
R3-URC18 Documentation
Release 1.0.0

mincrmatt12

Jul 18, 2018

Project structure

1 Structure 3
1.1 rover_cameras . 3
1.2 rover_description . 3
1.3 rover_gazebo . 3
1.4 rover_gui . 4
1.5 rover_hw . 4
1.6 rover_navigation . 5

2 Usage 7
2.1 drive_side_controller . 7
2.2 rover_cameras . 8
2.3 rover_control . 9
2.4 rover_gazebo . 9
2.5 rover_hw . 10
2.6 rover_ik . 10
2.7 rover_navigation . 11
2.8 rover_teleoperation . 11
2.9 rover_description . 11

3 Hardware 13
3.1 Arduino Protocol (eml_uberdriver) . 13

4 Tutorials 15
4.1 Starting the rover . 15
4.2 Controlling the rover . 16

i

ii

R3-URC18 Documentation, Release 1.0.0

Welcome to the somewhat hidden documentation for R3-URC18! Here you might actually find useful information. I
hope so, anyways.

Project structure 1

R3-URC18 Documentation, Release 1.0.0

2 Project structure

CHAPTER 1

Structure

1.1 rover_cameras

The rover_cameras package contains the launch files and code to handle the rover’s cameras.

There is one launch file to launch all the camera nodes. This also contains the camera switcher node.

1.2 rover_description

The rover_description package contains all the urdf related things. It’s a quite simple package There is only one special
folder in it, urdf

1.2.1 urdf

In here are all the xacro files for the rover urdf. Attachments like the arm or autonomous should be put in separate files
and be parametrized so that different robot configurations are easily modeled.

1.3 rover_gazebo

rover_gazebo is the package that contains all of the gazebo stuff, like worlds and gazebo-specific textures/models.
It has a few folders, organizing the above gazebo-relating things.

There is no code in the rover_gazebo package at this time, although should we need gazebo plugins they will
be placed in another package, probably called rover_gazebo_plugins

1.3.1 world

The world folder contains all of the gazebo worlds, in .world format. The current worlds are:

3

R3-URC18 Documentation, Release 1.0.0

Filename Content/function
out-
door_world.gazebo

An outdoor world with a heightmap. Good for large-scale testing where a natural-ish land-
scape is important

Each world should have a launch file associated with it, which should spawn the rover with the same parameters as the
(upcoming) master launch file. An easy way to create this is to use the empty_world.launch file, which allows
for customizing the world location.

1.3.2 media

The media folder is where all of the gazebo “media” is: textures, models, heightmaps, etc. Any objects should be in
their own folder, for example the “height” object (which is the heightmap used in the outdoor world) is in the folder
media/height. Textures should be in a folder named media/<object name>/textures. Models should
be in a folder named media/<object name>/models. Any other files the object needs, including its .sdf file,
should be located in the root folder for that object.

Here is a table summarizing this info:

Folder location Files located there
media/<obj name> Files for the object named obj_name.
media/<obj name>/textures Textures for the object named obj_name.
media/<obj name>/models Models for the object named obj_name.

1.4 rover_gui

The rover_gui package contains nearly all of the guis for the rover, excluding the map (see see rover_jsmap)

The package contains one special directory, the rqt directory.

This directory contains each of the predefined rqt perspectives for the rover. You can load them by going into rqt and
importing the perspective files.

See the usage docs for information on what each of them does.

1.5 rover_hw

rover_hw is the package which contains the HardwareInterface implementation for our rover. For more information
on that, see either the internal documentation and/or the documentation for ros_control.

This package contains only one file defining the interface, but its structure is important

1.5.1 Hardware Extension Definition

Everytime we add a new hardware component with ros_control to the rover, a new hardware_interface “extension” is
created in its package. For example, rover_drive has its implementation in src/drive_hw. This folder is built
into a library, and that library needs to provide a class with the following methods:

4 Chapter 1. Structure

R3-URC18 Documentation, Release 1.0.0

Methods

init(hardware_interface::RobotHW *hw)

This method is called to initialize the hardware, as well as register any needed interfaces (e.g.
JointStateInterface) on the RobotHW instance.

read()

This method should only update the interfaces with new values from the hardware, like encoders or limit switches. It
is called before updating the controllers

write()

This method should only write to the hardware with new values from the interfaces. It is called after updating the
controllers.

1.5.2 hw_node.cpp structure

This file contains the implementation of HardwareInterface. The convention for creating extensions to it was defined
above.

For each extension you want to add, you must add the containing package as a dependency in the package.xml and
CMakeLists.txt file.

In the denoted sections in the file, the declaration of your class and calling of its methods should be added, see how
the rover_drive package does it as an example.

1.6 rover_navigation

rover_navigation is our implementation / configuration of a move_base stack.

1.6.1 config

The config folder contains all of the yaml configuration for move_base. There are three files in it.

planner.yaml

planner.yaml contains all of the configuration for the planners (global and local). For documentation on what the
parameters in it mean, see the docs for base_local_planner and navfn.

local_costmap.yaml and global_costmap.yaml

These files contain the configuration for the local and global costmaps respectively. The documentation for them is in
the costmap_2d package.

