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R2 Tutorials, Release 3.3.4

Dear reader. Welcome to the tutorials for ‘R2: Genomics Analysis and Visualization Platform’. The R2 platform
is a (molecular) biologist friendly, web based genomics analysis and visualization application developed by Jan
Koster and his team at the department of CEMM in the Amsterdam University Medical Centers (AUMC), location
Academic Medical Center (AMC) in Amsterdam, the Netherlands. The idea behind the application is to enable
researchers that are not experts in bioinformatics to mine and explore omics data sources, and thereby gain insights
for their research. This can be done on publicly avaialble data sets, but also on your own data in a restricted
environment. The tutorials have been assembled as guided short stories, that will instruct you how to get things
done in the platform by an example. We hope that, by following our examples, you will get familiar with the
concepts of R2, and thereby find your way in the platform. Even though many of our examples are illustrated by a
neuroblastoma pediatric cancer dataset, R2 has many more (2100+) public datasets to work with, covering nearly
any cancer but also other diseases as well as normal reference series (See also Selecting datasets).

If you make use of our platform in manuscripts, then please add a citation that includes the following webcite: ‘R2:
Genomics Analysis and Visualization Platform (https://r2.amc.nl http://r2platform.com)’. This will help us get the
necessary funds to keep on going and in addition allows us to ‘scan’ the literature to keep track of manuscripts
that cite our resource.

Copyright (c) 2006-2023 R2 Support Team
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CHAPTER 1

Preface

Why these tutorials?

The R2 platform (http://r2platform.com or http://r2.amc.nl) is a genomics analysis and visualization platform
that provides a biologist/bio-medical researcher friendly interface to high throughput data. It has initially been
developed within the department of Oncogenomics at the AMC in the Netherlands, where it still serves as a
primary entry point for all types of high throughput data generated within the department. Currently, we continue
the development of R2 in our own group within the department of CEMM. The R2 platform consists of 2 parts;
a (publicly accessible) database, that stores the data, coupled to a web-interface that provides a set of interactive
and inter connected tools and visualizations to mine the database.

Even though many people appreciate the concept of R2, getting started with the platform as a new user can be a
bit difficult or intimidating with the wide range of options that we provide. With this tutorial book, we hope to
help new users getting started and at the same time demonstrate the diverse set of functionalities to users which
may already have experience with R2, but want to get familiar with new additions to the platform.

The setup of these tutorials is as follows: We have divided the different aspects of the R2 platform in a number of
chapters which reflect tasks that are often performed within R2. In each chapter, step by step instructions guide you
through an analysis, which you can perform online within R2 yourself. During these steps, also features related
to the respective chapter, such as additional analyses or visualizations will be introduced, thereby conveying the
ease of using the interconnected R2 interface.

The steps will be interspersed with additional information in Did you know boxes:

Did you know box

These provide additional information not directly related to the tutorial steps

Chapters 2-10 demonstrate a great number of core functionalities, which you will encounter often and from dif-
ferent angles when working within the platform. The next set of chapters (11-18) dive more into specialized
functions and in chapters 19-21 more advanced integrated analyses are shown, that some of you may be interested
in. Chapters 22-24 demonstrates how users can adapt R2 to their needs by explaining how you can generate your
own grouping variables or store personal lists of genes. These also explain how you can start your own user group
and share information with specific other users for collaborative work. It is further elaborated how to add your
own data and how to export data from R2 for use in other tools.

3
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If you don’t feel like reading the tutorials, then have a look at our YouTube channel, where team members of the
R2 platform demonstrate many functionalities in short videos.

We hope that these tutorials will be helpful. If you have any comments or suggestions you’re welcome to contact
us through the R2 website.

4 Chapter 1. Preface
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CHAPTER 2

Using Datasets

Selecting or searching datasets in R2

2.1 Scope

• Working with datasets.

• R2 allows you to perform all kinds of analyses based on a well annotated single dataset or a selection of
datasets at the same time. Different analyses are available based on the selection of one of these options in
field 1.

• R2 contains omic profiles such as expression and methylation profiles for more than ~2.500.000 unique
individual samples. The samples are grouped in so-called datasets. Each dataset has its own characteristics,
such as tissue type, tumor/disease type, or from cell-line experiments. Frequently, new datasets are added
the platform.

• The Tumor Neuroblastoma public - Versteeg - 88 - MAS5.0 - u133p2 dataset will be used as an example
dataset to guide you through most of the tutorial but also other datasets will be used a example datasets.
Later on, working with multiple datasets will be discussed.

5
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Figure 1: Select types of datasets

2.2 Step 1: Selecting a dataset

1. R2 offers a large number of readily available datasets for analysis and visualization. The numbered boxes
on the main page will guide you through all the steps necessary to perform a task, starting with the selection
of a dataset. In box 1 select Single Dataset, in field 2 click on the name of the dataset.

6 Chapter 2. Using Datasets
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Figure 2: Change Dataset on the main page

2. A popup window appears that shows all the currently available datasets in a grid: each row represents one
dataset, with its main descriptive details split up in the columns. You can simply scroll through the list with
the mouse and get more information about a dataset with a click of the mouse on any dataset in this list.
If you click on the row of a dataset, extra information about a dataset will appear in an information panel
below the grid box. Possible adjustments of the original data by the R2 team, such as data transformations
or annotation changes, can be found in the Adjustments section of the information panel. At the bottom you
will see links to the original data source and Pubmed resources, if available.

Figure 3: Select a dataset by clicking on a row

3. Every column header provides options to filter the database, e.g. in the Tissue/Tumor text field a keyword
such as medull can be written to filter for medulloblastoma datasets or, with the Select Filter dropdown
under the Data type header you can requests an overview of for instance methylation datasets. If you know
specific details, other columns can be of help as well: e.g. you can search for an author, or use the N column
to search for a datasets of which you know the number of samples. The grid box will display all the datasets

2.2. Step 1: Selecting a dataset 7
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that fulfill the (combined) filter requirements. In the bottom right corner you find the number of (filtered)
datasets that are available to you.

Figure 4: Use the search bar to textually filter the list of datasets with a keyword

1. Click on the table row of the dataset of your choice and click the clue colored button Confirm selection in
order to use a dataset in box 2 of the main page for further analysis.

Did you know that datasets have an informative naming? Datasets have a structured naming in R2,
using the following rules: type_of_dataset - author - number_of_samples - normalization - chiptype. The dataset
selection grid consists of these informative parts as columns, each with filter options to perform an advanced
search through the dataset.

8 Chapter 2. Using Datasets
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Figure 5: The informative parts of a dataset name correspond to the columns of the dataset selection grid.

2.3 Step 2: Advanced selection of datasets

1. The grid itself enables the user to search through datasets using keywords and other filter options as well.
The column dropdown functions and textboxes can filter the datasets for specific characteristics, e.g. datasets
with a minimal number of samples, or a specific author, platform or publication date. You can easily
combine the search functions of the different columns.

As an example, we want to see which large sets sets are available. First we write part of the word Neu-
roblastoma in the search box of the Tissue/Tumor column. Next, we use the pull down of the N (sample
number) column to order the datasets in descending order.

Figure 6: Combine search filters in the grid

2. Again we use the Confirm Selection button if we want to continue our analysis with a specific dataset of
the grid.

3. Select “Across Datasets” in field 1. Note that in field 2 different options become available compared to the
“single dataset” option.

2.3. Step 2: Advanced selection of datasets 9
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Figure 7: Selecting across datasets

Analysis methods following selecting the “Across Datasets” option in field 1 will be discussed in tutorial
“Working with multiple datasets”.

2.4 Step 3: Using Dataset favorites

Since R2 is hosting hundreds of datasets, it could be convenient to store the datasets you often use in a preselection
that is easily accessible. In order to maintain favorites, you need to be a registered user. If you did not yet register;
accounts can easily be created via ‘Login/Register’ and are absolutely free. Clicking on the dataset name will
open the dataset selection grid, where resources can be searched and selected.

Figure 8: Change Dataset to access favorites

10 Chapter 2. Using Datasets
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Within the dataset selection table, you can select and deselect cohorts to add or remove them from your selection
of preferred sets. This is done by using the favorite select boxes in the last column on the right side. Favorite
datasets will always be represented at the top of your selection table and will be marked with a green background
olor in the selection column. This makes it very convenient to quickly have access to those.

Figure 09: Managing favorites

2.5 Step 4: Data Scopes

1. R2 can be forced to only display a sub-selection of all the datasets that are available (e.g. only neuroblas-
toma datasets). These are called data scopes and can be selected from within R2 by the left-hand menu
item ‘Change Data Scope’. From here you can use one of the preset scopes. This is also the section where
you can remove a scope that has been set. An obvious reason why scopes can be convenient, is the fo-
cussed view on the available data: to restrict data to a particular subject or as a landing page for a specific
publication/subject. Datascopes as dedicated landing pages can also be configured to expose additional
functionalities and quick jumps to sections in the platform. Just have a look at which ones are accessible
given your access rights.

2. Data scopes can be used directly from the internet address line, which can be handy when a referral needs
to be made to R2 from a manuscript. For now, you do need to provide a link directly to the server (usually
hgserver1.amc.nl/cgi-bin/r2/main.cgi?&dscope=NRBL).

Further details on the use of Datascopes can be found in the tutorial Datascopes.

Did you know that the R2-support team is scanning public repositories for interesting datasets to
expand the R2-database on a regular basis

In case you want to see a dataset added to R2 please send an email to r2-
support@amsterdamumc.nlSuch an email should contain a link to the publicly accessible files,
such as a Gene Expression Omnibus number (GSE*****).

Your own private datasets can also be added to R2 with user/group restricted access. Please send us
an email at r2-support@amsterdamumc.nl and inquire on the procedure to get your data available
in R2 (see also Chapter 22).

2.5. Step 4: Data Scopes 11
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2.6 Final remarks / future directions

All the procedures described in this chapter can be executed using the R2: genomics analysis and visualization
platform (http://r2platform.com / http://r2.amc.nl).

If you encounter any quirks or issues, please do not hesitate to contact R2 support at r2-
support@amsterdamumc.nl.

We hope that this tutorial has been useful.

Best regards, The R2 support team.
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CHAPTER 3

One Gene View

Analyze the expression levels of a single gene within a dataset

3.1 Scope

• Use R2 to investigate the expression levels of all samples from a specific dataset.

• In this example the expression levels of the MYCN gene will be used.

• Adjust several parameters in the advanced settings panel to get a better insight in the expressions levels or
adapt your graphic layout.

• In R2, the samples are annotated with e.g. clinical data, each group of annotated data is called a “Track” in
R2. These tracks can be used to filter data in all types of analyses that R2 is offering.

• A separate info panel in the one-gene expression level screen provides different types of analyses based on
the expression level of the chosen gene.

• Many mRNA expression datasets were generated with Affymetrix profiling arrays and NGS data (rnaseq).
In general, the Affymetrix arrays use more than one so-called probeset to measure the expression level of
one single gene. With a separate module “Transcript view”, the details of the probesets can be studied. This
also holds for multiple RNAseq data in case the chromosomal location of the reporter (Gene) is stored in
the R2 database.

3.2 Step 1: Select the View a Gene module

1. Use “Single Dataset” in field 1 and make sure that the “Tumor Neuroblastoma public - Versteeg - 88 -
MAS5.0 - u133p2” dataset is selected in field 2.

2. Choose “View a Gene” in field 3 and click “Next”.

13
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Figure 1: Single gene selection

3.3 Step 2: Select the gene or reporter

1. We will take a look at the expression levels of the samples for the MYCN gene. Type “mycn” in the left
“Search by Gene” textfield and click on the first MYCN reporter that shows up in the list of the dropdown.
The reporter ID will then be listed in the right “Search by Reporter” box.

In the case of Affymetrix datasets, the term probeset is often used instead of reporter, and more than one
probeset can be associated with a gene. As you can see in dropdown list for MYCN in this example, multiple
probesets are annotated for the MYCN gene. The term probeset originates from affymetrix arrays, the terms
probeset and reporter will be used in this tutorial interchangeably.

By default, the probeset with the highest average present signal (APS) is annotated as the default probeset
in R2. This APS signal is simply the average of all samples that are considered to express a selected gene
(have a present call). After you enter the first letters for the mycn gene in the textfield, you can choose from
the available probesets that are listed in a small dropdown. The default R2 probeset will be the first one
in the list.Occasionally, other probesets assigned to the same gene could be of interest depending on the
structure of the gene (for example a potential splice variant). Also realize that the most informative probeset
is re-determined by R2 in every dataset, sometimes resulting in a different probeset.

The expression levels of datasets are by default converted to log2 values. This does not apply to datasets
that contain ratios or logfolds such as methylation arrays,double labeling arrays, drug data etc etc.

Clicking the advanced search button provides a grid where other selection criteria can be applied, such as
gene symbol or average signal. Additionally, the sorting option allows for quick checking of genes with a
certain expression level.The last column of the grid, named “R2 default”, indicates whether the reporter is
set as default in R2 (TRUE) or not (FALSE). This information is not available for each dataset in R2.

14 Chapter 3. One Gene View
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Figure 2: Top, by default the reporter with the highest expression level is selected. Below, the ad-
vanced search option with the grid

2. To follow the example of this tutorial, use the pre-defined default settings in the rest of the adjustable settings
menu, and click ‘Next’.

3.4 Step 3: Plotting Gene expression

1. R2 generates a YY-graph (Figure 3) from the MYCN expression levels of all samples with expression levels
ordered from left (low) to right (high). Hovering over the dots reveals additional annotation that R2 has
stored for the focused sample.

Figure 3: YY plot MYCN expression

2. Underneath the X-axis, colored boxes are depicted, representing clinical information of the samples in

3.4. Step 3: Plotting Gene expression 15

_static/images/Onegeneview/OneGene_multipleprobegrid2.png
_static/images/Onegeneview/OneGene_multipleprobegrid2.png
_static/images/Onegeneview/OneGene_MYCN1b.png


R2 Tutorials, Release 3.3.4

so-called “tracks”. Again, hovering over them will reveal underlying data. For MYCN there is a clear
relationship between the expression levels and the tracks for “MYCN amplification” and “INSS-stage“.
The display of these tracks underneath the image gives a quick glance at some of the clinical parameters,
defined for the dataset. Clicking the triangle at View additional detail provides functional information
for the reporters and the genome location if available. It is also possible to define your own custom-made
tracks, or disable/adapt the settings for default tracks (further explained in the chapter “Adapting R2 to your
needs“)

3. Sometimes you get more insight by reviewing the expression levels with other transformations. In order to
change the transformation, scroll down to the “Adjustable settings” panel underneath the graph and tracks.
In the pulldown menu of the ‘Transformation’ setting (red arrow in Figure 3), choose “none” and then click
the button Submit at the bottom of the panel.

Did you know that converting expression levels using the “transform” option can help you gain
additional insight?

There are several data transformations available

• “none”: Raw untransformed expression values, as they are represented in the R2 database.

• “2log”: logarithmic values with base of 2. Every incrementconstitutes twice the amount.

• “rank”: Data transformation in which numerical or ordinal values are replaced by their rank
when the data are sorted by expression. Thistransformation is useful for non-parametric statis-
tical tests.

• “zscore”: 2log transformed data, centered around the average andexpressed as the number of
standard deviations from the average.

• “zscore_nonlog”: raw intensity values, centered around the averageand expressed as the num-
ber of standard deviations from the average. This transformation is useful when the intensities
in R2 are not raw, but for example logfolds as is often the case for aCGH data.

• “mad/mad2log”: Median absolute deviation (on raw values, or log2transformed values). The
MAD is particularly useful in situations where the data may contain outliers or is not normally
distributed.

• “center/log2center”: Expression values centered around 0 (on rawvalues, or log2 transformed
values).

• “Rank”: numerical or ordinal values are replaced by their rank when the data are sorted

• “zscore_group”: Coverts the expression levels from the zscore within a group (track). Appli-
cable when e.g. technical variation inexpression levels is expected. A possible reason could be
whensamples from the same dataset originate from different centers.

• “Square root”: The square root of a number is the number that gets multiplied to itself to give
the product.

• “log2 grouped zscore”: 2log transformed data within each group of a selected track separately
and re-merged after calculation

3.5 Step 4: Selecting analysis types: View a gene in groups

In the one gene view plot we have investigated the gene expression of a single gene together with the sample
annotation depicted below the graph.
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1. Thus far, we have been looking at the expression of MYCN ordered by the expression. From the one-gene-
view adjustable settings menu there are also other analyses to select. Above the adjustable settings menu
you can select different analysis types which are at you disposal as illustrated in Figure 4.

Figure 4: Select other analysis types

1. Select in the analysis type menu, the gene vs gene option the adjustable settings will adapt automatically
according to the type which has been selected. As illustrated in Figure 4 you simply fill in a different Gene
for Gene/Reporter 1 than for Gene/Reporter 2 (red box in Figure 4).

Figure 5: Adjusting the 2 gene plot

3.5. Step 4: Selecting analysis types: View a gene in groups 17
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3.6 Step 5: Marking / highlighting samples within a plot

1. In the “Adjustable settings” panel, several other settings can be found to change the specific input for the
analysis or to adapt the looks of the graph:

• In the Graphics section you can also select interactive plot type which support directly the highlight-
ing/marking of individual samples shown in Figure 6a.

Figure 6a: Marking samples in an interactive plot

• Many layout settings can be adjusted in the More Settings option, such as font size, colors and marker type.
In order to view the extra options, click at the top on the the ‘More Settings’ sections.

• To highlight specific samples in the graph, you can simply double-click in the graph on the marker-points
of the samples that you want to highlight, or you can enter the R2 sample IDs in the field ‘Samples to mark’
from the ‘Adjustable settings’ panel. If you enter multiple IDs, separate them with a comma.

• Several marking options can be selected with the ‘Mark method’ that can be found in the ‘More settings’ tab
(e.g.; ‘epicenter’ and ‘arrow’, Figure 5, the “red arrow”). Changes in marker type and marker color can be
achieved as well with a specific syntax applied in the before mentioned ‘Samples to mark’ text field. Keep
reading to find examples of how to use the syntax yourself.

Always click on ‘Submit’ button at the bottom of the ‘Adjust settings’ panel for your adjustments to take effect!

If you enter sample names in the ‘Samples to mark’ entry field, then the appearance of these marked samples can
be adapted via the to other fields as indicated above. However, these will be applied to all the marked samples at
the same time.

If you would like to use different layouts and or colors for every indicated sample, or for groups of samples, then
you can adjust the marker color and type of the samples that you marked with a syntax in the ‘Samples to mark’
field. The syntax for using this strategy is explained below:

Please note that the explanation below for marking samples is redundant and is linked to the static plot option and
the static plots will be removed.

The syntax to use for ‘Samples to mark’ is: sample1,sample2:hexcolor1:method1.

Lets start with a simple example of manually defining the marking of 2 samples (namely itcc0288,itcc0021). In
order to mark those, we add a ‘:’ after the IDs with a color code (formulated as hexcolor, but without a #), and/or
add a ‘:’ with a marker type, for example; ‘itcc0288,itcc0021:ff4444:dot’. Please see the ‘did you know’ box to
find out what mark_types ca be used.

To bring attention to different samples, you may want to use multiple colors and types of marking. Defining this
will overrule the default setting, and thus also enable the use of different markings within the same figure.

The skeleton for advanced usage is: ‘sample1,sample2:hexcolor1:method1;sample3,sample4:hexcolor2:method2’.

Please note, that there is a semicolon ; between the 2 groups of samples here. For example:
‘“itcc0288:ff4444:epicenter;itcc0021:#FF0000:arrow;itcc0013,itcc0132:00ff00:dot”’ creates the markings as
shown in the figure below.
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Figure 6: Adjusting the sample mark layout

Did you know that R2 allows you to emphasize samples in the graph with many different marker
options?

R2 knows a couple of marker options, that you can make use of in the advanced prescriptions:

• ‘dot’: places a thick border around the sample

• ‘circle’: Places a ring around the sample (diameter 9)

• ‘circle_2’: Places a ring around the sample (diameter 4)

• ‘circle_3’: Places a ring around the sample (diameter 1), effectively a thin border

• ‘epicenter’: Places a set of 3 rings descending in width around a sample

• ‘arrow’: Places a block arrow pointing to the sample

• ‘triangle’: Places a filled triangle under the sample

• ‘text’: will plot the samplename by the corresponding plot (interactive plot only)

‘colors’: use a hexadecimal color code (many examples of these can be found online)

Note: The dotsize does not scale with ‘arrow’ and ‘triangle’ method.

Another often used feature is the Vector (SVG) output option. The vector images are often used in manuscripts
and to increase the resolution meeting youy own demands. Currently R2 is making use of several modules to
generate the graphs. So depending on the type on graph type you selected the svg plots can be generated.

• Version A. Click on the top ‘More Settings’ settings, where you can find a dropdown next to the ‘Vector
(SVG) output’ setting. When the dropdown is set to “True”, and the ‘Submit’ button is clicked, a link
appears above the ‘Adjustable Settings’ panel, that you can right-click to save the vector image to your
computer. SVG vector images can be manipulated in any vector graphics software, such as Illustrator,
GIMP or Inkscape (left part of fig 7).
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• In case you have selected a graph in the interactive section the name in
the name you find the save option in the wheel icon directly in the graph.

Figure 7: Obtain a vector (SVG) image of your graph

Did you know that the ‘Adjustable settings’ panel is available under most graphs and analysis results
in R2?

Just scroll down the page to find the Adjustable settings box with options to adjust the settings of the
analysis or to adjust the looks of the graph. Don’t forget to press the Submit button at the bottom of
the panel in order for your changes to take effect!

1. When you are in the one gene view plot, a logical step is to investigate the expression levels in correspon-
dence with a group parameter. Select in the analysis type menu “gene vs track” in the track selection menu,
the inss track and click “submit”, Figure 8. The cohort is separated accordingly by the patient INSS staging
in alphabetical order. It could be that the ordering of the group parameters is not the most convenient rep-
resentation for your analysis. In order to customize this, you can create your own track as described in (the
chapter “Adapting R2 to your needs”) and make your own track with the correct ordering eg: a_stage IV,
b_stage 1 etc.

20 Chapter 3. One Gene View
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Figure 8: Gene versus track

N.B. The same analysis can also be obtained with the module “View a Gene in Groups” from the main page.

1. The current representation is the most honest way of showing your data, as every single value is visible in
the plot. In the adjustable settings you can fine-tune your graph for example by switching on the track and
genesort within the groups (Figure 9).

Figure 9: Gene versus track sorted

2. We can also change the graphical representation of the data by selecting another graph type. Select for
example ‘boxplot’ from the ‘graphtype’ dropdown and change ‘color by’ to ‘color by track’, such that the
inss track is used to color the boxes. Press the ‘Submit’ button again to change the view. We now obtain a
boxplot image where the respective groups have been colored according to the inss groups. Adaptations to
other graph types can be made in a similar way.
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Figure 10a: Making boxplots

Figure 10b: Making raincloud plots and more

The boxplot and dotboxplot can of course reveal valuable information about statistics and the distribution of
data. Another relative new visualisation technic which combines several aspects of the traditional plot such as the
dotboxplot and violins plot is the raincloud” plot combining summary statistics such as median and quartiles and
the density estimation of the violin plot. The individual datapoints are represented as points or raindrops along the
vertical axis which provides a better understanding of the data distribution (see left graph in Figure 10b).

1. You can also sort the groups by their average or median gene expression and customize your graph in various
ways. In Figure 11 this illustrated by the INSS stage sequence according to the median gene expression and
enlarged dots of MYCN . And on top of that the individual dots are coloured by the Z-score of the DBH
expression. In case the samples have also been profiled for another type of data such as methylation data or
drug data, you can also select these datatypes in the pulldown menu when you have selected color by gene.

22 Chapter 3. One Gene View

_static/images/Onegeneview/OneGene_viewinGroups_v1a.png
_static/images/Onegeneview/OneGene_othergraphs_v1.png


R2 Tutorials, Release 3.3.4

you can use these values from these corresponding sets in the same graph (Figure 11) combine expression
data and other omic data.

Figure 11: Ordering boxplots

1. Also, directly accessible from this menu is the track vs track option described in more detail in Chapter
5: Annotation Analyses; “relate two tracks”. Keep in mind that the analysis type options described in this
chapter can also be selected directly from the main menu.

Figure 12: Track versus Tracks / Main menu

• ‘single gene’: In main menu: “view a gene”

• ‘gene vs track’: In main menu: “View a gene in groups”

• ‘track vs track’: In main menu: “Relate two tracks”
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Did you know that once you separate a dataset in more than 2 groups, R2 will identify the most signifi-
cant pair?

*If you view a gene in groups within the one-gene-view view page and the number of sub-groups is
greater than 2, R2 will automatically perform brute-force t-testing with Welch correction to identify
the combination of 2 groups that have the most significant difference. Just click the triangle at “View
additional details” and gain insight into all the tested combinations.

3.7 Step 6: Sources for additional information on the selected gene

1. In all the types of view also a right menu panel is generated.

Figure 12: Left menu panel providing additional info (including link-out) and analyses options

In the right upper menu-panel several options are available to provide you with additional information sources of
the MYCN gene and additional analyses. When you click on the link (the name of the gene) under the PubSniffer
header new screen opens that lists the number of times your gene of interest is found within the NCBI Pubmed
database in combination with dataset keywords. Clicking on one of the “PubReMiner” links redirects you to
Pubmed PubReMiner which is a tool for PubMed query building and literature mining.

KaplanScan and Time Series analyses will be discussed in separate tutorials. However, keep in mind, in case
Kaplan Meier data is available for a given dataset this will always be visible in the right menu for one-gene-
view. GeneCards will redirect you to an overview on your gene of interest composed of many different resources.
ProbePlus, will provide the sequences probed by the U133 Affymetrix platforms and other platforms if available.

Across datasets will generate an overview showing the average expression of the gene of interest within all datasets
of the same platform/normalization scheme (provided that the normalization supports dataset additions). Further,
in the Sample Map section pre-generated high-dimensionality reduction maps (t-SNE and umap) can be plotted.

Did you know that PubReMiner is a helpful tool for literature mining?

In the large amounts of medical literature, finding information tailored to your needs and interest
is becoming more and more complex. Using the right keywords is essential for effective searches,
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but which ones should you use? PubReMiner is a web-based tool that allows simple text-based
query building and information gathering (mining) of the NCBI literature search engine PubMed.
PubReMiner presents its results, gathered from abstracts, in frequency tables of journals, authors and
words, which can be included / excluded in an iterative fashion. Next to building efficient queries,
PubReMiner can also be helpful in other areas: selecting a journal for your current work (by scanning
the most often used journals of similar research) Finding experts in a research area (by viewing the
authors associated with your query) Determine the research interest of an author (by viewing the
keywords associated with an author

3.8 Step 7: Adapting a plot

1. To investigate the values R2 uses for graph generation click on “View Datatable” to open a table with the
expression levels for all samples. Within this table you can use filters to restrict samples. By selecting the
rows, a second table is generated, that can be copied, create an additional track e.g based on sorted data and
subsequently pasted in Excel, for further investigation.

Figure 13: Unfold the datatable

2. The “track display selection” section can be opened by clicking on it. In here, you are able to toggle which
tracks to display and/or hide within the YY-plots. Do note that these selections are non-persistent and will
be forgotten as soon as you leave the One Gene View. Persistent changes to the tracks can be made via
the ‘User Options’ menu item, which is present in the main screen (see the tutorial ‘Adapting R2 to your
needs’). Note that the Adjustable Settings panel, including the Customize Track parameters, is available
throughout R2 for temporary adaptation of Track visibility and other preferences.
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Figure 14: Tick and drag tracks

3. Other convenient options are revealed by clicking the “more settings” section. An extra panel unfolds which
allows you to adapt your graph to meet, for example, the requirements of a journal. The appearance of this
section will change depending on the kind of graph that you are selecting.

Figure 15: the extra settings Panel
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Figure 16: Sample annot added

In Figure 16 sample annotation (“Annot Graph”) and legend (“Draw Legend”) were added. The “Annot Graph”
option, adds the information of a selected track to the YY-plot. This can be helpful for the addition of Sample
labels, or cell line names etc. Annotations can be shown in 3 ways; just below/on top of the expression value, as
a series below the annotation tracks or at the values for those samples that haven been marked. The size of the
annotation scales with the setting of the dotsize.Check the More Settings panel for extra options, such as changing
the color of the axis or showing a linkto and SVG output image. The Adjustable Settings menu is available in most
of the R2 modules where a one-or two gene view is generated. Also by clicking the dots in case you have choosen
for the YY-v2 version individual samples can be marked by arrow, circles etc. In Figure 17 an extra coloring for
the individual samples has been applied , in this case the alive yes/no track.

Figure 17: Fonts and Color changed
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3.9 Step 8: Selecting subsets

To generate a graph of a subgroup of samples, use the ‘Select a track’ pulldown from the ‘sample filter’ section to
select a specific group.

In the neuroblastoma field it is well known that the mycn expression is strongly correlated with stage 4. But maybe
you are also interested in the mycn expression for the lower risk stages.

Go to the Adjustable Settings menu and select in the pull down the INSS stage. In the popup window select the
lower risk stages st1, st2, st3 and st4s and click Next. Back in the Adjustable Settings panel click on the Submit
button. These selections can be repeated a couple of times to build your ultimate selection.

Figure 17: Selecting subgroups

The graphs below were drawn with Graphtype BoxDotPlot. All stages are depicted on the right hand side graph
and only the lower risk stages on the left.

Figure 18: All stages (right) versus lower risk only (left)

Next to the filter dropdown menu , clicking the “wheel” will open a pop-up screen with a grid to create tracks
with in or excluding individual samples for the available tracks. From this point also a track can be created and
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stored. You will encounter the filter option in the adjustable settings box in many modules.

Figure 19: Advanced filtering in the grid

3.10 Step 9: Find best track separation with CliniSnitch

1. We could wonder if our gene of interest associates even more with any annotation that is already available for
the current dataset (like e.g. age group) than the example in the previous section. For such an analysis R2 has
the CliniSnitch function. Within this functionality a test is performed on each track. In addition, tracks are
inspected before doing the test, and the test is changed according to the contents: for a numeric vs numeric
track the correlation is calculated resulting in an r-pvalue, in other words the correlation between the p-
values. categorical vs numerical tracks are tested with an anova test; nonrandom associations for categorical
vs categorical tracks are tested with a Fisher’s exact test. Furthermore, ‘ND’ samples are automatically
removed, and are not considered a valid group.We can run a CliniSnitch analysis directly from the One Gene
View page by clicking on the gene name under ‘CliniSnitch’ in the upper-left panel. Click on ‘MYCN’.
Private/Group tracks that you may add to this dataset over time, will automatically be included in these
analyses.
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Figure 20: CliniSnitch result for MYCN

2. Every test can also be visualized by clicking on the View-link in the table. Not surprisingly, we can see that
MYCN expression is best separated by the MYCN amplification track. If we look at the ‘inss’ track, we can
also see a significant value. Click on ‘View’ behind inss to inspect this further.

