

 Navigation

 	
 index

 	
 next |

 	quick.study latest documentation

Quickstart

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	quick.study latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 git/git-series-1.2-setup.html

 Navigation

 		
 index

 		quick.study latest documentation »

 original page [https://www.digitalocean.com/community/tutorials/how-to-install-git-on-ubuntu-14-04]

How To Set Up Git [https://git-scm.com/doc]

The easiest way of doing this is through the git config command. Specifically, we need to provide our name and email address because git embeds this information into each commit we do. We can go ahead and add this information by typing:

git config --global user.name "Your Name"
git config --global user.email "youremail@domain.com"

We can see all of the configuration items that have been set by typing:

git config --list

As you can see, this has a slightly different format. The information is stored in the configuration file, which you can optionally edit by hand with your text editor like this:

nano ~/.gitconfig

 © Copyright 2016.
 Created using Sphinx 1.3.5.

git/git-series-3-branches.html

 Navigation

 		
 index

 		quick.study latest documentation »

original page [https://www.digitalocean.com/community/tutorials/how-to-use-git-branches]

How To Use Git Branches

A branch, at its core, is a unique series of code changes with a unique name. Each repository can have one or more branches.

By default, the first branch is called “master”.

Viewing branches

Prior to creating new branches, we want to see all the branches that exist. We can view all existing branches by typing the following:

git branch -a

Adding the “-a” to the end of our command tells GIT that we want to see all branches that exist, including ones that we do not have in our local workspace.

The output will look similiar to the following:

* master
 remotes/origin/master

The asterisk next to “master” in the first line of the output indicates that we are currently on that branch. The second line simply indicates that on our remote, named origin, there is a single branch, also called master.

Now that we know how to view branches, it time create our first one.

Creating branches

As stated in the beginning of this article, we want to have a development and a production setup for our coding environment.

We are going to treat the default “master” branch as our production and therefore need to create a single branch for development, or pre-production.

To create a new branch, named develop, type the following:

git checkout -b develop

Assuming we do not yet have a branch named “develop”, the output would be as follows:

Switched to a new branch 'develop'

In the case of a branch by that name already existing, GIT would tell us so:

fatal: A branch named 'develop' already exists.

You can switch back and forth between your two branches, by using the git checkout command:

git checkout master

or

git checkout develop

Assuming the branch that you are trying to switch to exists, you’ll see output similiar to the following:

Switched to branch 'master'

If you try to switch to a branch that doesn’t exist, such as

git checkout nosuchbranch

Git will tell you:

error: pathspec 'nosuchbranch' did not match any file(s) known to git.

Now that we have multiple branches, we need to put them to good use. In our scenario, we are going to use our “develop” branch for testing out our changes and the master branch for releasing them to the public.

To illustrate this process, we need to switch back to our develop branch:

git checkout develop

Making changes to our develop branch
On this branch, we are going to create a new blank file, named “develop”. Until we merge it to the master branch (in the following step), it will not exist there.

touch develop

Just as in the previous tutorial, we need to tell git that we want to track this new file.

We can add the “develop” file, by typing:

git add develop

The above set of commands will create a blank file, named “develop”, and add it to GIT.

We also need to commit this file, which will attach this file to the branch we’re currently on, which is “develop”.

git commit -m "develop file" develop

This file now exists on the develop branch; as we’re about to find out, it doesn’t exist on the master branch.

First, we are going to confirm that we are currently on the develop branch. We can do this by typing the following:

git branch

The output should appear similar to the following:

* develop
 master

We learned earlier that the asterisk next to the branch name indicates that we are currently on that branch.

Running the “ls” command will show us that the two files exist:

ls

The output will show us that both of our files, respectively named “file” and “develop”, are found:

develop file

Merging code between branches

The interesting part comes after we switch back to our master branch, which we can do with the git checkout command:

git checkout master

To ensure that we are on the master branch, we can run type the following:

git branch

The output will tell us which branch we are one, indicated by the asterisk.

 develop
* master

Running “ls” again, it appears that our new file is missing.

file

It’s not missing - it’s on our develop branch and we are on our master branch.