1.6. rover_navigation 5

R3-URC18 Documentation, Release 1.0.0

1.6.2 Internal Launch Files

Although the usage documentation only details one launch file, there are a lot of internal ones with more parametriza-
tion.

move_base.launch

The move_base.launch file contains the launch spec for starting move_base itself. It contains two useful param-
eters, located on lines 6 and 7:

This sets the base_(global/local)_planner.

odometry.launch

This is one of the most important files in the rover_navigation package. It contains the sensor fusion configura-
tion. For documentation on how to configure it, see the documentation for robot_localization.

visual_odom.launch

This file contains the parameters (but right now mainly just remappings) for the rtabmap visual odometry.

rtabmap.launch

This file contains the parameters for rtabmap’s main node. Add mapping parameters here.

6 Chapter 1. Structure

CHAPTER 2

Usage

2.1 drive_side_controller

drive_side_controller is a controller in the rover_drive package that relays a single velocity command
to multiple joints on one side of the rover. Its pluginlib name is rover_drive/DriveSideController. This
controller uses the velocity interface.

2.1.1 Parameters

joints

This is the only parameter in drive_side_controller. It is a list and its contents are the joints to use for this
side. Example:

joints:
- back_left_wheel
- front_left_wheel

This would make the controller control the back_left_wheel and front_left_wheel with the same command.

2.1.2 Topics

drive_side_controller/cmd

This topic is subscribed to as a Float64 topic containing the current velocity command for all the joints.

7

R3-URC18 Documentation, Release 1.0.0

2.2 rover_cameras

The nodes in the rover_cameras package are designed to manipulate rover camera streams. The launch files are
what launch them to get all the feeds actually running.

2.2.1 Nodes

image_rotater

The image_rotater node takes in one input stream and rotates it by a constant amount.

Topics

• ~image_rotater/image_in - image stream to rotate

• ~image_rotater/image_out - published image stream

Parameters

• angle - angle in degrees to rotate by

camera_diagnostics

The camera_diagnostics node monitors /dev/video paths and publishes diagnostic information for them.

Parameters

• ~expected_nums - video numbers to monitor

swapper.py

Runs and manages usb_cam nodes to deal with cameras with a ros api. Typically you use the cli to interact with it.

2.2.2 Launch files

The only launch file in rover_cameras starts the camera swapper.

2.2.3 CLI

Important: The cli for camera swapping requires you install the prompt_toolkit python package.

The cli (node name swapper_cli.py) allows you to interact with the swapper. Each camera is just represented as
a name and a video device, the node doesn’t actually store these things.

The CLI has built in help, (as well as autocomplete) but documentation is also provided here:

8 Chapter 2. Usage

R3-URC18 Documentation, Release 1.0.0

Commands

quit

Quits the CLI.

load

Two parameters, first is the camera name, next is the video device (/dev/videoN). Optionally takes a parameter,
which is the preffered device to unload if we cannot run this many cameras. Using this parameter allows you to quickly
switch cameras.

` > load belly_cam /dev/video0 head_cam ` Swaps head_cam with belly_cam

unload

Unloads the camera (by name) given to it as a parameter.

list

Lists all running cameras by name.

2.3 rover_control

2.3.1 Launch Files

rover_control.launch

This launch file is for loading controller parameters and starting robot_state_publisher. It takes two parame-
ters:

• use_fake - default false - whether or not to load the fake_controllers file.

• controllers - default depends on use_fake - which controllers to load by default.

The launch file also starts the rover_hw node if the use_fake parameter is set to false.

2.4 rover_gazebo

All of the useful functionality in rover_gazebo is in launch files. Since there is no “real” top-level launch file to
refer to, all of the launch files used to start gazebo have no parameters.

2.4.1 Launch files

As explained in the structure documentation, each world defined there has a launch file corresponding to it. There are
no parameters in these launch files. For all the worlds, see the table under worlds in that file.

2.3. rover_control 9

R3-URC18 Documentation, Release 1.0.0

2.5 rover_hw

The rover_hw package contains the hardware interface and controller node.

2.5.1 rover_hw_node

rover_hw_node is the node that runs all the controllers. It takes no parameters, as parametrization of hardware
interfaces should be done as compile time constants.

Running this node is enough to start a controller manager with proper hardware interfaces.

2.6 rover_ik

2.6.1 ik_joint_controller

The rover_ik::IKJointController is a controller in ros_control that does inverse kinematics on a set of
joints and feeds the result to a PID loop. A full usage example can be seen in rover_control.

Parameters

joints

This parameter is a list of joints to control, each one should provide an EffortJointInterface

gains

Each subparameter in this parameter corresponds to PID gains for a joints, for example:

gains:
arm_base_to_post: {p: 7, i: 1, d: 0, i_clamp: 1}

This sets the gains for joint arm_base_to_post to P = 7, I = 1, D = 0 and I_Clamp = 1.

base_link and tip_link

This correspond to the links at each end of the joint chain, base being the start and tip being the end.

