds them

2.9 Transactions

The Tx or transaction class implements transactional functionality with RabbitMQ and allows for any AMQP com-
mand to be issued, then committed or rolled back.

It can be used as a normal Python object:

with rabbitpy.Connection() as connection:
with connection.channel() as channel:

tx = rabbitpy.Tx(channel)
tx.select()
exchange = rabbitpy.Exchange(channel, 'my-exchange')
exchange.declare()
tx.commit()

Or as a context manager (See PEP 0343) where the transaction will automatically be started and committed for you:

with rabbitpy.Connection() as connection:
with connection.channel() as channel:

with rabbitpy.Tx(channel) as tx:
exchange = rabbitpy.Exchange(channel, 'my-exchange')
exchange.declare()

In the event of an exception exiting the block when used as a context manager, the transaction will be rolled back for
you automatically.

2.9.1 API Documentation

class rabbitpy.Tx(channel)
Work with transactions

The Tx class allows publish and ack operations to be batched into atomic units of work. The intention is
that all publish and ack requests issued within a transaction will complete successfully or none of them will.
Servers SHOULD implement atomic transactions at least where all publish or ack requests affect a single queue.
Transactions that cover multiple queues may be non-atomic, given that queues can be created and destroyed
asynchronously, and such events do not form part of any transaction. Further, the behaviour of transactions with
respect to the immediate and mandatory flags on Basic.Publish methods is not defined.

Parameters channel (rabbitpy.channel.Channel) – The channel object to start the trans-
action on

commit()
Commit the current transaction

This method commits all message publications and acknowledgments performed in the current transaction.
A new transaction starts immediately after a commit.

Raises rabbitpy.exceptions.NoActiveTransactionError

Return type bool

30 Chapter 2. API Documentation

https://docs.python.org/2/library/functions.html#str
https://www.python.org/dev/peps/pep-0343
https://docs.python.org/2/library/functions.html#bool

rabbitpy Documentation, Release 1.0.0

rollback()
Abandon the current transaction

This method abandons all message publications and acknowledgments performed in the current trans-
action. A new transaction starts immediately after a rollback. Note that unacked messages will not be
automatically redelivered by rollback; if that is required an explicit recover call should be issued.

Raises rabbitpy.exceptions.NoActiveTransactionError

Return type bool

select()
Select standard transaction mode

This method sets the channel to use standard transactions. The client must use this method at least once
on a channel before using the Commit or Rollback methods.

Return type bool

2.9. Transactions 31

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

rabbitpy Documentation, Release 1.0.0

32 Chapter 2. API Documentation

CHAPTER 3

Examples

3.1 Message Consumer

The following example will subscribe to a queue named “example” and consume messages until CTRL-C is pressed:

import rabbitpy

with rabbitpy.Connection('amqp://guest:guest@localhost:5672/%2f') as conn:
with conn.channel() as channel:

queue = rabbitpy.Queue(channel, 'example')

Exit on CTRL-C
try:

Consume the message
for message in queue:

message.pprint(True)
message.ack()

except KeyboardInterrupt:
print 'Exited consumer'

3.2 Message Getter

The following example will get a single message at a time from the “example” queue as long as there are messages in
it. It uses len(queue) to check the current queue depth while it is looping:

import rabbitpy

with rabbitpy.Connection('amqp://guest:guest@localhost:5672/%2f') as conn:
with conn.channel() as channel:

queue = rabbitpy.Queue(channel, 'example')
while len(queue) > 0:

message = queue.get()
message.pprint(True)
message.ack()
print('There are {} more messages in the queue'.format(len(queue)))

33

rabbitpy Documentation, Release 1.0.0

3.3 Declaring HA Queues

The following example will create a HA queue on each node in a RabbitMQ cluster.:

import rabbitpy

with rabbitpy.Connection('amqp://guest:guest@localhost:5672/%2f') as conn:
with conn.channel() as channel:

queue = rabbitpy.Queue(channel, 'example')
queue.ha_declare()

3.4 Mandatory Publishing

The following example uses RabbitMQ’s Publisher Confirms feature to allow for validation that the message was
successfully published:

import rabbitpy

Connect to RabbitMQ on localhost, port 5672 as guest/guest
with rabbitpy.Connection('amqp://guest:guest@localhost:5672/%2f') as conn:

Open the channel to communicate with RabbitMQ
with conn.channel() as channel:

Turn on publisher confirmations
channel.enable_publisher_confirms()

Create the message to publish
message = rabbitpy.Message(channel, 'message body value')

Publish the message, looking for the return value to be a bool True/False
if message.publish('test_exchange', 'test-routing-key', mandatory=True):

print 'Message publish confirmed by RabbitMQ'
else:

print 'RabbitMQ indicates message publishing failure'

