

Quest

Quest is a python library designed to automate the following data management tasks:

	Discovery

	Retrieval

	Organization

	Manipulation

	Archival

Quest can search for and download data from multiple web-based data providers. It can also be configured to search for data from local data repositories. Quest is designed to be extensible, so additional data providers can be added to Quest through plugins. To get started using Quest please see the installation instructions and quickstart reference below.

Table of Contents

	Installation Instructions
	Install Released Conda Package

	Install from Source

	Quickstart
	Examples

	Core Concepts
	Local Data Organization

	Data Transformations

	Data Repositories

	Extending Quest
	Provider Plugins

	Tool Plugins

	I/O Plugins

	API Reference

	Developer Documentation
	Table of Contents

	Glossary

Indices and tables

	Index

	Module Index

	Search Page

Installation Instructions

These instructions will walk you through installing Quest either from the released package or from the source code.

Install Released Conda Package

	Install Miniconda [http://conda.io/miniconda.html] [or Anaconda [http://continuum.io/downloads] although Miniconda is preferred] for your OS

	Install Quest from the ERDC Environmental Simulator conda channel using one of the following methods:

	Install Quest into new environment:

conda create -n quest -c conda-forge quest

	Install Quest into existing environment:

conda install -c conda-forge quest

Note

Because of incompatibilities with the dependencies between conda-forge and the defaults channel, the environment must have been created with conda-forge.

	Refer to Quickstart for more help getting started with Quest.

Install from Source

	Clone the repository:

git clone https://github.com/erdc/quest.git

	Install the dependencies using conda:

	Install Miniconda [http://conda.io/miniconda.html] [or Anaconda [http://continuum.io/downloads] although Miniconda is preferred] for your OS.

	Create new environment with dependenciest:

conda env create -n quest --file conda_environment.yml
conda activate quest

	Install Quest in develop mode:

python setup.py develop

Optional

	Run tests:

pytest

Quickstart

Before using Quest you must first activate the quest environment. You can then start a IPython console and import quest:

conda activate quest
(quest) $ ipython

In [1]: import quest

The simplest way to download some data is to use the quest.api.get_data() call.

In [2]: data = quest.api.get_data(
 ...: collection_name='quick-start',
 ...: service_uri='svc://usgs-nwis:iv',
 ...: search_filters={'bbox': [-91, 32.25, -90.8, 32.4]},
 ...: download_options={'parameter': 'streamflow'},
 ...:)[0]

In [3]: data.head()
Out[3]:
 qualifiers streamflow
datetime
2018-04-03 16:00:00 P 1180000.0
2018-04-03 17:00:00 P 1180000.0
2018-04-03 18:00:00 P 1180000.0
2018-04-03 19:00:00 P 1180000.0
2018-04-03 20:00:00 P 1180000.0

Quest can download many different types of data from various data providers. In this example we’ve downloaded timeseries streamflow data from the USGS National Water Information System (NWIS) [https://waterdata.usgs.gov/nwis]. This type of data is returned as a pandas.DataFrame (see Pandas Documentation [https://pandas.pydata.org/index.html]).

For other examples of how Quest can be used refer to our Jupyter Notebooks [https://github.com/erdc/quest/tree/master/examples/notebooks] or review the examples listed below.

Examples

	Slow Start: A step by step breakdown of the Quickstart example
	Create a Collection

	Select a Data Service

	Search for Datasets

	Add Datasets to Collection

	Download Datasets

	Open Datasets

	Where to Go from Here

	Quest Examples
	Slow Start: A step by step breakdown of the Quickstart example

	Project Management

	Collection Management

	Applying Tools

Slow Start: A step by step breakdown of the Quickstart example

The quickstart example demonstrated the fastest way to download and start working with data using Quest:

In [1]: import quest

In [2]: data = quest.api.get_data(
 ...: collection_name='quick-start',
 ...: service_uri='svc://usgs-nwis:iv',
 ...: search_filters={'bbox': [-91, 32.25, -90.8, 32.4]},
 ...: download_options={'parameter': 'streamflow'},
 ...:)[0]

In [3]: data.head()
Out[3]:
 qualifiers streamflow
datetime
2018-04-03 16:00:00 P 1180000.0
2018-04-03 17:00:00 P 1180000.0
2018-04-03 18:00:00 P 1180000.0
2018-04-03 19:00:00 P 1180000.0
2018-04-03 20:00:00 P 1180000.0

There is a lot going on in this seemingly simple example, so we’re going to break it down and explain every step.

The first thing to note is that the function quest.api.get_data(), is a workflow function, or in other words a
function that calls several other functions in succession. This provides a convenient way to get your data in one step
when you already know all of inputs you need. You can also use Quest to do the same workflow in a more interactive way.
The quest.api.get_data() call performs the following steps behind the scenes:

	Create a Collection

	Select a Data Service

	Search for Datasets

	Add Datasets to Collection

	Download Datasets

	Open Datasets

The following sections will explain each of these steps in detail.

