

 Navigation

 	
 index

 	
 next |

 	quoter 1.6.5 documentation

quoter

quoter provides a simple, powerful, systematic way do accomplish
one of the most common low-level operations in Python programming:
combing strings and data objects into other strings. It does so with
remarkable intelligence, including for complex textual langauges
such as HTML and XML.

	Introduction

	Discussion

	We Can Do Better

	Cloning and Setting

	Formatting and Encoding

	Shortcuts

	Style Sets

	HTML

	XML

	Named Styles

	Dynamic Quoters

	Markdown

	Joiners

	API Reference

	Notes

	Installation

 Copyright 2015, Jonathan Eunice.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	quoter 1.6.5 documentation

Introduction

quoter provides a simple, powerful, systematic way do accomplish
one of the most common low-level operations in Python programming:
combing strings and data objects into other strings. For example:

from quoter import *

print single('this') # 'this'
print double('that') # "that"
print backticks('ls -l') # `ls -l`
print braces('curlycue') # {curlycue}
print braces('curlysue', padding=1)
 # { curlysue }

Cute...but way too simple to be useful, right? Fair enough. Any of
those could have been programmed with a simple utility function.

Let’s try something more complicated, where the output has to be
intelligently based on context. Here’s a taste of quoting some HTML
content:

print html.p("A para", ".focus")
print html.img('.large', src='file.jpg')
print html.br()
print html.comment("content ends here")

Yields:

<p class='focus'>A para</p>

<!-- content ends here -->

This goes well beyond “simply wrapping some text with other text.” The
output format varies widely, correctly interpreting CSS Selector-based
controls, using void/self-closing elements where needed, and using
specialized markup such as the comment format when needed. The HTML quoter
and its companion XML quoter are competitive in power and simplicity with
bespoke markup-generating packages.

A similar generator for Markdown is also newly included, though it’s a the
“demonsration” rather than “use in production code” stage.

Finally, quoter provides a drop-dead simple, highly functional,
join function:

mylist = list("ABCD")
print join(mylist)
print join(mylist, sep=" | ", endcaps=braces)
print join(mylist, sep=" | ", endcaps=braces.but(padding=1))
print and_join(mylist)
print and_join(mylist[:2])
print and_join(mylist[:3])
print and_join(mylist, quoter=double, lastsep=" and ")

Yields:

A, B, C, D
{A | B | C | D}
{ A | B | C | D }
A and B
A, B, and C
A, B, C, and D
"A", "B", "C" and "D"

Which shows a range of separators, separation styles (both Oxford and
non-Oxford commas), endcaps, padding, and individual item quoting. I daresay
you will not find a more flexible or configurable join function
anywhere else, in any programming language, at any price.

And if you like any particular style of formatting, make it your own:

>>> my_join = join.but(sep=" | ", endcaps=braces.but(padding=1))
>>> print my_join(mylist)
{ A | B | C | D }

Now you have a convenient specialized formatter to your own specifications.

Discussion

Programs stringify and quote values all the time. They wrap both native
strings and the string representation of other values in all manner of
surrounding text. Single quotes. Double quotes. Curly quotes. Backticks.
Separating whitespace. Unicode symbols. HTML or XML markup. Et
cetera.

There are a lot of ways to do this text formatting and wrapping. For
example:

value = 'something'
print '{x}'.replace('x', value) # {something}
print "'{0}'".format(value) # 'value'
print "'" + value + "'" # 'value'
print "{0}{1}{2}".format('"', value, '"') # "value"
print ''.join(['"', value, '"']) # "value"

But for such a simple, common task as wrapping values in surrounding text,
these look pretty ugly, low-level, and dense. Writing them out, it’s easy to
mistype a character here or there, or to forget some of the gotchas. Say
you’re formatting values, some of which are strings, but others are integers
or other primitive types. Instant TypeError! Only strings can be
directly concatenated with strings in Python.