In our scenario, this file represents any change to any file (or a whole new file) that has passed all testing on our development branch,and is ready to be in production. The process of moving code between branches (often from development to production) is known as merging.

It is important to remember when merging, that we want to be on the branch that we want to merge to.

In this case, we want to merge from our develop branch, where the “develop” file exists, to our master branch.

Keeping that in mind, considering that we are already on the master branch, all we have to do is run the merge command.

One of the options that we can pass to the merge command, namely "--no-ff", means we want git to retain all of the commit messages prior to the merge. This will make tracking changes easier in the future.

To merge the changes from the develop branch to the master branch, type the following:

git merge develop --no-ff

The output of the command will be similiar to the following:

Merge made by the 'recursive' strategy.
 0 files changed
 create mode 100644 develop

Running the ls command again will confirm that our “develop” file is now on our master branch.

develop file

The last thing we now need to do, to make this change on our remote server is to push our changes, which we can do with the help of the git push command.

git push

You will see output similar to following, confirming that your the merge from your develop branch to the master branch on your remote server:

Counting objects: 4, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 332 bytes, done.
Total 3 (delta 1), reused 0 (delta 0)
To ssh://git@git.domain.tld/repository
 9af2dcb..53649cf master -> master

Conclusion

By following the above tutorial, you should have a working dual-branch workflow setup and hopefully a working understanding about how branching works in GIT. Let us know what you think in the comments!

 © Copyright 2016.
 Created using Sphinx 1.3.5.

git/git-series-2-effectively.html

 Navigation

 		
 index

 		quick.study latest documentation »

original page [https://www.digitalocean.com/community/tutorials/how-to-use-git-effectively]

How To Use Git Effectively

Creating your workspace

Just like you want to have a good, clean work environment, the same idea applies to where you do your coding, especially if you’re going to contribute to a number of projects at the same time. A good suggestion might be to have a folder called git in your home directory which has subfolders for each of your individual projects.

The first thing we need to do is create our workspace environment:

sudo mkdir -p ~/git/test
cd ~/git/test

The above commands will accomplish two things:

		It creates a directory called “git” in our home directory and then creates a subdirectory inside of that called “testing” (this is where our project will actually be stored).

		It brings us to our project’s base directory.

Once inside that directory, we need to create a few files that will be in our project. In this step, you can either follow along and create a few dummy files for testing purposes or you can create files/directories you wish that are going to be part of your project.

We are going to create a test file to use in our repository:

touch file

Once all your project files are in your workspace, you need to start tracking your files with git. The next step explains that process.

Converting an existing project into a workspace environment

Once all the files are in your git workspace, you need to tell git that you want to use your current directory as a git environment.

git init

Once your have initialized your new empty repository, you can add your files.

The following will add all files and directories to your newly created repository:

git add .

In this case, no output is good output. Unfortunately, git does not always inform you if something worked.

Every time you add or make changes to files, you need to write a commit message. The next section describes what a commit message is and how to write one.

Creating a commit message

A commit message is a short message explaining the changes that you’ve made. It is required before sending your coding changes off (which is called a push) and it is a good way to communicate to your co-developers what to expect from your changes. This section will explain how to create them.

Commit messages are generally rather short, between one and two sentences explaining what your change did. It is good practice to commit each individual change before you do a push. You can push as many commits as you like. The only requirement for any commit is that it involves at least one file and it has a message. A push must have at least one commit.

Continuing with our example, we are going to create the message for our initial commit:

git commit -m "Initial Commit" -a

There are two important parameters of the above command. The first is -m, which signifies that our commit message (in this case “Initial Commit”) is going to follow. Secondly, the -a signifies that we want our commit message to be applied to all added or modified files. This is okay for the first commit, but generally you should specify the individual files or directories that we want to commit.

We could have also done:

git commit -m "Initial Commit" file

To specify a particular file to commit. To add additional files or directories, you just add a space separated list to the end of that command.

Pushing changes to a remote server

Up until this point, we have done everything on our local server. That’s certainly an option to use git locally, if you want to have any easy way to have version control of your files. If you want to work with a team of developers, however, you’re going to need to push changes to a remote server. This section will explain how to do that.