3.5 Transactional Publisher

The following example uses RabbitMQ’s Transactions feature to send the message, then roll it back:

import rabbitpy

Connect to RabbitMQ on localhost, port 5672 as guest/guest
with rabbitpy.Connection('amqp://guest:guest@localhost:5672/%2f') as conn:

Open the channel to communicate with RabbitMQ
with conn.channel() as channel:

Start the transaction
tx = rabbitpy.Tx(channel)
tx.select()

Create the message to publish & publish it

34 Chapter 3. Examples

rabbitpy Documentation, Release 1.0.0

message = rabbitpy.Message(channel, 'message body value')
message.publish('test_exchange', 'test-routing-key')

Rollback the transaction
tx.rollback()

3.5. Transactional Publisher 35

rabbitpy Documentation, Release 1.0.0

36 Chapter 3. Examples

CHAPTER 4

Issues

Please report any issues to the Github repo at https://github.com/gmr/rabbitpy/issues

37

https://github.com/gmr/rabbitpy/issues

rabbitpy Documentation, Release 1.0.0

38 Chapter 4. Issues

CHAPTER 5

Source

rabbitpy source is available on Github at https://github.com/gmr/rabbitpy

39

https://github.com/gmr/rabbitpy

rabbitpy Documentation, Release 1.0.0

40 Chapter 5. Source

CHAPTER 6

Version History

See history

41

rabbitpy Documentation, Release 1.0.0

42 Chapter 6. Version History

CHAPTER 7

Inspiration

rabbitpy’s simple and more pythonic interface is inspired by Kenneth Reitz’s awesome work on requests.

43

https://github.com/kennethreitz/
http://docs.python-requests.org/en/latest/

rabbitpy Documentation, Release 1.0.0

44 Chapter 7. Inspiration

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

45

rabbitpy Documentation, Release 1.0.0

46 Chapter 8. Indices and tables

Python Module Index

r
rabbitpy.exceptions, 17
rabbitpy.simple, 5

47

rabbitpy Documentation, Release 1.0.0

48 Python Module Index

Index

Symbols
__init__() (rabbitpy.Queue method), 27
__iter__() (rabbitpy.Queue method), 27
__len__() (rabbitpy.Queue method), 27
__setattr__() (rabbitpy.Queue method), 27

A
ack() (rabbitpy.Message method), 24
ActionException, 19
AMQP (class in rabbitpy), 8
AMQPAccessRefused, 17
AMQPChannelError, 17
AMQPCommandInvalid, 18
AMQPConnectionForced, 18
AMQPContentTooLarge, 18
AMQPException, 18
AMQPFrameError, 18
AMQPInternalError, 18
AMQPInvalidPath, 18
AMQPNoConsumers, 18
AMQPNoRoute, 18
AMQPNotAllowed, 18
AMQPNotFound, 18
AMQPNotImplemented, 18
AMQPPreconditionFailed, 18
AMQPResourceError, 18
AMQPResourceLocked, 18
AMQPSyntaxError, 18
AMQPUnexpectedFrame, 18
args (rabbitpy.Connection attribute), 16

B
basic_ack() (rabbitpy.AMQP method), 9
basic_cancel() (rabbitpy.AMQP method), 9
basic_consume() (rabbitpy.AMQP method), 9
basic_get() (rabbitpy.AMQP method), 9
basic_nack() (rabbitpy.AMQP method), 10
basic_publish() (rabbitpy.AMQP method), 10
basic_qos() (rabbitpy.AMQP method), 10
basic_recover() (rabbitpy.AMQP method), 10

basic_reject() (rabbitpy.AMQP method), 10
bind() (rabbitpy.DirectExchange method), 21
bind() (rabbitpy.Exchange method), 20
bind() (rabbitpy.FanoutExchange method), 21
bind() (rabbitpy.HeadersExchange method), 22
bind() (rabbitpy.Queue method), 27
bind() (rabbitpy.TopicExchange method), 23
blocked (rabbitpy.Connection attribute), 16

C
capabilities (rabbitpy.Connection attribute), 16
Channel (class in rabbitpy), 14
channel() (rabbitpy.Connection method), 16
ChannelClosedException, 19
close() (rabbitpy.Channel method), 14
close() (rabbitpy.Connection method), 17
commit() (rabbitpy.Tx method), 30
confirm_select() (rabbitpy.AMQP method), 11
Connection (class in rabbitpy), 16
ConnectionClosed, 19
ConnectionException, 19
ConnectionResetException, 19
consume() (in module rabbitpy.simple), 5
consume() (rabbitpy.Queue method), 28
consume_messages() (rabbitpy.Queue method), 28
consumer() (rabbitpy.Queue method), 28
create_direct_exchange() (in module rabbitpy.simple), 6
create_fanout_exchange() (in module rabbitpy.simple), 6
create_headers_exchange() (in module rabbitpy.simple),