The repetitive, ad hoc nature of textual quoting and wrapping is tiresome
and error-prone. It’s never more so than when constructing multi-level
quoted strings, such as Unix command line arguments, SQL commands, or HTML
attributes.

quoter provides a clean, consistent, higher-level alternative. It also
provides a mechanism to pre-define your own quoting styles that can then be
easily reused.

We Can Do Better

Unlike native Python concatenation operators, quoter isn’t flustered if
you give it non-string data. It knows you want a string output, so it
auto-stringifies non-string values:

assert brackets(12) == '[12]'
assert braces(4.4) == '{4.4}'
assert double(None) == '"None"'
assert single(False) == "'False'"

The module pre-defines callable Quoters for a handful of the most
common quoting styles:

	braces {example}

	brackets [example]

	angles <example>

	parens (example)

	double “example”

	single ‘example’

	backticks `example`

	anglequote «example»

	curlysingle ‘example’

	curlydouble “example”

But there are a huge number of ways you might want to wrap or quote text.
Even considering just “quotation marks,” there are well over a dozen [http://en.wikipedia.org/wiki/Quotation_mark_glyphs]. There are also
numerous bracketing symbols in common use [http://en.wikipedia.org/wiki/Bracket]. That’s to say nothing of the
constructs seen in markup, programming, and templating languages. So
quoter couldn’t possibly provide a default option for every possible
quoting style. Instead, it provides a general-purpose mechanism for defining
your own:

from quoter import Quoter

bars = Quoter('|')
print bars('x') # |x|

plus = Quoter('+','')
print plus('x') # +x

para = Quoter('<p>', '</p>')
print para('this is a paragraph') # <p>this is a paragraph</p>
 # NB simple text quoting - see below
 # for higher-end HTML handling

variable = Quoter('${', '}')
print variable('x') # ${x}

Note that bars is specified with just one symbol. If only one is given,
the prefix and suffix are considered to be identical. If you really only want
a prefix or a suffix, and not both, then instantiate the Quoter with two, one
of which is an empty string, as in plus above.

In most cases, it’s cleaner and more efficient to define a style, but
there’s nothing preventing you from an on-the-fly usage:

print Quoter('+[', ']+')('castle') # +[castle]+

Construction Details

The examples above generally use a flag argument style of construction.
Note, however, that Quoter is converting these into respective
prefix and
suffix values. If you prefer, you can simply state the prefix and
or suffix as direct kwargs:

vars = Quoter(prefix='${', suffix='}')
print vars('y') # ${y}

And for the very common cases where quotes are paired, equal-length
strings, those can be specified with the pair kwarg:

onetwo = Quoter(pair="1221")
print onetwo('this') # 12this21

 Copyright 2015, Jonathan Eunice.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	quoter 1.6.5 documentation

Cloning and Setting

Quoter parameters can be changed (set) in real time.:

bars = Quoter('|')
print bars('x') # |x|
bars.set(prefix='||', suffix='||')
print bars('x') # ||x||
bars.set(padding=1)
print bars('x') # || x ||

And Quoter instances you like can be cloned, optionally with several
options changed in the clone:

bart = bars.clone(prefix=']', suffix='[')
assert bart('x') == '] x ['

The method but is a synonym for clone. It is used to suggest
“I like everything there, but...change this and that.”:

bartwide = bart.but(margin=2)
assert bartwide('x') == '] x ['

Note that if any of the options for bart besides margin change,
those changes will be reflected in bartwide as well. bartwide has
decided what its own margins will be, but delegated all other choices to
its parent object.

 Copyright 2015, Jonathan Eunice.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	quoter 1.6.5 documentation

Formatting and Encoding

The Devil, as they say, is in the details. We often don’t just want quote
marks wrapped around values. We also want those values set apart from
the rest of the text. quoter supports this with padding and margin
settings patterned on the CSS box model [http://www.w3.org/TR/CSS2/box.html].
In CSS, moving out from content one finds padding, a border, and then a margin.
Padding can be thought of as an internal margin, and
the prefix and suffix strings like the border. With that in mind:

print braces('this') # '{this}'
print braces('this', padding=1) # '{ this }'
print braces('this', margin=1) # ' {this} '
print braces('this', padding=1, margin=1) # ' { this } '

If desired, the padding and margin can be given explicitly, as
strings. If given as integers, they are interpreted as a
number of spaces.