The first step to being able to push code to a remote server is providing the URL where the repository lives and giving it a name. To configure a remote repository to use and to see a list of all remotes (you can have more than one), type the following:

git remote add origin ssh://git@git.domain.tld/repository.git
git remote -v

The first command adds a remote, called “origin”, and sets the URL to ssh://git@git.domain.tld/repository.git.

You can name your remote whatever you’d like, but the URL needs to point to an actual remote repository. For example, if you wanted to push code to GitHub, you would need to use the repository URL that they provide.

Once you have a remote configured, you are now able to push your code.

You can push code to a remote server by typing the following:

git push origin maste

“git push” tells git that we want to push our changes, “origin” is the name of our newly-configured remote server and “master” is the name of the first branch.

In the future, when you have commits that you want to push to the server, you can simply type “git push”.

I hope this article provided you with a basic understanding of how git can be used effectively for a team of developers. The next article in this series will provide a more in-depth analysis of git branches and why they are so effective.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

git/git-series-1.1-install.html

 Navigation

 		
 index

 		quick.study latest documentation »

original page [https://www.digitalocean.com/community/tutorials/how-to-install-git-on-ubuntu-14-04]

How To Install Git on Ubuntu 14.04

Git [https://github.com/git/git] & Doc [https://git-scm.com/doc]

One of the most popular version control systems is git, a distributed version control system. Many projects maintain their
files in a git repository, and sites like GitHub and Bitbucket have made sharing and contributing to code simple and valuable.

How To Install Git with Apt

sudo apt-get update
sudo apt-get install git

How To Install Git from Source

		install before

sudo apt-get update
sudo apt-get install build-essential libssl-dev libcurl4-gnutls-dev libexpat1-dev gettext unzip

		get the git and download

wget https://github.com/git/git/archive/v2.10.1.zip -O git.zip

Unzip the file that you downloaded and move into the resulting directory by typing:

unzip git.zip
cd git-*

Make the package and install it by typing these two commands

make prefix=/usr/local all
sudo make prefix=/usr/local install

Now that you have git installed, if you want to upgrade to a later version, you can simply clone the repository and then build and install:

git clone https://github.com/git/git.git

To find the URL to use for the clone operation, navigate to the branch or tag that you want on the project’s GitHub page and then copy the clone URL

This will create a new directory within your current directory where you can rebuild the package and reinstall the newer version, just like you did above. This will overwrite your older version with the new version:

make prefix=/usr/local all
sudo make prefix=/usr/local install

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/comment.png

bigchaindb.html

 Navigation

 		
 index

 		quick.study latest documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.5.

db.html

 Navigation

 		
 index

 		
 previous |

 		quick.study latest documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.5.

python.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		quick.study latest documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.5.

linux.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		quick.study latest documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.5.

leveldb.html

 Navigation

 		
 index

 		quick.study latest documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.5.

go.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		quick.study latest documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		quick.study latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

rocksdb.html

 Navigation

 		
 index

 		quick.study latest documentation »

Install pyrocksdb-cf 0.5.3 [https://pypi.python.org/pypi/pyrocksdb-cf/0.5.3]

Quick Usage Guide

apt-get install build-essential libsnappy-dev zlib1g-dev libbz2-dev libgflags-dev
git clone https://github.com/facebook/rocksdb.git
cd rocksdb
make shared_lib
export CPLUS_INCLUDE_PATH=${CPLUS_INCLUDE_PATH}:`pwd`/include
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:`pwd`
export LIBRARY_PATH=${LIBRARY_PATH}:`pwd`

cd ../
apt-get install python-virtualenv python-dev
virtualenv pyrocks_test
cd pyrocks_test
. bin/active
pip install pyrocksdb

Quick Usage Guide

import rocksdb
db = rocksdb.DB("test.db", rocksdb.Options(create_if_missing=True))
db.put(b'a', b'data')
print db.get(b'a')

b’data’

Pyrocksdb Doc [http://pyrocksdb.readthedocs.io/en/latest/installation.html]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

