
eml_uberdriver Documentation
Release 1.0

mincrmatt12

May 09, 2018

Contents

1 Introduction 3
1.1 Requirements . 3
1.2 Setup . 3

2 The Client Library 5
2.1 Getting Started . 5
2.2 Overview . 5
2.3 Examples . 6

3 I2C Protocol 7
3.1 Commands . 7
3.2 Usage Examples . 9

4 API Documentation 11

i

ii

eml_uberdriver Documentation, Release 1.0

This is the documentation for project enamel, a system for driving Encoders, Motors and LimitSwitches with an
arduino Due and C++. The documentation contains the spec for the protocol between the computer and the arduino,
as well as how to use the provided C++ client library.

Warning: Implementation of limit switches is ongoing, and the documentation may not reflect its addition until
it is complete.

Contents 1

eml_uberdriver Documentation, Release 1.0

2 Contents

CHAPTER 1

Introduction

eml_uberdriver, also known as project Enamel, is a way to simplify interfacing between motors/encoders/limit
switches and ROS, without hassle and overhead.

The setup to use eml_uberdriver is fairly simple, but does have some hardware requirements. These are listed
below.

1.1 Requirements

The hardware requirements for using eml_uberdriver are:

• An Arduino Due (although the firmware will work fine on other board if you change the software reset logic)

• I2C connection between ROS computer and Due

The supported hardware is as follows:

• Motors over PWM

• Two-wire encoders

• Limit switches (standard switches)

1.2 Setup

Setting up the Due for use with eml_uberdriver is very simple. Using platformio, the following command at the
root of the firmware/ directory will upload the code to any connected due:

$ pio run -t upload

This should download all the required Arduino libraries and tools and flash the Due.

Hardware setup is as simple as plugging in any motors to PWM pins, encoders to any digital pins, and limit switches
again to any digital pins. The four pins labeled as ADDRESS_PIN_N in firmware/src/constants.h, where

3

eml_uberdriver Documentation, Release 1.0

N is from 1-4 are special and are used to set the I2C address of the Due. The four pins (in order) are converted from
binary to decimal and added to ADDRESS_BASE to form the actual address of the Due.

4 Chapter 1. Introduction

CHAPTER 2

The Client Library

The Client Library in eml_uberdriver is the code on the ROS computer that gives commands to the Due. In this
chapter we’ll look at a few simple use cases for it.

2.1 Getting Started

To begin, you should add eml_uberdriver to your package.xml as both build and run dependencies. Also
add it to the CMakeLists.txt file in the indicated locations. If creating a new package, add it to the end of
create_catkin_pkg along with roscpp.

If all has gone well, you should be able to include <eml_uberdriver/eml_uberdriver.h> in your code
(make sure to run catkin_make before complaining that it didn’t work).

2.2 Overview

The Client Library is designed to be very simple, and only uses two classes. The main one you have to worry about is
eml_uberdriver::ARDevice.

Note: For more information about all the methods in the eml_uberdriver::ARDevice class, see the full
documentation in chapter 4.

Using it is very simple, simply construct one with two parameters: the i2c bus and address of the Due.

There are 3 main functions:

• eml_uberdriver::ARDevice::openPinAsMotor()

• eml_uberdriver::ARDevice::writeMicroseconds()

• eml_uberdriver::ARDevice::openPinAsEncoder()

5

eml_uberdriver Documentation, Release 1.0

Warning: The last function is a bit of a misnomer, as encoders require two pins to work, and the function takes
two pins.

eml_uberdriver::ARDevice::openPinAsMotor() opens a pin on the Due as a motor,
eml_uberdriver::ARDevice::writeMicroseconds() sets a value in microseconds for that motor
(by pin), and eml_uberdriver::ARDevice::openPinAsEncoder() opens two digital pins for use as an
encoder, returning an eml_uberdriver::Encoder instance.