One can also define the encoding used for each call, per instance, or
globally. If some of your quote symbols use Unicode characters, yet your output
medium doesn’t support them directly, this is an easy fix. E.g.:

Quoter.options.encoding = 'utf-8'
print curlydouble('something something')

Now curlydouble will output UTF-8 bytes. But in general, this is not a
great idea; you should work in Unicode strings in Python, encoding or
decoding only at the time of input and output, not as each piece of content
is constructed.

 Copyright 2015, Jonathan Eunice.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	quoter 1.6.5 documentation

Shortcuts

One often sees very long function calls and expressions as text parts are being
assembled. In order to reduce this problem, quoter defines aliases for
single, double, and triple quoting, as well as backticks, and
double backticks:

from quoter import qs, qd, qt, qb, qdb

print qs('one'), qd('two'), qt('three'), qb('and'), qdb('four')
'one' "two" """three""" `and` ``four``

You can, of course, define your own aliases as well, and/or redefine existing
styles. If, for example, you like braces but wish it added a padding space
by default, it’s simple to redefine:

sbraces = Quoter('{', '}', padding=1)
print sbraces('braces plus spaces!') # '{ braces plus spaces! }'

You could alternatively riff off of the existing braces:

sbraces = braces.but(padding=1)

You could still get the no-padding variation with:

print braces('no space braces', padding=0) # '{no space braces}'

 Copyright 2015, Jonathan Eunice.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	quoter 1.6.5 documentation

StyleSets

As an organizational assist, quoters are available as
named attributes of a pre-defined quote object. For those
who like strict, minimalist imports, this permits
from quoter import quote without loss of generality. For example:

from quoter import quote

quote.double('test') # "test"
quote.braces('test') # {test}
...and so on...

quote is is a StyleSet–a group of related named quoters (i.e.
“quoting styles”) conveniently packaged through attributes of a single
object.

Visiting the Factory

Each StyleSet has a factory function for creating new
styles; in the case of quote
the factory is the Quoter class. You can use the _define method if
you like to create new members:

colon = quote._define('colon', ':')
assert colon('this') == quote.colon('this') == ':this:'

The assignement to a standalone name colon here is optional;
you could just always refer to quote.colon after the definition
if you wish.

You may even call a StyleSet in immediate mode:

print quote("super") # "'super'"

To define your own set of named styles:

cq = StyleSet(factory=Quoter,
 immediate=Quoter(':'))

cq._define("two", Quoter('::'))

Now:

print cq('this') # ':this:'
print cq.two('this') # '::this::'

 Copyright 2015, Jonathan Eunice.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	quoter 1.6.5 documentation

HTML

Quoting does not need to be a simple matter of string concatenation.
It can involve sophisticated on-the-fly decisions based on content
and context.

For example, there is an extended quoting mode designed for XML and HTML
construction. Instead of prefix and suffix strings, XMLQuoter and
HTMLQuoter classes build valid HTML out of tag names and “CSS selector”
style specifications (similar to those used by jQuery [http://jquery.com]). This is a considerable help in Python, which defines
and/or reserves some of the attribute names most used in HTML (e.g.
class and id). Using the CSS selector style neatly gets around this
annoyance–and is more compact and more consistent with modern web
development idioms to boot.:

from quoter import *

print html.p('this is great!', {'class':'emphatic'})
print html.p('this is great!', '.spastic')
print html.p('First para!', '#first')

Yields:

<p class=’emphatic’>this is great!</p>
<p class=’spastic’>this is great!</p>
<p id=’first’>First para!</p>

Note that the order in which attributes appear is not guaranteed. They’re
stored in dict objects, which have different orderings on different versions
of Python. This generally isn’t a problem, in that ordering isn’t significant
in HTML. It can, however, make string-based testing more annoying.

