
CVart Documentation
Release 0.1.0

Shenggan

Jan 23, 2018

Contents

1 Introduction 3
1.1 What is QUIC . 3
1.2 Key features . 3
1.3 Goals . 4

2 Methods 5
2.1 Experimental Setup . 5
2.2 Run and Analyse . 7

3 Results 9
3.1 Time series . 9
3.2 delay . 9
3.3 bandwidth . 10
3.4 packet loss . 10
3.5 Jitter . 10
3.6 Analysis . 11

4 Conclusions 13
4.1 Conclusions . 13
4.2 Future Works . 13

5 Referance 15

i

ii

CVart Documentation, Release 0.1.0

A Survey and Benchmark of QUIC.

Contents:

Contents 1

CVart Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Introduction

1.1 What is QUIC

QUIC (Quick UDP Internet Connections) is a new transport protocol for the internet, developed by Google. It solves
a number of transport-layer and application-layer problems experienced by modern web applications, while requiring
little or no change from application writers.

1.2 Key features

Key features of QUIC over existing TCP+TLS+HTTP2 include

• Dramatically reduced connection establishment time

3

CVart Documentation, Release 0.1.0

• Improved congestion control

• Multiplexing without head of line blocking

• Forward error correction

• Connection migration

1.3 Goals

Analyze performance of TCP and QUIC in terms of:

• Total transfer time

• Average Bandwidth used

• Overhead in bytes

4 Chapter 1. Introduction

CHAPTER 2

Methods

2.1 Experimental Setup

2.1.1 Overview

A 33.6 MB testfile index.html will generate in /var/www/html/ and we will get it from quic server and
apache2 server with quic client and wget. The protocal two way used is QUIC and TCP. And we will run the
experiments under difference network enviroments.

For practical, we will use simulate enviroment in local. We use tc netem and tbf to config local loopback interface.

2.1.2 Experimental Platform

• Hardware

| Hardware | Parameters | | ——— | —————————————- | | Memory | 16GB | | Processor | Intel®
Xeon(R) CPU E3-1230 v5 @ 3.40GHz × 8 | | Disks | SAMSUNG 850 EVO |

• Software

5

CVart Documentation, Release 0.1.0

| Software | Parameters | | ——– | ———————– | | OS | Ubuntu16.04 | | OS-type | 64 bit | | Kernel | Linux
4.4.0-104-generic | | GCC | GCC 5.4 | | Python | Python 2.7.12 |

2.1.3 Compile Chromium

Because of the quic protocal is embedded in Chromium, so we must build our quic_server and quic_client from the
source of Chromium.

1. clone the source of chromuim

2. building for the first time, install dependencies

./src/build/install-build-deps.sh

1. Build the QUIC client, server, and tests:

cd src
gn gen out/Default && ninja -C out/Default quic_client quic_server net_unittests

1. Prepe test data from www.example.org

mkdir /tmp/quic-data
cd /tmp/quic-data
wget -p --save-headers https://www.example.org

1. Generate certificates In order to run the server, you will need a valid certificate, and a private key in pkcs8
format.

cd net/tools/quic/certs
./generate-certs.sh
cd -

1. In addition, a CA certificate was also generated and trusted by following the instructions in the ‘Linux Cert
Management’ page located in the Chromium website

2.1.4 Apache2 Server

We will test TCP with Apache2 Server, to be closer to the reality world, we config the server with TLS.

1. Create the SSL Certificate

2. Configure Apache to Use SSL

3. Adjust the Firewall

4. Enable the Changes in Apache

2.1.5 Prepare for Experiments

Before we start the experiments, we need finished this four steps:

1. Set loopback interface mtu to 1500

2. IPv6 disabling on loopback

3. Start Apache2 Server

4. Start QUIC Server

6 Chapter 2. Methods

CVart Documentation, Release 0.1.0

See detail in env_setup.sh.