3.11 Step 10: Finding sample extremes.

In case you wonder whether any unusual expression levels show up for individual samples from a given dataset,
you can you use the “Find sample extreme” option. In this example we know that sample ITCC0288 harbors a
Phox2b mutation which leads to the question: can we find extreme expression values for this sample?

1. In the one gene view for this dataset select in the right panel sample itcc0288 in the sample overview section
and click ‘view’, leave all the settings at their default and click next.
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Figure 21: Select your sample to find extremes

2. A table shows the negative z-score (left column) and positive z-score (right column) extremes. In Figure
22, genes which are a part of the Nor-Adrenalin pathway are in the top of the negative z-score list. This
suggests that wild-type Phox2b is involved in the up-regulation of the Nor-Adrenalin pathway.You can click
on any of the genes listed in the table (here we clicked on “TH”) to obtain the One Gene View of that gene,
with your sample marked in the graph.

Figure 22: Sample extremes in one sample

3.12 Step 11: Probeset verification

1. Underneath the graph and gene description, click on the down arrow of the text “View additional data”.The
table displayed in Figure 23 lists whether the various reporters of MYCN are in agreement with the genome
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position of MYCN reference sequence (RefSeq). If all are stating “YES” then everything appears alright
(from the perspective of an automated assessment). The MYCN reporters with a “NO” indicate there may
be an issue with it. Scroll down the page and click on the “Tview” link in the reporter table.

Figure 23: Probeset verification table

1. A new screen (or tab in the browser) appears with TranscriptView. The TranscriptView application depicts
the alignment of expressed sequence tags (EST) and mRNA sequences to the human reference genome
sequence (Fig 25). The strand orientation of these sequences are indicated by a color (green = positive
strand, red = negative strand, blue = strand information is missing). The structure of the reference sequence
has also been indicated. Furthermore, the browser shows the alignment of the sequences that were used to
generate the reporters on the array (in the case of Affymetrix microarrays).This view can be used to inspect
the quality of a reporter. Note, for instance, that the reporter “242026_at” is aligned with the genomic region
of the MYCN reference sequence, but that its color is different from the rest (colored in red). In addition,
in this particular case the reporter is located in the intronic (light shaded color) region which is another
reason not to pick a certain probeset. Indeed, if we compare the gene expression values of this reporter,
then its expression is 60 fold lower than R2’s standard pick (22 vs 1369). Below the ESTs the average gene
expression of the individual probesets is illustrating that for this example the correct probeset is selected for
analysis.

2. For many datasets R2 hosts the location of the reporters on the genome so the location and orientation can
be inspected as described for the Affymetrix probesets. If the ProbesetVerification table doesn’t appear R2
has no information of the reporter genome location of a given dataset.

Figure 24: Coloring represents type of transcript
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Figure 25: MYCN reporters in Transcript view

Did you know that you can browse the gene expression values along the genome?

Once you have entered the genome browser with an attached dataset (like above), you can also
navigate to / zoom out any other region in the genome. This allows you to look at the neighboring
genes in a single go. It can be informative to separate the expression on the basis of a track. This
can be achieved by selecting ‘dataset_track’ from the sample dropdown in the middle panel. Finally,
within the genome browser, the contents for a panel on the left side can be hidden from a view by
setting the height to 0.

3.13 Final remarks / future directions

Some of these functionalities have been developed recently. If you run into any quirks or annoyances, do not
hesitate to contact r2 support (r2-support@amsterdamumc.nl).

We hope that this tutorial has been helpful, the R2 support team.
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CHAPTER 4

Multiple Genes View

Analyze the expression levels of a group of genes within a dataset

4.1 Scope

• Use R2 to investigate the expression levels of more than 1 gene within a specific dataset.

• In this example the expression levels of small groups of genes listed from several pathways will be used
showing which genes are differentially expressed per subgroup.

• Adjust several parameters in the settings panel

• In R2, the samples are annotated with e.g. clinical data. Each group of annotated data is called a “Track” in
R2. These tracks can be used to split the group gene expression levels per track.

4.2 Step 1: Viewing multiple genes

1. Use “single dataset” in field 1 and select the “Tumor Medulloblastoma PLoS One - Kool - 62 - MAS5.0 -
u133p2” dataset in field 2.

2. Choose “View multiple genes “ in field 3 and Click Next

3. To illustrate the possibilities of the multiple gene view, genes identified as classifiers for Medulloblastoma
subtypes (Kool et al, Plos one) will be used. In the GENE/reporter textbox type or copy the following genes:
AXIN2,BOC,dkk2,GABRA5,PTCH1,SMARCD3,WIF1 and click next.
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Figure 1: Default multiple genes view.

4. Under the graph many settings can be adjusted in the Adjustable settings box. For instance, you can
choose a different type of graph. Next to the option to influence the space between the genes, the
height of the plot etc, you can add one or more extra spaces between genes of choice by adding
one or more extra delimiters. In the GENE/reporter textbox add 2 extra comma’s behind dkk2
(AXIN2,BOC,dkk2„,GABRA5,PTCH1,SMARCD3,WIF1); in the field ‘Plot type’ select “Average with
stderr”, set ‘Transform’ to and click next. This enables the creation of visual subgroups in the gene repre-

sentation.

Figure 2: Add a spacer between genes

4.3 Step 2: Viewing multiple genes through track annotation

1. In Figure 1 a selection of gene expression profiles is depicted in one picture in contrast to the one gene view.
Figure 2 shows the possibility to make gene subgroups by adding extra spacers to the plot.Now we will look
at the option to represent the gene expression separately for each subgroup of a categorical track. In this
manner potential relations between subgroups and gene expression can be visualized.

2. The dataset we are using is described in PLoS One.”2008 Aug 28;3(8), Kool M et al. Here the classification
of 5 medulloblastoma subgroups are reported and annotated as such: A,B,C,D and E. To investigate the
expression levels of a small group of genes per subgroup of the categorical track “subtypes” of medullablas-
toma cells, select in the Adjustable settings box “subtype (5 cat)” at ‘use track’, “lump by group plot gene”
at ‘handle groups by’ and “Track” at ‘color by track’. Further set ‘Transform’ to “none”, select “boxplot”
at ‘Plot type’ and click NEXT.
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Figure 3: Multiple gene view per subgroup

3. Most of the overexpressed genes are part of the WNT (subgroup A) and de SHH (subgroup B) signaling
pathway as shown by Kool et al.In Figure 3, the gene names and the subtype labels a,b,c,d and e are
concatenated on the x-axis. The Medulloblastoma molecular subtypes clearly show different expression
profiles, with an overexpression of genes in subgroup a and b.

4. Also try the “lump by gene plot group” which will produce an image where the genes are shown, separated
by the subtypes. The “group by panel” option under ‘handle groups by’ will display the same information
in a multifaceted graph with separate panels for each sub-group of the chosen track.

Figure 4: Multiple gene view, panel per subgroup

5. The sample filter option allows you to generate a multiple gene view representation, that can also depict
parts of the data set using subsets, as is available throughout R2. For example you could choose to exclude
one or more of the subgroups, or use another track to make any intersection you would like to use.

6. In some situation, you may want to highlight one or more samples or patients from a data set in the multiple

4.3. Step 2: Viewing multiple genes through track annotation 37

_static/images/MultipleGenesView_perTrack.png
_static/images/MultipleGenesView_perTrack_v1.png


R2 Tutorials, Release 3.3.4

gene view. This is easily achieved, if you use the r2 samplename. Lets try it with one of the patients within
this medulloblastoma cohort (’itcc0334’). To mark this sample, we simply paste the samplename in the
‘samples to mark’ field and update the plot. Using the options provided by the settings you can tweak the
result to your personal taste.

Figure 5: Multiple gene view, mark a sample

7. To use the generated image in programs like Powerpoint, you can ‘right-click’ on the image and ‘copy’ it to
the clipboard. A simple paste will then put the figure in your presentation. You can also store the file as a
‘svg’ vector file on your computer. Using this reoute, you are also able to adapt the figure in a program like
Adobe Illustrator, or Inkscape.

4.4 Step 3: View multiple genes (Bubble plot)

1. Up to now, we have used the more classical graphs to look at more than 1 gene at once within a data set.
Within R2, you can also depict multiple genes in a graphical format that is often used within single cell
analyses, called ‘bubble plot’. The concept here shows the average expression of genes (optionally within
different groups contained in a track) as a color representation in a grid. Every cel in this grid is then drawn
as a circle, such that the surface area reflects the ratio of the samples within such a group that is considered
to be expressed ( having a Present call within R2).

So let’s have a look and explore this feature in a scRNA dataset first. From the main page, we first select a
data set called : ‘Cell line Neuroblastoma 13 cell lines - Chapple - 35323 - seurat_cp10k - ensh38e98’.
This resource contains 13 neuroblastoma cell lines, measured by 10x Genomics technology.

2. From the option box 3 we then select ‘view multiple genes (bubble plot)’ and progress to the next page.
Since we will work with a large resource, it may take a few seconds for the page to finish loading the 1st
time that you use it within your current session.

At first nothing much is shown. Now paste a few genes in the ‘genes’ box
“PHOX2A,DBH,ALK,CD24,PRRX1,CD44” and press ‘next’. We now see 1 row
of circles, showing the expression of the different genes in the color repre-
sentation, and the ratio of cell showing expression as the size of the circles
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Figure 6: Multiple gene view (bubble), 1

3. We can also use a track, to segregate the cells (or samples in case a bulk data set is used). Let’s use the
‘cell_line’ track and press ‘next’ again. We can now see 13 rows of the circles, one row for every cell line.
This starts to look more interesting, as not every gene seems to be equally expressed in the different cell
lines.

Figure 7: Multiple gene view (bubble), 2

4. We can also reorganize the genes, by putting them in another order. It is also possible to ‘group’ the genes,
by adding an additional ‘,’. Let’s try the following order “PHOX2A,CD24,DBH,ALK„PRRX1,CD44” and
press ‘next’ again. The image looks more organized now.
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Figure 8: Multiple gene view (bubble), 3

5. By default the circle areas are represented as proportion of the complete data set. To not end up with very
small circles, the largest identified proportion is chosen as the maximal bubble width, and all the others are
scaled proportionally. This allows you to see the expression in those cells that have a signal, but also that not
every cell line has equal numbers of cells. If you are not so much interested in the relative numbers between
the different cell lines. then we use the ‘scale bubble by’ drop down and use ‘group size proportion’. Press
‘next’ again. The image now reflects how the different genes are proportionally expressed by row.

Figure 9: Multiple gene view (bubble), 4

6. As with many plots in R2, you can also use different transformations, use other color schemas or make the
circles bigger etc. Hovering over the circles will also show you the statistics for a circle, that may be helpful
when exploring the data.
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Figure 10: Multiple gene view (bubble), 5

7. As will also be explained in the dimensionality reduction tutorial of the tutorials book, single cell data is
often explored in so called ‘UMAP’ plots as well. These are also available in R2 via the ‘menu’ at the left
side named ‘sample maps’. Using that route, you can also explore the expression of a gene, or annotation
features in our interactive plots. Combining some of these functions will enable you to test hypotheses, and
produce images for your next publication ;)

Figure 11: Multiple gene view (bubble), 6

Finally, we have now used these bubble plots in a single cell dataset, where they are very well suited to convey
both expression level, as well as ‘proportion expressed’ information. These plots can be equally informative in
many of the bulk expression data sets that are provided within the R2 platform. In many data sets a notion of ‘is
expressed’ is also captured in the ‘present call’ variable.
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4.5 Final remarks / future directions

Some of these functionalities have been developed recently. If you run into any quirks or annoyances don’t hesitate
to contact r2 support (r2-support@amsterdamumc.nl).

Everything described in this chapter can be performed in the R2: genomics analysis and visualization platform
(http://r2platform.com / https://r2.amc.nl).

We hope that this tutorial has been helpful,the R2 support team.
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CHAPTER 5

Annotation analyses

Using (custom) annotation tracks as input for analyses

5.1 Scope

As you know by now, annotation of your data is stored in R2 as “tracks”. Within R2, one can easily create new
annotation tracks. This can be done either based on results generated within analyses, or completely independent
by uploading of tracks. In some cases it is of interest to start comparing one track with another. The type of
statistics used to compare the tracks depends on the type of data; either categorical or numerical. One may
wonder if there is significant overlap between 2 tracks (with categorical variables), based on Fisher’s exact test.
Alternatively, if there are multiple numerical tracks available; one may wonder if there is a significant correlation
between 2 tracks. For these cases, R2 contains the Annotation modules; “relate 2 tracks” and “annotation plotter”.

• Relate 2 tracks (categorical); test significant overlap and view as honeycomb-plot.

• Relate 2 tracks (numerical); assess significance of correlation and view as XY-plot.

• Relate 2 tracks (categorical vs numerical); assess differential values between groups.

• Annotation plotter; visualize tracks within sample cohort.

• Sunburst plotter and others; visualization options of tracks within a sample cohort.

5.2 Step 1: Relating 2 (categorical) tracks

1. Make sure that you are on the “main” page of R2, and that the selected dataset is “Tumor Neuroblastoma
public - Versteeg - 88 - MAS5.0 - u133p2”. In the ‘Select type of analysis’-box (3) select “Relate 2 tracks”,
which can be found in the annotation subsection and press ‘Next’.
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Figure 1: Select “Relate 2 tracks”

2. For the different tracks, make sure that you select a categorical one (which can be recognized by (cat)).
We investigate whether there is a relation between the neuroblastoma age-group (track=agegroup, flip point
being 18 months at diagnosis) and the survival status (track=alive). Select the Interactive ‘XY’ plot in the
graph section. Then press ‘Submit’ to generate the result.

Figure 2: Select Selecting categorical tracks

3. The generated result is now displayed on the screen. As we are testing 2 categorical variables, R2 has tested
the relation between the 2 tracks and finds a highly significant Fisher’s exact p-value, indicating that there
is a relation between the agegroup and vital status of the patients. The result is also shown in a honeycomb
image, where every individual patient is represented as a separate circle, with the annotation as a hover box.

4. One can add more visual information to the plot, by coloring the patients on the basis of a track. From the
adjustable settings at the bottom of the page, set the “colormode” to “color by track” and select “inss” as
track. Press the ‘Submit’ button to create an updated image. Now we can clearly see that there is a great
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over-representation of stage 4 patients in the group of deceased patients who are older than 18 months.
As you may appreciate, the combinations that you can make here are virtually endless. We have named
this analysis the ‘Visual Fisher’s Exact test’, due to the visual additional insights that it provides over the
‘normal’ p-value that can be interpreted for this test.

Figure 3: Color samples by track

Figure 3a: Using the interactive plot options

5. To compare the absolute or relative shares of track values between subgroups of another track, you can use
the “Stacked Barplot” or “Stacked Barplot ratio” respectively. The “Stacked Barplot ratio” option scales
every group to 100%, and thereby shows the relative contribution of the different groups. Also the grouped
bar plot is a handy visualisation to split your representation for a group parameter.

Figure 4: Absolute (left) and relative (right) stacked barplots and in the middle a grouped bar plot
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5.3 Step 2: Relating 2 (numerical) tracks

1. Just as in the previous example, we select the “relate 2 tracks” option from the main R2 screen and click
‘Next’. Now this time, we select 2 numerical tracks, which can be recognized by the (#) sign at the end of
a track. Within the Neuroblastoma dataset our options are limited for this example, so we select the “age in
years” track vs the “nti_surv_overall” track and proceed to the next screen.

2. In the result page, R2 has detected that 2 numerical tracks were selected, so the correlation between the
different tracks is being displayed and tested for statistical significance. Just as in the previous example, we
could color the patients by a track if that would be appropriate.

Figure 5: Output of relating numerical tracks

5.4 Step 3: Relating a categorical track to a numerical track

1. The last example for relating 2 tracks, involves the combination of a numerical one to a categorical track.
Essentially, this option allows you to test meta-gene data (such as combined expression values of multiple
genes expressed as a single value) as well, where you could create a track containing only value information
for the patients, and test this track to clinical parameters. We again select “Relate 2 tracks” from the main
menu and navigate to the next page.

2. From the track options, we choose a categorical track for X (inss stage), and a numerical one for Y
(nti_surv_overall) and navigate to the next page.

3. The result page will now start to look like view a gene in groups, only this time using the data contained
in your track. Via the adjustable settings, you can change the representation to another plot type, such as a
stacked box plot, change the colormode to color by track, and you have a nice result here, showing that the
survival rate is significantly lower in patients of INSS stage 4.
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Figure 6: Representing the relation between categorical and numerical tracks

As a recap for the last 3 tutorial steps, you have used the “relate 2 tracks” option from the annotation methods in
R2 and represented different types of tracks with each other to gain new insights from combining 2 tracks. Below,
the three different representations are depicted side by side. Do remember, that this module allows you to use
“meta data” tracks that you can assemble either within, but also outside of R2 via the uploading of a track option
that will be shown in the “adapting r2 to your needs” chapter.

Figure 6: “Representations of relations between different types of tracks in R2

5.5 Step 4: Annotation plotter and Cohort Overview

1. In some publications, patient data is represented in slick looking annotation plots, showing the patient
characteristics in rectangles. In a sense, these are just like the tracks that are represented underneath YY-
plots in R2. To allow users to create these “track” figures, ordered in a user provided order, we have
implemented the annotation plotter in R2.

2. Make sure that you are on the “main” page of R2, and that the selected dataset is “Tumor Neuroblastoma
public - Versteeg - 88 - MAS5.0 - u133p2”. From the “Select type of analysis” dropdown select “Annotation
plotter”, which can be found in the annotation subsection and press next.

3. The default view for the dataset will be plotted. Now one can change the tracks to display as well as the order
in which the samples should be ordered. For removing tracks, drag the trackname out-side the selection box
and click submit. Hold en drag the track name to adapt the order in the list of the right selection panel. The
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order in which tracks are selected for ordering will also dictate the final sort. For some complicated sorts, it
may be necessary to create a numeric track that puts the sample in the intended order.

Figure 7: Plotting the annotationtracks

4. Another often useful overview is provided by the Cohort Overview. Click on ‘Go to Main’ in the upper left
corner, and this time select “Cohort Overview” in box 3 with the “Select type of analysis” dropdown. Then
click ‘Next’.Here, pie charts show the shares of the different values of a track. You can visualize tracks
with the dropdown menus, hover over the different pie slices, and create a table overview with the values of
different tracks of choice for each sample.The ‘Build a track’ button at the bottom of the page conveniently
allows you to directly build a track from any selection of available tracks.

Figure 8: Cohort Overview

5. The sunburst plotter is an often used annotation visualization. In the annotation section of the main menu,
select the Cohort sunburst plotter. The sunburst diagram displays a hierarchical structure in a circular shape.
The origin of the organization is represented by the center of the circle, and each level of the organization
by an additional ring. Additionally, other visualization plot types are implemented as illustrated in Figure 9
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(circlepack, treemap and icicle).

Figure 9: Sunburst plotter

5.6 Final remarks / future directions

Some of these functionalities have been developed recently. If you run into any quirks or annoyances do not
hesitate to contact R2 support (r2-support@amsterdamumc.nl).

We hope that this tutorial has been helpful,the R2 support team.
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CHAPTER 6

Differential expression of genes in your dataset

Find out which genes make a difference between groups of samples in your dataset

6.1 Scope

• Use R2 to determine whether the expression of your gene of interest is significantly different between groups
of samples (steps 1 to 5).

• Use R2 to find all genes exhibiting differential expression between groups of samples in a dataset (step 6).

• This is established by use of statistical tests. R2 will guide you through this process in a self-explanatory
way.

• In order to enable assignment of samples to groups, proper annotation of the dataset is required. In this
tutorial a set of Neuroblastoma tumors is used that is annotated with several clinical parameters: survival,
age of diagnosis, etc.

• All (advanced) parameters can be adapted to your specific needs.

• These settings will be elaborated upon in separate boxes.

• The results of these analyses are presented in adaptable graphics.

6.2 Step 1: Selecting data and the type of analysis

1. Logon to the R2 homepage using your credentials and make sure the Single Dataset field is selected in field
1.

2. Make sure the Tumor Neuroblastoma public - Versteeg - 88 - MAS5.0 - u133p2 dataset is selected in
field 2 (see chapter 1 of the tutorial for more information about the selection of a dataset).

3. Choose View a Gene in groups in field 3 and click Submit.
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6.3 Step 2: Choose the gene and the annotation track as grouping
variable

In the next screen you will choose the gene of interest and decide which grouping variable to use to establish the
differential expression of your gene of interest.

Figure 1: Step-by-step scenario to select ‘View a gene in groups’ on the main page of R2

1. Type mycn as gene (see Figure 1) in the first textfield in the Adjustable settings box. Select with a mouse
click the first reporter in the popup (the first row). The reporter textfield is automatically filled in.

To view the expression of this gene in groups, you can use dataset specific annotation, the so-called “tracks”, as
grouping variable in R2.

1. In the dropdown of the setting Track select the track called Alive (2 cat). This track contains survival data
of the patients from whom the tumor sample was taken.

2. Note that the other fields can be kept as is, the right choices are already provided. Click Submit.

The “one way Anova”/”student T test” test will be performed for data on the selected groups (see explanation in
the next step).

Did you know that you can create your own tracks?

Many datasets in R2 contain annotations. You can use these annotation tracks as grouping variable. Another
option is to create your own annotation track for any dataset in R2. This is explained in a separate tutorial
Adapting R2 to your needs.

6.4 Step 3: Anova results / adapting plots

R2 now performs a one-way Anova statistical test on the fly. More information about which test to choose can be
found here: Statistical test: did you know..?.

1. Check the graph and the information that is displayed underneath the graph in the resulting window.

The actual result of the ANOVA calculations is shown in the table under the graph; the difference in average
expression between the two groups is significant.
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Figure 4: Result of the one-way Anova test for the Neuroblastoma 88 samples.

1. For a nicely ordered graph, you can adjust the settings in the menu at the bottom. Set Extra Graph Option
to Track and Gene Sort (Do not forget to click on Submit afterwards!).

R2 displays the mRNA expression of the samples in a splitted plot in which per group the samples are ordered
with increasing expression (Figure 4). Note that the “alive” annotation is in the second row (track) beneath the
graph.

Figure 5: Order the samples per group with increasing expression.

These results can also be shown in different types of plots (Figure 5).

1. Scroll down the window to the Adjustable settings menu.

2. Adapt the selection in the dropdown box Graph type to another graphtype, e.g. Dot plot (dots), and change
Color mode to Color by Track.

3. Note that you can change the order of the groups with Order Groups By, let’s take median (numeric Y) in
our case.

4. Click Submit. The resulting graph is adapted accordingly.
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Figure 6: Adapting the Graph type to Dot plot, change order and set Color by Track

The difference in expression between the groups can be shown more dramatically by plotting the data without a
log2 transformation. Make sure to use log2 transformation in scientific reports, though, as untransformed mRNA
gene expression data is hardly ever normally distributed.

1. In the ‘Adjustable settings’ menu, set the Transformation dropdown to none (Figure 7).

2. Click Submit.

The resulting 2 graphs also depicted in different types of plots in Figure 6 show the difference between the expres-
sion values in the two groups more dramatically.

Figure 7: The same data now represented without transformation in bar/box plots

Did you know that samples can be filtered and/or marked?

Under the sub-header “Sample Filter” you can select a specific subset of samples based on the annotation on
track. First choose a track, then select the wanted subgroups in the track. The analysis will only be performed on
the selected subset.
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Figure 8: Sample selection with the Sample Filter

Clicking the wheel icon will open a grid supporting all selection combinations of interest

Figure 9: Advanced sample selection

In the samples to mark section, a sample name can be entered that will be highlighted in the resulting graph; ideal
for publication purposes. Also note that in the interactive plot section you can mark samples by clicking on the
dots.
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Figure 10: Graph with sample selection INSS 3 and 4 and a marked sample

6.5 Step 4: Finding differentially expressed genes in two groups

It would be a pretty tedious job to look for all genes whether they are differentially expressed between groups.
Why not let R2 do the job for you?

1. Go back to the Main screen, by clicking the link in the upper left corner of the screen.

2. In field 3 of the R2 step-by-step guide you find two options to find differential expressed gene lists: ‘Find
Differential expression between two groups’ and Differential expression between multiple groups (Figure
8).

3. Both types of Differential expression modules harbor specific statistical tests. Depending on your chosen
dataset, number of groups you want to test and the type of data (RNAseq,microarrays) you can choose from
several statistical tests.

Figure 11: Selecting Find Differential Expression.
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4. Select “Differential expression between two groups” and click Next.

5. In the next window you can select several types of statistical tests which are present in the selection menu.
By default, the T-test is selected. We too will use this default test.

Which test is suitable for a given dataset, depends on the normalization of selected dataset and on what kind of
data the dataset is build of. Most expression sets are continuous and normally distributed data so the T-test is the
most applicable. In case of a dataset which contains categorical data the Mann-whitney test is more suitable.

A special remark for the DESeq2 algorithm is at place here. This test is only available for RNAseq data that
contains the un-normalised counts. Most of the datasets that have DESeq2_rlog or DESeq2_vst in the name
consist of two data parts. A normalised data part is available in case you want to use the T-test and a data part
with the counts is available in case the DESeq2 algorithm is preferred. Note that the counts are only used for
the test, the values depicted in the graphs etc. are always normalized data.Using the DESEq2 algorithm in case
of RNAseq is often appreciated since this is a well established statistical test package dedicated to data such as
RNAseq data. In the dataset selection grid box you can search for datasets which have deseq2_rlog or deseq2_vst
as normalization procedure. Datasets with this annotation have three slots, rlog normalized data, deseq normalized
data (normcounts) and a counts slot. This counts slot is used when you run the DESeq2 algorithm on the fly for
two group comparisons.

Figure 12: Selecting the DESEq2 test.

6.6 Step 5 Setting parameters

In our case we continue with the Tumor Neuroblastoma dataset and the Differential Expression between two
groups analysis with the T-test.

1. Now we also make the choice for the two groups. Select behind Group by the track Alive (2cat) again.
Click Submit.
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Figure 13: Differential expression parameters

2. An extra menu shows up with many options. For now we only adjust the required Group 1 and Group 2
setting: we choose the value no (33) for Group 1 and yes (55) for Group 2.

3. Click Submit.

Figure 14: Progress dialog during on the fly calculation

The result is a list of genes that is ordered by the most significant differential expression between the groups that
you chose (Figure 15). A short summary of the calculation is given above the table; ~ 2600 genes have met the
criteria set by default; their expression exhibits a correlation with the separation in the two groups.The generated
list can be sorted or filtered by any of the column headers in the grid, such as by the p-value (P) or the difference.

In the right menu numerous modules can be selected to continue the analysis. Also, the generated list can be
extracted to continue for further usage outside R2. As indicated in the right menu
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Figure 15: Genes differentially expressed between groups.

6.7 Step 5: Correct for paired analysis

A paired analysis is often performed when observations are natural paired or matched such as in this example.

1. Select in the main screen the following dataset. Exp Neuroblastoma Adrn Mes resistant - George - 12 - tpm
- gse165748 and differential expression between two groups, select group by cell_lineage and click submit.
Subsequently select adrenergic and mesenchymal for the groups and click the lower submit button. Take a
look at the number of found combinations and continue with adapting the settings in the adjustable settings
box below the list of combinations.
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Figure 14: Genes differentially expressed between groups..

2. In the select a test box, select Limma and again for Group by: Cell_lineage and click submit. Select
Adrenergic and mesenchymal for the groups and now you can select a track you want to correct for in this
case, the genomic_mycn_status, click the lower submit button.
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Figure 15: Genes differentially expressed between groups with correction.

3. After correction for the genomic_mycn status more genes are found to be significant differentially expressed
between the two groups. For example also the PAX5 gene appears higher and more significant in the list
which could be a candidate for further investigation.

Figure 16: Genes differentially expressed between groups with correcttion.

Did you know that. . .

Very useful background information for this tutorial can be found in Chapter 25 Concepts of R2: did you know..?

Check it out:

What were those R and p-values again?: R is the correlation coefficient; it ranges from -1 to +1, if
R > 0 the value of two variables tends to increase or decrease together. . . Read all about R & p-values
in Chapter 25

You can specify the preferred statistical test and choose a subset of genes? Use any (combination)
of the following parameters to adapt the analysis to your needs.

• Hugo Once (hugoonce): For most analysis genes should only be reported once in a dataset.
R2 uses an algorithm called Hugoonce to choose a single probe-set to represent a gene. Scroll
down in Chapter 25 to the Settings section about Hugo Once.

• Statistics panel: R2 determines p-values for the differential expression of genes by performing
either a one-way anova (default setting) or alternatively a brute-force t-test on any combination
of groups when the data is untransformed or log2 transformed. For rank-transformed data, a
Kruskal Wallis test is performed. In addition to these statistical tests, users can also ask for
genes with a certain fold change or obtain a top-X list of the genes which are ordered by a
user-specified test.

• Correction for multiple testing: We are testing a lot of genes here; so we have to correct for
multiple testing. Why? Read on about multiple testing in Chapter 25

• Gene Filters: As for many analyses in R2, the gene filters allow you to study a specific subset of
genes for differential expression. There are several domains you can choose from. Learn more
about gene filters in Chapter 25

Of course, to actually get familiar with these settings you should not only read about it, but also toy around with
them!
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6.8 Step 6: Find differential expression in multiple groups

As mentioned above, Find Differential Expression for multiple groups can also be applied with a slightly different
“Adjustable settings menu” and including other types of statistical tests. Read further about which test to use in
Chapter 25.

1. Go back to the Main page by the link in the upper left corner and select again the Neuroblastoma 88 set.

2. Select Differential expression between multiple groups and click Next

3. Select for Group by the value inss (5 cat) and leave all the other settings at their default value. Click Submit.

Figure 17: Genes differentially expressed between groups.

1. A list of differentially expressed genes between the groups is generated. Of course, now that we have more
than two groups, the table no longer contains the Difference column and group order column.

6.9 Step 7: Inspecting single genes

1. Choose one of the genes in the table to inspect further.

2. Hover over the magnify symbol in the list next to the gene name to find a description of the gene.

3. Now click on the magnify symbol. A similar graph is produced as for TF, the differential expression is more
pronounced for this gene (Figure 18). In stage 4s, even indicating based on the TF expresion that there is
possible subgroup within the INSS 4s stage.

4. In the generated picture the samples are not ordered by their gene expression. Go to the adjustable settings
menu and select Track and gene sort in the Extra Graph Option pulldown menu. Click Submit.
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Figure 18: Hover over and click on any gene of interest

6.10 Step 8: Plot all genes and adapt visualization: Volcano plot
etc

1. The tab with the list of differentially expressed genes (Figure 15) is still open or perform the analysis again.
Click on this tab.