The following CSS selectors are understood:

	CSS Spec
	Result X/HTML

	tag
	<tag>

	#ident
	id=”ident”

	.classname
	class=”classname”

	[key=value]
	key=”value”

Note that with the exception of tagnames and ids, multiple setters
are possible in the same CSS spec. So p#one.main.special[lang=en]
defines <p id='one' class='main special' lang='en'>.

HTML quoting also understands that some elements are “void” or
“self-closing,” meaning they do not need closing tags (and in some cases,
not even content). So for example:

>>> print html.br()

>>> print html.img('.big', src='afile')

The html object for HTMLQuoter (or corresponding xml for
XMLQuoter) is a convenient front-end that can be immediately
used to provide simple markup language construction. (It’s actually a
StyleSet that knows how to create new styles on-the-fly.)

You can also access the underlying classes directly, and/or define
your own customized quoters. Your own quoters can be called as a function
would be. Or, if you give them a name, they can be called through
the html front-end, just like the pre-defined tags. For instance:

para_e = html._define('para_e', 'p.emphatic')
print para_e('this is great!')
print html.para_e('this is great?', '.question')
print html.img('.large', src='somefile')
print html.br()

Yields:

<p class='emphatic'>this is great!</p>
<p class='question emphatic'>this is great?</p>

HTMLQuoter quotes attributes by default with single quotes. If you
prefer double quotes, you may set them when the element is defined:

div = HTMLQuoter('div', attquote=double)

Note

Some output may show HTML and XML elements in a different order
that described in the documentation. This is because Python dict
data structures in which keyword arguments are stored are expressly
unordered. In practice, their order is implementation dependent, and
varies based on whether you’re running on Python 2, Python 3, or
PyPy. quoter always produces correct output, but the ordering
may be subtly different from the order suggested by the source code.
If this variance bothers you, please join me in lobbying for dictionary
ordering (OrderedDict) to become the standard behavior for kwargs
in future versions of Python.

 Copyright 2015, Jonathan Eunice.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	quoter 1.6.5 documentation

XML

XMLQuoter with its xml front-end is a similar quoter with markup
intelligence. It offers
one additional attribute beyond HTMLQuoter:
ns for namespaces. Thus:

item = xml._define("item inv_item", tag='item', ns='inv')
print item('an item')
print xml.item('another')
print xml.inv_item('yet another')
print xml.thing('something')
print xml.special('else entirely', '#unique')

yields:

<inv:item>an item</inv:item>
<inv:item>another</inv:item>
<inv:item>yet another</inv:item>
<thing>something</thing>
<special id='unique'>else entirely</special>

Note: item was given two names. Multiple aliases are supported.
While the item object carries its namespace specification through its
different invocations, the calls to non-item quoters nave no persistent
namespace. Finally, that the CSS specification language heavily used in
HTML is present and available for XML, though its use may be less common.

In general, xml.tagname auto-generates quoters just like
html.tagname does on first use. There are also pre-defined utility
methods such as html.comment() and xml.comment() for commenting
purposes.

 Copyright 2015, Jonathan Eunice.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	quoter 1.6.5 documentation

Named Styles

Quoting via the functional API or the attribute-accessed front-ends
(quote, lambdaq, html, and xml) is probably the easiest way to go. But
there’s one more way. If you provide the name of a defined style via the
style attribute, that’s the style you get. So while
quote('something') gives you single quotes by default ('something'),
if you invoke it as quote('something', style='double'), you get double
quoting as though you had used quote.double(...), double(...), or
qd(...). This even works through named front.ends;
quote.braces('something', style='double') still gets you
"something". If you don’t want to be confused by such double-bucky
forms, don’t use them. The best use-case for named styles is probably when
you don’t know how something will be quoted (or what tag it will use, in the
HTML or XML case), but that decision is made dynamically. Then
style=desired_style makes good sense.