6
create_queue() (in module rabbitpy.simple), 6
create_topic_exchange() (in module rabbitpy.simple), 7

D
declare() (rabbitpy.DirectExchange method), 21
declare() (rabbitpy.Exchange method), 20
declare() (rabbitpy.FanoutExchange method), 22
declare() (rabbitpy.HeadersExchange method), 22
declare() (rabbitpy.Queue method), 29
declare() (rabbitpy.TopicExchange method), 23

49

rabbitpy Documentation, Release 1.0.0

delete() (rabbitpy.DirectExchange method), 21
delete() (rabbitpy.Exchange method), 20
delete() (rabbitpy.FanoutExchange method), 22
delete() (rabbitpy.HeadersExchange method), 22
delete() (rabbitpy.Queue method), 29
delete() (rabbitpy.TopicExchange method), 23
delete_exchange() (in module rabbitpy.simple), 7
delete_queue() (in module rabbitpy.simple), 7
delivery_tag (rabbitpy.Message attribute), 25
DirectExchange (class in rabbitpy), 21

E
enable_publisher_confirms() (rabbitpy.Channel method),

14
Exchange (class in rabbitpy), 20
exchange (rabbitpy.Message attribute), 25
exchange_bind() (rabbitpy.AMQP method), 11
exchange_declare() (rabbitpy.AMQP method), 11
exchange_delete() (rabbitpy.AMQP method), 11
exchange_unbind() (rabbitpy.AMQP method), 12

F
FanoutExchange (class in rabbitpy), 21

G
get() (in module rabbitpy.simple), 7
get() (rabbitpy.Queue method), 29

H
ha_declare() (rabbitpy.Queue method), 29
HeadersExchange (class in rabbitpy), 22

I
id (rabbitpy.Channel attribute), 14

J
json() (rabbitpy.Message method), 25

M
maximum_frame_size (rabbitpy.Channel attribute), 15
Message (class in rabbitpy), 23
MessageReturnedException, 19

N
nack() (rabbitpy.Message method), 25
NoActiveTransactionError, 19
NotConsumingError, 19
NotSupportedError, 19

O
open() (rabbitpy.Channel method), 15

P
pprint() (rabbitpy.Message method), 25
prefetch_count() (rabbitpy.Channel method), 15
prefetch_size() (rabbitpy.Channel method), 15
publish() (in module rabbitpy.simple), 8
publish() (rabbitpy.Message method), 25
publisher_confirms (rabbitpy.Channel attribute), 15
purge() (rabbitpy.Queue method), 29
Python Enhancement Proposals

PEP 0343, 14, 15, 30

Q
Queue (class in rabbitpy), 26
queue_bind() (rabbitpy.AMQP method), 12
queue_declare() (rabbitpy.AMQP method), 12
queue_delete() (rabbitpy.AMQP method), 12
queue_purge() (rabbitpy.AMQP method), 13
queue_unbind() (rabbitpy.AMQP method), 13

R
rabbitpy.exceptions (module), 17
rabbitpy.simple (module), 5
RabbitpyException, 19
recover() (rabbitpy.Channel method), 15
redelivered (rabbitpy.Message attribute), 25
reject() (rabbitpy.Message method), 25
RemoteCancellationException, 19
RemoteClosedChannelException, 19
RemoteClosedException, 19
rollback() (rabbitpy.Tx method), 30
routing_key (rabbitpy.Message attribute), 26

S
select() (rabbitpy.Tx method), 31
server_properties (rabbitpy.Connection attribute), 17
SimpleChannel (class in rabbitpy.simple), 5
stop_consuming() (rabbitpy.Queue method), 29

T
TooManyChannelsError, 19
TopicExchange (class in rabbitpy), 23
Tx (class in rabbitpy), 30
tx_commit() (rabbitpy.AMQP method), 13
tx_rollback() (rabbitpy.AMQP method), 13
tx_select() (rabbitpy.AMQP method), 13

U
unbind() (rabbitpy.DirectExchange method), 21
unbind() (rabbitpy.Exchange method), 20
unbind() (rabbitpy.FanoutExchange method), 22
unbind() (rabbitpy.HeadersExchange method), 22
unbind() (rabbitpy.Queue method), 29
unbind() (rabbitpy.TopicExchange method), 23
UnexpectedResponseError, 19

50 Index

	Installation
	API Documentation
	Simple API Methods
	AMQP Adapter
	Channel
	Connection
	Exceptions
	Exchange
	Message
	Queue
	Transactions

	Examples
	Message Consumer
	Message Getter
	Declaring HA Queues
	Mandatory Publishing
	Transactional Publisher

	Issues
	Source
	Version History
	Inspiration
	Indices and tables
	Python Module Index