2.2 Run and Analyse

2.2.1 Usage

./scripts/env_setup.sh

./scripts/run,sh

./scripts/analyse.sh

2.2.2 The Emulating Enviroments

1. Control Parameters bandwidths : Limiting the maximum link bitrate. delay : One-way delay to packets that
are going from a server to client. losses : Drop packets that are going from a server to client. spikes : A period
of time(default 200ms) when bandwidth drop to a certain percentage.

2. Parameters with values used in our experiments

protocal = ['quic', 'tcp']
bandwidths = ['100', '40', '5']
delay = ['10', '50'] or ['10', '20', '40', '60', '80', '100', '120']
losses = ['0.0', '5.0']
spikes = ['0', '1']

2.2.3 Details

1. Generate raw data This function is finished in run_benchmark.py, the scripts include three steps:

• Generate the Params Queue from the arguments parsing

• Configuration of local loopback interface for every params

• Data captured with tcpdump, and stored into ./raw/ for every params.

1. Data Analysis This function is finished in preprocess.py and average.py, the scripts include three steps:

• Clean the raw data and stored the preprocessed data in ./processed/, in order to extract only the data
required (timestamp and bytes).

• average.py averages different instances of the same test. By default, each test is run five times.

1. Visualization This function is finished in plot.py and plot2.py, the scripts include three steps:

• Creates all plots that are not time series (bandwidth, overhead and time) vs (delay, bandwidth, packet loss)

• Generates time series for the processed data extracted from the tests in the /processed/ folder

2.2. Run and Analyse 7

./scripts/env_setup.sh

CVart Documentation, Release 0.1.0

8 Chapter 2. Methods

CHAPTER 3

Results

3.1 Time series

3.2 delay

9

CVart Documentation, Release 0.1.0

3.3 bandwidth

3.4 packet loss

3.5 Jitter

10 Chapter 3. Results

CVart Documentation, Release 0.1.0

3.6 Analysis

• At the cost of higher overhead, QUIC outperforms TCP in terms of time for transfer and average bandwidth
used.

• When high delay, packet loss, and high bandwidth, QUIC will perform much better than TCP including time for
transfer and throughput.

• Under favorable conditions, The QUIC will be more stable than TCP. You can see two picture in section Time
series.

• Under packet loss, QUIC also surpasses TCP. When packet loss is 0%, throughput of QUIC is much higher than
TCP. When packet loss is 5%, throughput of two protocol is very close, but QUIC is higher still.

• But when jitter happen, TCP can surpasses QUIC. Because the feature of the QUIC, QUIC can’t handle the jitter
better than TCP. It imply that QUIC is immature and not prefect.

3.6. Analysis 11

CVart Documentation, Release 0.1.0

12 Chapter 3. Results

CHAPTER 4

Conclusions

4.1 Conclusions

QUIC is a new network protocol that resides in the application layer over UDP. Google developed QUIC as an alter-
native to TCP. Two browsers (Chrome and Opera) and Google servers are the only entities that support QUIC. When a
user accesses Google’s services such as Gmail over the aforementioned browsers, the data transfer will use UDP-based
QUIC.

4.2 Future Works

• Designing new tests to measure fairness when sharing bandwidth with other QUIC/TCP flows

• Stream Multiplexing in QUIC: Evaluate advantages over loading HTTP pages, for example.

• Connection Migration

• QUIC over a Wireless Network

13

CVart Documentation, Release 0.1.0

14 Chapter 4. Conclusions

CHAPTER 5

Referance

1. https://www.chromium.org/quic/playing-with-quic

2. http://cizixs.com/2017/10/23/tc-netem-for-terrible-network

3. http://linuxwiki.github.io/NetTools/tcpdump.html

4. http://dmdgeeker.com/post/tcpdump-basic-usage/

5. http://matplotlib.org/

6. https://liam0205.me/2014/09/11/matplotlib-tutorial-zh-cn/

15

	Introduction
	What is QUIC
	Key features
	Goals

	Methods
	Experimental Setup
	Run and Analyse

	Results
	Time series
	delay
	bandwidth
	packet loss
	Jitter
	Analysis

	Conclusions
	Conclusions
	Future Works

	Referance