Style names are stored in the class of the quoter. So all Quoter
instances share the same named styles, as do HTMLQuoter, XMLQuoter,
and LambdaQuoter.

 Copyright 2015, Jonathan Eunice.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	quoter 1.6.5 documentation

Dynamic Quoters

XMLQuoter and HTMLQuoter show that it’s straightforward to define
Quoters that don’t just concatenate text, but that examine it and
provide dynamic rewriting on the fly.

LambdaQuoter is a further generalization of this idea. It allows generic
formatting to be done by a user-provided function. For example, in finance,
one often wants to present numbers with a special formatting:

from quoter import *

f = lambda v: ('(', abs(v), ')') if v < 0 else ('', v, '')
financial = LambdaQuoter(f)
print financial(-3) # (3)
print financial(45) # 45

password = LambdaQuoter(lambda v: ('', 'x' * len(v), ''))
print password('secret!') # xxxxxxx

wf = lambda v: ('**', v, '**') if v < 0 else ('', v, '')
warning = lambdaq._define("warning", wf)
print warning(12) # 12
print warning(-99) # **-99**

The trick is instantiating LambdaQuoter with a callable (e.g. lambda
expression or even a full function) that accepts one value and returns a
tuple of three values: the quote prefix, the value (possibly rewritten), and
the suffix. The rewriting mechanism can be entirely general, doing truncation,
column padding, content obscuring, hashing, or...just anything.

LambdaQuoter named instances are accessed through the lambdaq
front-end (because lambda is a reserved word). Given the code above,
lambdaq.warning is active, for example.

LambdaQuoter shows how general a formatting function can be made into a
Quoter. That has the virtue of providing a consistent mechanism for
tactical output transformation with built-in margin and padding support.
It’s also able to encapsulate complex quoting / representation decisions
that would otherwise muck up “business logic,” making representation code
much more unit-testable. But, one might argue that such full transformations
are “a bridge too far” for a quoting module. So use this dynamic component,
or not, as you see fit.

 Copyright 2015, Jonathan Eunice.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	quoter 1.6.5 documentation

Markdown

An experimental Markdown formatter has been added. It is quite simple at
present, supporting both span:

	Function
	Markdown Span

	md.i
	italics

	md.b
	bold

	md.a
	anchor, aka link

and some block functions:

	Function
	Markdown Block

	md.h
	heading

	md.h1
	heading level 1

	md.h2
	heading level 2

	...
	...

	md.h6
	heading level 6

	md.p
	paragraph

	md.hr
	horizontal rule

	md.doc
	document

All functions are accessed through the md style set.

List, image, blockquote, and code-block formatting are next steps. At this
demonstration stage, the goal is to stretch the quoter use-case and
prove/harden its extension mechanisms, which it is already doing. A much
more extensive block-oriented quoting mechanism is in the works to flesh out
Markdown construction. Stay tuned for more extensive functions and
documentation.

 Copyright 2015, Jonathan Eunice.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	quoter 1.6.5 documentation

Joiners

Joiner is a type of Quoter that combines sequences. The simplest
invocation join(mylist) is identical to ', '.join(mylist). But
of course it doesn’t stop there. The sep parameter determines what
string is placed between each list item. But the separator need not be
uniform. For the common (and linguistically important) case where there are
two items in list, the twosep parameter provides an alternate value.
The final separator can be defined via the lastsep parameter, permitting
proper Oxford commas [https://en.wikipedia.org/wiki/Serial_comma], or
if you prefer, a non-Oxford heathen style. The standard prefix, suffix,
margin and padding parameters are available. Finally, individual
sequence items can be formatted (quoter) and the entire “core” of
joined material can be wrapped by an endcap quoter.