2. Most of the functionalities in the right panel of this window will be explored in more advanced tutorials
(K-Means clustering etc.). We will explore one additional data visualization however to plot all genes of
this analysis. In the right menu click see Figure 15 ‘Plot all genes (xy, volcano, etc.)’.

3. The resulting plot shows all genes of the list in a XY-plot, MA-plot and vulcano plot depending on your
choice; in case of the XY datapoints above and below the diagonal are differentially expressed. Hovering
over the points shows the genesymbol, clicking on the dots will annotate the dots with the gene name., To
speed up the graph generation this information is not automatically loaded: click on the “add hovering”
button below the graph to add this information. Note: every plot in R2 with larger amounts of datapoints
(>5000) will have this “add hovering” button. Adapting the plot parameters in the Adjustable settings menu
will also adapt the graph on the fly.
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Figure 19: XY, MA , Vulcano plot of all genes differentially expressed in the current track;

4. Right clicking on the datapoint in the plot opens up a new window showing the expression of the gene in
the two groups as a violin plot.

Figure 20 : Differential expression of MYCN
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5. The plot has been adapted to show the AKR1C1 genesymbol also DNA-replication genes are highlighted in
red. Fold change lines show the regions where differential expression is 1 and 2 fold (Figure 16). Note that
most genes of the DNA replication pathway seem to be located below the diagonal.

Figure 21: Adjusted visualization of gene expression,hovering over the dots shows the gene name.

6. R2 can visualize the same data also as a Volcano plot or an MA plot. In the Adjustable Settings dialog
change the Plot type to Volcano or MA (Figure 21). Note that the distinct characteristics of the AKR1C1
gene and the DNA replication are more obvious in the Volcano plot. The DNA replication pathway statistics
will be explored in more detail in the ‘Find genes correlating with your gene of interest’-tutorial

7. In another example in the selected Coloncarcinoma TCGA set, some Ribosomal gene categories which were
selected in the gene filter. The KRT16-gene was selected and adapted in the Adjustable settings box.

Figure 22 : Adjustable settings for the all genes plot

6.11 Step 9: Using the Enrichr

The right menu also allows you to take your result list of differentially expressed genes (DEG) outside R2 to
the public available Enrichr platform. Enrichr (https://maayanlab.cloud/Enrichr/enrich) is a web-based platform
designed for gene set enrichment analysis (GSEA) and functional annotation of gene lists. It allows you to gain
insights into the biological processes, pathways, and functions associated with their gene sets of interest. The
Enrichr performs an enrichment analysis by comparing the generated R2-list against a large collection of well
curated databases such as Gene Ontlogy, KEGG pathways and disease-associated gene sets
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Figure 23: Taking the result to the Enrichr platform.

Figure 23 shows the Enrichr button you can click directly when the DEG list genes is ready, in the next screen you
can select just one group when coming from the two group analysis or you want to include and even add of delete
genes from list. Hitting the submit button will direct lead to the Enrichr platform.

Did you know that you can tailor visualization of specific genes in one go?

• You can annotate gene names (gene symbols) by providing them in the ‘Mark genes’ field of the Adjustable
Settings panel. By default, these will appear in red, size=10, on your plot. You can change the size and/or
color of these genes either individually, or in groups.

• Clicking on the dots will annotate the dots with the gene name.

• Please take note of the following rules: to mark groups of genes for which the same
criteria apply, first type the genes (comma separated), followed by :s=size, followed by
:c=r,g,bfor single genes: gene1:s=25:c=0,0,255;gene2:s=20:c=200,0,0for groups of genes:
(gene1,gene2,gene3):s=25:c=0,0,255;(gene4,gene5,gene6):s=20:c=200,0,0”*

6.12 Final remarks / future directions

This tutorial has shown you how to find genes that are differentially expressed in your dataset of choice. Now go
ahead and toy around with selecting groups and tracks of choice and see what interesting scientific discoveries
might lie ahead!

We hope that this tutorial has been helpful, the R2 support team.
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CHAPTER 7

Find genes correlating with your gene of interest

Or how you can find genes that have similar or opposite expression patterns in your dataset of choice

7.1 Scope

• R2 allows you to explore the relations your gene exhibits with other genes in your dataset of choice; corre-
lation statistics is used to calculate this.

• The expression of a set of genes correlating with the expression of MYCN in a series of Neuroblastoma
tumors is used to demonstrate that in this tutorial.

• The results can be further explored in one-on-one graphs or as a heatmap.

• The set of genes can be further explored statistically in several domains as will be shown in this tutorial:

– In a gene ontology analysis

– On pathway maps

– On a chromosome map

• Using this exploratory analysis, new biologically relevant hypotheses can be generated as will be shown in
this tutorial by an example concerning MYCN and MCM genes.

• The data can be saved and used in other tools.

• Further advanced analysis based on the use of sets of genes can be found in the Kaplan scanner and GeneSets
tutorials.

7.2 Step 1: Selecting data

1. Logon to the R2 homepage using your credentials and make sure the “Single Dataset” option is selected in
field 1 of the R2 step-by-step guide.

2. Make sure the “Tumor Neuroblastoma public dataset” is selected in field 2 (For additional information on
these first two steps, consult tutorial: Working with datasets).

3. In field 3 select “Find Correlated genes with a single gene” (Figure 1) and click “Next”.

4. In the next screen, type ‘MYCN’ in the gene/reporter field and select the first reporter.
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5. Click “Submit”.

Figure 1: Choice of correlation analysis.

6. In the adjustable settings, we set the p-value cut-off to 0.01 and leave the further settings at their default.
Note in Figure 1 that you can select for both correlation directions or a single one. The p-value, r-value
cut-offs and multiple testing can be adapted. Scroll down the screen and click “Submit”.

Did you know that you can find the correlation between two genes directly?

Just choose ‘Correlate 2 genes’ in the main menu in box 2 if you have a specific gene you want to
correlate with your gene of interest. Of course this method would be rather tedious if you want to
find new genes, hence we are exploring exactly this scenario in this tutorial. Another possibility is
to correlate your gene with a track (containing numerical data). This essentially tests whether the
expression of your gene of interest correlates with the numerical order described in the track. This
scenario is further explored in the ‘Differential Expression’ chapter.

7.3 Step 2: Inspecting correlating genes

1. R2 calculates the correlation of the expression of MYCN with the expression of every other single gene
in the current dataset. A lot of calculations! The result is presented as two tables (Figure 3 ). In the
header a summary is given: ~ 2200 combinations of MYCN and another gene met the criteria, i.e. having a
significant correlation (p < 0.001) with the expression of MYCN, ~ 15000 genes did not obey these criteria.
The left table represents the genes whose expression correlates positively, or is similar, to that of MYCN
in this dataset. Of course MYCN has a perfect correlation with itself. Some characteristics of the genes
are already described in red. R and p-values are given in separate columns (for a short description of their
meaning, consult the ‘Differential Expression’ tutorial).
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Figure 2: Genes whose expression correlate with that of the MYCN gene in 88 Neuroblastoma tumors

Exact (gene-) numbers listed in the tutorial. Figures such as in this example (2184 combinations) can vary. This
is caused by database updates upon a new genebuild release or from a commercial platform such as Affymetrix
annotation update.

1. The right table summarizes the genes that show a negative correlation; the expression of MYCN behaves
opposite to that of these genes.

2. A little table to the right summarizes the results of a limited Ontology analysis. More about that in subse-
quent steps where we also explore the menu items to the right. All gene names are clickable to explore the
specifics of the correlation in a separate graph; try and click the APEX1 gene in the left column.

3. At the bottom of the generated list , the adjustable settings menu is located where the filetr options can be
adapted.

_static/images/CorrelatingGenes/FindGenes_gotoadjust.png

Figure 3: Adjustable settings

7.4 Step 3: Inspecting correlation between specific genes

1. The resulting graph depicts the expression of both genes in this tumor series in a graph. The tumor samples
are ordered by increasing MYCN expression. Note that the expression of APEX1 follows the expression of
MYCN quite good! This is reflected in the R and p-values that are quite significant.
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Figure 4: The expression of the MYCN gene correlates with the expression of the APEX1 gene.

2. As an example of the opposite, click on one of the top genes in the right column figure 2 ; MEAF6. This
produces Figure 6. The original list of results is still open in another tab in your browser, return there.

Figure 5: The expression of MYCN has a negative correlation with that of the MEAF6 gene

3. To generate a correlation plot where the negative relationship between MYCN and the MEAF6 gene is
more clearly visualized, select “XY-plot” as graph type in the graphics section in the Adjustable Settings
box and click the “Submit” button. In this correlation plot it is also still possible to show expression levels
for the samples are distributed. In order to do so, click on more settings in the Adjustable Settings box, set
Histogram to yes, and click on the Adjust Settings button. Now the histogram boxes in the x and y axes
show the distribution of the expression levels in the correlation plot, see fig 6. In the green bar located above
your graph you can easily click through your generate list instead of going each time to the list to inspect
your genes.
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Figure 6: Toggle Histogram

4. Another nice way to adjust the graphical representation of a XY plot is by using the gene expression levels
and applying these to a color gradient.
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Figure 7: Select Color by gene

Select in the “Color Mode” pull down menu the “Color by gene” option. In the next box enter the gene you
want to use for coloring the dots. Make sure that after entering the gene name you also select a corresponding
probeset and click “Adjust Settings”. In this example the reporters of the MYCN vs MEAF6 are plotted and
subsequently colored by the MYCN expression levels. Of course, you can also enter a third gene for coloring
the dots.

Figure 8: Select Color by gene epression

5. Another way to visualize the relationship of the expression correlation in an XY plot is to switch on the
linear fit option. In the “More settings section”, turn on “linear fit”.
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Figure 9: Select Linear fit
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Figure 10: Linear fit

6. It could be that you encounter a correlation plot for two genes where you can distinguish two clusters. One
group of the samples seems to form a cluster with a positive correlation and a second cluster seems to have
an inverse correlation. An example, which is not directly listed in previous list of correlating genes, is
the relationship between MYCN and GATA2. In the adjustable settings box enter MYCN and the GATA2
gene and click ‘Change Genes’. Change the color mode to “Color by track”, select the MYCN track in the
graphics section, turn on the linear fit option at ‘More settings’ as indicated below, and click redraw.

Figure 11: Linear fit adjust

7. In de next figure, the trend line clearly illustrates that there is positive correlation for the MYCN non-
amplified group and a negative correlation for the MYCN amplified group.
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Figure 12: Linear fit per track

8. Through the menu on the right, several additional dataviews and analyses are available. Let us start with
different overviews; R2 is able to produce heatmaps of this analysis. Return to the genelist view (Figure 2).
Click on the ‘Heatmap (zscore)’ in the right menu. The gene names are on the y-axis, sample names on the
x-axis.
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Figure 13 : Heatmap view of the expression of all genes correlating with the expression of MYCN in
88 Neuroblastoma samples.

7.5 Step 4: Relation with Chromosome position

Another possible view is the mapping of these genes on all chromosomes. Click on the ‘Chromosome Map’ menu
item again in the menu on the right in Figure 2. In Figure 13, the overrepresentation of genes that correlate with
MYCN expression with respect to all genes present on (an arm of) a chromosome is calculated. In Figure 14
this mapping is depicted in an overview. Sometimes, eyeballing already suggests that some regions seem to be
affected. R2 provides a table where the statistics behind this analysis are given. You can also explore the results
in the interactive R2 genome browser, where you can zoom into the results and locate individual genes. To enter
this mode, just press the ‘View in R2 genomebrowser’ button.

Did you know that over-representation is explained here?

Over-representation quantifies the notion that a subset of genes from a larger set can harbor more
genes that have a certain characteristic than you would expect by chance. On the p-arm of chromo-
some 1 for example, there are 1157 genes located of the grand total of 21300 known genes. From
our set of 2229 genes (only slightly more than 10% of the total number) some 210 are present on this
arm. This is 18.2%, an enrichment above what you would expect by chance. This can be quantified
using a 2X2 contingency table with a chi-squared test that produces a p-value to establish whether
this difference is significant.
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Figure 14: Statistics of overrepresentation of genes that have a correlation with MYCN on different chro-
mosomes
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Figure 15: Mapping of the genes correlating with MYCN on allchromosomes

To further explore this set of genes return to the list: Figure 2.

7.6 Step 5: Establishing overrepresentation in other domains

1. Further overrepresentation analyses in other domains can give a first clue of the processes that are of im-
portance in this set of genes. A domain is the Gene Ontology; a controlled vocabulary that systematically
describes processes, locations and functions in biology. Click ‘Gene Ontology analysis’.

2. The resulting categories are presented in a sortable table (Figure 15). It is possible to sort on p-value by
clicking on the column header. Clicking on a pathway ID will open a new screen or tab with the heatmap
of the selected pathway.
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Figure 16: Gene Ontology categories that are overrepresented in the set of genes that correlates with
MYCN expression in the current dataset, sorted by increasing p-value of overrepresentation.

3. One of the categories where genes of our current set are overrepresented is ‘DNA-strand elongation’. All
genes in this process have a consistent positive correlation (as can be seen by the green color). Let us take a
look to see if we can corroborate this observation in another domain.

4. The adjustable panel settings menu allows you to redo the gene-ontology analysis with the up or down
regulated genes only.

Figure 17: Re-do analysis with genes that are either positively or negatively correlated with MYCN.

7.7 Step 7: Gene list in pathway context

1. Return to the gene list Figure 2 and click ‘Geneset analysis’. Select the KEGG pathway in the gene set
selection pull down.
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2. A similar overrepresentation analysis is performed on all gene members of the pathways in the KEGG
database. Click on the p-value column header again in case the p-values are not sorted, to find the most
significant ones: Figure 18.

Figure 18: KEGG pathways exhibiting an overrepresentation of genes of the current dataset, ordered
by significance.

3. The DNA-replication pathway pops up as most significant. Note that most genes are similar to those found
by the GO process in the former analysis. The pathway will be shown when the blue “A” in front of the
pathway name is clicked.

4. A hyperlinked KEGG pathway appears: Figure 19.

Figure
19: Mapping of the overrepresented genes (darker green) in the MYCN correlating set on the DNA-replication
pathway from the KEGG database. Hovering over the gene shows additional information

Figure 19: Mapping of the overrepresented genes (darker green) in the MYCN correlating set on the DNA-
replication pathway from the KEGG database. Hovering over the gene shows additional information.

MCM-genes seem to play a role. Go back to list (Figure 2) to show their individual relation with MYCN. However,
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it is important to realize that the KEGG pathway interactions are build on Protein-Protein interactions, Enzyme-
Substrate Interactions, Protein-DNA Interactions, Protein-Compound Interactions etc etc and the genelist from
this module is baed on RNA expression levels only/

7.8 Step 8: Further pathways analysis

1. Scroll down and look for the MCM2 gene, click on the link to show their relationship: Figure 20.

Figure 20: MCM2 expression correlates with MYCN expression.

2. The correlation is significant. In the left upper table there is a link to the Pubsniffer tool within R2. This
tool performs a live search in the Pubmed literature database for (co-)occurrences of MYCN and MCM2
(and some other keywords). Click the link: Figure 21.

Figure 21: Pubsniffer results for gene symbols MYCN and MCM2

3. Apparently there are some abstracts where the two genes are mentioned together, you can view this article
directly by clicking the hyperlinked number in the Articles column. The outlink Pubreminer column directs
to the PubReminer tool:
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Figure 22: The PubReminer tool web interface

4. This versatile tool offers quite some functionality to build a literature search query tailored to your needs.
That being slightly out of scope of this tutorial, click the “Go to Pubmed with query” button to find the
article.

5. This article is actually published work by our group where the relation between the MCM genes and MYCN
was proven experimentally.

Figure 23: The correlation between MCM genes and MYCN was proven experimentally in this article.

7.9 Step 9: Gene set analysis

1. The genelist produced in the beginning of this tutorial (Figure 2) can be stored for use in later analyses in
R2, or for use in other applications. Return to the page containing the list, this is still open in another tab in
your browser.

2. The menu to the right gives several possibilities (Figure 2). Some of these have been explored already; we
will shortly touch on the rest of them.

• “Gene set analysis”: use public genesets; this is further explored in the advanced Correlate with DataSet
tutorial.
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• “Map on pathway image”, “Chromosome map”, “Gene Ontology analysis”, “Heatmap” have been explored
in this tutorial.

• “MakeMeATable” produces a txt file that is formatted for direct input into another data analysis tool such
as TM4.

• “Save current selection as TXT file” produces a tab separated file containing the current analysis. In the
header of such file all information is stored to be able to redo the analyses in the future.

• Reference for current selection produces a list of probesets and genenames that are considered to be ex-
pressed in the current dataset. This is a suitable background set for eg. the DAVID tool DAVID.

• Last but not least, the data can be stored as a personal genecategory; this is further explored in the advanced
tutorial “Adapting R2 to your own needs”.

7.10 Final remarks / future directions

Based on this tutorial you can further explore R2 in the set of advanced tutorials.

Everything described in this chapter can be performed in the R2: genomics analysis and visualization platform
(http://r2platform.com / http://r2.amc.nl).

We hope that this tutorial has been helpful,the R2 support team.
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CHAPTER 8

Working with Kaplan Meier

Investigate the prognostic value of a gene or a group of genes

8.1 Scope

• Use R2 to generate a Kaplan graph by “annotated parameter”. Use tracks or combine two tracks to assign
the group separation of a specific dataset.

• R2 supports any type of survival data, such as overall survival and relapse free survival.

• Use the Kaplan Scan for a group of genes.

8.2 Step 1: Selecting the Kaplan Meier module

1. Logon the R2 homepage and select the option Kaplan Meier either in the left menu panel on the main
screen or in field 3 at the type of analysis pull down menu. Using the Kaplan Meier module via the left
menu directly shows from which datasets survival data is available.For this example, make sure that Data
type is set to ‘Expression data (H. sapiens)[n=..’ and that Datat set is set to “Tumor Neuroblastoma public “
Versteeg “ 88”. From the dropdown of the setting Separate by choose the option ‘a categorical track’. Click
Next.
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Figure 1: Select a Kaplan Meier option.

2. In the adjustable settings menu choose for Type of survival the value “overall-c1103”, select “track” at
Separate by and select “inss (5 cat)” at the Track pull-down menu . Click “Next”. Note that stage st4s en
st1 survival curves are overlapping which is in agreement with the clinical outcome of the INSS stages.

Figure 2: Kaplan Meier by a categorical track

3. A handy feature of the R2 Kaplan module is the option to combine two tracks to generate subgroups for
the Kaplan Meier analysis. Use the back-button from the browser and select at Separate by the option
‘combination of two tracks’. For example, choose for the first track ‘agegroup (2 cat)’ and for the second
track ‘mycn_amp (2 cat)’. And click Next.
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Figure 3: Kaplan Meier graph with combined tracks.

The combined track agegroup ( >18 year) and no mycn application results in intermediate survival probability.
Note that there are 3 groups instead of “expected” 4 since there are no patients <= 18 year and a mycn amplifica-
tion, in this cohort.

Did you know that you can apply a filter to KaplanScan analyze a subgroup of patients for survival?
In addition you can also adapt the graphical representation*

Apply sample filters to your dataset for the Kaplan Meier either with the grid (left) or with the dropdown
(right)

You can either use the annotation grid (left) or you can use the pull down (right) to select a subset of
your samples by one or more tracks. If you click on the subscription of the picture above, the picture
will open in large.

For the use of the grid, use the clog icon in the ‘Advanced settings box’ and hover your mouse over
the side of the column of choice to show the filering options for that track. You can use the filtering
options of multiple tracks to make a specific subset. Here we used gender to only select male samples
(i.e. deselect female) and death_cause to select tumor and nd samples. A successful subset selection
will be shown as a small message indicating the number of samples in the subset, the used track name
and the number of groups/categories between brackets
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If you instead want to make the subset selection with the pull-down of Subset track, click on the track
by which you want to define the subset (in the example: gender). In the popup you need to check the
box of your preferred subset(s) (here: male).If you want to further narrow down your selection with a
different track, click on the same pull-down menu. Select the next track (here: death_cause) that you
are interested in and in the popdown, check the preferred subset(s) from that track (here: tumor and
nd).

Don’t forget to click on Redraw Graph after you made your final selection to redraw the Kaplan
Meijer curve.

Nb. If you use the ‘back’ button in your webbroswer, then this selection will be lost and needs to be
defined again.

8.3 Step 2: Kaplan Meier by gene expression; the Kaplan Scan

An often used feature of R2 is the Kaplan Scan (KaplanScan), where an optimum survival cut-off is established
based on statistical testing instead of for example just taking the average or median. The Kaplan scanner separates
the samples of a dataset into two groups based on the gene expression of one gene. In the order of expression,
it will use every increasing expression value as a cutoff to create 2 groups and test the p-value in a logrank test.
The highest value is then reported, accompanied by a Kaplan Meier picture. So in short, it will find the most
significant expression cutoff for survival analysis. The best possible Kaplan Meier curve is based on the logrank
test. However, R2 does also allow you to use median, average and more as a cutoff in assessing whether a gene of
interest has the potential to separate patient survival. Of course, such analysis is only possible for datasets where
survival data is present.

1. Select from the main screen either the left menu the Kaplan Meier option or in field 3 of the main menu, and
choose Spearate by ‘a single gene’. Make sure that “Tumor Neuroblastoma public Versteeg 88” is selected
with Data type ‘Expression data (H. sapiens)’, and click Next.

2. In the next screen fill in ‘mycn’ in the Search by Gene field and use the first reporter in the list of the
dropdown that pospup. Leave the rest as is and click “Next”.

3. The Kaplan scan generates a Kaplan Meier Plot based on the most optimal mRNA cut-off expression level
to discriminate between a good and bad prognosis cohort.

4. The determined separation in groups can be stored in a track and used in other analyes, click the “store as
track” button
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Figure 5: Kaplan Scan for a single gene

5. To illustrate that with the Kaplan Scan more significant biological subgroups can be found, adjust the cut-off
mode to “median” in the settings menu and click Redraw Graph.

Figure 6: Kaplan plot with multiple cutoffs: A) Scan B) First Quartile C) Median D) Average

It is obvious that with the Kaplan Meier “scan modus” the sample grouping is much more significant compared to
the median cut-off modus. Try to find out whether this is also the case with other cut-off modi.

1. Next to the Kaplan plot in Figure 5, a small sub-plot is generated (underlined) which represents a graphical
representation of the p-value plotted against the mRNA expression level values. In some cases it could be
useful to change the p-value cut-off level and for this reason this graphical p-value plot (which is clickable)
could be of help. Alternatively, you could use the “cutoff” field to regenerate a Kaplan curve with that
separation.

Figure 7: Adjustable settings menu: change p-value cutoff.

8.4 Step 3: Kaplan scan for a group of genes

1. Instead of using the Kaplan Scan for a single gene you can also analyse a group of genes at the same time.
Go back to the main page (”Go to Main” , upperleft corner), choose Kaplan-Meier from the left menu and
choose Select by ‘multiple genes’ and click “Next”.

2. In this example search for a Gene set with the Search GS button. In the popup grid, type ‘apoptosis’ in the
text field on top and click on the search button. In the adapted grid, open the KEGG pathways by a click on
the arrow scroll and go on till you can check the KEGG ‘Apoptosis’ pathway. Click Use selected to go back
to the menu, where the ‘GS: Apoptosis (85)’ geneset is now shown to be selected.
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Figure 8A: Select a KEGG gene set

3. Leave the Type of survival at ‘overall-c1103’. In the statistics panel there are several filtering options
possible, leave these options unchanged.

4. In the graphics section select “yes” at Draw heatmap and click Next.

5. In the next screen R2 has generated a list of the genes within the apoptosis pathway which have significant
prognostic value. A heatmap for this list of genes is generated as well.

Figure 8B: A list of Kaplan Meier for a group of genes

In Figure 8B, clicking on each gene name in the hugo column will result in a new screen or tab with the corre-
sponding Kaplan plot.
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Figure 9: Heatmap of the significant prognostic list of genes.

In this case, the heatmap shows 2 or 3 possible biologically relevant clusters based on this set of genes. Clicking a
spot in the heatmap will show directly the gene expression level for all samples via a new one-gene-view screen.

1. To generate a binary heatmap based on the GOOD versus BAD prognoses, again go to the main page, click
on Kaplan-Meier from the left menu, select ‘by multiple genes’ in the Separate by option, click next. This
time don’t select anay gene set, but adapt in the Graphic Settings Draw a heatmap again to ‘yes’, choose in
Heatmap data dropdown ‘good_bad (binary)’ and click Next.

Figure 10: Select binary heatmap.

Now the heatmap shows a clustering based on the GOOD vs BAD prognoses.
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Figure 11 : Binary heatmap.

8.5 Step 4: Kaplan scan on your own cohort

1. It may happen that you would like to use the KaplanScan method on a dataset that is not available in R2.
Especially for this reason we have made a user defined version within R2, where you can paste your cohort
into R2 from e.g. a textfile and run the procedure. To initiate such a user defined Kaplan Scan, select the
Kaplan Meier option again from the main page left menu, and click on the Kaplan-Meier analysis using
custom data button underneath the panel.
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Figure 12: Kaplanscan with user defined data

2. For the remaining steps to work as intended, we need to take into account a couple of things. You should
prepare your data in the following four tab- or semicolon(;) separated columns.

• Column 1 contains a sample identifiers (without spaces)

• Column 2 contains the survival time in days (R2 will convert these)

• Column 3 contains the censoring information (event) and can be yes/no or 1/0

• Column 4 contains the expression value of the gene of interest for the kaplanscan

3. One can easily prepare this information in Microsoft Excel and paste the selected columns into the large
white paste box. Do take care that we use “.” for decimal signs.

4. After you pasted the dataset information, you make the selection for the cutoff option and subsequently
press next. R2 will now calculate the kaplan method that you selected and display the result in an interactive
image.
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Figure 13: Kaplanscan with user defined data result

5. Once the image has been created, you are able to adapt various parameters to optimize appearance of your
result.

Did you know that the survival data used in your scan produces a unique signature?

R2 will indicate within the image a checksum (MD5 sum) of all the survival information, which can
be used to identify whether the same cohort information has been used in different scans that you may
perform (this code should remain identical).

8.6 Step 4: Cox Regression analysis and hazard ratio

The Cox regression analysis is a statistical method commonly used in biomedical research to analyze the rela-
tionship between gene expression and survival outcomes. It is particularly useful for studying the impact of gene
expression levels on patient survival times. In this analysis, gene expression data is combined with survival data
to assess whether specific genes or gene signatures are associated with increased or decreased survival rates. In
r2 your can identify genes or multiple genes (genesets which may act as potential prognostic markers). In general
Cox regression analysis in gene expression provides valuable insights into the molecular mechanisms underlying
survival outcomes in various diseases, including cancer.
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Figure 14: Cox regression and hazard ratios

The hazard ratio (HR) is a fundamental concept in Cox regression analysis. It represents the relative risk or
likelihood of an event occurring in one group compared to another. The hazard ratio quantifies the effect of gene
expression levels on the hazard or risk of a specific outcome, typically survival.

Figure 15: Cox regression and hazard ratios steps

In R2 you can scan for significant hazard ratios for a single gene or multiple genes for a single dataset, follow
the steps as indicated in Figure 15 and select the drug target geneset and click next. A Hazard ratio quantifies the
effect of gene expression levels on the hazard of risk for a typical outcome. When the Hazard ratio is greater then
1, higher expression levels suggest a poor prognosis indicated in blue. Having the opposite, a hazard ratio less
than 1 indicates a decreased risk or hazard, suggesting a better prognosis indicated with red. A hazard ratio of 1
implies that there is no difference in risk between the groups being compared.
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Figure 15: Cox regression and hazard ratios list

The hazard ratio outcome can easily be inspected by clicking on the KAPLAN” link in the table. As clearly
depicted in figure 16 the CSKN2A1 gene with a hazard ratio > 1 in blue show a poor prognosis for a high
expression level cut-off while the NTKR1 gene shows a poor prognosis for a low expression level.

Figure 16: Cox regression and hazard ratios list

After checking the hazard ratio for multiple genes in one dataset you can also check for hazard ratios across
multiple datasets. Select via de main menu survival > cox regresssion in multiple datasets. (Figure 17). Clicking
“select datasets” will open de grid where you select the datasets of interest, keep in mind that these dataset are
already preselected for those containing survival data.

96 Chapter 8. Working with Kaplan Meier

_static/images/KaplanMeier/Kaplan_hazardratio_genes_list.png
_static/images/KaplanMeier/Kaplan_hazardratio_genes_inspect.png


R2 Tutorials, Release 3.3.4

Figure 17: Cox regression for multiple datasets

In Figure 18, the selected datasets show a significant low hazard ratios with a poor survival for the NOTCH2 gene
in the low gene expressed group in contrast to the hazard rations where the group with the high MYCN expression
shows a poor prognosis. (Figure 19.)

Figure 18: Hazard ratios for the NOTCH2 gene
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Figure 19: Hazard ratios for the MYCN gene

8.7 Final remarks / future directions

Everything described in this chapter can be performed in the R2: genomics analysis and visualization platform
(http://r2platform.com or http://r2.amc.nl)

We hope that this tutorial has been helpful, the R2 support team.
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CHAPTER 9

Pathway Finder

Which known pathways play a role in your data?

9.1 Scope

• In molecular biology the concept of pathways is important; small molecules, proteins, genes, etc. interact,
resulting in specific phenotypic outcomes at all levels in biology.

• Quite a lot of this knowledge is stored as pathways in databases. An extensive resource can be found here
http://www.pathguide.org/ . To name a few:

– KEGG Pathway database (http://www.genome.jp/kegg/pathway.html)

– WikiPathways (http://wikipathways.org)

– PantherDB (http://www.pantherdb.org)

• R2 allows you to see whether biological pathways might play a role in your dataset of choice.

• In this tutorial we’ll use array data of a set of 62 Medulloblastoma tumors. In some Medulloblastoma tumors
the gene beta-catenin is mutated. This specific dataset has clinical annotation for beta catenin mutations.
We’re going to investigate this in a pathway context.

9.2 Step 1: Selecting data

1. Make sure that the Single Dataset option is selected in field 1 of the step by step guide.

2. In field 2 locate and select the ‘Tumor Medulloblastoma PLoS One- Kool - 62 MAS5.0 -u133p2’ dataset by
clicking ‘Change Dataset’

3. In field 3 select ‘KEGG PathwayFinder by Gene correlation’

4. You might not know the exact gene symbol for CTNNB1 (catenin) . R2 can find the gene symbol by
alternative name also, we’ll try ‘catenin’; Figure 1.