2.3 Examples

Here are some simple examples using the client library

2.3.1 Simple motors

1 // Open the arduino on address 0x30, bus 1.
2 // Using i2cdetect -y -q -a <busnum> can allow you to see what devices are on what

→˓buses
3 eml_uberdriver::ARDevice device(1, 0x30);
4

5 device.openPinAsMotor(6); // open pin 6 as a motor
6 device.writeMicroseconds(6, 1000); // write 1000 ms pwm rate to pin 6
7

8 sleep(1); // wait
9

10 device.writeMicroseconds(6, 0); // write 0 ms pwm rate to pin 6

This example sends 1000 ms pwm to pin 6 for 1 second, then sets it to 0.

2.3.2 Simple encoders

The encoder API uses the eml_uberdriver::Encoder class. This class is documented in chapter 4, but its usage
can be seen below

1 // Open the arduino on address 0x30, bus 1.
2 // Using i2cdetect -y -q -a <busnum> can allow you to see what devices are on what

→˓buses
3 eml_uberdriver::ARDevice device(1, 0x30);
4

5 Encoder e = device.openPinAsEncoder(2, 3); // open pins 2 and 3 as pinA and pinB of
→˓an encoder

6

7 e.resetEncoder(); // zero the encoder
8

9 std::cout << "Move the encoder around for 1 second" << std::endl;
10

11 sleep(1);
12

13 std::cout << "The encoder reads: " << e.encoderValue() << std::endl; //
→˓encoderValue() gives the current position of the encoder

This example opens and reads an encoder on pins 2 and 3.

6 Chapter 2. The Client Library

CHAPTER 3

I2C Protocol

The eml_uberdriver protocol is designed for Encoders, Motors and Limitswitches.

The device is not register based, and instead works more like a UART protocol than anything else.

In order to send commands to the device, one byte indicating the command type is sent, followed by the command
payload (arguments)

The commands are as follows:

3.1 Commands

3.1.1 0x01 - open pin as motor

This command will open a servo on the Due. It will return one byte indicating the name of this servo. The format
looks like this:

0x01 0xPP

Where PP is this pin number on the Due.

Important: Servo names are numbers which refer to a servo. In other commands, use this instead of the pin

3.1.2 0x02 - set servo value

This command sets the value of a servo in microseconds. The input is the servo name to change, and the microseconds
to set it to. Its format looks like this:

0x02 0xPP 0xVV 0xVV

7

eml_uberdriver Documentation, Release 1.0

PP is the name of the servo to set, and VVVV is an unsigned little-endian short denoting the value in microseconds to
set it to.

Danger: Sending a servo name not first acquired with command 0x01 will cause undefined and potentially
dangerous behavior.

3.1.3 0x03 - reset

Sending this command on its own will reset the state of the Due. All servo names and values are lost.

Note: This is usually called when the program starts and when it quits, to make sure the Due is in a blank state when
it is running.

3.1.4 0x04 - open pins as encoder

Encoders take two pins, let’s call them A and B. These pins are sent in this format:

0x04 0xAA 0xBB

AA is the pin for A as an unsigned byte, and BB is the same but for pin B. This command will (like the servo create
command) return one unsigned byte known as the encoder name.

Important: Encoder names are what refer to the encoder.

3.1.5 0x05 - zero encoder

This command will zero an encoder. The format is this:

0x05 0xEE

EE is the name of the encoder to zero as an unsigned byte.

Danger: Sending an encoder name not first acquired with command 0x04 will cause undefined and potentially
dangerous behavior.

3.1.6 0x06 - read encoder

To read an encoder, use this command. The format is this:

0x05 0xEE

EE is the name of the encoder to read.

This command will return a signed 4-byte (32-bit) integer denoting the current relative position of the encoder since
last zero.

8 Chapter 3. I2C Protocol

eml_uberdriver Documentation, Release 1.0

Note: Positive values mean clockwise, negative means anticlockwise.

Danger: Sending an encoder name not first acquired with command 0x04 will cause undefined and potentially
dangerous behavior.