Some examples:

mylist = list("ABCD")
print join(mylist)
print join(mylist, sep=" | ", endcaps=braces)
print join(mylist, sep=" | ", endcaps=braces.but(padding=1))
print and_join(mylist)
print and_join(mylist[:2])
print and_join(mylist[:3])
print and_join(mylist, quoter=double, lastsep=" and ")

Yields:

A, B, C, D
{A | B | C | D}
{ A | B | C | D }
A and B
A, B, and C
A, B, C, and D
"A", "B", "C" and "D"

It’s a bit of a historical accident that both the prefix/suffix
pair and endcap are available, as they accomplish the same goal.
If an endcap quoter is used, note that any desired padding (spaces
inside the endcaps) must be provided by the endcapper, as it operates
earlier than, and in conflict with, the application of normal padding. E.g.:

print join(mylist, sep=" | ", endcaps=braces.but(padding=1))
print join(mylist, sep=" | ", prefix="{", suffix="}", padding=1)

Do the same thing. But mixing and matching the two styles may not give you
what you wanted.

Various defined Joiner objects may be of use:: and_join, or_join,
joinlines, and concat.

 Copyright 2015, Jonathan Eunice.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	quoter 1.6.5 documentation

API Reference

A start on a more complete, method-by-method reference:

	
class quoter.Quoter(*args, **kwargs)

	A quote style. Instantiate it with the style information. Call
it with a value to quote the value.

	
__call__(*args, **kwargs)

	Quote the value, according to the current options.

	
__init__(*args, **kwargs)

	Create a quoting style.

	
but(**kwargs)

	Create a new instance whose options are chained to this instance’s
options (and thence to self.__class__.options). kwargs become the
cloned instance’s overlay options.

	
clone(**kwargs)

	Create a new instance whose options are chained to this instance’s
options (and thence to self.__class__.options). kwargs become the
cloned instance’s overlay options.

	
options = Options(suffix=None, sep='', encoding=None, padding=0, prefix=None, pair=Transient, margin=0)

	

	
set(*args, **kwargs)

	Change the receiver’s settings to those defined in the kwargs.
An update-like function. This uplevels calls that would look
like Class.options.set(...) to the simpler Class.set(...).
Works on either class or instance receivers. Requires that one
uses the instance variable options to store persistent
configuration data.

	
settings(**kwargs)

	Open a context manager for a with statement. Temporarily change settings
for the duration of the with.

	
class quoter.LambdaQuoter(*args, **kwargs)

	A Quoter that uses code to decide what quotes to use, based on the value.

	
__call__(value, **kwargs)

	Quote the value, based on the instance’s function.

	
__init__(*args, **kwargs)

	Create a quoting style.

	
but(**kwargs)

	Create a new instance whose options are chained to this instance’s
options (and thence to self.__class__.options). kwargs become the
cloned instance’s overlay options.

	
clone(**kwargs)

	Create a new instance whose options are chained to this instance’s
options (and thence to self.__class__.options). kwargs become the
cloned instance’s overlay options.

	
options = Options(suffix=Prohibited, sep='', encoding=None, padding=0, prefix=Prohibited, func=None, pair=Prohibited, margin=0)

	

	
set(*args, **kwargs)

	Change the receiver’s settings to those defined in the kwargs.
An update-like function. This uplevels calls that would look
like Class.options.set(...) to the simpler Class.set(...).
Works on either class or instance receivers. Requires that one
uses the instance variable options to store persistent
configuration data.

	
settings(**kwargs)

	Open a context manager for a with statement. Temporarily change settings
for the duration of the with.

	
class quoter.XMLQuoter(*args, **kwargs)

	A more sophisticated quoter for XML elements that manages tags,
namespaces, and the idea that some elements may not have contents.

	
__call__(*args, **kwargs)

	Quote a value in X/HTML style, with optional attributes.