5. Click ‘Submit’
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Figure1: Selecting KEGG pathwayfinder by gene correlation forcatenin

9.3 Step 2: Correlating pathways with a gene

1. R2 calculates for all genes in the KEGG pathways whether their expression correlates with that of CTNNB1.
Next it calculates for all pathways whether they contain a significant number of correlating genes; if the
genes correlating with CTNNB1 are overrepresented in that pathway (For an in depth discussion see R2
Tutorial; Find genes correlating with your gene of interest. The result is returned as a list of pathways;
Figure 3.

Figure 2: KEGG pathways that have an overrepresentation of genes that correlate with CTNNB1 in
this dataset

2. An overall explanation is printed above the list; of all genes present in all KEGG pathways, ~ 540 correlate
with CTNNB1 with a p value < 0.05. In the table the KEGG pathways are listed ranked by their p-value
for overrepresentation (background in red) or under-representation (in green) of these genes. The brightly
colored letters in front of the pathway-name are hyperlinked. R links to a list of the genes, K leads to the
original KEGG pathway on the Japanese servers, A links to an image of the KEGG pathway that is provided
with hover-over information for all genes in the pathway. We’ll discuss the first two later, now click on the
A in front of the ‘SNARE interactions in vesicular transport’-pathway.
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Figure 3: The SNARE pathway; darker green and red are genes correlating with CTNNB1

3. R2 opens a new window in your browser (Figure 4). In darker green the genes that have a positive cor-
relation with CTNNB1 and in red those having a negative correlation. Hovering over the genes with the
mouse pointer presents additional information; some of the gene-boxes represent multiple genes: Figure 5
Although not in this example, it may happen that multiple genes within a box show both positive, as well a
s negative correlations. In such case the box is proportionally filled with red and green.

4. The result however, is not quite convincing, apparently CTNNB1 expression does not correlate with path-
ways. We’re going to try it the other way around; which pathways correlate with a catenin mutation

5. Return to list view (still open in another tab of your browser) and go to the R2 main page by clicking the
link in the upper left corner of the screen.
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Figure 4: : Hovering over the Stx1-4 box shows that this actually represents 5genes; only one of them
is correlating withCTNBB1.

9.4 Step 3: Finding pathways relevant to subgroups

1. In field 3 on the R2 start page select ‘KEGG PathwayFinder by Groups’;

2. This set of tumors is annotated with several clinical and molecular biology parameters in so called tracks.
One of them is the presence of a beta catenin mutation; bcat mutation. Select the track, bcat_mutation
(Figure 5).

Figure 5: Selecting the bcat mutation track.

1. Click “Submit”
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9.5 Step 4: Determining differentially expressed pathways

1. R2 calculates for all genes in the KEGG pathways whether they are differentially expressed between the
groups of tumors having a mutation and those that do not have one. In a subsequent calculation the over-
representation of these genes in the individual pathways is determined. From the resulting list it is obvious
that the Wnt pathway has a strong overrepresentation of genes that are differentially expressed between the
two groups.

2. Click on the R link to let R2 create a list of these genes.

Figure 6: The Wnt pathway has a strong overrepresentation of genes that aredifferentially expressed
between the groups of tumors that have and don’t have a beta catenin.

9.6 Step 5: Verifying a pathway

1. A list of hyperlinked genes is returned, sort them by descending R-value by clicking on the R-column-header
twice;
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Figure 7: Wnt pathway genes correlating with Beta Catenin mutation as a list.

2. Each gene-symbol is hyperlinked to a graph representing the specific results; click the top gene in the list:
AXIN2.

9.7 Step 6: Correlating with the expression of a gene

1. The graph shows an excellent correlation of the expression of the Wnt pathway gene AXIN2 with tumors
having a Beta Catenin mutation. The same goes for a significantly overrepresented set of genes in this
pathway. This specific group of tumors is also known as the Wnt-subtype in the Medulloblastoma field.

Figure 8:AXIN2 expression correlates with Beta Cateninmutations

9.8 Final remarks / future directions

We hope that this tutorial has been helpful, the R2 support team.
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CHAPTER 10

Multiple datasets overview with Megasampler

Create an overview of the expression level of genes in multiple datasets

10.1 Scope

• The megasampler is a R2 module to investigate the expression level of a gene in any number of the numerous
datasets stored in the R2 database

• Use R2 to compose your selection of datasets to investigate the expression level of a gene

• Use the megasampler “adjustable settings” to adapt the megasampler graphics

• The megasampler allows you to quickly get an overview of the selected gene expression level for all the
datasets available in the R2 database

• Go directy from the overview to one-gene view to investigate in detail the expression level in a single dataset.

10.2 Step 1: Selecting multiple datasets

1. Select “Across Datasets” in field 1, by default the “megasampler” option will be selected in field 2 and click
“next”.
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Figure 1: Using across datasets

2. Leave “u133p2, mas5.0” at the “type of data” option and select “ XPO sampler” at “use presets”. The
meaning of presets will be explained later on.

Did you know that R2 harbours different types of microarray platforms

Megasampler only allows you to query multiple datasets if they are of the same chiptype and normal-
ized by the same algorithm.

1. With the “selection preset” option a pre-stored dataset collection with associated settings can be selected.
Select “XPO sampler” (Expression Project for Oncology (expO)) to pre-select a series of tumor datasets.
Click “next”.
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Figure 2: Select a preset

2. In the previous screen the preset “XPOsampler” is selected, a collection of datasets is already marked for
the megasampler analyses. In Figure 3 clicking the small triangle unfolds the available dataset categories,
notice that some of the datasets in the “tumor” section are already marked. In this way this you can adapt
your pre-selection of datasets. Unfold the normal and tumor category and select the following datasets.
Normal Adrenal gland - Various “ 13, Normal Brain PFC - Harris “ 44 and the “ Tumor Neuroblastoma
public - Versteeg “ 88” . Enter MYCN and click “next”.

Figure 3: Megasampler adjustment selection
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10.3 Step 2: Viewing a gene in multiple datasets

1. In the “adjustable settings” panel there are several options to customize the megasampler graph. For every
selected dataset, you can change the order in which they are drawn by adjusting the number in the selection
boxes. These are processed first, followed by the dataset names in alphabetical order (so changing the order
of 1 or 2 datasets should be sufficient). The pull down next to “dataset ordering pull down menu” enables
to split one or more dataset by selecting a track , in this way the chosen dataset(s) will be split according to
the numbers of groups of the selected track. and click “next”.

Figure 4: Adjusting the megasampler graph.

2. R2 now performs a one-way Anova statistical test on the fly. This ANalyis Of VAriance is a statistical test
that calculates whether the means of the expression levels between the selected datasets are significantly
different.

Figure 5: Anova test for the selected datasets.

By default de megasampler graph is plotted in a so called Boxdotplot representation. The Boxdotplot shows a
combined boxplot, on top of which the signals of the separate samples are plotted; a quickly interpretable graph.
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Figure 6: MYCN expression levels in 15 datasets covering 2173 samples.

Additional insight can be obtained transforming the data, in this case transform the data to logical values (none)
set “graphtype” on barplot and click on “redraw at the bottom of the screen.
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Figure 7: Different Megasampler graphical representations

The plotted graphs for “MYCN” clearly show a high expression level specifically in the Neuroblastoma data sets
compared to Normal Tissue and other Tumor datasets. At the bottom of the page it’s possible to adapt dataset
coloring, change the order and split datasets in tracks directly.

Did you know that you can save your selection of datasets and select your stored dataset the next
time you login to R2.
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Storing a preset not only stores the selection of datasets for future use, but will also keep all of the
other settings such as order, colors, plot type etc. The same visual representation for any other gene
can be generated in this way.

You can can use the adjustable panel to adapt the megasampler graph. In case you split one or more datasets
according to a specific track in the previous screen, it’s now possible to skip subgroups from your dataset or, more
interestingly, apply different colors for groups within a dataset (see Figure 8).

Figure 8: Adjustable settings panel, color groups within adataset.

10.4 Step 3: Stacking subgroups (or datasets)

It could be that you also want to stack subgroups of datasets in one singlebox (or bar etc) in such way that each
single box contains one subgroup of multiple datasets for a selected track. Keep in mind that the track name and
the corresponding subgroups must have exactly the same spelling since R2 is checking this in the background.
To illustrate this we make use of the EXPO datasets which are currated for their annotation. After selection the
datasets, make sure that the Merge track by groups is set to true and you have selected a track in this case the
histology track and click submit.
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Figure 9: Adjustable settings panel, stacking subgroups.

Now the expression level of the TP53 gene for a single dataset is plotted next to the separate subgroups of the his-
tology track, each box containing the expression levels for single gene of two datasets divided over the subgroups.
Of course there is a big chance that you’re not so lucky that tracks and their subgroups have the same spelling
or you want to stack different subgroups for your research questions. In that case you have to create for each
dataset new subgroups with the same spelling for each dataset. You can create these customzid tracks you want
to incorporate in the user section of the main page of R2. Once created you can select those in the megasampler
section. In case you want to stack complete datasets in one box/bar you have to make a track with a subrgroups
containing all the samples.

Figure 10: Adjustable settings panel, stacking subgroups.
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10.5 Step 4: Expression distribution over many datasets

The blue link view expression in many datasets brings you to a handy module to obtain a quick overview of the
expression level patterns for most of the datasets R2 contains (providing that the normalization allows compari-
son).

1. Click “view Expression in many datasets” and a new screen (or tab) appears containing a Probeset distri-
bution graph. The color of the dots represent the different dataset categories (cell line dataset, Tumor or
Normal Tissue etcetera). Via this 2D distribution module you can easily detect in what way your probeset
of interest is expressed in many other datasets. At the Y-axis the 2log transformed average expression level
and the standard deviation is represented. The X-axis “overlap avoider” is simply a way to represent all
datasets in the plot without overlap of the circles. Figure 9 clearly shows that the MYCN expression is also
high in other dataset which could be of interest and a second Neuroblastoma dataset. Next to the graph 2
tables summarize dataset names and a R-value set to “1. This has no specific meaning in this context but
comes of use with the 2D-distrubution module where you can quickly scan the correlation between two
genes for all datasets of the same platform in R2. This module is discussed in the Correlate Genes tutorial.

Figure 11: MYCN expression level distribution for all u133-2 datasets in R2.

2. Via the the probeset distribution view you can easily investigate a specific dataset in more detail. Click a pre-
ferred colored dataset dot and R2 will generate an one-gene-view graph. The one-gene-view representation
is explained in more details in tutorial 2.

10.6 Step 5: Megasearch

We have already discussed the ‘find differential expression’ module for a single dataset to find differentially
expressed genes. In the across dataset section we can also apply a similar approach, not between groups within
single dataset but for a user defined selection of multiple datasets. However, keep in mind that you can only select
datasets of the same platform, the most abundant datasets are of the Affymetrix u133p2 platform. As explained
before not every platform can be used for the megasearch due to the normalisation procedure which has been used.
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Figure 12: Megasearch select..

1. Select ‘Megasearch’ in Box 2 and click next

2. At step 1 select the platform you want to use, for now select the default (u133p2).

3. Select the datasets you want to use for the analyses, in this example we have selected Normal Brain , AML
and Medulloblastoma datasets, click next.

Figure 13: Dataset selection.

1. For the megasearch module only two groups can be used to find the statistical differently expressed genes.
In the settings box assign the proper grouping parameters (1 or 2) leave the pulldown menu at the default
setting (’NO’) for the datasets and click next.
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Figure 14: Assign the statistical group for testing

1. In the next adjustable settings menu select at Genecategory ‘transcription regulator Act’ for gene filtering.
In the ‘Hugoonce Dataset’ pulldown menu the first selected dataset will be used as target dataset for probeset
usage. For most platforms each gene has multiple probesets, when using this option R2 takes the probeset
with the highest average signal. For the megasearch you can not use for each dataset a different probeset
for a particular gene. In the ‘Hugooce Dataset’ pulldown menu you can change the target dataset in case
you already familar with one of the selected datasets to make sure that probesets from single datasets anal-
ysis are used. In case of OTX2 which is a marker gene for Medulloblastoma two probesets are designed
(242128_at and 231731_at) in the most Medulloblastoma datasets depending of the subgroups 242128_at
has the highest expression level and will be picked by R2 however in other type of cancers/tissues there is
hardly any expression of the OTX2 gene and in that case the other probeset could easily be selected. At
the statictics pulldown menu you can select fdr_modarate_t_statistics (Limma , Limma-git) or the standard
uncorrected_t_test. The Limma algorithm is specifically designed for the analysis of gene expression data
, leave the statistics at moderate_t_statistics and click next. Two tables of genes are generated with the
highest significantly expressed genes for group 1 and group 2. In the left genelist (group 2) we find in the
top 10 , the OTX2 gene which is accociated with medulloblastoma.

2.
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Figure 15: OTX2 BoxDotplot

1. In the previous Adjustable settings box, where the grouping parameters were assigned, you can also split
datasets based on their subgoups (tracks) and incorparate the subgroups in different test groups as illustrated
in Figure 14.

Figure 16: Assign the statistical subgroup for testing

Did you know that the Megasampler can also be used to investigate through the methylation datasets
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10.7 Final remarks / future directions

We hope that this tutorial has been helpful, the R2 support team.
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CHAPTER 11

K-means clustering in R2

How to discover novel groups or subtypes in your dataset using k-means clustering

11.1 Scope

• In this tutorial expression data of a set of Medulloblastoma tumors will be investigated for the occurrence
of groups that have similar expression patterns.

• Affymetrix data will be used in a k-means clustering analysis.

11.2 Step 1: Selecting data and module

1. Make sure that the Single Dataset option is selected in field 1 of the step by step guide.

2. In field 2 locate and select the ‘Tumor Medulloblastoma PLoS One- Kool - 62 MAS5.0 -u133p2’ dataset by
clicking ‘Change Dataset’

3. In field 3 choose the ‘K-means’ option (Figure 1)

Figure 1: Selecting K-means clustering on the R2 main page

4. Click ‘next’
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11.3 Step 2: Adapting settings

1. The next window presents a set of fields where specific settings of the clustering algorithm used can be set.
There are only a few settings immediately relevant, the others are appropriate for most analyses. For the
k-means clustering these are the number of groups and the number of draws. We’ll explain these shortly;
for other settings refer to the boxed items.

2. K-means clustering requires a number of groups beforehand, we start with two. To see whether the outcome
of the clustering is stable (see boxed text on K-means clustering) we set the number of draws (performing
of the calculation) to 10x10.

Figure 2: K-means clustering settings

3. Dependending on the size of your dataset or geneset you can enlarge of minimize your K-means plot by
adapting the size of the rectangles at heatmap option. click ‘next’

Did you know that K-means is a method of cluster analysis?
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In data mining, k-means clustering is a method of cluster analysis which aims to partition n obser-
vations into k clusters in which eachobservation belongs to the cluster with the nearest mean. This
mightsound complicated but is easily illustrated: suppose we have a set of 12 patients where we ob-
serve the expression of two genes; expression ofgene 1 along the x-axis, gene 2 on the y-axis (in our
situation we have much more genes; the calculation will then be done in more dimensions). We’re
now going to try to cluster this set of n patients observed inthree groups; k = 3. The following steps
illustrate the algorithm (1-4from left to right) # k = 3 initial “means” are randomly selected inthe
data set (shown in color) # k clusters are created by associatingevery observation with the nearest
mean. This partitions 2-D plane (the so called dataspace) in three areas. # The initial means are
moved tothe centers of the three areas; the centroids. # Steps 2 and 3 arerepeated until convergence
has been reached. As is obvious from the end point from this calculation this is a heuristic algorithm,
there is noguarantee that it will converge to the global optimum, and the resultmay depend on the ini-
tial, randomly assigned clusters. As the algorithm is usually very fast, it is common to run it multiple
times withdifferent starting conditions and compare the outcome. R2 visualizesthis in the end result
of the calculation.

11.4 Step 3: Examining resulting clusters

1. R2 clusters the samples using the expression of 1500 genes exhibiting the highest standard deviation in
this set. The result of 10 sets of 10 calculations each, is shown as colored bars (Figure 3). Below the
bars a heatmap is shown of the expression of the genes involved. It is obvious that two consistent clusters
are formed; the assignment of the samples to a respective cluster is always the same. Note that figures
reproduced by yourself might differ slightly when weaker associations are investigated; k-means is non-
deterministic (random initiation).

Figure 3: Results for the 10x10 k-means clustering in two groups; two consistent clusters are formed.

2. For visualization of k-means clusters, R2 performs hierarchical clustering on the samples for every group of
k. Finally a hierarchical clustering is performed on the genes, making use of the information present in all
samples. Because this is a large set only part of the map is shown in Figure 4. Below the heatmap, R2 will
automatically test the the association between the newly created kmeans separation and all of the tracks that
are available for the current dataset (Fisher’s Exact Tests). This allows for quick discovery of interesting
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correlations that may yield biological insights. Depending on the availability of survival information, also
a Kaplan Meier analyses can be added to the analysis (and for example be compared to KaplanScan results
for exemplar genes).

3. This dataset has a clinical annotation for BCAT mutations; the upper bar or track in Figure 3. The subgroup
having this annotation seems to cluster together in one of the two groups; this is however a subset of one
of the two current clusters; more groups are expected. We’re going to use a larger value for k to investigate
this. In your browser click the back button and change the number of groups to 8.

4. Click ‘next’.
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Figure 4: The heatmap for the k-means clustering in 2 groups; it is obvious that the data is represented
in the clusters.

Did you know that ‘the # highest SD genes is the number of genes with highest Standard Deviation?

Most of the other options (Sample/Gene filters etc) are explained in former tutorials. The “# highest
SD genes” is the number of genes with highest Standard Deviation (genes that ‘make a difference’ in
this set) that is used for the K-means analysis. By default this value is 1500.

Did you know that some virus scanners slow drawing of these graphs??

If R2 takes a long time to draw images like these this might have to do with your virus scanner. The
graphs are interactive and contain a lot of scripts that are usually scanned by a virus-scanner like
McAffee. You can avoid this by disabling Script scanning.

11.5 Step 4: Creating consistent clusters

1. The resulting clustering in 8 groups is depicted in Figure 5
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Figure 5: Clustering in 8 groups produces no consistent outcome.

2. The outcome is not consistent (except for the cluster of samples having a bcat mutation)

3. Repeat the procedure for 4 groups.

4. In Figure 6 a clear and almost perfect clustering in 4 groups is established. Kool e.a. (2008) identified 5
subtypes in Medulloblastoma; this set is annotated in the lower track above the k-means tracks; they neatly
follow 3 out of 4 clusters; the remaining two subtypes are less clear as is also clear when we try to separate
the data in 5 clusters (Figure 7). By choosing subsets (categories) of genes before clustering you might be
able to determine more precisely defined groups. An example of this method can be found in the Adapting
R2 tutorial.

Figure 6: Consistent clustering for 4groups.
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Figure 7: Clustering in 5 groups

11.6 Final remarks / future directions

The identification of medulloblastoma subtypes has been published here: Kool M, Koster J, Bunt J, Hasselt NE,
Lakeman A, van Sluis P, Troost D, Meeteren NS, Caron HN, Cloos J, Mrsic A, Ylstra B, Grajkowska W, Hart-
mann W, Pietsch T, Ellison D, Clifford SC, Versteeg R.; Integrated genomics identifies five medulloblastoma
subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One. 2008 Aug
28;3(8):e3088.

We hope that this tutorial has been helpful,the R2 support team.
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CHAPTER 12

Using signatures

Find related gene signatures with a specified genelist or novel correlating gene signatures

12.1 Scope

Within the current context, we define a signature as a collection of genes that are defined on a particular basis. This
can be the presence within a gene-ontology class, the genomic location of a gene, or perhaps something potentially
more meaningful like a functional pathway signature. Functional pathway signatures are mRNA proxies for a
particular perturbation, such as the response to the downregulation of a gene, or the consequence of a targeted
compound (drug). Especially in this context, the collection of genes may have predictive power for the activity of
a process. Of course it becomes cumbersome to assess the activity on a gene-by-gene basis. It would be very handy
if we could express the behavior of all the genes in a single value. Within R2, we can convert the behavior of a
list of genes into a signature score that can be calculated for all samples within a particular dataset. This signature
score is simply defined as the average zscore of a zscore transformed dataset (the standard way of visualizing a
heatmap) (Figure 1). In R2, such scores are automatically generated when one generates heatmaps via the “view a
geneset” function. With the exception of some exceptional cases, most functional signatures will be composed of
both upregulated genes as well as downregulated ones. Using both as a single list may then become problematic,
as downregulated genes may counteract the effects of upregulated genes, effectively leveling each other out. To
circumvent this problem, we can create 2 separate gene categories, one containing only the upregulated genes,
and one containing only the downregulated genes. R2 will recognize couples of gene categories if they follow a
specific convention (fixed prefix, followed by _up and _down; e.g. mycn_up and mycn_down).
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Figure 1: Signature score: one category vs up/downcategory

• What is a genesignature

• Create a track using the weight scores of a genesignature

• Relate a weighed genesignature track to a single gene

• Find correlating genesignatures with a track

Did you know that you can create gene category couples

R2 can treat particular gene categories in a special way if you follow a simple naming convention.
Especially helpful for signature scores are up/down regulated gene couples. Within the “view a
geneset” function, you can select multiple gene categories to be used in for the heatmap. If you
select 2 categories that contain a fixed prefix, coupled to _up and _down (or _dn), then R2 will treat
them as a couple, and will subtract the downregulated signals from the upregulated ones (effectively
creating a signature score). We can weigh the 2 separate lists of genes either equally, or weighted as
a percentage of the number of genes (the weighted_match / _wm signatures).

12.2 Step 1: Creating a geneset signature, a Track within R2

As a start, let”s create the signature scores for a pair of gene categories. In this tutorial, we will make use
of a published functional MYCN pathway activity signature that was created on the Neuroblastoma 88 dataset
(Valentijn et al 2012). This signature is provided within R2.

1. We start at “Main”. Make sure that the “Single dataset” option is selected in “box 1”.

2. In “box 2” verify that the current dataset is “Neuroblastoma public - Versteeg - 88 - MAS5.0 - u133p2”.

3. In “box 3” we select “View geneset (Heatmap)”. Click “Next”.

4. In the following screen we select the r2 provided genelists category.

5. Genelists>oncogenomics_valentijn>functional genesignatures the mycn_dn and _up genesets
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Figure 2 : Generating Geneset signatures

6. Confirm the selection with the Green Button.

7. R2 will produce a hierarchical clustered heatmap image of the selected gene categories. Note that at the right
side of the heatmap the red markings indicate in which category a particular gene was represented (Figure
3, box A). In the bottom part of the heatmap (box B in Figure 3), a blue-white-red colorscale is depicted for
both gene categories. We can clearly see the opposing effects of the 2 signatures. A third colorscale depicts
a weighted score, based on the contributions of both signatures (see point 8).

8. Scrolling down on this page, we will encounter a heading “Gene set values” (Figure 3, the heatmap), which
presents a small table. The links within this table point to the numerical values of the geneset scores.
For the 2 gene categories, R2 will create the scores of the 2 separate categories, a matched score (where
up and down regulated genes are treated equally (50/50)), and a weighted_matched score (where up and
downregulated genes are treated on their contribution (percentage for number of genes)). Click on “store”
for the “weighted_matched” signature, so that we can perform additional analyses on it.

Figure 3: A) Gene set marking per gene; B) Signature score;

9. R2 has now assembled the information into a prescription to generate a track. By default R2 will store the
track for 24 hours, which is fine for the current tutorial. Click on “Build set” to store the new track (Figure
4).
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Figure 4: Generating a Track from a gene set Signature Score

12.3 Step 2: Determine the activity of a signature

Now that we have created a signature from our 2 lists of genes, we can start using it as if it was a gene itself. For
example we can inspect how the MYCN pathway activity signature correlates to the MYCN gene at the mRNA
level.

1. Go back to the “main” page and select “correlate gene with track” from “box 3”. In “box 4” we provide
“MYCN” and click “Next”.

2. On the following page, we select our newly created track in the “select a track” dropdown box and click
“Submit” (Figure 5).
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Figure 5: Gene MYCN vs signature score

3. R2 will now produce a plot where the signature score for every patient is related to the MYCN mRNA
expression value (Figure 6).

4. We can make this look a bit prettier by adapting the color for patients on the basis of e.g. MYCN amplifica-
tion status. To achieve this, we go to the “adjustable settings” at the bottom of the page and select “Color by
Track” from the “ColorMode” and select “mycn_amp” from the “Track for color” option. Also check out
other settings, such as the dot size, that become available when you click on “More Settings”. Click “Adjust
Settings” to redraw.

5. We can now clearly see that MYCN amplified patients have a higher MYCN gene set activity score. The
possibilities for numerical tracks are endless with some smart questions (Figure 6).
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Figure 6: Add group colouring

12.4 Step 3: Using signature scores

Now that we have related the signature to a particular gene, it is easy to envision that this can be done as an
analysis as well, where the signature is correlated to all genes in the genome (”correlate with a track “ in “box3”).
A lot of signature gene lists have been designed and published in literature over the past years. We can convert all
of these into signature scores and start searching for relations of these meta-genes with our signature of interest.

1. Go back to the “main” page and select “Geneset vs Geneset correlation” from “box 3” and click “Next”
(Figure 7, left).

2. On the next page, select at the input Geneset -> Gene set Collection (source): “gene-
set__r2provided_genelists”. In the Genesets to Scan (target): select ‘geneset_broad_2015_oncogenic’ (Fig-
ure 7, right). Then click “next”.

Figure 7: Geneset vs Geneset correlation

3. In the next screen, click the Select geneset at Geneset(source). In the pop-up selection grid select at r2
provided genelsists > functional_genesignature > oncogenomics_groningen_Natgen_2017 > ‘both genesets
mes and adrn’, Click the green “Confirm selection button”.

4. Follow teh same procedure for Gene set (target) and select some genesets of interest like Cellular processes
in the KEGG pathway section, again Click the green “Confirm selection button”.
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Figure 8: Choose the genesets

5. R2 has now generated all the possible correlations for the selected MYCN signature geneset against all the
gene lists within the selected KEGG patway categoriess. This results in a table of geneset versus geneset
correlations sorted by the p-value. The “venn source/ same / target” column provides insight in overlapping
number of genes (same) between two gene lists (source and target). Another informative parameter in the
table is the range parameter in the last column. This value indicates the range of geneset scores in gene
target signature.

Figure 9: Correlations and overlap between genesets

6. To inspect the correlation in more detail, we can click on the “XY-plot” link.

7. Now R2 has generated an XY-plot of all samples in the dataset. The XY values represent the signature
scores for the 2 signatures for every sample. Below the image the overlapping genes in the 2 signatures are
listed (see Figure 10, left side).

8. We can also inspect the target signature as a heatmap by clicking on the “View heatmap of “, providing
gene-by-gene information (see Figure 10, right side).
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Figure 10: XY signature score plot and heatmap of correlated gene sets

12.5 Step 4: Plot signature scores using the relate 2-tracks mod-
ule.

In the previous steps we have plotted the genesignature scores directly from a list of geneset vs geneset correla-
tions. We can also select and use genesignature scores to plot a XY-plot in the relate 2 track module from R2. In
this example we will use MES and ADRN (mesenchymal, adrenergic) genesignature scores generated on a com-
bined dataset of neuroblastoma cell lines and 5 neural crest derived cell lines published by (Groningen , Koster et
al 2017).

1. Go back to the “main” page and select the dataset Mixed Neuroblastoma (MES-ADRN-Crest-Exp) - Ver-
steeg - 52 - MAS5.0 - u133p2 in box 2.

2. In Box 3, select the “Relate two tracks” module and click next.

3. In the next screen select in the pull down menu at X-track , adrn_score (#) and at Y-track the mes_score
(#) and click next. Now a XY-plot is generated representing the correlation of the two signature scores.
However, a clear significant correlation between the two signatures is shown. The biological relevance is
less prominent so far.
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Figure 11: Relate 2 tracks using genesignatures

4. In order to visualise the biological relevance of this correlation plot. Select at ColorMode , “color by track”
and at track for color the “mes_adrn_time” track in the pulldown menu, click adjust settings.

Figure 12: Color by a biologically meaningful track

5. In this new plot, mes defined cell lines cluster together with the neural crest derived lines in the left upper
part of the plot (orange and green respectively) and the ADRN lines in blue in the right lower part of the
plot. The purple dots represent a time-series experiment where PRRX1 overexpession induces in time a
transition towards MES defined cell lines. This is clearly shown by the dark purple colored dots where the
light purple colored dots are controls or early time points.
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12.6 Step 5: Drawing lines between samples in a XY plot

Sometimes it can be useful to indicate a relation between different samples within a dataset. In this case it could
be informative to add a line between samples connecting the shifting samples in time. Let’s give this a try by
defining the time series samples within this dataset.

1. Path properties: The appearance of the line can be influenced by providing a color (hex number)
and a linewidth. The recipe for these adaptations makes use of ‘:’ and works as follows. sam-
ple1,sample2:colorcode:width. In the Sample paths box; Add ‘gsm2413257, gsm2413247, gsm2413248,
gsm2413249, gsm2413250, gsm2413251, gsm2413252, gsm2413253, gsm2413254, gsm2413255,
gsm2413256:#222222’ and click “Adjust Settings”

Figure 13: Connecting samples

2. In figure 13 now the samples of the time series are connected and follow the transition from ADRN defined
cells to MES defined cell lines in this dataset.

Did you know box

R2 uses a couple of markup options for points in a graph, you can enable these in the advanced
prescriptions:

• ‘dot’: places a thick border around the sample

• ‘circle’: Places a ring around the sample (diameter 9)

• ‘circle_2’: Places a ring around the sample (diameter 4)

• ‘circle_3’: Places a ring around the sample (diameter 1), effectively a thin border

• ‘epicenter’: Places a set of 3 rings descending in width around a sample

• ‘arrow’: Places a block arrow pointing to the sample

• ‘triangle’: Places a filled triangle under the sample

Note: The dotsize does not scale with ‘arrow’ and ‘triangle’
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12.7 Step 6: Signature Gene correlations

You can use the gene signature correlation option in order to identify genes which correlate best with the gene
signature you are investigating.

1. In the ‘Gene set values’ table below the Heatmap of Step 1, where you stored the genesignature score
previously, this time click the link ‘Corr’ (Figure 3, box C).

Figure 14: Select Gene Correlations

2. This option generates a graph were the R-value is ranked from the highest to the lowest correlation for each
member of the gene set that you used to generate the signature score. Clicking on a row in the table will
generate a XY-plot. The scatter plot shows the gene expression (Y-axis) against the signature score value
(X-axis) for each sample.

Figure 15: Ordered R-values + XY-plot

You can also select multiple categories to investigate the individual contribution of genes to a signature score. R2
will automatically keep the coloring for the separate gene categories.