Topics & Services

controller_name/target

Controller listens on this topic for the target pose of the tip_link, as defined in the parameters. The coordinates for this
pose are relative to the base_link. (testing required)

10 Chapter 2. Usage

R3-URC18 Documentation, Release 1.0.0

controller_name/request_position

This service can be called to return the current position of the arm as calculated via forward kinematics. Passing this
back into target should cause no effect to the arm.

2.7 rover_navigation

To use the rover_navigation package to start a working move_base stack, run the rover_navigation.launch.
That’s it. This launch file will start the entirety of the navigation stack. To use move_base, see its documentation.
When gps_goal and friends are implemented they’ll be put here.

2.8 rover_teleoperation

2.8.1 Launch Files

simple_drive_teleop.launch

This launch file starts a joy node and a drive teleoperation node. It takes one parameter, dev which is the joystick to
open.

Important: The teleoperation node expects an XBox controller (or compatible), otherwise the mappings will not be
correct

2.8.2 Nodes

arm_ik_joy_teleop

This node (currently without a launch file) is for commanding the ik_joint_controller with a joystick.

It listens on the joy topic for joystick input and outputs to the arm_ik_controller/target topic.

simple_drive_joy_node

This node commands drive from a diff drive joystick.

It listens on the joy topic for joystick input and outputs to the /left_wheels_controller/cmd and /
right_wheels_controller/cmd topics.

2.9 rover_description

2.9.1 urdf

Our urdf is contained in the rover_description package. Various different configurations for it are available
(todo: actually add them), which can be specified with launch file parameters to the description.launch file.
Right now the current configuration parameters are:

2.7. rover_navigation 11

R3-URC18 Documentation, Release 1.0.0

<none>

The launch file places the compiled urdf into /robot_description on the parameter server.

12 Chapter 2. Usage

CHAPTER 3

Hardware

3.1 Arduino Protocol (eml_uberdriver)

The eml_uberdriver protocol documentation is now hosted elsewhere due to it being a seperate library.

Find it here: http://r3enamel.readthedocs.io/en/latest

13

http://r3enamel.readthedocs.io/en/latest

R3-URC18 Documentation, Release 1.0.0

14 Chapter 3. Hardware

CHAPTER 4

Tutorials

4.1 Starting the rover

Starting the rover is not a very complicated procedure. First, you need to ssh into the TX2, then start rover.launch.
This process is detailed below.

4.1.1 SSH-ing to rover

To ssh into the rover, use $ ssh ubuntu@<ip>

The IP depends on which TX2 is currently being used. If it is marked on top of the TX2, use it otherwise refer to this
table.

TX2 Desc Ip Address
On Rover 192.168.137.213

Once on the rover, navigate to ~/URC-18

4.1.2 Starting rover launchfile

First, ensure ros is properly sourced with $ source /opt/ros/kinetic/setup.bash Next, source the
rover’s setup file with $ source rosws/devel/setup.bash

Finally, start the rover software with roslaunch rover rover.launch. To start autonomous nodes, add
start_auton:=true to the end of the previous command.

This procedure will start the rover’s software, but to control it from a basestation you need to read on.

15

R3-URC18 Documentation, Release 1.0.0

4.2 Controlling the rover

Now that you’ve started the rover, you need to control it. The first thing you need to do is start the watchdog client.

Note: The watchdog automatically stops the rover if the basestation is not connected for more than 1 second.

To start the watchdog client, use $ rosrun rover wclient.py.

4.2.1 Drive

Teleoperating the drivetrain is very easy. Start by running $ roslaunch rover_teleoperation
simple_drive_teleop.launch. If you get an error about unable to open joysticks, you may need to find
the right joystick device under /dev/input/js<N> and add dev:=/dev/input/js<N> to the end of the com-
mand.

The controls are simple (on an xbox style controller):

• left & right stick - tank controls

• dpad up & down - gear up/down (speed levels)

4.2.2 Camera

Cameras can be viewed using the rqt utility. Adding the image view plugin under visualization allows you to view
image topics. To control cameras, you need to use the camera swapper cli. Information on how it works and the
commands it supports can be found at ../usage/rover_cameras.rst.

Using rqt, you can view the images by clicking the refresh icon in the image view plugin, then selecting the topic
ending with “compressed” and with the name of the camera you set in the cli.

16 Chapter 4. Tutorials

	Structure
	rover_cameras
	rover_description
	rover_gazebo
	rover_gui
	rover_hw
	rover_navigation

	Usage
	drive_side_controller
	rover_cameras
	rover_control
	rover_gazebo
	rover_hw
	rover_ik
	rover_navigation
	rover_teleoperation
	rover_description

	Hardware
	Arduino Protocol (eml_uberdriver)

	Tutorials
	Starting the rover
	Controlling the rover