	
__init__(*args, **kwargs)

	Create an XMLQuoter

	
but(**kwargs)

	Create a new instance whose options are chained to this instance’s
options (and thence to self.__class__.options). kwargs become the
cloned instance’s overlay options.

	
clone(**kwargs)

	Create a new instance whose options are chained to this instance’s
options (and thence to self.__class__.options). kwargs become the
cloned instance’s overlay options.

	
options = Options(atts={}, suffix=Prohibited, sep='', void=False, encoding=None, attquote=Quoter(suffix="'", sep='', encoding=None, padding=0, prefix="'", pair=Transient, margin=0), padding=0, prefix=Prohibited, tag=None, pair=Transient, ns=None, margin=0)

	

	
set(*args, **kwargs)

	Change the receiver’s settings to those defined in the kwargs.
An update-like function. This uplevels calls that would look
like Class.options.set(...) to the simpler Class.set(...).
Works on either class or instance receivers. Requires that one
uses the instance variable options to store persistent
configuration data.

	
settings(**kwargs)

	Open a context manager for a with statement. Temporarily change settings
for the duration of the with.

	
class quoter.HTMLQuoter(*args, **kwargs)

	A more sophisticated quoter that supports attributes and void elements for HTML.

	
__call__(*args, **kwargs)

	Quote a value in X/HTML style, with optional attributes.

	
__init__(*args, **kwargs)

	

	
but(**kwargs)

	Create a new instance whose options are chained to this instance’s
options (and thence to self.__class__.options). kwargs become the
cloned instance’s overlay options.

	
clone(**kwargs)

	Create a new instance whose options are chained to this instance’s
options (and thence to self.__class__.options). kwargs become the
cloned instance’s overlay options.

	
options = Options(atts={}, suffix=Prohibited, sep='', void=False, encoding=None, attquote=Quoter(suffix="'", sep='', encoding=None, padding=0, prefix="'", pair=Transient, margin=0), padding=0, prefix=Prohibited, tag=None, pair=Transient, ns=Prohibited, margin=0)

	

	
set(*args, **kwargs)

	Change the receiver’s settings to those defined in the kwargs.
An update-like function. This uplevels calls that would look
like Class.options.set(...) to the simpler Class.set(...).
Works on either class or instance receivers. Requires that one
uses the instance variable options to store persistent
configuration data.

	
settings(**kwargs)

	Open a context manager for a with statement. Temporarily change settings
for the duration of the with.

	
quoter.quote Default ``StyleSet`` for ``Quoter`` objects

	Container for named styles.

	
quoter.lambdaq Default ``StyleSet`` for ``LambdaQuoter`` objects

	Container for named styles.

	
quoter.xml Default ``StyleSet`` for ``XMLQuoter`` objects

	Container for named styles.

	
quoter.html Default ``StyleSet`` for ``HTMLQuoter`` objects

	Container for named styles.

	
quoter.md Default ``StyleSet`` for ``Markdown`` objects

	Container for named styles.

 Copyright 2015, Jonathan Eunice.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	quoter 1.6.5 documentation

Notes

	quoter provides simple transformations that could be alternatively
implemented as a series of small functions. The problem is that
such “little functions” tend to be constantly re-implemented, in
different ways, and spread through many programs. That need to
constantly re-implement such common tasks has led me to re-think
how software should construct text on a grander scale. quoter
is one facet of a project to systematize higher-level formatting
operations. See say [http://pypi.python.org/pypi/say] and show [http://pypi.python.org/pypi/show] for other parts of the larger
effort.

	quoter is a test case for, and leading user of, options [http://pypi.python.org/pypi/options], a module that supports flexible
option handling. In some ways it is options most extensive test
case, in terms of subclassing and dealing with named styles.

	In the future, additional quoting styles might appear.
There is already (limited, experimental) support for Markdown,
and other languages such as RST are straightforward. It’s not
hard to subclass Quoter for new languages. Some of the things
learned in the say project about text block management
(indentation, wrapping, and such) are highly applicable to the
quoting mission.

	You might look at some of the modules for ANSI-coloring text such as
ansicolors [https://pypi.python.org/pypi/ansicolors] as being
special cases of the quoter idea. While quoter doesn’t
provide this specific kind of wrapping, it’s in-line with the mission.