12.8 Final remarks / future directions

Everything described in ths chapter can be performed in the R2: genomics analysis and visualization platform
(http://r2platform.com / http://r2.amc.nl)

We hope that this tutorial has been helpful, the R2 support team.
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CHAPTER 13

Analysing Time Series

Search for up and-down regulated genes in a time series experiment

13.1 Scope

• Time series experiments, where a cell line is manipulated and followed over time, are analyzed and visu-
alized in a separate section in R2. The actual analysis of any time series in R2 has been pre-calculated by
the Affymetrix GCOS program. Within GCOS, every timepoint in a series has been compared to time-point
zero. GCOS, makes use of the fact that every probe-set of an Affymetrix array is actually a measurement
performed 11-16 times. These measurements are used as “independent” inputs to calculate a p-value. Due
to the use of GCOS, the time series functionality is only available for the U133 type Affymetrix platforms.
Of course, our advice would be to use biological replicates of all experiments.

• In most cases, time series experiments are performed by specific usergroups, whose data is often shielded
from public assess. There are however also a few publicly available sets, to illustrate what this part of R2
can do. All the experiments performed on the same platform will most often be stored within a single set.

• Single gene expression levels can be visualized and list of regulated genes can be generated via a range of
filtering methods. Please be aware that GCOS uses the probe information (contained within a probe set)
from a single array to calculate p-values on. This is a controversial approach, but for many of the performed
experiments the only way to obtain statistical values. If a timeseries experiment has been performed 3 or
more times, then perhaps a better alternative would be to make use of the functionalities that are available
for regular datasets.

• Use the time series module to investigate the expression level of a single gene.

• Use the time series module to generate a list of regulated genes.

• Use a list of regulated genes to analyze a dataset by using the geneset view.

• Use correlate with dataset to optimize your genecategory.

13.2 Step 1: Choosing the time series module and data

1. To view the expression pattern of a single gene from a time series experiment we make use of the “Time-
series” module. Logon to R2 and select Time series in left menu panel of R2.

139



R2 Tutorials, Release 3.3.4

Figure 1: Single selection in the Time-series module

2. In field 1, select at collection “u133p2 (public)”. Here “collection” is indicated as a category of Time series
experiments. For time series the analysis is limited to the Affymetrix Hu133A or Hu133plus arrays. The
“Collection” field not only implies the platform type but may also include another subgroup , in this a case
a publically available Times series data. Select “View a gene; in field 2, type HMOX1 in field 3*,* and click
“next”.

3. In the next screen all the public available time series for the u133p platform R2 is hosting, is listed. In our
example we make use of a Time series experiment published in Bioinformatics.”2010 Feb 15;26(4):456-63.
In this Time series, the experiments are performed in triplo . The A549 Adenocarcinoma cellline is treated
with TGF-beta and the expression levels where measured at several timepoints. In Figure 2 click on the
(+) sign to unfold the Time-course experiments belonging to the A549 cellline and click “next”. In the
adjustable settings menu, leave all the default settings and click “GO”.

Figure 2: Timeseries selection screen.
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In Figure 3 the expression levels of the HMOX1 gene are represented in a triplicate Time course experiment
after stimulation with TGF-beta. Clearly the HMOX1 gene is an early responder and is upregulated with a
maximum at 4 hours. The HMOX1 gene is presented by the authors of the corresponding publication as one
the upregulated genes after TGF-beta stimulation. It”s should be noted that a control experiment is missing
in this experimental design. Hovering over the individual timepoint reveals additional information.

Figure 3: Expression levels of the HMOX1 gene during a time course experiment

4. Another gene the authors claim to be upregulated by TGF-beta is the BCL6 gene. In the same screen you
can quickly generate a time series graph by providing the BCL6 gene in the right upper corner and click
“Search Gene”.

13.2. Step 1: Choosing the time series module and data 141

_static/images/AnalysingTime_HMOX1.png


R2 Tutorials, Release 3.3.4

Figure 4: Probeset verification and Adjustable Settings.

The probeset verification table lists in the case of BCL6 the 3 probesets designed for the BCL6 gene. By default
R2 will select the probeset with the highest average expression level. Clicking on the Tview link opens a sepa-
rate application “Transcript view” to investigate the reporters in more detail. The Transcript view application is
explained in tutorial 2 “one-gene-view”.

In the adjustable settings menu you can customize the Time series graph to your personal needs. Such as fontsize
, Line width etc.

Did you know that you can contact the R2-support team to add your Time-series experiments

*Your Time series experiments will be listed as a separate collection and for private analyses only.
The R2-support team requires the CEL datafiles provided by your Microarray facility, to generate the
result files. (see chapter 20) *

13.3 Step 2: Finding regulated genes in a time series experiment

1. Instead of looking at one single gene, you may most likely want to find novel up and-down regulated genes
in your cell-line experiment. Go to the main screen and select in field 2 “Select type of analysis, “create a
list of genes” and click “next”.

2. In the next screen select again all the A549 timeseries experiment and click “next”.

3. In following screen you can use the table builder to apply all kind of filtering options to find the novel
regulated genes. Some of the options are already set.
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Figure 5: The time series table builder.

An explanation of some of the options follows below: Min #experiments: Depending on your experimental
design select in how many experiments your gene should be regulated according to your filter. Min highest
expression in series: Set the minimal highest expression in at least one of the samples in your Time Series
experiment. In this way the genes which are not expressed above a certain level (eg background) #:will be
skipped. Min# present calls in series: The affymetrix MAS5.0 algorithm detects whether a gene is signif-
icantly detected and receive a “present call”. Min #significant change in series: Whenever the expression
in a time series is significantly altered compared to time point 0, a “change” call is elevated. At least one
change in expression level should be #:significant (meaning that you also would like to see those results
where only in 1 time point a change is observed). Fold orientation: determine the orientation here. Up
/ Down / Both Minimal best fold in a series: Set a minimal logfold that has to occur within the series.
Min lowest change pvalue in series: The MAS5 algorithm provides a p-value of the fold change, before a
probeset is considered changed a minimal pvalue of 0.00025 should be met. Here you can set the pvalue to
a more #:strict level. Force single reporter for hugo: It”s possible to analyse all probesets representing a
single gene. As explained in another tutorial by default R2 will select the probeset with the highest average
expression level. Select and set the options as depicted in Figure 5 and click “next”.
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Figure 6: Up and down regulated genes table sorted on best fold change

4. In Figure 6 a part of the up and down regulated genes are shown, listing the fold change and highest
expression level for each Time series experiment. Clicking on a probeset link generates a single gene time
series plot as shown in Figure 7.
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Figure 7: regulated gene.

5. Clicking on the filter button will open the “adjustable settings” panel to re-adjust the selection options.
Clicking on the Venn “diagram button re-direct to the automatically generated Venn Diagram representing
the intersection of the genesets.

Figure 8: Top buttons

Figure 9: Time series Venn diagram

*Did you know that Venn diagrams can be created directly from your genecategories of choice?

In the ‘User Options’ menu section you can upload text files containing your lists of genes and store
them as gene caterory. Repeating the procedure described above will produce the desired Venn dia-
grams.

13.4 Step 3: Using the regulated genes in further analyses

1. One of the strong points of R2 is that it supports directly further analyses with other modules and datasets
stored in the database. Use the table of up and down-regulated genes of step2 to investigate if this list of
genes can be of relevance in other datasets. In the left panel click “store results as gene category”. A new
screen appears where you can enter an informative name for your genecategory and add a short description.
The genecategory can be stored for 24 hours or stored permanently in your account, after which it is available
each time you log in to R2. For now choose the Temporary option at “Where” and remember the name of
the stored genecategory for the next step.

13.4. Step 3: Using the regulated genes in further analyses 145

_static/images/AnalysingTime_RegulatedGene.png
_static/images/AnalysingTime_Button.png
_static/images/AnalysingTime_Venn.png


R2 Tutorials, Release 3.3.4

Figure 10: : Store a gene category

2. It has been published that the timecourse expression data from the cell experiment used in this example is
linked to epithelial-mesenchymal transition (EMT) by TGF-beta induction. It”s also known that this process
plays an important role in Breast cancer. We can use this generated genecategory to investigate whether this
of any relevance or not.

3. To keep the list of found genes for later usage, right click with the mouse on “Go to main” in the left upper
corner and re-open the main screen of R2 in other tab/screen select at “change dataset” the following dataset
. Tumor Breast - Iglehart - 123 - MAS5.0 - u133p2 . In field 3 select “View Geneset” at “Select type of
analyses” and click “next”.
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‘Figure 11: Geneview adjustable settings.

4. At “Gene set Collection” choose “ My 24h geneCategories” and select the generated “genecategory” from
step 1. Instead of an unsupervised sample clustering you can also cluster samples within a track. Select at
“Order samples” by “ ordering by track and click next.

5. Click next again.

6. Choose the temporary Genecategory generated via the Timeserie experiments, the track b-r_grade and click
“next”.
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Figure 12: Heatmap of unsupervised clustering within a track of a selected geneset.

7. The samples are unsupervised hierarchically clustered within each group of the selected track and presented
in a heatmap. The selected genecategory resulting from the timeserie experiment could be of clinical rele-
vance since the clustering correlates with the Oestrogen Recepter track. At the bottom of the heatmap the
z-scores of the selected genecategory is represented.

Did you know that clicking a spot in the heatmap reveals more info

Clicking on a heatmap rectangle generates a one-gene-view for the chosen gene in the dataset. Hov-
ering over the heatmap rectangles reveals the sample information stored in the R2 database. Keep in
mind that the hovering option is limited to 10000 cells, otherwise the graph generation consumes too
much time. This limitation can be adapted in the ‘User Options’ menu item.

Did you know that with “sample ordering” (Figure 11) you can manage the way the samples are
clustered.

By choosing “sample ordering “ by “track” , the unsupervised clustering of the samples is applied
within the groups of a track. It is even possible to customize the way the samples are ordered by
yourself (user defined order).

13.5 Step 4: Correlate with other datasets

1. The module “correlate” the results with dataset compares the resulting genelist with a dataset of interest.
Go back to the screen/tab of the generated gene-list (see figure 6.) Clicking the correlate with dataset button
in the left menu redirects to a new screen. Choose the Tumor Breast - Iglehart - 123 - MAS5.0 - u133p2 in
field 2, in field 3 , choose “relate to differential expression” and click next.
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2. Choose “er” at select a track and click “next”.

3. In de background R2 generates a list of genes based on the module “Find differential expression between
groups” and presents the overlay of the results with the list generated in the “ time series module”.

Figure 14: Part of correlate with dataset genelist.

4. In Figure 14 the overlap is presented between the result from the “ time series” module and the “ relate to
differential expression” option. The list of genes is sub-divided in a positive and a negative correlation list
of genes. Clicking the “2-view” link opens a new screen with a combined graph of a one-geneview and the
time series experiment.

13.6 Step 5: In a K-means analysis

1. Instead view a “ geneset, you can also choose perform a “K-means” clustering based on your stored genecat-
egory described in the steps “ above”. Go to the main menu, select “K-means” at “ Select type of analysis”
and click “next”.

2. In the “Adjustable settings” panel leave most of the default settings but make sure that you select the already
stored “Genecategory” at the clustering section select ‘10x10” at “numbers of draw” and click “next”.
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Figure 13: 10x10 Heatmap with the same dataset and gene category as depicted in Figure 9.

Performing a 10x10 K-means clustering via de main menu supports the potential clinical relevance of the genecat-
egory extracted from the timeserie experiment. The K-means cluster module is discussed in more detail in tutorial
10.

Did you know that you can store the K-means generated track and use this track every time you log
in to R2.

You can use this track for further analysis with a custom made track for example by using the “find
differential expression between groups”. This approach explained in more detail in tutorials : Differ-
ential Expression Of Gene Between Groups and “Adapting R2 to your needs”

13.7 Final remarks / future directions

We hope that this tutorial has been helpful, the R2 support team.
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CHAPTER 14

Using genesets and creating heatmaps in R2

Or how you can generate clear, presentation ready heatmaps of your dataset

14.1 Scope

• In this tutorial the visualization of a set of genes will be explored

• R2 provides a conventional heatmap view””

• This heatmap view can be adapted to your needs by sorting the data along the axes according to your wishes.

• Generating your own genelists to analyze using the Toplister function.

14.2 Step 1: Selecting data and modules; creating a Heatmap

1. On the main page of R2 select View Geneset (Heatmap) (Figure 1). Click ‘Next’.

Figure 1: Select: View a Geneset

2. In the Adjustable settings many choices are available to customize the way the GeneSet data will be pre-
sented (Figure 2). With the geneset selection method you can indicate wether you want to pick one of the
hundreds genesets R2 harbors; public or your own genesets. Selecting the manual ordered list enables you
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also to manipulate the ordering of the genes om de heatmap. In the adjustable settings many settings can be
altered, such filtering for samples, the sample order and many types of graphical adaptations.

Figure 2: A set can be selected, filtered for subsets and the clustering results will be ordered according
to the selection

3. By default R2 presents the data in a heatmap where a hierarchical clustering is performed on the genes,
making use of the information present in all samples to order the data. We will show first what this ordering
by clustering looks like. Suppose we want to find a geneset containing Cell Cycle genes. Click on “Select
a geneset”, Type Cell Cycle in the ‘Search a geneset’ box.

Figure 3: Selecting a geneset

4. In the grid box all genesets containing the words Cell Cycle (Cell_cycle) in their description are shown.
Choose the (KEGG) Cell Cycle collection of Cellular Processes or another category were you find cell
cycle. Note: sometimes such as in case of KEGG pathways ‘_’ could be in the naming and click the
magnification glass.
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Figure 4: Available ordering domains for samples

5. The Affymetrix data for the Neuroblastoma 88 dataset is shown for the genes in the Cell Cycle as a clustered
heatmap. Hovering over the heatmap rectangles reveals the sample information stored in the R2 database.
Keep in mind that the hovering option is limited to 10000 cells otherwise the graph generation consumes
too much time. This limitation can be adapted in the ‘User Options’ menu item.

Figure 5: Heatmap view of the Kegg Cell Cycle geneset for the Neuroblastoma 88 dataset;genes and
samples are sorted according to the clustering.

14.3 Step 2: Using multiple GeneSets

1. R2 also allows for multiple genesets to be shown at once; return to the main page; select View Geneset
(Figure 1: Select View a Geneset). We’re not going to search for a geneset but look for multiple sets at
once.

2. In the next screen click “select geneset”, Select ‘Cellular Processes’ in the KEGG pathway collection of look
via keywords or going through al the sub-collections, select the apoptosis path way and click the “Confirm
Collection” button.
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Figure 6: Selection a subcollection from the large collection of pathways

3. The resulting heatmap (Figure 7) has the samples ordered by the result of the clustering of the dataset. On
the y-axis the genes are annotated with their membership to both pathways; Using both genesets shows
clearly some blocks in the heatmap which could be linked to the annotation plotted above the heatmap

Figure 7: Heatmap view of the Cell Cycle and Apoptosis genesets for the Neuroblastoma 88 dataset.

14.4 Step 3: Relating genesets with data annotation

1. We’re going to explore that in further detail by sorting the dataset according to the staging. Return to
the former choice page (Figure 2) by clicking the back button in your browser. Choose some genesets of
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interest and choose order samples by track and choose the INSS category. ‘Order samples by a track’ and
click “next” (Figure 10). I

Figure 8: Selecting the track (subgroup) to order samples by: Order by a track

2. In the resulting heatmap it is clear that there is a segment of genes pathways cluster that is consistently
upregulated in the stage 4 Neuroblastoma samples (in red in the INSS track).
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Figure
9: Heatmap sorted by INSS stage, there is a clear relation between the stage 4 tumors (in red in the INSS
track) and up-regulation of a subset of genes

1. In the previous example R2 offers the possibility to set a fixed ordering of samples by track. It’s also possible
to perform a clustering and set a fixed ordering of genes. In the “adjustable settings” panel, select manual
orderd list in the gene selection method and click submit. Here you can paste a list of genes sorted according
to your needs.

2. If you want to perform hierarchical clustering with a fixed sample order. Select current of manual order and
click submit.

14.5 Step 4: Unsupervised hierarchical clustering with a geneset

It could be that for a given dataset there is no annotation to apply the analysis tools R2 is offering or your”re
lacking a starting point to further investigated a dataset. A good starting point could be to do is to do a simple
hierarchical clustering

1. In chapter “Differential expression” is explained how to generate genesets describing the difference between
tracks (groups) from an annotated dataset. Researchers often want to investigate the presence of subgroups
without using annotation information in their dataset or just find a list of genes with the highest variation in
gene expression. In case your dataset of interest lack annotation you are still able via the Toplister tool to
investigate datasets for biological relevance.

2. For this purpose R2 is hosting a convenient tool to generated lists of genes using a filter. By using this filter
you can select groups of genes with the highest, lowest or most variable genes etc etc.

3. To use the Toplister tool, either select ‘Toplister’ from the dropdown menu in box 3 of the main page or go to
the menu on the left and select tools> small tools > Toplister. Make sure Data Type is set to Expression data
and select Mixed Esophageal Carcinoma - tcga - 174 - tpm - gencode36 and click next. In the adjustable
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settings screen all kinds of settings and filtering options can be adapted. We want to know which 100 genes
have the highest variation in this case leave “ which set” at standard deviation (SD) which is the default
settings.

Figure 10: Selecting the track (subgroup) to order samples by: Order by a track

In this case the selected TCGA dataset gene annotation has been assigned to gencode reporters and in this example
R2 also has stored gene category information which can be used as a filter. Note that this doesn’t hold for all the
platforms linked to a dataset.

1. R2 has generated a list of 100 genes showing the highest variation in gene expression. Beneath the list als
kinds of settings can be adapeted and in the right menu the genelist can be exported of stored in r2 as a
geneset.
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Figure 11: Result of the toplister module.

Clicking on the Heatmap (Zscore) in the right menu will perform an unsupervised hierarchical clustering and plots
a heatmap.

Figure 12: Unsupervised hierarchical clustering revealing subgroups in a Esophagal Carcinoma dataset.
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14.6 Final remarks / future directions

Everything described in ths chapter can be performed in the R2: genomics analysis and visualization platform
(http://r2platform.com / http://r2.amc.nl)

We hope that this tutorial has been helpful, the R2 support team.

14.6. Final remarks / future directions 159



R2 Tutorials, Release 3.3.4

160 Chapter 14. Using genesets and creating heatmaps in R2



CHAPTER 15

Principle Components Analysis in R2

How to identify patterns or groups in your dataset using Principle Component Analysis.

15.1 Scope

• In this tutorial expression data of a set of Medulloblastoma tumors will be investigated for the existence of
subgroups.

• Principle Component Analysis (PCA) will be used to analyze the tumor samples.

15.2 Step 1: Selecting data and modules

1. Make sure that the Single Dataset option is selected in field 1 of the step by step guide.

2. In field 2 locate and select the ‘Tumor Medulloblastoma PLoS One- Kool - 62 MAS5.0 -u133p2’ dataset by
clicking ‘Change Dataset’

3. In field 3 select the ‘Principle Component Option’ option.

Figure 1: Selecting Principe Component Analysis

4. Click “next”

161

_static/images/PCA/PrincipleComponent_Select1a.png


R2 Tutorials, Release 3.3.4

15.3 Step 2: Exploring the principle components

1. The next window displays a set of fields where specific settings of the clustering algorithm used can be set.
Leave all the settings at their default and click “next”.

2. Click to plot the PCA result.

3. You now see a plot of the of the first 2 principle components. In the adjustable settings box, all the combi-
nations principle components can be selected.

4. In the adjustable setting box select the all PCA-components option to view the several principle components
combinations to investigate whether you can distinguish subgroups in your dataset.

Figure 2: Adjusting PCA settings
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Figure 3: Select Tracks

Figure 4: PCA components

In this example the samples are colored by known groups and fitted with the PCA result. In Figure 4 a clear
subgroup, the yellow wnt subgroup is revealed. Hovering over the data points provides the principle component
vector #:values which are depicted, as well as additional sample information. This example illustrated that PCA
is powerful tool aiding to find possible subgroups in your dataset of interest. Also note the variance reported on
the axes.

Did you know that PCA clustering is a method that reduces data dimensionality?

Principle Component Analysis is a method that reduces data dimensionality by performing co-
variance analysis between factors. PCA is especially suitable for datasets with many dimensions,
such as a microarray experiment where the measurement of every single gene in a dataset can be
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considered a dimension. It is impossible to make a visual representation of the relation between
genes and their conditions in multi-dimensional matrix. One way to make sense of data is to reduce
dimensionality. Several techniques can be used for this purpose and PCA is one of them. The reduc-
tion of dimensions is archived by plotting points in a multidimensional space onto a space with fewer
dimensions. The reduction is accomplished by identifying directions, so called principle components,
that describe maximal variation in the data. These principle components can then be used as sur-
rogates to represent each sample, making it possible to visually assess similarities and differences
between samples and determine whether samples can be grouped. As the principle components are
uncorrelated, they may represent different aspects of the samples and is therefore a powerful tool to
identify subgroups in you dataset.

15.4 Step 3: Viewing clusters in 3D

A very nice feature of the R2 PCA module is the possibility to investigate your data in an interactive 3D-plotted
graph. Most recent internet browsers support the 3D visualization.

Did you know that browser settings might have to be adapted?

1. In the adjustable settings menu select the “3d” option and click “next”.

2. Click the cube and hold the left mouse button and rotate the picture in order to investigate whether there are
any (more) subgroups that become visible.

‘Figure 6: Showing a 3D PCA graph from different angles.

3. By rotating the graph more subgroups could be revealed as clearly shown in Figure 6.

15.5 Final remarks / future directions

The identification of medulloblastoma subtypes has been published here:
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Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A, van Sluis P, Troost D, Meeteren NS, Caron HN, Cloos J, Mrsic
A, Ylstra B, Grajkowska W, Hartmann W, Pietsch T, Ellison D, Clifford SC, Versteeg R.; Integrated genomics
identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological
features. PLoS One. 2008 Aug 28;3(8):e3088.

Everything described in ths chapter can be performed in the R2: genomics analysis and visualization platform
(http://r2platform.com / http://r2.amc.nl)

We hope that this tutorial has been helpful, the R2 support team.
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CHAPTER 16

Sample maps: t-SNE / UMAP, high dimensionality reduction in R2

How to find groups in your dataset using t-SNE or UMAP dimensionality reduction algorithms.

16.1 Scope

• In this tutorial several expression datasets will be used.

• t-SNE will be used to find sub groups in datasets.

• t-SNE maps will be annotated with tracks and gene expression.

R2 offers several machine learning dimensionality reduction algorithms that are well suited for the reduction of
high dimensional datasets to just 2 or 3 dimensions. Samples that have similar expression profiles in a dataset
are located closely together on the 2D or 3D map, which enables the user to find clusters of similar samples.One
such clustering method that is popular in biomedical research is the so called t-SNE algorithm. t-SNE stands for
t-Distributed Stochastic Neighbor Embedding. Another algorithm with similar properties that is gaining more and
more popularity is UMAP (Uniform Manifold Approximation and Projection).

Most researchers are already familiar with another dimensionality reduction algorithm, Principle Components
Analysis (PCA), which is also available in R2 and is explained in more detail in the Principle Components Anal-
ysis tutorial. PCA, t-SNE and UMAP each reduce the dimension while maintaining the structure of high dimen-
sional data, however, PCA can only capture linear structures. t-SNE and UMAP on the other hand, capture both
linear and non-linear relations and preserve local similarities and distances in high dimensions while reducing the
information to 2 dimensions (an XY plot). While t-SNE is able to preserve local relations, UMAP allows for a
better preservation of dissimilarity of smaples. Therefore, the distance between clusters of samples in a UMAP
plot is more meaningful than in a t-SNE plot.

In the current section, we primarily focus on the t-SNE method, but in the R2 platform you will also encounter
maps that have been created by UMAP. An important parameter within t-SNE is the variable known as perplexity.
This tunable parameter is in a sense an estimation of how many neighbors each point has. The robustness of
the visible clusters identified by the t-SNE algorithm can be validated by studying the clusters in a range of
perplexities. Recommended values for perplexity range between 5-50. Once you have selected a dataset and
applied the t-SNE algorithm, R2 will calculate all t-SNE clusters for 5 to 50 perplexities. In case of smaller
datasets the number of perplexities will be less, in case of datasets with more than 1000 samples, only perplexity
50 is calculated. Which perplexity is the best, depends on the structure of the dataset, and is also depended on
which display (how the samples are placed) allows for a better interpretation of your biological question. Before
you start analyzing and interpreting the results, it is highly recommended to read about the power and pitfalls of
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t-SNE in this blog-post. Two important recommendations in this blog are that both size of, and distance between
clusters do not have a well defined meaning. The fact that there are clusters has meaning.

Since running the t-SNE algorithm is a time consuming task and can take up to hours of processing time for large
datasets, R2 stores the results for every dataset of which the t-SNE has been completed. All users of R2 can
explore generated t-SNE maps by coloring with tracks or expression values of a particular gene. Furthermore,
the perplexity sweeps can be visualized. Via the ‘Sample maps’ option in the left menu, preprocessed t-SNE and
UMAP maps can be viewed and analyzed with different perplexity and coloring settings. Users with collaborator
access or higher access level are also able to initiate the generation of maps for datasets or subsets within a dataset.
These additional options will be available via ‘box 3’ on the main page of R2.

16.2 Step 1: Selecting t-SNE maps

Let’s have a look at a t-SNE result to see what we can learn from this dimensionality reduction algorithm. The
analysis is most informative with large datasets, and actually requires more than 16 samples as an absolute mini-
mum (in R2). We will first have a look at the CCLE (cancer cell line encyclopedia) dataset which is comprised of
more than 900 cell lines from various cancers.

1. In the left menu click on Sample maps(UMAP/tSNE). You can see that a grid opens that displays the datasets
available to you for which sample maps have been created. The headers of the grid show filtering options
to search for the dataset that you are interested in. Here we want to search for the dataset ‘Cellline CCLE
Cancer Cell Line Encyclopedia - Broad - 917 - MAS5.0 - u133p2 ‘.

2. Type ‘CCLE’ in the textfield Dataset Class. Multiple sample maps have been generated from this same
dataset. Choose the sample map that shows the date ‘2020-11-24’, de tSNE version in the column Created
by a click on the Select button in front of the row.

Figure 1: Select a preprocessed sample map (e.g. t-SNE map) from the grid

16.3 Step 2: Annotating t-SNE maps

In this screen the t-SNE result is plotted with the highest perplexity, or a preset value that has been selected upon
manual curation. There is no strict rule to select the ‘best’ perplexity. In most cases the highest perplexity is not
the best choice to investigate the cluster further. If the perplexity result is something other than 23, then select this
perplexity value. We can see structure in the location of the various cell lines. Now we would like to look at the
annotations that are available for the cell lines.

1. In the ‘adjustable settings box’ set “perplexity’ to the value of 23.

2. Select ‘color settings’ from the ‘colormode’ and choose ‘primary site’. Press ‘Set Colors’ to redraw the
image.
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Figure 2: t-SNE preprocessed t-SNE maps

Another feature that may be informative in the context of a t-SNE map is to ‘overlay’ the expression of a particular
gene on the map by coloring the cell lines by the expression values of a dataset, in this case mRNA gene expression.
We can have a look at this by changing the Color mode to ‘color by gene’.

1. In the ‘Color settings” box select ‘Color by Gene’ under Color mode and subsequently type ‘CLDN3’ in
the textfield of Gene / Reporter. The corresponding reporter will automatically pop-up (Figure 3 ), click on
it to confirm your choice. The gene selection box autocompletes the proper reporter probeset, but this can
take a little bit of time before the gene selection box appears.

Figure 3a: t-SNE_Color by Gene

1. Again click ‘set colors’ to refresh the view. In this view the samples are not colored by a group annotation
(track) but by applying a color gradient which reflects the gene expression level according to a log2 scale.
In this sample you can observe subgroups of the carcinoma samples which have higher level in contrast to
the (other) samples.
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Figure 4a: t-SNE_Color by Gene

1. It could be that you already noticed that the maps are plotted in an interactive fashion allowing you to adapt
the graph on the fly. When adapting all kinds of settings such as marking samples, change the dot size,
toggle subgroups on and off and much more. As shown in figure 4b.

Figure 4b: Interactively changing the layout

1. Below the color settings bo you can also use the standard plot module which is static. Use the track histol-
ogy_subtype1 to generate a new t-SNE plot in the ‘Adjustable settings’ menu. It appears that the subgroup
which stood out by the color gradient consists mostly of (adeno)carcinomas. Another gene which empha-
sizes the observation in the previous example is the NR3C1 gene showing an inverse gradient pattern for this
subgroup. In this picture below, we also adapted the setting Color scheme to ‘Fireworks’ in the ‘Adjustable
settings’ box.

Figure 5: t-SNE_Color by Gene
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Figure 6: t-SNE select probeset 2

16.4 Step 3: Perplexity sweeps for t-SNE maps

What perplexity value is the best option for your dataset of interest? This depends on the embedded structure (the
subgroups), and even what you personally would like to visualize (the way the samples are layed out). To assess
the robustness of the layout as well as the effect that the perplexity parameter has, the R2 platform performs a
perplexity sweep. The analysis will be run repeatedly, starting with a value of 5, and stopping at a perplexity value
of 50, if the size of the dataset permits.

1. In order to generate an overview of all possible perplexities you have to set the number of Perplexity to ‘all’
and Color by Track modus to eg. ‘primary_site’ in the ‘Adjustable Settings’ box.
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Figure 7: t-SNE: all perplexities

By choosing the perplexity value ‘all’, miniature tiles will be generated for all perplexities (5-50), where it is still
possible to use the color by track mode. Also, you can simply click any of the tiles to generate the map of that
particular perplexity in normal large format.

16.5 Step 4: Creating t-SNE maps

Depending on your access level in R2, you can create t-SNE maps from any dataset that is represented in R2 (with
at least 16 or more samples). The t-SNE module is located in ‘box 3’ at the main page of R2. You can either
run the algorithm on the complete dataset, or focus on a particular sub-section of the samples using the ‘subset’
function.

Let’s take a look at another nice example of an R2 generated t-SNE map: the large dataset of normal tissue
expression profiles.

1. In main menu Change Dataset to the Normal Tissues GTeX v4 - GTeX - 2921 - RPKM - ensgtexv4 in box
2 (in the Change Dataset grid fill in the number ‘2921’ in the textfield under the N column and click Select).
Then select t-SNE in box 3. Click Next. If the ‘default’ map has already been calculated, a shortcut button
will also appear as shown in figure 8. In the ‘Adjustable settings’ panel you can adjust several settings, such
as sample filtering and specific gene sets
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Figure 8: t-SNE: Menu

Keep in mind that after adjusting input settings the t-SNE algorithm will re-run again, even though a t-SNE map
already has been generated with the default settings. A note on the execution times of t-SNE: the generation of
the maps will take a substantial amount of time to generate, especially for larger datasets (up to a number of hours
for datasets >6000 samples). Once initiated (showing the message that t-SNE is being calculated), you can close
the window. The process will keep on running on the servers and you can view the results later by revisting the
analysis: when you return to the mainpage of R2, select the same dataset, again choose t-SNE in box 3, and click
next. In the following window, a shortcut button to plot the requested t-SNE result will appear for your chosen
dataset.