3.2 Usage Examples

At this time, there are no usage examples for how to use the I2C protocol. A great way to learn is to look at how the
client library manages it.

3.2. Usage Examples 9

eml_uberdriver Documentation, Release 1.0

10 Chapter 3. I2C Protocol

CHAPTER 4

API Documentation

class eml_uberdriver::ARDevice
The ARDevice class is the base class used to interface with a connected eml_uberdriver Due.

ARDevice(int busnum, int address)
Constructs a new ARDevice connected to a Due.

Parameters

• busnum – The I2C bus this Due is connected to

• address – The address the Due has on the I2C bus.

void openPinAsMotor(uint8_t pin)
Opens a pin on the Due as a PWM-controlled motor

Parameters pin – The pin to open

void writeMicroseconds(uint8_t pin, uint16_t microSeconds)
Sets the PWM rate on an open motor pin.

Parameters

• pin – The motor pin to change PWM for

• microSeconds – The duty cycle in microseconds to change to

eml_uberdriver::encoder_id_t openPinAsEncoderId(uint8_t pin1, uint8_t pin2)
Opens two pins on the Due as an encoder, returning the raw id (see :doc:‘the protocol documentation
<protocol.rst> for more information) of this new encoder.

Parameters

• pin1 – The first pin to open

• pin2 – The second pin to open

Returns The raw encoder id

11

eml_uberdriver Documentation, Release 1.0

eml_uberdriver::Encoder openPinAsEncoder(uint8_t pin1, uint8_t pin2)
Opens two pins on the due as an encoder, returning an eml_uberdriver::Encoder instance repre-
senting this new encoder.

Parameters

• pin1 – The first pin to open

• pin2 – The second pin to open

Returns The eml_uberdriver::Encoder instance representing this new encoder.

void resetEncoder(eml_uberdriver::encoder_id_t encoder)
Resets an encoder by its raw id.

Parameters encoder – The raw id of the encoder to reset (also known as zeroing the encoder)

int32_t readEncoder(eml_uberdriver::encoder_id_t encoder)
Reads the value contained in an encoder by its raw id

Note: Encoder values are positive for clockwise, and negative for anticlockwise

Parameters encoder – The raw id of the encoder to read

Returns The number of ticks since the last reset of this encoder

class eml_uberdriver::Encoder

Encoder()
Constructs an unassigned eml_uberdriver::Encoder instance.

Danger: Using this constructor is only provided so global variables can initialize without needing
a constructed eml_uberdriver::ARDevice instance available. Using any other method on an
instance created with this constructor will cause an exception.

void resetEncoder()
Resets this encoder

int32_t encoderValue()
Gets number of ticks since last reset of this encoder.

Note: Encoder values are positive for clockwise, and negative for anticlockwise

Returns The number of ticks since last reset of this encoder.

12 Chapter 4. API Documentation

Index

E
eml_uberdriver::ARDevice (C++ class), 11
eml_uberdriver::ARDevice::ARDevice (C++ function),

11
eml_uberdriver::ARDevice::openPinAsEncoder (C++

function), 11
eml_uberdriver::ARDevice::openPinAsEncoderId (C++

function), 11
eml_uberdriver::ARDevice::openPinAsMotor (C++ func-

tion), 11
eml_uberdriver::ARDevice::readEncoder (C++ function),

12
eml_uberdriver::ARDevice::resetEncoder (C++ func-

tion), 12
eml_uberdriver::ARDevice::writeMicroseconds (C++

function), 11
eml_uberdriver::Encoder (C++ class), 12
eml_uberdriver::Encoder::Encoder (C++ function), 12
eml_uberdriver::Encoder::encoderValue (C++ function),

12
eml_uberdriver::Encoder::resetEncoder (C++ function),

12

13

	Introduction
	Requirements
	Setup

	The Client Library
	Getting Started
	Overview
	Examples

	I2C Protocol
	Commands
	Usage Examples

	API Documentation