	Automated multi-version testing managed with the wonderful
pytest [http://pypi.python.org/pypi/pytest],
pytest-cov [http://pypi.python.org/pypi/pytest-cov],
coverage [http://pypi.python.org/pypi/coverage],
and tox [http://pypi.python.org/pypi/tox].
Continuous integration testing
with Travis-CI [https://travis-ci.org/jonathaneunice/textdata].
Packaging linting with pyroma [https://pypi.python.org/pypi/pyroma].

	Successfully packaged for, and
tested against, all late-model versions of Python: 2.6, 2.7, 3.2,
3.3, 3.4, and 3.5 pre-release (3.5.0b3) as well as PyPy 2.6.0
(based on 2.7.9) and PyPy3 2.4.0 (based on 3.2.5).

	The author, Jonathan Eunice or
@jeunice on Twitter [http://twitter.com/jeunice] welcomes your comments
and suggestions.

 Copyright 2015, Jonathan Eunice.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	quoter 1.6.5 documentation

Installation

To install or upgrade to the latest version:

pip install -U quoter

To easy_install under a specific Python version (3.3 in this example):

python3.3 -m easy_install --upgrade quoter

(You may need to prefix these with sudo to authorize
installation. In environments without super-user privileges, you may want to
use pip‘s --user option, to install only for a single user, rather
than system-wide.)

Testing

If you wish to run the module tests locally, you’ll need to install
pytest and tox. For full testing, you will also need pytest-cov
and coverage. Then run one of these commands:

tox # normal run - speed optimized
tox -e py27 # run for a specific version only (e.g. py27, py34)
tox -c toxcov.ini # run full coverage tests

The provided tox.ini and toxcov.ini config files do not define
a preferred package index / repository. If you want to use them with
a specific (presumably local) index, the -i option will come in
very handy:

tox -i INDEX_URL

 Copyright 2015, Jonathan Eunice.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	quoter 1.6.5 documentation

Index

 _
 | B
 | C
 | H
 | L
 | M
 | O
 | Q
 | S
 | X

_

 	

 	__call__() (quoter.HTMLQuoter method)

 	

 	(quoter.LambdaQuoter method)

 	(quoter.Quoter method)

 	(quoter.XMLQuoter method)

 	

 	__init__() (quoter.HTMLQuoter method)

 	

 	(quoter.LambdaQuoter method)

 	(quoter.Quoter method)

 	(quoter.XMLQuoter method)

B

 	

 	but() (quoter.HTMLQuoter method)

 	

 	(quoter.LambdaQuoter method)

 	(quoter.Quoter method)

 	(quoter.XMLQuoter method)

C

 	

 	clone() (quoter.HTMLQuoter method)

 	

 	(quoter.LambdaQuoter method)

 	(quoter.Quoter method)

 	(quoter.XMLQuoter method)

H

 	

 	html (in module quoter)

 	

 	HTMLQuoter (class in quoter)

L

 	

 	lambdaq (in module quoter)

 	

 	LambdaQuoter (class in quoter)

M

 	

 	md (in module quoter)

O

 	

 	options (quoter.HTMLQuoter attribute)

 	

 	(quoter.LambdaQuoter attribute)

 	(quoter.Quoter attribute)

 	(quoter.XMLQuoter attribute)

Q

 	

 	quote (in module quoter)

 	

 	Quoter (class in quoter)

S

 	

 	set() (quoter.HTMLQuoter method)

 	

 	(quoter.LambdaQuoter method)

 	(quoter.Quoter method)

 	(quoter.XMLQuoter method)

 	

 	settings() (quoter.HTMLQuoter method)

 	

 	(quoter.LambdaQuoter method)

 	(quoter.Quoter method)

 	(quoter.XMLQuoter method)

X

 	

 	xml (in module quoter)

 	

 	XMLQuoter (class in quoter)

 Copyright 2015, Jonathan Eunice.
 Created using Sphinx 1.3.1.

 _static/minus.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		quoter 1.6.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Jonathan Eunice.
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

_static/comment-close.png

_static/down.png

_static/up.png

_static/comment-bright.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/plus.png