1. In our case we just click next.

2. In the Adjustable settings box set the Color by Track on ‘Tissue’ and click next.
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Figure 9: t-SNE: Colored by track

16.6 Step 5: Creating groups with the t-SNE lasso tool

Suppose the t-SNE algorithm produced some interesting sample clusters that you want to explore further. R2
allows you to specifically select any subset of samples from the t-SNE map by using the lasso tool. The subset
can be used as track in the other R2 analysis tools. This will be illustrated in the following example.

1. In the left menu click on Sample maps and select ‘Cellline CCLE Cancer Cell Line Encyclopedia - Broad
- 917 - MAS5.0 - u133p2’ with the date ‘2020-11-24’ in the Created column. Plot the corresponding t-
SNE map using perplexity 23 and color the maps by selecting ‘primary_site’ with Color track option. The
haematopoietic group can clearly be subdivided in several groups which can be used to investigate these sub
clusters in more detail.
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Figure 9: t-SNE: Colored by track

2. Click on Select subset left from the interactive t-SNE map. In the interactive pop-up t-SNE map you use the
lasso tool by clicking on the map and hold the mouse button to draw a shape around the samples you want
to select as one group. After releasing the mouse button the group with the amount of samples is listed on
the right. The samples of the dataset are subsequently annotated with a group id for each lasso selection
action. You can select groups up to a number of 10. After you finished the group selections, click below the
groups on the “Build Tracks for subset” button.

3. In a new tab all the samples are listed with the designated and adjustable group label. The samples that
were not included in any of the lasso selected subgroups are labeled ‘not_defined’. At the bottom in the
“Adjustable Settings” menu you can rename the groups, select a color and store them in your personalized
tracks or as a temporary track (temporary tracks will be deleted after 24 hrs). Now you can continue with
further analysis, for example by using the module “Find differential expression between groups” where you
can find your newly created tracks in the selection criteria menu.

Figure 10: t-SNE: Using the lasso selection

The lasso selection tool is also available for the PCA module;
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16.7 Step 6: Creating groups with the t-SNE DBSCAN tool

Next to the manual lasso tool for sample grouping on the t-SNE map, R2 provides an automated tool as well:
the DBSCAN (Density-based spatial clustering of applications with noise). The DBSCAN allows for automatic
detection of points that are closely packed together in a plot. A fun and more detailed blogpost about the DBSCAN
can be found here.

Starting with an arbitrary point in the plot, the algorithm recursively groups together all the points that are located
close to that point and the points within that group. If no more points can be found close to the group, another
point on the plot will randomly be chosen and the process repeats itself.With two parameters you can influence
the definition of groups: Epsilon and Min pts. Epsilon sets the maximal distance allowed between points to be
considered close. Min pts determines the minimal amount of points that are needed in order to be called a group.
It is recommended to set the minimal amount of points to 3 or higher. If a point is not within the epsilon distance
of any cluster, it’s considered a “noise point”.

Let’s have a look at the DBSCAN and the parameters Epsilon and Min Ptstool in R2.

1. Go back to the tab with the t-SNE scan map which was generated in step 1 before applying the lasso
functionality.

2. Click on DBSCAN select subset below the t-SNE map. The interactive t-SNE map pops-up. This time you
can find slides for the two DBSCAN parameters, Epsilon and Min pts, on the right side. The parameters are
set to a default value, which by no means are the best settings for the given dataset.

Figure 11: t-SNE: Using the DBSCAN selection

1. In this example the DB scan tool identifies two clusters which were also quite clear by just observing the
t-SNE map. However, adapting the parameters Epsilon and Min pst described above can also aid you to
identify less clear subgroups. Play around with these two slides till you find a satisfactory grouping of
the samples on the t-SNE map. Don’t forget to click on the button ‘Refresh cluster graph’ after you have
changed the values. On the right side an overview is provided that shows the amount of samples in each
group.

176 Chapter 16. Sample maps: t-SNE / UMAP, high dimensionality reduction in R2

_static/images/Samplemaps/Tsne_dbscan_default.png


R2 Tutorials, Release 3.3.4

Figure 12: t-SNE: Using the DBSCAN selection

2. Click Build Track for subset to create tracks of these groups, in the same way as described in step 3 of the
lasso tool above. The created tracks are stored and can be used as group parameters for further usage. Just
as the lasso tool, the DB-scan tool is available for both t-SNE maps, UMAPS and PCA plots.

16.8 Final remarks

Everything described in this chapter can be performed in R2: the genomics analysis and visualization platform
(http://r2platform.com / http://r2.amc.nl)

We hope that this tutorial has been helpful, the R2 support team.
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CHAPTER 17

Using the R2-Genome browser

Use the embedded R2 Genome browser to verify reporters

17.1 Scope

• In this tutorial we will investigate gene reporters and reveal information R2 (http://r2platform.com / http:
//r2.amc.nl) is providing based on the genome location.

• Explore gene expression reporters in the genome browser in combination with gene expression profiles
(from the one-gene-view).

17.2 Step 1: Exploring the genome browser

1. In the main menu select in field 2 the default dataset “Tumor Neuroblastoma public - Versteeg - 88 - MAS5.0
- u133p2”. In Field 3 choose “View a gene” at “type of analysis”. In field 4: type “MYCN” and click ‘next’.

2. Leave all the settings at their default and click ‘next’. You have now arrived at the “One Gene View”. In
this part of the tutorial the main focus is the evaluation of the reporters designed by manufactures such
as Affymetrix represented in the R2 Genome browser. To a lesser extent gene expression profiles will
be looked at as well.When you slide down on the “One gene view” page of the MYCN expression, you
encounter the “Probeset verification” table. The Probeset verification table, displays an automated analysis
for U133 based Affymetrix platforms, where the reporter-gene relation validity has been verified by their
genomic location (also described in more detail in the tutorial on One Gene View). Click on the “R2 Tview”
link of the upper probeset and the embedded R2 genome browser will open in a new screen. The genome
browser shows the genomic span where the MYCN gene is located together with the 5 MYCN probesets
mapped to their genomic position. Note that quite a number of the hundreds of platforms that R2 manages
will have genome information. In those cases, the ‘Probeset Genome Location’ box will list those and can
bring you to our embedded genome browser by following the R2_Tview link.
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Figure 1: Probeset Verification table

When we access the genome browser via the One Gene View page, by default R2 has enabled a number of
annotations (Tracks). At the top of the Transcript View display, R2 depicts all known expressed sequence
tag (EST) and mRNA sequences aligned to the genome (synchronized with the USCS database regularly).

These mappings serve as evidence for the existence of a gene, and are individually hyperlinked to the Gen-
bank database. The EST and mRNA sequences are colored by the orientation of alignments, as determined
by exon-intron junctions and poly-A signals to the genome. Here, green alignments indicate a 5‘-> 3‘
mapping on the positive strand of the genome, while a red mapping represents a 5‘->3‘mapping on the
negative strand of the genome (reverse complement orientation). In sequences where no information on the
orientation is encountered, the alignment becomes blue.Underneath the plot the NCBI curated records for
transcripts for the gene of interest are shown as reference sequences (RefSeq). The structure of the refer-
ence sequence has been indicated. In this MYCN example, the gene as represented by the different isoform
refseqs, is green. This tells us that the MYCN gene maps to the positive strand of the genome, and should
be read 5‘->3‘from left to right.The shadings in green, for the separate EST and mRNA mappings, indicate
exon (darker) and intronic (lighter) regions (Figure 3 shows a legend to all the different color shades).If we
look at the reporters underneath the refseq tracks, we see that most of them are green as well (thus mapping
to the same strand as the MYCN gene). However, the 242026_at reporter appears in red (thus mapping to
the negative strand), and thus cannot measure MYCN expression. Furthermore, this reporter maps at the
intronic region, which is another reason not to use this reporter to represent MYCN. Still, this reporter is
annotated to measure MYCN by the Affymetrix company.Below the EST and mRNA mappings, you can
see the average gene expression for the reporters in the neuroblastoma dataset that we are investigating.
This panel can be handy to check which reporter shows the highest expression (and often is the preferred
reporter to use). Since the U133 platforms of Affymetrix are 3‘based, you can nicely see that the reporter
signals are higher at the 3‘end of the gene. The 209757_at reporter is the most informative here, and was
also picked by the hugoonce algorithm, embedded in R2.For Affymetrix arrays a probeset by itself is a col-
lection of separate 25-bp reporters. For Affymetrix arrays other then the Hu133-2 and Hu133-a platforms
the reporters may vary in the number of basepairs. These measured regions are indicated in the reporter
track by very dark shades.
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Figure 2 : Genome browser with default tracks.

Figure 3: Legend of the color usage

With the default settings the genome browser shows the average
expression signal per probeset for a chosen dataset with their
genomic location.

1. The properties and adjustable settings panel allows users to configure the graph display in various ways. In
the left properties panel set in the transcriptview section “draw mode” to count and in the expression section
“draw mode” to bars. The expression level can also be investigated per sample. The one-gene-view plot
shows that ITCC0030 has no MYCN amplification resulting in low MYCN expression levels to illustrate
this in the genome browser select in the Adjustable Settings panel, ITCC0030. Click redraw.

2. The picture now shows for one sample the expression levels for all MYCN probe sets in a more simplified
fashion with barplots. Note the extra annotation tracks which were selected and hover over the tracks to
reveal extra information.
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Figure 4: Adjustable settingspanel.

17.3 Step 2: Zooming and panning

1. The R2 Genome browser is a highly interactive application offering several ways to zoom and scroll the
genome display. Sometimes it could be useful to zoom into a location such as an aligned probeset. To
quickly zoom into a specific region of interest, use the browser’s “drag and zoom” feature. At a desired
position click and hold the left mouse button and drag the highlighted window to a second position and
release the mouse button. The selected ‘white’ region, can be repositioned (cross mouse indicator). A
selection can be cancelled by clicking in the dark regions (Do note however that the positions of the selection
were already adapted though ). Also in the track panel set “sequence and GC” windows to on. Click redraw
in the middle panel.

Figure 5: Zoom controls

2. At a larger magnification certain features such as basepair pair coloring at the sequence annotation track
may become visible. Note the black rectangles in the dark green exon region a collection of the probes
which form together a probeset . Repeat the same drag and zoom procedure for one probe and click redraw.
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Figure 6: Zoom-in graph

Figure 7: Zoom revealing basepair sequence

Now the actual sequence is revealed a single affymetrix probe is matching. Clicking on the refseq bar will
automatically zoom out to the genome browser representing the complete gene.

3. Click on the “GET DNA” button to retrieve the DNA sequence directly from the UCSC database (keep in
mind this option is available until the region of interest reaches a certain size)

Did you know that the additional settings can be changed in “Tracks Panel”.

Clicking on the tool icon unfolds extra options to configure your graph. For many tracks, this will
allow you to increase the size, but the settings may also include options that are specific to a particular
analysis
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17.4 Step 3: Looking up chromosome regions

The Genome browser offers various options to zoom into a certain region. In case there is an interest in gene
expression levels of a certain region on the chromosome. This can be quickly done by clicking on the chromosome
at a certain location.

1. Click at a certain region on the chromosome and a new graph will be generated with average gene expression
levels for the selected dataset in that region.

Figure 8: Chromosomal clicking

2. Furthermore it’s worth mentioning that in order to use the genome browser it’s not necessary to do so via
first selecting a dataset. The genome browser can directly be accessed from the main menu including many
basic functionalities.

17.5 Step 4: Working with multiple samples listed within a track

In some instances, genome tracks may list a whole array of samples, that can individually be selected for display.
If R2 has the ability to also display multiple samples for that specific track, then the items ‘all’ and ‘custom’ will
be represented in the sample dropdown list as well. The first does not require further explanation, however the
‘custom’ option probably does. If you select ‘custom’ as the sample to view, then R2 will listen to the ‘custom_id’
field at the bottom of the tracks box. Within this box, you may enter the sample names that you would like to view.
samples should be separated by a comma and may include the % sign as a wildcard. In most tracks the samples
will be visualized in the provided order. By using the ‘edit’ button next to the ‘custom_id’ field, you can make
populating the ‘custom_id’ box a lot easier.

The R2 Genome Browser can be used with different genome builds (versions). Depending on the build, different
annotation tracks can become accessible. In addition, depending on your access, additional tracks may be at your
disposal.

17.6 Final remarks / future directions

Everything described in ths chapter can be performed in the R2: genomics analysis and visualization platform
(http://r2platform.com / http://r2.amc.nl)

We hope that this tutorial has been helpful, the R2 support team.
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CHAPTER 18

DataScopes

Datascopes are typically landing web-pages that provide quick jumps to (dedicated) analyses and visualizations
in R2. such datascopes are frequently associated with studies that share their data, presented from a manuscript
in such a way that you can repeat their analyses, but with other selection criteria etc. Another type of datascope
is the ability to limit data sets to a particular selection, such as a tumor entity.

18.1 Scope

• Use data scopes to restrict data sets to a particular subject

• Use data scopes as a landing page for a specific publication / subject

18.2 Step 1: Selecting a dataset restrictive DataScope

1. DataScopes are represented in the left menu structure in R2 in the item named ‘Change Data Scopes’.
Scopes can be grouped by different ‘types’ like ‘paper’ or ‘tumor type’. Depending on your account access
more restricted scopes can be represented in your account. We will start by selecting a ‘dataset’ restriction
Scope by clicking on ‘tumor’ > ‘neuroblastoma’. Alternatively you can click on the ‘change data scopes’
root item and get a tiled display of all the data scopes that you have access to with your account.

Figure 1: Selecting a Data Scope.

2. You may have noticed that the platform now includes ‘neuroblastoma’ in its title. Additionally, the number
of samples available to you has greatly decreased. This is because you will now only be looking at datasets
that we have annotated as neuroblastoma. This data scope can be useful if you only want to see datasets
related to a specific entity that we have defined. If you want to select a new dataset, you will only be able
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to choose from neuroblastoma assets. In analyses such as ‘2D distribution’, this restrictive data scope will
also apply.

Figure 2: This Data Scope restricts the resources to Neuroblastoma only.

18.3 Step 2: Selecting a Data Scope with a landing page

1. In the first example, the DataScope did nothing more than restrict the resourses at your disposal, which can
be handy for quick selections. A DataScope can become much more interesting if it has also got a ‘landing
page’ associated with it. These landing pages are essentially ‘quick jumps’ into the tools of the R2 platform,
combined with predefined settings. The possibilities offered by the platform are nearly endless (and we are
willing to create things that may not be possible yet).

2. In the next example, we will make use of a datascope that belongs to a manuscript on the analysis of 500
whole genomes of medulloblastoma (Northcott et.al. Nature 2017). Datascopes can be reached in 2 ways.
Either you select ‘medulloblastoma 500’ from the ‘paper’ group in the Data Scopes menu, or you simply
click on the ‘datascopes’ main menu item directly, and an overview of all the data scopes within the access
of your account will become visible (and click on ‘medulloblastoma 500’).
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Figure 3: Datascopes overview.

3. We can go to the ‘landing page’ for this data scope by either clicking on the button ‘Goto Medulloblastoma
500 Home’ in Box 0, or click on the ‘About Medulloblastoma 500’ item near the end in the left menu.
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Figure 3: Landing Page for Medulloblastoma 500.

4. Within a landing page ‘tiles’ are defined that will quickly bring you to specific analyses and or visualizations
in R2. These ‘hotlinks’ can be associated with advanced settings, and a such make the usage much easier.
In the current Data Scope you can explore the genomics data for the 500 samples by investigating the
annotation in the ‘cohort overview’, or check somatic mutation status in the ‘somatic variants’ tile. Another
option available here is the ‘circos archive’, which enables you to dive into the events that are observed
within a single patient. Most of these analyses can also be found / accessed via the main interface while
very specific ones may only be provided in the scope. Here the ‘tSNE manuscript’ would be an example of
the latter.

This chapter only serves to explain the basic usage of a data scope. As you may realize, every scope can have
many different options and analyses associated with it, which goes beyond what we can document here. Just have
a look at the available scopes once in a while to discover what has been added, or make sure to follow our social
media channels where we make announcements on this as well.

[facebook]: https://www.facebook.com/r2platform/ “FaceBook” [linkedin]:
https://www.linkedin.com/company/72569174/ “LinkedIn” [X(Twitter)]: https://twitter.com/r2_platform
“X(Twitter)”

Instagram

Mastodon page

18.4 Final remarks / future directions

Some of the functionalities described in this tutorial have been developed recently. If you encounter any issues
or difficulties, please do not hesitate to contact R2 support at r2-support@amsterdamumc.nl. Additionally, if you
have ideas for new data scopes or would like to showcase your own data in a similar way, please feel free to get in
touch with us through the same support address.

We hope that this tutorial has been helpful.

Best regards,

The R2 support team.
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CHAPTER 19

Integrative analysis: ChIP-seq data

ChIP data visualization can be combined with other types of data

19.1 Scope

• Provide an introduction to the concepts and algorithms used in ChIP-seq data

• Check the properties of binding sites based on methylation and acetylation data

• Relate this to expression data

• Investigate the location of super-enhancers on the genome

19.2 Some concepts

Given the advanced character of this type of data analysis, some introduction on the concepts and algorithms used
is in place.

19.2.1 What is ChIP-seq

With Chromatine Immuno Precipitation binding of elements to the genome can be studied. Transcription of DNA
to RNA is regulated by the binding of these elements. These can be Transcription Factors, that bind temporarily
to start transcription, but also chemical modification of the histones (molecular structures that coil the DNA) by
methylation, acetylation, etc. (Figure 1) These modifications change the accessibility of the DNA for transcription.
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Figure 1: Transcription; taken from Nature Reviews Genetics 12, 283-293 (April 2011)

When a specific antibody is used in the pulldown that recognizes these chemically modified regions, these spe-
cific regions can be studied. Regions with H3K27Ac acetylation mark active enhancers and active transcription,
H3K4Me3 methylation marks active and poised transcription (Figure 2). Studying the relative contributions of
both types of modifications allows a researcher to discern enhancer regions from active transcription sites.
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Figure 2: Specific chemical modifications mark specific states of cis-regulatory elements; taken from
doi:10.1016/j.molcel.2013.01.038

The assembly of the billions of fragments that result from a ChIP-seq experiment is a challenge. Algorithms to
combine and map the reads into a consistent representation are under development. R2 allows you to study the
outcome of these computationally intensive calculations through an intuitive visualization. Most default settings
are suitable for a first impression of your data. To adapt certain parameters requires some knowledge about the
actual computation, so we’ll explain some of the concepts used below.

Peak calling

R2 provides a couple of algorithms to assess significant enrichment ChIP between experiment and control.First is
the MACS algorithm; this is often used in ChIP-seq data analyses and publications. In R2 it is used to study the
binding of transcription factors. It’s drawback is that it is not very suitable for broad signals.

Some experiments can also be analyzed with the MACS2 algorithm. This version can detect narrow (like tran-
scription factors) or broad (like histone modifications).

Yet another algorithm is RSEG; it is especially designed for histone modification detection. In R2 this used to
analyse the histone modification patterns. To distinguish between specific histone modifications (e.g. acetylation
vs methylation), R2 allows you to assess the same region in two profiles.

In the sections below, we will briefly explain how you can utilize and visualize the peaks as well as the histogram
data (landscapes) that is available for most of the experiments.

Super-enhancers

An enhancer is a short (50-1500 bp) region of DNA that can be bound by proteins (activators) to increase the
likelihood transcription will occur at a gene. They can be located up to 1 Mbp (1,000,000 bp) away from the
gene, either upstream or downstream from the start site, and either in the forward or backward direction. A super-
enhancer is a region of the mammalian genome comprising multiple of these enhancers, collectively bound by an
array of transcription factor proteins to drive transcription of genes, often involved in regulation of cell identity.
They can be up to 20 times the size of an enhancer.

For identification of super-enhancers R2 uses the Rank Ordering of Super-Enhancers algorithm (ROSE; more on
the algorithm here). This takes the peaks called by RSEG for acetylation and calculates the distances in-between
to judge whether they can be considered super-enhancers. The ranked values can be plotted and by locating the
inflection point in the resulting graph, super-enhancers can be assigned. It can also be used with the MACS
calculated data (figure 3).
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Figure 3: Result of a typical ROSE analysis. Above the inflection point, marked in red, are super-enhancer
regions

Now that these concepts have been explained we’re going to see how the ChIP-seq data can be accessed through
R2.

19.3 Step 1: Choosing data and modules

1. For this example check if the correct dataset has been selected in this case “Tumor Neuroblastoma public-
Versteeg -88”. Note that you have to select the correct dataset set before starting with the Chip-seq analyses.
To enter the ChIP-seq analysis module in R2 select ChIP data in Box 3 (Fig 4) and click “Next”.

Figure 4: Choose the ChIP-seq module

2. See figure 5. Several analysis paths start from here. First we’re going to explore the genomic environment
of some genes in context of ChIP-seq data. In the ChIP-seq menu choose the ChIP-chip Genome Browser
(+GEX)

Figure 5: ChIP-seq Menu in R2
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19.4 Step 2: Exploring genes in a transcriptional context

You’re now in the R2 genome browser in ChIP-seq context. By default the browser display shows a stretch on the
genome around the location of the MYCN gene. Encoding regions of genes are drawn at the bottom of the graph.
When in red they’re encoded in the reverse direction, coding exons are colored darker. Zooming and panning
is enabled through buttons at the top of the page or by selecting an area. See chapter 17 for a more detailed
explanation.The Properties panel on the left provides access to ChIP-seq datasets that can be added to the genome
browser view. Options in the Tracks panel on the right allow for additional public data to be added to the genome
browser as so called tracks. In the center panel you control what is being drawn. Always click the “redraw” button
in the center panel for any changed settings to take effect.

1. As a first toe in the water we’ll explore the GATA3 gene, but you can choose your own. Check first in the
“Adjustable settings” menu if the GenomeBuild is set to hg19 in the pull down. The genomic location of
the gene will be used to map the annotation. Type the name of your gene in the text field of the Find gene
textbox located in the upper-left corner and click “Go”.

2. To select the proper transcript in the next screen, click the “View” button.

Figure 6: Looking up a single gene in the R2 Genome Browser in ChIP-seq context.

3. To select one or more ChIP-seq datasets, click “Select/Adapt ChIP-Experiments” in the Properties panel on
the left. As an example we write “lan1” in the text field of the chip_celline column. Check the box in front
of the preferred experiment(s), optionally change the display colors using the “c.c.” buttons on the right and
click “Update” at the bottom. Before we redraw the display, we adjust some additional settings in step 4.

Figure 7: Selecting experiments by using grid filtering

4. In the Tracks panel on the right different annotation settings can be chosen. In Fig 8 we first adjusted the
TranscriptView Annotation settings: The NIH Epigenome Roadmap to ‘all’ and the SuperEnhancers NB
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(George) to ‘on’. Next to the dropdown menus a toolset icon gives access to alternative displays of the
information (e.g. a more detailed display per cell line can be chosen for the NIH Epigenome Roadmap
information in stead of the cell line aggregated information obtained with ‘all’).An interesting feature of the
center panel is the option to show the z-score of the expression data of the chosen dataset for each subgroup
of a certain annotation track. This is illustrated in our example by the separate z-scores for each INSS-stage:
in the center panel, choose “dataset_track” in the sample drop-down menu and set Select_a_express_track to
inss (5cat). Now click on the “redraw” button in the center panel for the changes to take effect. The buttons
at the top of the page allow for a further exploration around the gene. Clicking three times the “zoom out
2x” button reveals more binding in front of the MYCN gene.

In the resulting figure the H3K4me3,H3K27me3 and H3K27ac profiles for the GATA3 location in LAN1
neuroblastoma cell lines are shown. Above the genome strand the different histone modifications are de-
picted. The annotated locations of the Neuroblastoma superenhancer reported by George et al are drawn as
colored blocks underneath the genome strand. Furthermore, the epigenetic profiles of the NIH Epigenome
Roadmap project are shown color coded for the chosen cell lines.

In this ADRN type cell line it is clearly shown that active GATA3 is associated with an enrichment of
H3K4me3 and H3K27Ac, but not with H3K27me3.

Figure 8: Histone modification profiles around GATA3 location

In the next figure the legend is shown by color what kind of chromatin state the colors represent and also how to
toggle the NIH plugin to get detailed information for the tissue types.
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Figure 8a: Legend and detailed source information

1. Going through these steps would be a tedious job if you wish to inspect several genes. Suppose we obtained
a list of differentially expressed genes from a transcription factor regulation experiment. As an additional
requirement we selected for genes with a known cancer association. You can find the list here. Go back to
the ChIP-seq choice menu. Open a new tab by right click “Go to main” and click chip data in the left menu.
Now choose the ChIPSeq TSS Peak/Coverage Plotter

2. We’re going to inspect Transcription Factor binding; Click on “Select a ChIP profile” and filter the grid by
typing ‘BE’ in the name textbox, click somewhere in the table row of the BE2 cell line to select the data
collected by Oldridge et al. and confirm by a click on the button “Use this experiment”.

3. Set perspective to peaks if it was not done so already. Copy paste the genes obtained in step 5 or type genes
of your interest into the Enter genesymbols / genome positions textbox. In the Gene Order selection box
select ‘by_row_signal’ and click “Next”. The Gata binding sites around the genes in the list are shown
(Figure 9).

Figure 9: Gata binding site around genes
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4. Since the ordering of the ChIPSeq Peak Plotter lists the genes with the highest signals on top (due to Gene
order set to ‘by_row_signal’), we’ll select one of the first listed genes; click on ALK, in a new tab the
GATA3 binding signal at the gene location is plotted in the R2 Genome Browser (Figure 10).

Figure 10: ALK profile within GATA3 ChIP-seq experiment

The view can be adapted by ticking additional datasets; e.g. GATA ChIP-seq experiments in other cell
lines. Colors of the data can be adapted on the right side of the grid to easily distinguish them. Remember
to always click the “redraw” button in the center panel for any changed settings to take effect. In picture
11,The following experiments were selected: chip_Author:Oldridge -> BE,BE2,Kelly,NGP and SY5Y and
chip_author Bernstein -> LAN6. Zooming out produces Figure 11 from which it is apparent that in some
specific cell lines there is enriched binding of GATA3 near the Transcription Start Site of ALK. Note that
the properties have been adapted accordingly Range ‘a to 120’ and Slider on ‘average’ 5.

Figure 11: GATA3 binding data around the ALK gene in multiple datasets
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19.5 Step 3: Exploring histone modification patterns

Within R2 the regions of histone modification are calculated with the RSEG algorithm. The relative contributions
of acetylation and methylation can be used to determine whether a region can be considered to be actively tran-
scribed or to function as enhancer. This assignment can be further corroborated by including actual Transcription
Factor binding data.

1. To perform such analyses go back to the ChIP-seq choice menu. Again choose the ChIPseq TSS
Peak/Coverage Plotter. Use the grid to filter for the experiment used in this example: the SY5Y cellline that
was profiled by Oldridge et al. for H3K27 acetylation, the RSEG peaks of this experiment are additionally
scored by ROSE.

2. On the next page indicate the region to show on either side of the TSS; a commonly used value is 100 KB
up and downstream; that makes 100000 for Distance (flank) an appropiate setting. Also indicate how many
bases are to be collected within a bin. Do note that images are getting very large with small bin-sizes in
combination with large regions, 1000 is a proper value in this case. Paste the same set of genes as used
above in the genesymbols box. Set the Gene order to ‘by_row_signal’; this will make sure the gene with
most enhancers in this region will top the list. Additionally we’re going to color the genebodies of ALK and
BRD4: copy-paste without quotation marks “ALK;3BAA3B” and on the next line “BRD4;AA0000” in the
color genebodies textbox and choose ‘Selected genes only’ for the setting Draw Gene Bodies.

Did you know that you can provide arbitrary locations on the genome?

Other than GeneSymbols (where R2 will find the most downstream TSS for you) to jump to a different
location on the genome, you can also provide genome positions in the center panel, e.g. Chromosome
‘chr1’, Start ‘10020035’, End ‘chr1:10020035’. Or try clicking on a different part of the chromosome
strand above the graph section.

1. R2 now shows for all provided genes a 100 Kb region up and downstream of the TSS. Note that the genebody
of ALK and BRD4 are colored green and red respectively. Projected on the stretch are the bins that the Rseg-
ROSE algorithm considers super-enhancers (Figure 12). Each stretch is clickable and will open a new tab.
Click the topmost gene.

Figure 12: Histone acetylation around the TSS of a set of genes
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2. For the topmost gene the acetylation data is shown on the chosen stretch. To further analyze what’s going on
we’ll add GATA3 binding data and methylation data for the same cell line by checking the appropriate boxes.
Click “redraw”. Note especially the region to the right where a super-enhancer is located, methylation signal
is lower and there is not much GATA binding (Figure 13).

Figure 13: ChIP-seq signals around the TSS of a single gene

19.6 Step 4: Finding active super-enhancers

1. We’re now going to explore the ChIP-seq data the other way around, from the super-enhancer perspective.
The selection of histone modified stretches on the genome are judged as super-enhancers by the ROSE
algorithm. In R2 the most active regions can be explored through an interactive ROSE plot. Go back to the
ChIP-seq choice menu, this time choose ROSE Super Enhancer Plot

2. In the next screen, change the GenomeBuild to ‘hg19’ and click “Next”; The same algorithm as above is
chosen: rose_se_pub_rseg_m2_s0_t0_v1

3. Again select the SY5Y dataset from Oldridge in the next panel
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Figure 14: Selecting super-enhancers from an interactive ROSE plot

4. R2 shows an interactive ROSE plot (Figure 15); dots in red are clickable and represent areas on the genome
that ROSE has assigned as super-enhancer. Click one of them. In this example the 5th ranked enhancer was
chosen.

Figure 15: Selecting super-enhancers from an interactive ROSE plot

5. R2 opens a new panel showing the location on the genome of the super-enhancer. To further explore which
genes might be influenced, rescale the signal to a value of 150 (Range), put Slider to ‘median’ with value 5
and zoom out. The resulting picture shows that there are several genes in the proximity (Figure 16). Also
present are other super-enhancers nearby. Feel free to toy around with the settings, and corroborate your
findings by showing additional datasets in the same region.
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Figure 16: The genomic context of a top-ranking super-enhancer

Note the “Load/ Store Profile” button in the upper-right corner of the page. With this button your chosen settings
can be stored as a profile. Such a profile can be retrieved later on, and function as a template to wander on the
genome using the same settings.

19.7 Final remarks

Any ChIP-seq dataset can profit from the visualizations provided by R2, just contact us if you want your data
added. In R2 the ChIP-seq data visualization is still under development, any suggestions for improvements are
welcome. Mail us at r2-support@amc.nl, also if you have any questions or remarks.
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CHAPTER 20

Integrative Analysis : Across Platforms

Datatypes: Methylation data and expression data

20.1 Scope

• For some patients (samples) R2 is hosting multiple types of measurements within the platform.

• Merging gene expression and methylation data.

• The Tumor Neuroblastoma - Lavarino - 23 - rma_sketch - u219 and Tumor Neuroblastoma - Lavarino - 41
- custom - ilmnhm450 datasets will be used for this tutorial.

• Find correlations between methylated sites within a gene and gene expression

20.2 Step 1: Choosing a combined dataset

1. From R2’s perspective, an analysis in which multiple datatypes will be combined is an ‘across datasets’
analysis. Therefore, we need to select this from the main page in box 1.

2. The easiest example of a combined analysis would be to simply plot the contents of 2 different types within
a single plot. To do this, we select ‘view a gene in 2 datatypes’ and click ‘next’.

3. Since R2 needs to be instructed that overlapping samples may be identified, we create so called collections,
which list datasets with overlapping patients. In this tutorial, we will make use of a public cohort where
both mRNA gene expression as well as Illumina 450k methylation bead chip data is available. Select
“neuroblastoma_gse54721” from the collection and click ‘next’.

4. Within the current screen you are able to select 2 datatypes to plot against each other. In the current ex-
ample, only mRNA (Tumor Neuroblastoma - Lavarino - 23 - rma_sketch - u219) and Methylation (Tumor
Neuroblastoma - Lavarino - 41 - custom - ilmnhm450) data is available, and within this collection only
1 option can be selected. Select the 2 datasets to combine in the pulldowns and type behind the dataset
names ‘DDX1’ in the methylation data box and ‘MYCN’ in the expression data box and click next. R2
will automatically identify overlapping samples within the current selection and create ‘subsets’ for both
datasets to only allow the overlapping samples for the plot. From the perspective of both datasets we can
now select the reporter to represent the gene(s) that we indicated on the previous page. For now we will
keep the preselected reporters. Furthermore, we can select the transformation for both datasets and continue
to the actual plot. Click ‘next’ to advance to the image.
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5. R2 has generated a XY-plot with the MYCN expression values on the Y-axis against the methylation ratios
on the the X-axis (Figure 1) with the combined annotation of both datasets. Annotation is being merged
on the basis of the name of a track. In a perfect setting this would never result in conflicting data, however
sometimes it may happen that the different datasets contain a different annotation. In that situation, R2
will concatenate both values by a semicolon and thus create a new group identifier. If there is an obvious
mistake in one of the datasets, then we appreciate a message to R2-support@amc.uva.nl on this, so that we
can correct it accordingly.

Figure 1: XY-plot Methylation versus expression

1. Both sides of the image represent the signals from both dataset perspectives. The image displays the cor-
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relation between the 2 datatypes for those patients that were represented in both data sets. In this example
plot we observe two main groups, to gain more insight in possible characteristics for the observed groups,
we can adapt the visualization in a couple of ways. We can annotate the graph with a track distinction and
color all of the circles accordingly. To achieve this, simply select ‘color by track’ and select at track for
color “mycn_status” to be used for the coloring (Figure 1b) and click “Adjust Settings:. Once redrawn, this
will also add ‘boxplot’ representations on the sides of the image to represent the signals from both dataset
perspectives.

2. Alternatively, we can also represent the image as a ‘YY’ plot, where multiple annotations will be represented
underneath the image. In the adjustable settings menu, select ‘yy’ plot and click adjust able settings. (Figure
2).

Figure 2: XY-plot Methylation versus expression

1. As is customary for a methylation array, multiple reporters are represented around a gene. It could be of
interest to inspect the methylation pattern for the other reporters of a gene. To visualize this information, we
leave the current analysis by a right mouse click on ‘Go to main’ (upper left corner). In box 2 click ‘change
dataset’ , select methylation data and the Tumor neuroblastoma Lavarino dataset (Figure 3). Type ‘DDX1’
in box 4 click next. Leave the settings at their default and click ‘next’.
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Figure 3:Heatmap select all reporters

1. Now click on, ‘view all’ below de gene name. In a new screen (Figure 4) a heat map is generated with
the methylation pattern for all samples of a given dataset. Beneath the heatmap the R2 genome browser is
plotted with all the methylation reporters for the DDX1 gene plottend against their location on the genome.
An alternative route, to the same heatmap representation would be to select ‘view all reporters for a gene’
in box 3 of the ‘Main page’. Clicking on the Blue link, View Chr 2, in the genomebrowser , will open
de genome to its full extend with all kinds of functionalisties like, zoom in/out, move accros the genome
browser and adapting all kind of tracks.

Figure 4:Heatmap select all reporters
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20.3 Step 2: Correlate two datatypes

1. Next to simply ‘looking’ at reporters from the different datasets, we can also correlate 2 data types with
each other. To achieve this, we first go back to the ‘main page’ by clicking on the upper left link.

2. We would now like to identify which gene has the best association with its methylation status. Therefore
we need to correlate every gene with the methylation reporters that are in the annotated (for the the same
gene) to belong to a gene.

3. Just like the previous example, we select ‘across datasets’ in box 1 and now select ‘dataset extender (within
genes)’ in box 2. This will allow us to identify the best possible combinations where the expression of a
gene correlates with the methylation status for the same gene.

4. Again, we need to identify the collection within which R2 will look for the overlapping samples. Select
‘neuroblastoma_gse54721’ and click ‘next’.

5. Leave all settings in the adjustable settings box and click ‘next’.

6. R2 will now perform the search for you. Do keep in mind that the across dataset searches can be quite
intensive as all genes are being correlated to all methylation probes. For a simple setup like the current one,
more than 2 minutes will be needed to obtain the result. To reduce the strain on the servers and speed up the
serving of results, R2 will store the results of an analysis for a couple of days. If you are lucky that someone
else has performed the exact analysis that you are interested in in the past few days, then R2 will serve those
for you (which reduces the search from 2 min to a mere couple of seconds). This routine is used at multiple
places within the platform.

7. Now R2 has generated a list of significant correlations for all the DNA-methylation reporters with the ex-
pression value of the corresponding gene (Figure 5). In Figure 5 a chromosomal overview of the significant
p-value correlations are plotted, beneath the graph a table is generated divided in a list of genes which have
a positive or inverse correlation selected gene expression probesets and their methylation reporter counter
parts.
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Figure 5:Table of Correlations

1. Further the green dots and red dots indicate respectively a positive correlation and negative correlation
between the methylation and expression reporters for the same gene. Hoovering over the dots will reveal
more details such as the correlation values. Here you can investigate further the correlation between gene
or methylation by clicking on the gene name. This will generate a YY plot of the gene expression and
methylation correlation. (Figure 6).
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Figure 6:YY from table

Next to the YY-plot, more insight can be obtained by using using the interactive genome browser. The
genome browser is equiped with extended search options to find and explore more regions. The genome
browser is a core module within R2 and will be discussed in a separate chapter of this tutorial. Click on the
R2 – genome browser button. The genome browser graph is re-generated together with a complete panel of
tools to adjust and / or annotate your visualization of the genome region where you are interested in.

2. In the correlation plot there is clearly a high correlation visible between the expression and methylation
reporters located at chromosome 2. By clicking on the chromosome 2 area R2 will regenerate a correlation
plot zoomed into chromosome 2. In order to investigate the area in more detail you can zoom into this
particular region. Press and hold the left mouse button in the designated area (Figure 8) mark the area by
dragging the pointer , release de mouse button and click ‘redraw’.
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Figure 7:Explore chromosomal regions

On this zoom - level more known information is automatically plotted in the genome browser. In this example it
is shown that the DDX1 is located near to the MYCN gene on the the genome. This could explain the high inverse
correlation of the MYNC methylation reporters and expression reporteres.

Did you know that R2 will determine the overlap between datasets automatically?

R2 will scan for overlapping samples on the basis of the r2_samplename. Overlap is automatically
determined and therefore it can also use cohorts that are not completely overlapping. R2 will simply
exclude samples that are only found in 1 of the datasets. In addition, the order in which samples are
represented is also accounted for.
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Did you know that the annotation from both datasets is combined?

• On the sides of the image, the combined annotation represents the signals from both dataset perspectives.
The image displays the correlation between the 2 datatypes for those patients that were represented in both
data sets. From within this view we can adapt the visualization in a couple of ways. When we look at
the XY plot, we can annotate the graph with a track distinction and color all of the circles accordingly. To
achieve this, simply select ‘color by track’ and select the annotation source to be used for the coloring. Once
redrawn, this will also add ‘boxplot’ representations*
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CHAPTER 21

Integrative Analysis : WGS/NGS data

Datatypes: Whole Genome Sequencing data and expression data

21.1 Scope

• In this part R2 is used to provide information about how Whole Genome Sequencing (WGS) data can be
viewed, shared and analyzed. This is a specialized topic for which you need access to a dataset containing
such information. Most likely close collaboration is needed to tailor your own data to your needs.

21.2 Step 1: View circos files.

1. To view circos plots of the sequenced genomes in R2, select Static circos files (v3) in Box 3 (Fig 1).
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Figure 1: Choose the Circos plot module

2. Select a subset of samples by using the menu on the top.

• Select inss (cat 3) from the select a track (subset) selection box.

• Select st2 (1) from the pop-up selection window and click ‘OK’.

Figure 2: Select a subset of samples

3. In Neuroblastoma whole and partial chromosome gains and losses are frequent. This is indicated by the red
and green colouring of the cgh-like scatterplots.
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• One sample doesn’t appear to have large structural defects (N482TL).

• N482 indicates the sample_id, TL indicates that the circos plot shows data of the Tumor compared to
the Lymphocytes DNA sequence data.

• Click on the N482TL tile and go to the newly opened tab of your browser.

Figure 3: Circos plot

4. Here we entered the detailed view of the circos plot section. On the right side you can open different
information tabs.

1. Sample annotation.

2. Somatic structural variants.

3. Somatic structural variants of a limited size inside or close to genes that could be affected by them.

4. Hight quality non structural somatic variants.

5. A link out to the genome browsers showing a cgh-like plot of the sequencing data of a region of
interest.
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Figure 4: Cgh-like plot in the Genome Browser

• When you open the Gene Affecting Structural Variants (of limited size) tab you can now see two
variants listed and not one as shown in the circos plot. For the circos plot a higher threshold was used
for the read pair matches. For the table we show more but less accurate data.

• Click on view inside the link column.

• This opens a double genomebrowser view showing both sides of the selected structural variation.

Figure 5: Structural variant in Genome Browser

5. When the link under a genomebrowser location view is clicked the same location is shown inside the full
genomebrowser view. Here you will be able to use the zoom buttons and select extra data to plot with the
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cgh-like scatterplot and junction information. For this sample there is also affymetrix gene expression data
available. Here the zscore is shown above the cgh-like plot.

Figure 6: Including Array data in the scatterplot

6. The FOXR1 gene shows a high zscore and by clicking on the dot above this gene you wil be taken into
the one gene view of r2 showing the expression of this gene inside a Neuroblastoma tumor series. The
investigated tumor is highlighted with a red circle.

Figure 7: FOXR1 in the tumorseries

Using the MegaSampler tool from within R2 you can also show that the FOXR1 gene is only expressed in a
hand full of samples out out thousands, and that these mostly are neuroblastoma cases. Out of the samples that
could be checked, all appear to have created in-frame fusions with FOXR1. All of these findings, and additional
experiments proving that FOXR1 can serve as an oncogene in neuroblastoma have been published by Santo et al
in Oncogene (2012).
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CHAPTER 22

Target Actionability Literature Reviews : TAR

Datatypes: Literature review results

22.1 Scope

• In this part R2 is used to provide an overview of manually curated literature data, to support the targeted drug
development process for pediatric cancers. This is a specialized topic. Published TARs can be explored by
anyone. Many more TARs require specific access or membership in consortia. Next to the presentation of
TARS, R2 is also equipped with a TAR creation module, where literature reviews can be created, including
an evidence collection tool.

22.2 Step 1: View a TAR.

1. To view a target actionability review in R2, select TAR literature from the menu (Fig 1).

Figure 1: Navigating to the TAR section

1. A TAR typically is a structured stepwise literature review to comprehensively assess proof of concept (PoC)
preclinical data. Such a review of published literature is assessed on a particular target gene or pathway and
corresponding compounds or drugs, assessed within a collection of pediatric cancers. Such a review then
highlights the strength and potential gaps in the current knowledge in the drug target and associated drugs in
an informative overview across the assessed malignancies, and may encourage additional preclinical testing
in an efficient manner. The TARs can also provide guidance for well-informed decision-making on and
prioritization of subsequent further preclinical and clinical evaluation.

• Depending on your account and memberships, you will be able to ‘select’ a review from the dropdown
menu.
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• Select the MDM2 TAR from the selection and click ‘next’.

Figure 2: TAR result for MDM2 and Idasanutlin in Pediatric cancer

1. A TAR is populated by ‘evidence items’, which are extracted knowledge from publications that are ‘scored’
for experimental quality (method/sample size) and experimental outcome (support). These scores are then
averaged per PoC category and tumor entity and displayed as color intensities in an interactive heatmap.

• Using the adjustable settings, the TAR can be ‘folded’ and ‘unfolded’ to assess finer sub-groups (if assessed),
or focus on a particular tumor entity.

Figure 3: Evidence Item exploration from the TAR

1. All PoC category / tumor entity combinations can be ‘clicked’ to obtain the evidence items that make up
the score. These evidence items are little stories explaining the given score. These items also link out to the
publication from where the evidence has been extracted.
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Figure 4: Stats plots for a given TAR

2. You can also visualize some stats for a TAR in comprehensive plots, by switching on ‘show stats’.

3. Depending on your assess and memberships, there can also be the option(s) to perform tasks as a re-
viewer or TAR administrator. For more information on those funtionalities, please get in contact with
r2-support@amsterdamumc.nl

22.3 Final remarks / future directions

Some of these functionalities have been developed recently. If you run into any quirks or annoyances do not
hesitate to contact R2 support (r2-support@amsterdamumc.nl).

We hope that this tutorial has been helpful, the R2 support team.
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CHAPTER 23

Adapting R2 to your needs

Or how you can optimize R2 for your specific data analysis

23.1 Scope

• This tutorial describes the adaptable settings within R2. These are basically all items under the User Options
menu-item. Through these you can personalize the use of R2

• First a couple of regular settings will be treated: changing colors, setting parameters

• Next we’ll delve into the practical adaptation of R2; uploading your dataset, adding your personal genesets
( categories), creating/exporting /uploading your own tracks and maintaining a user community

23.2 Step 1: Adapt your settings

1. Personalizing R2 starts with selecting the ‘User Options’ menu item (Figure 1). When you hover over
this item, you see a submenu. In ‘Account you can choose a different password or change your personal
details.In ‘Preferences’ you can set some generic R2 analysis and visualization options, click on this item.
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Figure 1: Personalizing R2: the User Options menu-item

2. Next item in the User Options submenu (Figure 1) are the ‘Megasampler Presets’ . These are of relevance
when you’ve built a specific Preset in an analysis Across Datasets ( see chapter: Multiple datasets overview
with Megasampler).

23.3 Step 2: How to add data to R2.

1. One of the most appreciated options of R2 is the possibility to add data to R2, be it your own dataset or/and
publicly available data that matches your research interest. Due to several reasons, technical as security, it’s
almost impossible to automate the process of adding data for standard users. In order to keep the database
curated only R2 administrators can add data to R2.In order to do so, the data first has to be processed and
uploaded. chapter 24 describes in detail how to prepare your data such that we can process it and upload the
data to R2.

(r2-support@amsterdamumc.nl). If you would like to see a publicly accessible dataset in R2, then send an
email to r2-support@amsterdamumc.nl with a link to the data, or in the case of a Gene Expression Omnibus
dataset, the GSE**** identifier, matrixes in supplemental data and we will take care of the rest.

23.4 Step 3: Create your custom genesets

1. Another powerful functionality to adapt R2 analyses to your specific needs, is by defining gene sets or
referend to in r2 as genecategories. Many analyses in R2 can be performed on a subset of genes ( see
chapter 14 for a tutorial on performing gene set analysis). There are 3 main sources for gene sets. Firstly
R2 harbors hundreds of predefined sets of genes (such as KEGG pathways or sets defined by the Broad
Institute). Secondly, some analyses will result in gene lists, which R2 allows you to save on the fly such that
they can be used for further analyses ( e.g. Toplister analysis) .Next to these two options, you can introduce
your own gene sets of interest directly to R2 as well; Hover over the ‘ custom genesets’ sub-item and select
the button ‘custom geneset editor’ (Figure 5).
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Figure 2: Geneset related menu-items; select Custom genesets to make your own.

2. The ‘Custom Geneset editor’ window pops up (Figure 3). By default in this window you must provide a
unique name for the set. The input box allows you to paste a list of genes to upload as a geneset for use in
analyses in R2. In the example a set of genes, specific for ALL tumors are pasted. If you want this gene
set to remain available for you, select in the community dropdown , “none” of select a community name
for sharing the geneset. The concept “ commmunity” is descibed later in this tutorial. If you just want to
store the set temporarily for 24 hours, choose ‘ yes’ in the temporary dropdown.Click “save geneset” to
upload the set (Figure 3), you’ll receive a message when everything has succeeded. Your set of genes is
now available as a geneset for all analyses within R2. Go back to the main page to see where you can use
this set.

Figure 3: Using the Input Box to upload your genesets.

3. We’re going to lookup your geneset, an example is available in the Gene Set View. In the main menu in
Field 3 select ‘View a Geneset (Heatmap)’ and click “next”( Figure 4)

23.4. Step 3: Create your custom genesets 223

_static/images/AdaptingR2/AdaptingR2_customgenesets1.png
_static/images/AdaptingR2/AdaptingR2_Inputbox_v1.png


R2 Tutorials, Release 3.3.4

4.

Figure 4: Using a geneset; select View Geneset

5. In the GeneSetView your custom geneset is privately available for yourself for similar analyses as with any
other public gene set present in R2. Select ‘My GeneCategories’ to choose from your categories.

If you saved your gene set temporarily, choose ‘My 24h GeneCategories’. And click Next and click Next
again in the following window (Figure 9).

Figure 5: Selecting your genesets

1. Now you can specify which gene set you want to view and how you want to the heatmap to be displayed.
The geneset ‘ Changed Genes’ we just made above is available (Figure 6), click on it. Also, in the Heatmap
Options ‘color-scheme(v2a)’, select ‘green-black-red’, or any scheme that you prefer.For now we end here,
later on we’ll see the geneset again in the context of Tracks.
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Figure 6 A: Your geneset is available.

Figure 6 B: Your geneset is used to create a heatmap.

2. We now return to the side menu of the R2 page to find out how we can manage the genesets we just built.
From the ‘ User Options’ item in the menu, click Custom geneset. The custom geneset module allow you
to organize you custom genesets , assigning the sets to a collection or delete custom sets.
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Figure 7: Adapting your genesets

Existing genesets can be adapted, deleted or moved to another collection. New genesets can be based on
existing ones. As an example we’re going to update the genesets we just made. Click the ‘pencil’ icon
next to the custom geneset in the custom geneset editor. In the next screen you can add or delete genes and
provide background information and choose for the update of new geneset optipn in the pulldown menu.

23.5 Step 4: Tracks in R2: create your own data annotation

1. Another important feature in R2 that can be adapted to your needs are grouping variables, that we call
“tracks” in R2. In R2, the samples can be annotated with sample characteristics, e.g clinical data or ex-
perimental characteristics. Each group of annotated data is called a “Track”. Tracks in R2 give you the
opportunity to divide your samples in groups with e.g. different phenotypes for comparative or subgroup
analysis. They also allow you to restrict your focus on only a part of the samples within a given dataset
(when used in the ‘subset builder’). For some datasets the annotation that you need may be available al-
ready (from the default annotation that was added by the R2 team). For others you might want to add extra
sample annotation for analysis such as combining already added tracks, or introduction of new information
that you may possess. Tracks can be adapted in multiple ways:

• They can be uploaded with annotation files

• They can be created as a result of analyses within R2 and stored within the platform on the go

• Or you can create a so called Custom Track yourself within R2.

We’ll first start with an example of adding a track from the results of an analysis that is performed from
within R2. We will illustrate this option using a K-means analysis. Such an analysis results in a division of
the samples in two groups ( in the case of k=2. For more about this analysis see chapter 14). On the main
page of R2 select the K-means analysis in Field 3 (Figure 8)
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Figure 8: Selecting a K-means analysis

1. In the settings window for the K-means analysis (Figure 9) you can choose the geneset created above to
cluster the current set of samples. In our case this is called ChangedGenes. Make sure that the number of
draws is set to 10x10, click ‘next’

Figure 9: Settings for K-means; the Category built above is available for clustering

2. The resulting clustering in two groups might not be ultimately convincing (Figure 10, your result might look
slightly different), but for our testing purposes this is alright. What is important is that the resulting groups
can be stored as a new track, personal / available only to your account; click the button ‘store as a track’.
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Figure 10: Clustering result of the Neuroblastoma dataset with a geneset built in the former steps

3. R2 now shows all samples as a long table with radio buttons indicating which group each sample belongs
to. These can be adapted if you want to. Scroll down the window to find the fields that have to be set in
order to store this as a track (Figure 11). You may want to change the group names into something more
informative, and potentially also change the name to something you could easily relate to.
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Figure 11: Storing the current groups as a Track for use in later analysis.

4. After optionally changing the parameters, you can click the Build set button to store the track. In the custom
tracks manager we can adapt this track again. From the ‘User Options’ menu select ‘Manage Custom
Tracks’ (Figure 12).
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Figure 12: Selecting the Manage Custom Tracks

5. In the next screen keep the default selection, i.e. your current dataset. Tracks are, of course, defined based
on a specific dataset; for each dataset you can store your own tracks. Click ‘Next’.

Figure 13: Tracks are defined per dataset; keep the current selection.

6. In the next screen you’re able to adapt the Track we just generated. Of interest in here is the option “Show
as track: Yes/No”, which will result in the display of the information underneath the YY-plots.The tracks
can also be assigned to collections to make large sets of tracks manageable. We leave the deletion of the
track to the imagination of the reader.Now we’ll pay attention to the default tracks for this dataset. The track
we just generated can be adapted from here. For a start set the Drawtrack propery to ‘yes’; we want to see
this track in the graphs we create!
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Figure 14: Adapting track parameters.

7. Select Manage Default Tracks from the ‘User Options’ > ‘Tracks’ sub-menu (Figure 15)

Figure 15: Selecting the Default Tracks Manager

8. In the next screen the dataset has to be defined; keep the defaults and click Continue. You’ll end up in the
Default Tracks Manager (Figure 16). Basically all annotation provided with this dataset is available as a
track. Try out different things here.We’ll select additional annotations by changing their Drawtrack value to
‘yes’: age_year, gender and recurrence will be shown underneath graphs as well in further analyses.Also,
we’ll set the Collection of age_year and agegroup to NEW. Next to NEW Collection name, we add a befitting
name that defines this group of tracks. Here we typed ‘Age related’. Be sure to click the ‘Update Tracks’
button for these changes to take effect.
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Figure 16 A: Selecting the default tracks for this dataset

When collections of tracks are used, these will show up conveniently as separate groups of tracks under the
graph.

Figure 16 B: ‘Drawtracks’ makes tracks visible under the graph; group Tracks with ‘ Collections’

Use the ‘Reset’ button for Tracks or Collections in the Default Tracks Manager to undo either of the changes,
or use the ‘Reset to defaults button’ to go back to the original dataset settings of tracks.
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23.6 Step 5: Upload your own tracks

1. R2 also allows you to build your own tracks from scratch. You will be able to assign each sample to a group
of your choice. To illustrate this select ‘User Options’ > ‘Tracks’ > ‘Build Custom Track’. The Custom
Track window appears. R2 also provides the possibility to upload a custom track from a prefabricated text
file. We will shortly show this route, which is also the most powerful one. Click ‘Upload or Paste a Track
(txt file)’ (Figure 18).

Figure 17: Build a Custom Track: Upload or paste a track.

2. In the Upload Custom Track window you can either select a tab delimited txt file built with a tool like Excel,
or alternatively paste tab or semicolon delimited text in the input box. Either of these options provides
R2 with the proper assignment of each sample to a specific value. Do note, that the internal identifiers
(’samplenames’) that are used within R2, need to be provided here. Based on the values you provide in
the second column, R2 creates the groups for you. You can create tracks with as many groups as you like.
When described in a text file; for each sample a description can also be provided.

Figure 18: Uploading a track .

1. If you intend to create a track with a limited number of groups, an easier way is provided through the user
interface. We will try that now: click the back button of your browser to return to Figure 12. By default the
Custom Track Window (Figure 19) is set to build a track based on a defined number of groups. Underneath
you can adjust the number of groups, now change the number to 3 groups and click the Submit button.

2. In the next window a convenient overview of all annotation parameters and their values is available, with
check boxes to assign samples with specific annotation values to one of the three groups.In this example we
divide the samples by their INSS classification values in 3 groups: the low grade(1,2,3) vs high grade(4) vs
special (4s) tumor types. Tick the appropriate boxes in the appropriate group columns. It is also convenient
to recapitulate the resulting groups in a separate column so tick that box also (Figure 19). In the inss row
the stage 1-2-3 tumors are selected to form group 1, stage 4 forms group 2 and stage 4s group 3 in a new
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track.

Figure 19: Preselection to make new tracks from existing annotation.

1. Click “next”, all samples appear in a table with check boxes to assign them individually to the appropriate
group. Scroll down to adapt the visual characteristics of these groups. Names have been adapted, ‘show
track’ is set to yes, the track is set to be stored as a personal track and colors per group have been adapted.
Click ‘Build set’ to store the set, you’ll receive a message accordingly in the next window. Of course you
now finally want to see all our track manipulation in an actual graph. Go to the R2 main page again, fill in
a gene of choice (e.g. MYCN) in box 3 and click next twice to see how the data of a gene will be plotted
using the new tracks.
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Figure 20: Setting the custom track properties.

2. Another frequently used approach is to make a track based on bins of gene expression values.To avoid
labour intensive excel usage you can also use the expression treshhold option from the pulldown menu.Each
time an expression level has been entered, a new box is generated for the next value.Of course, it is possible
to change the names of the bins. Click next to tell R2 to draw the track, change the colors of the track bins
and save the track.
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Figure 21: Grouping samples for a track based on gene expression

3. Select View a gene in groups in Field 3 of the main page, Click ‘next’. Type MYCN in the gene/reporter
box, All the tracks created in the Custom Track manager are available for selection in the ‘userdefine’-main
group of tracks, as a group separator choose inss stage, in this example we have switched off al the default
tracks and selected the two custom tracks we have created.

Figure 22: Select the Track created in the Custom track manager; u-lowgradvs4vs4s

4. The expression of MYCN is plotted in the different groups of the inss stage (Figure 26). Extra Graph Option
has been set to Track and Gene Sort. Note that the other track of mycn_bin groups the highest bin groups
corresponds with the stage 4 group. Which also holds for the lower bin groups which are aligned with
stage stage4s, stage 4s is known to have a better prognoses . There is also overlap with the custom created
k-means generated tracks.

Figure 22: Tracks created are visualized underneath the graph

5. Another convenient option from the “custom track manager” is the export function which enables you to
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manipulate your tracks manually outside R2. This could be of use when your want to share tracks with other
users or create new custom tracks. One reason you want to use the export function is to fix the ordering
of your samples when generating a heatmap. Make sure you already have a personal custom track (not a
temporary track, 24h). Select ‘Manage default Tracks’ from the User Options > Tracks menu (Figure 18)
and click next. Here select the dataset of interest , only datasets which have a corresponding personalized
track are represented in the pulldown menu. Click the “Copy/delete/rename/export Tracks” button. Here
select the personal track , “export” operation and r2_track at “ export as”. Click execute” and download link
with the track name can be loaded by clicking the right mouse button.

23.7 Step 6: Cooperate through R2: sharing tracks, creating com-
munities

1. Cooperation is of great importance in scientific research. You may want to share the tracks created above
with other people in your group. For this reason R2 features the Communities feature. Communities are
different from user groups, which is important to remember. User groups are granting a user access to
datasets and their associated annotation, or may unlock restricted functionalities within the R2 platform.
On the other hand, communities are a way by which any user can share grouping variables (tracks), lists
of genes ( gene categories), megasampler presets or genome browser views with any (group of ) other R2
user(s). A user can generate multiple communities and invite other users to share such feature with.

Creating a community is done by clicking ‘Community’ in the ‘User Options’ menu (Figure 23).

Figure 23: Community in the User Options menu

2. Since this will be the first time in the community section, there are no communities yet; click the ‘Start a
new Community’ link (Figure 24).
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Figure 24: Starting a community

3. In the Community window a name has to be set and a short description for people invited as members for
this group ( Figure 25). Through a community you can share your own Gene sets,Tracks and Settings.

Figure 25: Setting the Community group name and description.

4. Click ‘Next’; you’ll be notified that the group has been created; return to the Communities Center by
clicking the Community link again in the User Options menu (Figure 27). The TestGroup has been created
(next to the already existing MyTestGroup for this user). Click the link to start adding users (Figure 30).

Figure 26: The available Communities for this user

5. Once the community is generated, you can also manage the community from the communities center.
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Figure 27: Managing of the community

6. You have to add users; You can invite R2 users to your group by sending them an invitiation link. we will
create a link with ‘create invitation’. For your own personal recollection you can specify a target recipient.
Here we have used “my invitee”.

Figure 28: Creation of an invitation for your community

7. Once you create the invitation, then a message will be provided that you can send to the person you want
to invite to your group. This you can do by using the template in an email or by sharing the provided link
via other means. Please do note that invitations to join your group are valid for a limited time only. How
long an invitation is still valid can always be checked in the ‘invite users’ option. you can always revisit the
invitation or extend it using the ‘view/renew’ button.
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Figure 29: R2 invited users option

8. The user that has received a link, needs to be logged into their account and can then visit the provided link.
This will allow the user to accept the invitation.

Figure 30: The invited user will see a message where the user can accept the membership of the group

Once the invitation is accepted by the user, you can see this within your community as well.

Figure 31: Once accepted, the user is a member of the group

9. When the invitation has been accepted the user is available in this community. By default an invitee will
become a member, who can only see what you are sharing via your community. Next to the label that you
have generated yourself, you will also see the username and email address of the member that accepted the
invitation (also to make sure the intended user became member). For any of the members, there is also the
possibility to increase the rights of a member, by making the user ‘content manager’, or (co-)owner.
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Figure 32: The user is now visible as a member of the group.

1. When you will add a custom gene set, track or preset the next time, it will be possible to make this available
to any of the communities that are yours, or where you have been granted access as content manager.

Figure 33: As an example here the creation of a gene set and the assignment to a Community.

2. Managing the tracks, gene categories and megasampler presets is done in a similar way as has been shown
in the user tracks and user categories at the beginning of this tutorial. my invitee, as a member of this group,
can manage the tracks that have been shared with this user via the default track manager.

23.7. Step 6: Cooperate through R2: sharing tracks, creating communities 241

_static/images/AdaptingR2/AdaptingR2_Community_member_roles.png
_static/images/AdaptingR2/AdaptingR2_CommunityCategory.png


R2 Tutorials, Release 3.3.4

23.8 Final remarks / future directions

Some of these functionalities have been developed recently. If you run into any quirks or annoyances don’t hesitate
to contact r2 support (r2-support@amsterdamumc.nl).

We hope that this tutorial has been helpful, the R2 support team.
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CHAPTER 24

Exporting data

Export (filtered) normalized data for additional analysis outside of R2

24.1 Scope

• Export gene expression data with the ‘Data Grabber’ functionality directly from the main menu of R2
(http://r2platform.com / http://r2.amc.nl)

• Export focussed gene expression data in R2 after an analysis (result).

24.2 Step 1: Using Data Grabber

1. In the main menu select ‘Tools’ > ‘Data Grabber’. A dropdown menu appears from where you can select
the dataset of interest and click ‘next’.
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Figure 1: In the main menu “Data Grabber

2. A settings menu appears where several filter options can be applied to the data you want to export. You
may optionally select a track (subset) to filter the samples by the annotated groups; in this example select
“inss (cat)” and select one or more stage(s). Be sure to click the red ‘confirm’ link to enforce your selection
before proceeding.

3. In the ’reporters’ section, by default, a specific set of reporters (either reporter names or genesymbols) can
be selected via copy/paste a set of genes in the “input_identifiers” box. Another option for the reporter
selection would be the ‘HugoOnce’, where only a single reporter is chosen for all of the genes annotated
within the dataset, and where orphan reporters are omitted. In this example we are interested to perform
an additional analysis outside R2 with all reporters for several stages. In the menu select “HugoOnce” and
click ‘next’.
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Figure 2: Filter options for exporting data.

A “datagrabber.txt” hyperlink is generated on the fly and appears on your screen. Right-click the link and store the
tab delimited file with expression data on your hard drive. In case a dataset contains more than 60.000 reporters
and/or exceeds 300mb in size, then R2 only allows up to 60.000 reporters to be exported. This restriction is
imposed due to the large file-sizes which would have to be created. You can always drop r2-support a note, if you
require these large datasets as a whole.We will then dispatch those via other means (via a file transfer service).

24.3 Step 2: Other formats: TMEV, tab separated, etc

The example listed above shows that R2 facilitates the export of data without performing any analysis. Of course
you may want to do the same after analyzing data in R2. In most of the analyses options you can export the data
via the right menu.

1. To illustrate this option. Select in the main screen in box 3 “Find Correlated genes with a single gene”.

2. Type “MYCN” in box and click ‘next’, in the next screen leave all the selection criteria at their default
settings and click ‘next’.

3. A list of genes significantly correlating (up and down) with the MYCN gene is generated. The right menu
provides you with a set of options to continue your analysis including exporting data.

Figure 3: Continuing your analysis.

4. Click on “MakeMeATable (TMEV) ready” in a new (tab) screen you can download the table matrix with the
corresponding annotation by using the right click of your mouse. The generated table can be used directly
in external programs such as the commonly used clustering program as the TIGR Multi experiment viewer
(TMEV) which is freely available.

5. Try also the other options listed in this menu, ‘save current . . . .’, ‘reference for . . . ’ and “Store results . . . .
These are all different formats to export your results for use outside R2 or store in R2 to continue your
analyses at a later time-point.

Did you know that you can export data from different types of modules?

Using a different module such as “Time Series” also provides the option to export the results of use
outside R2 or at a later time point within R2.

Note: If the requested file size exceeds ~200MB, R2 will terminate the request because of the system load. Or
course there is a workaround by mailing the r2-support@amc.nl and request for the dataset expression values of
interest.

24.4 Final remarks / future directions

We hope that this tutorial has been helpful,the R2 support team.
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CHAPTER 25

R2 Dataset Addition

How to add your own or publicly available datasets for analysis in R2

25.1 Scope

• Learn how to add your own datasets to R2

• Have datasets added that are published in literature.

25.2 What to prepare when you would like to have a dataset added

R2 allows users / groups to have their own (private) human / mouse datasets added to the platform, which enable
them to analyze their own data from anywhere in the world, as long as they have access to the internet. Such
datasets can be added with various access policies, ranging from public to restricted to a single user. The current
document describes all that you need to know about the addition of datasets in R2, and will also show you how
files should be prepared.

25.3 Who can add datasets to R2

Most often, users would like to analyze their data, in combination with datasets already present in the R2 database.
For example, one would like to compare the extend of expression, compared to other tissues (the so called
MegaSampler). One can imagine that such analyses require identical processing for all datasets of the same
platform (provided that the normalization scheme supports this). For that reason, we have decided that only ad-
ministrators of the R2 platform can add new datasets, since they understand the R2 platform architecture and can
supervise / guide the upload procedure.

25.4 Addition of a public dataset from the GEO database

Having a public dataset added to R2 from the NCBI GEO database is by far the easiest. Depending a bit on
whether the array platform is already used within R2, such datasets can be added fairly quickly. In most cases
you only have to send an email to r2-support@amc.uva.nl stating the GEO series identifier GSE***** and one
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of the administrators will take care of the rest. One note for your consideration though. Since the R2 platform
has initially been designed to work with Affymetrix microarrays, it works best with single channel platforms. We
do also incorporate dual channel datasets, but always warn for potentially unwanted behavior. For the addition of
Affymetrix datasets, we preferably would like to be able to work with the raw data (CEL files), so please make
sure that those are attached in the GEO series.

The GEO database can be browsed from http://www.ncbi.nlm.nih.gov/geo/browse/?view=series

25.5 Addition of personal datasets

Within R2, we also house datasets that are provided by authors which are not (yet) available in the public domain.
In some cases these are made publicly available, but most often, some form of restricted access in enforced on
them.

25.6 Access levels

R2 can provide access to datasets on a number of levels. The default access model provides public access to
a dataset to anybody using R2. Within R2, datasets can also be made accessible to a group of users. Such a
construction is ideal for departments where more people want to make use of the information. Also consortia can
make use of this access model. Finally, datasets can also be made accessible to single users. In all of the cases
where restricted access is involved, users should create a (free) personal account for R2, and be granted access by
an R2 administrator. Requests for access to a group should be send by the owner of a group, or such an owner
should at least be cc-ed in the email correspondence. Additional owners of a group or transfer of the ownership to
another person can be done achieved by email to r2-support@amc.uva.nl from the current owner. If your research
group already has data in R2, then you should already know the name of your user-group.

25.7 Preparing the expression data

When the data to be uploaded originates from Affymetrix gene expression platforms, and you would like to have
the data added in the standard way, then we prefer to have the original CEL files send to us by www.wetransfer.com
or a similar service. We can then add the dataset in such a way that it can be used in conjunction with the publicly
available datasets from the same platform and normalization scheme. If normalization schemes, other than the
mainstream MAS5.0, RMA, gcRMA, or RMA-sketch are preferred, then you should perform the normalization
yourself and send us the normalized data as a matrix (like a tab delimited export from an Excel sheet). A data
matrix should be constructed in the following manner: the first row is considered to be the header and should
preferably start with the following sign #H: for the 1^st^ column. The 1^st^ column should contain the reporter
IDs of the platform (such as probe sets, in the case of Affymetrix). If you are not sure which column represents
the reporters that can be used in R2, then please ask by email (Especially Illumina arrays contain a number of
fields that look usable). The signal values (preferably non-transformed) of the samples can then be added in
subsequent columns, where the 1^st^ row should contain the sample identifier (that needs to be identical to the
sample identifier in the annotation file). R2 can perform a range of transformations (such as log2) on the data
itself, thereby allowing the most flexible use of your expression data, if provided in a non-transformed fashion.
The figure below shows an example for an Affymetrix array.

Figure1: Example
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A number of platforms and/or normalizations not only provide a signal intensity, but can also express the like-
lihood that a reporter is considered expressed (like present calls or detection p-values for Affymetrix U** plat-
forms). Such information may be provided in the matrix file by addition of an additional column (then named
sample_pval). Alternatively, every sample may be provided in a separate tab delimited text document, where
multiple columns can then be provided for a sample.

25.8 Preparing the gene annotation

If a platform has already been added to the R2 database, then there is no need to supply gene annotation again.
If a new platform has to be added, then we require at the very least a list of all the reporters, together with
their mapping to the genome (for human preferably HG18/NCBI36; for mouse preferably mm9). Furthermore,
the relation between reporters and genesymbols as well as gene ids (NCBI Gene) would speed up the process
of adding a new platform. In many cases, vendors of the arrays make annotation files available for download.
Usually a link to such an annotation will also be sufficient. In case of doubt, please contact us by email.

25.9 Preparing the sample annotation

Expression data is not very useful without proper annotation. Annotation is provided in a separate tab delimited
text file. Here the 1^st^ column contains the sample names and any subsequent column is treated as an annotation
field (termed tracks within R2). Please refrain from using special characters within the annotation. Also, spaces in
track naming should be avoided (use _ instead). An example of an annotation file can be seen in the image below.
You can add as many tracks as you like / find useful. There are a number of special tracks, which you can make
use of, which will now be described.

Figure2: Example2

Besides providing the annotation for usage in R2, you can also specify how R2 makes use of these annotations,
specifically in graphical representations. To make this known, you can prepare a “relate” file for R2. This docu-
ment comprises of a number of columns that can be provided for the different tracks. Below, you can see a section
of such a relate file.

Figure 3: Example3

Please make sure that the header of the relate file is identical to the example, and that the tracknames match to the
ones that have been defined in the sample annotation. The “istrack” column tells R2 whether the annotation needs
to be drawn as color coded information below YY-plots, and headers of heatmaps. The “isinfo” column defines
whether the information is displayed in the table once you hover over a sample in graphs within R2. “visible”
can enable/disable the use of a track. The “color” column can preset a specific color to groups which are defined
within a track. These can be indicated by groupname:hexcolor. The different groups are then separated by the “;”
sign. It is not required to supply this information. R2 will color groupnames automatically if such information
information is not encountered. Finally, you may describe the contents of a track.
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25.9.1 Special sample annotation

Within R2, some well-defined sample annotation labels and/or additional files, enable additional functionalities.
Below, an example is described for both.

Survival information: When the dataset contains survival information, then R2 can make use of this to draw
Kaplan Meier plots. To do so, R2 requires a separate tab delimited text document with a strictly defined header
and some rules. Any line starting with # is considered comments, and will be excluded. There is 1 exception
to this rule, which if formed by the #H: combination, which will be interpreted as a header row. A survival file
should contain a header line that is identical to the example given below, as R2 will then recognize it as such.
How an event is defined, may differ (overall / relapsefree etc). This can be expressed in the name of the file that is
being provided. For example, the file below would be named “overall.txt”. Subsequent Kaplan curves would get
the name “overall survival” on the y-axis.

Figure 3: Example3

Time series graphs: When the samples are annotated with the appropriate tracks, then R2 can also present datasets
as time series. When R2 encounters a column named “r2_ts_timepoint”, combined with either “r2_ts_profile”
and/or “r2_ts_series”, then this will enable the option to represent the dataset as a time series (where sam-
ples/groups are connected by a line following the time variable). Profiles are intended to connect a single experi-
ment or the following of a single subject in time. Series are intended as the grouping of profiles (for example bio-
logical replicates of an experiment), which will also create error bars on the measurements. The “r2_ts_timepoint”
annotation should only contain numerical information (the time, in whatever scale you prefer (minutes / hours /
days)). The other 1 or 2 annotations should provide a grouping label (which would be useful for you). In case of
doubt on the usage of these annotations, do not hesitate to get in contact with us via r2-support.

Figure : Example 4

25.10 Describing your dataset

Within R2, your dataset will get a name, so that you can find it back for analyses. For dataset naming the
program makes use of a small number of parts (some of which can be influenced by you). For example, the
department of oncogenomics has made its Neuroblastoma dataset available in R2 with the following name “Tumor
Neuroblastoma public - Versteeg - 88 - MAS5.0 - u133p2”. The naming is achieved by the following parts:

1. Dataset Class. For Human datasets, one can choose from the classes defined below in italic:

• Cellline: Usually used for cell line panels, where no intervention was applied

• Disease: Datasets, where a specific disease has been investigated, other than cancer

• Exp: Experiment datasets. Usually cell line models in which interventions have been applied (Gene trans-
fection, rna interference etc)

• Mixed: If a dataset makes used of multiple items, then it becomes a mixed set

• Normal: The profiling of healthy normal material
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• Tumor: Datasets which are composed of a specific tumor type belong in this category

2. Tissue. Depending a little on the choice of class, usually a description of the tissue / tumor is given in the
second part. In the example, this was “Neuroblastoma”, but this could also be “Breast” or “Colon” if such a
dataset was described. For experiments, the tissue or tumor type is also often described, to make sure that datasets
with the same theme are close together. If we would describe the shRNA knockdown of the MYCN gene in
the neuroblastoma cell line IMR32 for example, then this would become “Exp Neuroblastoma IMR32 MYCN
shRNA”.

3. Author. Finally, you can supply the author / consortium in naming your dataset. This should be self-
explanatory.

R2 will add the number of samples within the dataset, a normalization scheme and finally also a code representing
the platform which has been used. If you are supplying a dataset other than Affymetrix gene expression arrays
(Exon or U***), then you should provide us with the normalization, and platform used as well. The platform,
doesn”t have to be the code that R2 uses, but can also be described by the manufacturer and the array ID.

Optionally, you can also describe your dataset in more detail in the following fields (which are also shown if you
click on the “i” image next to a dataset). Title: 1 line description of your dataset. Summary: free text option to
describe your dataset in as much detail as you wish (See also GEO for examples). Design: free text describing the
design of your dataset (See also GEO for examples).

We hope that this document has been helpful in preparing your dataset for inclusion in R2,

R2 support (r2-support@amc.uva.nl).
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CHAPTER 26

Graphs: Adjustable Settings menu versus Repsonsive Settings

Adapt and export graphs in R2

R2 often offers the user settings to adapt or enhance the looks of a visualization. Adaptations could be purely
aesthetical preferences, but often they are functional, for instance to overlay the plot with extra layers of informa-
tion.Traditionally, the user can control such settings with an Adjustable Settings menu that is placed underneath
many graphs in the platform. Adjustments in the settings of these graphs take effect after the button at the bottom
of the menu is hit. Increasingly, the platform offers responsive controls as well: when a setting is adjusted, the
changes in the menu are directly visible in the graph without the need to click any submit button. Certain graph
elements can even be adjusted directly within the plot interface. Plots that offer responsive functionalities can
be recognized by a settings wheel in the upper left corner of the graph. Some options may not be immediately
evident to users, however, they facilitate swift adaptability. Therefore, this chapter aims to show a few examples
as showcases of how to tweak the plots with the different setting types.

26.1 Example settings: color the sample maps

In the Sample maps module, underneath the scatter plots we can find the R2-wide grey Adjustable Settings menu
and a Color settings menu. Options listed in these menus require the user to press the “Set [setting name]” button
in order for the requested changes to the specific setting to take effect. For instance, here the graph colors can
be set to the colors of a track, or they can be set to the expression levels of a gene. This setting requires the user
to click on the button “Set colors” in order to take effect.Other settings can be adjusted directly in the plot itself.
When your mouse hovers over the legend categories, an information pop up tells you that the respective subgroup
of samples can be toggled off and on in the plot with a click on the legend box. Also, a click on the legend title
“histology” will invert the selection. If all groups are shown, which is the default situation when you color a map
with a track, then the invert option will deselect all groups leaving the plot blank. One more click allows you to
subsequently single out a subgroup quickly. With one more click you then toggle one or a few groups on.

Figure 1: Submit buttons (color by track) vs responsive settings (toggle legend subgroups)

In the animation below, we show several responsive settings that you can find in various graphs in R2. In responsive
graphs, samples can be marked with a click on the sample in the graph; you can zoom in and out with the scrolling
wheel of your mouse and the graph can be repositioned by dragging the plot while holding the right mouse button.

Figure 2: Zoom in / out and reposition the plot, mark a sample
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Some graphs offer additional responsive options outside the graph. Below the animation shows several other
options in the Sample maps module.

Figure 3: Adapt dot size / add border/ copy paste to powerpoint
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CHAPTER 27

Concepts of R2: did you know..?

Did you know. . . that throughout the R2 manual many tips and tricks are provided in small blocks of text contain-
ing practical guidance and theoratical background for the analysis at hand? These explanetory blocks start with
the phrase “Did you know..”. This chapter aims to centralize the information of the most essential concepts and
settings of R2, such that it is easy to integrate these options and understandings in your own analysis.

Jump to one of the sections:

• Statistical terms used in r2 explained?

• Statistical tests in Differential expressed genes?

• Often used settings for analyses

– Statistics in analyses

– When to use multiple testing

– Hugo Once

– Use subsets of genes with Gene Filters

– Transform expression levels

• Core concepts of R2

– Annotation of samples with Tracks

– Gene subsets a.k.a Categories

– Summarize the behavior of a list of genes with a Signature Scores

27.1 R and p-values

R: is the correlation coefficient; it ranges from -1 to +1. If R > 0 the value of two variables tends to increase or
decrease together. If R < 0 the value of X increases if that of Y decreases, if R~0 there is no relation.Perhaps
the best way to interpret the value of R is to square it. This is the fraction of the variance in the two variables
that is shared.For example, if R^2 = 0.59 then 59% of the variance in Y can be explained by (or goes along with)
variation in X.The p-value for this calculation estimates the probability that this is an observation by pure chance;
a p-value of 0.01 you can be 99% sure that this is not the case.

t-statistic: used to calculate the t-statistic for testing the significance of a correlation coefficient (R) between two
variables. Here’s a breakdown of the components:
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• t: This is the t-statistic, a measure of how many standard deviations a data point is from the mean. In the
context of correlation, it is used to test whether the observed correlation is significantly different from zero.

• R: This represents the correlation coefficient between the two variables. It measures the strength and direc-
tion of the linear relationship between them. R ranges from -1 to 1, where -1 indicates a perfect negative
correlation, 1 indicates a perfect positive correlation, and 0 indicates no linear correlation.

• r: This is the sample correlation coefficient, representing the strength and direction of the linear relationship
in a sample of data.

• n: The number of pairs of data points in the sample.

The formula involves taking the correlation coefficient (R) and adjusting it based on the sample size (n). The
denominator is essentially the standard error of the correlation coefficient. By dividing R by this standard error,
the formula produces a t-statistic that can be compared to critical values from a t-distribution to determine the
statistical significance of the correlation. If the absolute value of the t-statistic is large, it suggests that the correla-
tion is likely to be statistically significant. The degrees of freedom for the t-distribution are given by (n-2) in this
context. t = R/sqrt((1-r^2)/(n-2)), where R is the correlation value and n is the number of samples. Distribution
measure is approximately as t with n-2 degrees of freedom.

27.2 Statistical tests

In the modules Differential expression between (two) groups, various statistical tests can be utilized to find the
differentially expressed genes between two or more groups.

• two group differential expression.

– T-test. For normal distributed and continous data, see ANOVA explanation below.

– Mann-Withney-test. The Mann-Whitney U test is used to compare differences between two indepen-
dent groups when the dependent variable is either ordinal or continuous, but not normally necessarily
distributed, such as a skewed distribution.

– Log2 foldchange: How is de log2 foldchange calculated: Log2 (untrans-
formed(group1)/untransformed(grp2))

– Limma: Over the past decade, limma has been a popular choice for gene discovery through differential
expression analyses of microarray and high-throughput PCR data, moe information can be found here
Limma:NCBI. Limma:BioC.

– DESeq2 algorithm: Differential expression analysis based on the Negative Binomial (a.k.a. Gamma-
Poisson) distribution. The algorithm uses raw integer read counts for control and e.g treatment condi-
tions.DESeq2:BioC.

– Data slot (DESeq2) slots in r2: When using a dataset with DESeq2_rlog / vst normalized, you will
find three different slots. The count, data and normcount slot. Within the dataset,

* The ‘count’ contains the read counts and is used by default for DESeq2 analysis within R2. These
are non-normalized counts, not intended for visualization of samples in a data set. However, it
can sometimes be informative to be able to see what was the true source data.

* The ‘normcount’ are the normalized read counts, those are obtained with the DESEq2 package
and adjusts for the library size between the samples. This normalization procedure scales the
counts by dividing them by size factors, which are estimated based on the median of the ratio of
observed counts to the geometric mean for each sample.

* While ‘data’ refers to the ‘standard’ normalized data that R2 will use by default for visualizations.
This slot will represent itself as the normalization you also see in the dataset title. For DESeq2,
the preferred choice for normalized data is rlog values. The DESEq2 aims to stabilize the variance
on the raw counts applying a Bayesian Shrink estimator. Some notes about the rlog (data slot),
actually what rlog does is adapt the very low gene expression values by elevating them a bit. These
very low values tend to result in higher fold changes and occasionally also survive pvalue cutoffs.
By elevating those, you reduce this problem, while you preserve the differential expressions at
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the more highly expressed genes. The calculation of rlog is pretty CPU intensive. for bigger data
sets (30-40+) we can also use vst, variance stabilizing transformation, which will add the same
value to all measurements, to avoid the low expression values issues.

* Additional ‘slots’ can be defined in some data sets. We typically obtain data matrices from public
sources, which allow you to replicate the authors findings in the easiest way. Other ways of
representing the data can then also be defined. For example, some also add TPM values to the
DESeq2 generated data. These can also be propagated in R2 as separate slots. The concept of
using slots is not confined to the DESeq2 data sets in R2, but can be in use wherever it can be
useful to represent the data in multiple ways. When multiple slots are available, then there will be
a dropdown in the ‘Data transformation’ section named ‘Values’, where you can select the slot
to use.

R2 uses DESeq2_rlog and DESeq2_vst in the dataset name annotation meaning that the selected
dataset has been processed with the DESEq2 algorithm but depending on the size of the dataset the
rlog value is used or the vst values. Generating the rlog values is a time consuming process so we use
a cut-off for n > ~30 to take the vst values in the dataslot. Both methods have their similarities and
some differences.

Dataslots.

Distribution types.

• Differential expression between groups

– ANOVA: This ANalyis Of VAriance is a statistical test that calculates whether the means of variables
differ between two or more groups. In the case of 2 groups, this is identical to the student T-test.
ANOVA can be considered a sound test when the variables are normally distributed and samples are
independent.

– Kruskal-Wallis: You have non-parametic data and more then 2 groups, in this test the data is replaced
by their rank position. I case you want to indentify the difference between specific groups such as
group 1 vs 2, 2 vs 3 you should use the Mann-Withney test for two group comparisons.

– Pair-wise tests: T-test is performed for all pair-wise group combinations

27.3 Settings for analyses

R2 provides a range of settings for each analysis. Here we explain the background of some recurring concepts and
we provide guidance for the use of the different options.

Statistics panel: R2 determines p-values for the differential expression of genes by performing either a one-
way anova (default setting) or alternatively a brute-force t-test on any combination of groups when the data is
untransformed or log2 transformed. For rank-transformed data, a Kruskal Wallis test is performed. Besides these
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statistical tests, users can also ask for genes with a certain fold change or obtain a top-X list of the genes which
are ordered by a user-specified test.

Correct for multiple testing: Often we are testing a lot of genes in an analysis such as differential expression
between groups (Chapter 6). If this is true for your analysis, you have to correct for multiple testing. Why? Let’s
look at an example.One might declare that a coin was biased if in 10 flips it landed heads at least 9 times. Indeed,
if one assumes as a null hypothesis that the coin is fair, then the probability that a fair coin would come up heads
at least 9 out of 10 times is (10 + 1)x(1/2)^ 10 = 0.0107. This is relatively unlikely, and under statistical criteria,
such as p-value < 0.05, one would declare that the null hypothesis should be rejected i.e., the coin is unfair.A
multiple-comparisons problem arises if one wanted to use this test (which is appropriate for testing the fairness of
a single coin), to test the fairness of many coins. Imagine if one was to test 100 fair coins by this method. Given
that the probability of a fair coin coming up 9 or 10 heads in 10 flips is 0.0107, one would expect that in flipping
100 fair coins ten times each, to see ;a particular;(i.e., pre-selected) coin come up heads 9 or 10 times would still
be very unlikely, but seeing any coin behave that way, without concern for which one, would be more likely than
not. Precisely, the likelihood that all 100 fair coins are identified as fair by this criterion is (1 - 0.0107)^100 ~
0.34.. Therefore the application of our single-test coin-fairness criterion to multiple comparisons would be more
likely to falsely identify at least one fair coin as unfair. This occurs in a similar way if we are testing multiple
genes in one experiment; we have to correct for this. There are several ways to do so;

• A conservative approach is the Bonferroni correction. The correction is based on the idea that if an experi-
menter is testing n dependent or independent hypotheses on a set of data, then one way of maintaining the
familywise error rate is to test each individual hypothesis at a statistical significance level of 1/n times what
it would be if only one hypothesis were tested. So, if it is desired that the significance level for the whole
family of tests should be (at most) a, then the Bonferroni correction would be to test each of the individual
tests at a significance level of a/n.

• The more sophisticated False Discovery Rate controls the expected proportion of false positives. A FDR
threshold is determined from the observed p-value distribution, and hence is adaptive to the amount of signal
in your data. In R2, the FDR is selected by default , the cut-off value is 0.01; note that the FDR test is also
known as the Benjamin-Hochberg test.

Hugo Once (hugoonce): For most analyses genes should only be reported once in a dataset. R2 uses an algorithm
called Hugoonce to choose a single probe-set to represent a gene. For each probe set of a gene, the average
expression over all samples with a present call (from the MAS5.0 normalization) is calculated (average present
signal APS). The probe set with the highest signal is chosen to represent this gene in the analyzed dataset. For
every dataset this procedure is repeated, thereby allowing tissue specific selection for probesets to represent a
gene. When no call information is available, the average expression of a probeset is used. In platforms other
than Affymetrix, we try to generate a similar score if a notion of being expressed is available. Illumina arrays for
example can contain such information. For RNA-seq data, FPKM/RPKM/TPM estimates for a particular gene can
be 0. These are also defined in R2 to be Absent or not expressed. The expression calls can also be useful to limit
the number of tests that need to be performed, and thereby reduce the multiple testing penalties. Genes that are
not considered to be expressed in any of the samples in a cohort can be omitted for a valid reason.

Gene Filters: The gene filters allow you to study a specific subset of genes only. There are several domains you
can choose from.

• A specific chromosome can be chosen. Note that when a chromosome is chosen, a specific position range
can be defined as well.

• Under GeneCategory some predefined categories can be selected, e.g. some examples are known transcrip-
tion factors or drugtargets. Here you’ll find the categories you’ve defined yourself also. Kegg pathway
selects a set of genes present in the KEGG pathway database .

• Gene Ontology selects a group of genes belonging to a specific Gene Ontology category
(www.geneontology.org). Note that if you click a category, further choices deeper down the ontology tree
are enabled. Click again on the same dropdown menu to view categories further down the tree.

• Genesets are publicly defined sets or sets you’ve constructed yourself (see for detailed instructions the tuto-
rial “Adapting R2 to your needs”). A convenient search functionality is available to find what you’re looking
for. Also in this dropdown feature subsets might be provided once a geneset is selected.Combinations are
possible as well; this enables you for example to find the developmental genes on chromosome 1.

Transform: Converting expression levels with the “transform” option can help you to gain additional insight.
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There are several data transformations available. Note that within R2 most of the data in the resources is stores
untransformed, such that you can apply all the transformations within the tools itself.

When to choose which transformation?

• “none”: Raw untransformed expression values, as they are represented in the R2 database.

• “2log”: logarithmic values with base of 2. Every increment constitutes twice the amount.

• “rank”: Data transformation in which numerical or ordinal values are replaced by their rank when the data
are sorted by expression. This transformation is useful for non-parametric statistical tests.

• “log2 zscore”: 2log transformed data, centered around the average and expressed as the number of standard
deviations from the average. This is the most common option.

• “zscore”: raw intensity values, centered around the average and expressed as the number of standard devia-
tions from the average. This transformation is useful when the intensities in R2 are not raw, but for example
logfolds as is often the case for aCGH data.

• “mad/mad2log”: Median absolute deviation (on raw values, or log2 transformed values).

• “center/log2center”: Expression values centered around 0 (on raw values, or log2 transformed values).

• “zcore_group”: Coverts the expression levels from the zscore within a group (track). Applicable when e.g
technical variation in expression levels is expected. A possible reason could be when samples from the same
dataset originate from different centers.

27.4 Core concepts of R2

Tracks: In R2 the samples of a dataset can be annotated with e.g clinical data or molecular biology parameters,
each group of annotated data is called a “Track” in R2. These tracks can be used to filter datasets, to compare
groups of samples, to color scatter plots of samples with meta information, or to correlate genomics patterns in
your data to e.g. different phenotypes or demographic characteristics.Tracks are sample, and therefore, dataset
specific. Most datasets contain default tracks when they are uploaded in R2, but every user can define their own
custom made tracks for any available dataset, disable/adapt the settings for default tracks or store their analysis
outcome as a track to use in further track-related analyses. User defined tracks are privately visible, but can be
shared in user defined R2 communities with other R2 users.To play around with the concept, check out the tutorial
on the One Gene View analysis, the chapter on Annotation Analyses, or find out how to make your ownn tracks in
chapter Adapt R2 to Your Needs.

Categories: Gene sets in R2 are called Categories. These categories enable the user to narrow down an analysis to
a specific set of genes that is relevant to their biological question (see Gene Filters in the Settings section above).
Users can define custom made Categories or store genes that resulted from an analysis for future use. Follow the
tutorial Using Signatures for a better understanding of the possibilities of Categories; check out the section on
Gene Categories in Adapting R2 to your needs to learn how to create you own Categories.

Signature Score: Within R2, we can convert the behavior of a list of genes into a signature score that can be
calculated for all samples within a particular dataset. This signature score is simply defined as the average zscore
of a zscore transformed dataset (the standard way of visualizing a heatmap). We like to think of it as a “meta”-
gene: a summary expression value of a group of genes for each sample of a dataset. In R2, such scores are
automatically generated when one generates heatmaps via the “view a geneset” function. Because each sample of
a dataset will be attributed with a value for the signature score, R2 enables the user to store this signature score as
a Track for further analyses with the dataset. For a better understanding of Categories as well as Signature Scores,
follow the tutorial Using Signatures.
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