Create a Collection

When Quest downloads data it needs to know where to put them. To keep data organized Quest provides a local organization
hierarchy to manage data (see Local Data Organization). At the top of the hierarchy is a project, and all Quest calls
will always apply to whatever project is active. For more details about managing projects see (Project Management).
Within projects are collections . All data that are downloaded by Quest are put in a collection . In the
quest.api.get_data() example above the collection_name argument specifies which collection to put the data
in. If there isn’t already a collection with the name specified by the collection_name argument then get_data
function will create it.

This process can also be done manually. Using the Quest API we can get a list of the collections with the
quest.api.get_collection() function:

In [4]: quest.api.get_collections()
Out[4]: ['quick-start']

As you can see there currently is only one collection called “quick-start” that was created as a result of the get_data
call made previously. To create a new collection we manually we can use the quest.api.new_collection() function:

In [5]: quest.api.new_collection('slow-start')
Out[5]:
{'name': 'slow-start',
 'display_name': 'slow-start',
 'description': '',
 'created_at': datetime.datetime(2019, 4, 4, 13, 43, 14, 823227),
 'updated_at': None,
 'metadata': {}}

This function returns the metadata that is associated with this newly created collection. For more details about working
with collection see Collection Management.

Select a Data Service

Once we have a place to store data locally we need to decide what data we want to download. Quest provides the ability
to search for data among many different data sources, or providers. Each provider will offer one or more data
services (see Data Repositories). We can list the available services by calling
quest.api.get_services():

In [6]: quest.api.get_services()
Out[6]:
['svc://cuahsi-hydroshare:hs_geo',
 'svc://cuahsi-hydroshare:hs_norm',
 'svc://noaa-coast:coops-meteorological',
 'svc://noaa-coast:coops-water',
 'svc://noaa-coast:ndbc',
 'svc://noaa-ncdc:ghcn-daily',
 'svc://noaa-ncdc:gsod',
 'svc://quest:quest',
 'svc://usgs-ned:1-arc-second',
 'svc://usgs-ned:13-arc-second',
 'svc://usgs-ned:19-arc-second',
 'svc://usgs-ned:alaska-2-arc-second',
 'svc://usgs-nlcd:2001',
 'svc://usgs-nlcd:2006',
 'svc://usgs-nlcd:2011',
 'svc://usgs-nwis:dv',
 'svc://usgs-nwis:iv',
 'svc://wmts:seamless_imagery']

Each service is represented by a service URI. In our quickstart example we used the penultimate service URI listed
here: ‘svc://usgs-nwis:iv’. This service URI is needed to tell Quest where to search for data.

Search for Datasets

Each service has a catalog or listing of the data it provides. To search for data we need to tell Quest which
service’s or services’ catalog to search. To limit our search we can pass in a dictionary of key-value pairs that specify
filter criteria to filter the catalog entries by. In the quickstart example we filtered the catalog using a bounding box.

...: search_filters={'bbox': [-91, 32.25, -90.8, 32.4]},

To manually search the catalog we can call the Quest API function quest.api.search_catalog() and pass it the
service URI and the filters dictionary:

In [7]: quest.api.search_catalog(uris='svc://usgs-nwis:iv', filters={'bbox': [-91, 32.25, -90.8, 32.4]})
Out[7]: ['svc://usgs-nwis:iv/07289000']

The return value from quest.api.search_catalog() is a list of catalog entry URIs. The catalog entry URI
looks just like the service URI that it came from with an appended catalog ID number. This catalog entry URI is
used to download the data associated to that catalog entry.

Add Datasets to Collection

Before we can download the data associated with a catalog entry we need to create a dataset derived from that
catalog entry. A Quest dataset represents a piece of data and stores all of the metadata associated with those
data. Every Quest dataset has an associated catalog entry that links it back to the service where the data
came from, and an associated collection that acts as a container for the data. We can create new datasets by
calling quest.api.add_datasets() and passing it both the collection and the catalog entry or entries from
which to create the datasets.

In [8]: quest.api.add_datasets('slow-start', 'svc://usgs-nwis:iv/07289000')
Out[8: ['d0b2baa58434445fb2d1fee0330d5acf']

The return value is a list of dataset IDs from the newly created datasets (in this case it’s just a list of one ID. We
can now use this dataset ID to download the data associated with it.

Download Datasets

To download data using Quest we use the quest.api.download_datasets() function. We need to pass it the dataset
IDs for the data that we want to download. We also need to pass it a dictionary of download options. Each service specifies
it’s own set of download options. To figure out what the download options are for a particular dataset we can either
refer to the documentation for that dataset’s service or we can call quest.api.get_download_options() and pass it
can pass in either the service URI the catalog entry URI, or the dataset ID.

In [9]: quest.api.get_download_options('d0b2baa58434445fb2d1fee0330d5acf')
Out[9]:
{'svc://usgs-nwis:iv/07289000': {'title': 'NWIS Instantaneous Values Service Download Options',
 'properties': [{'name': 'parameter',
 'type': 'ObjectSelector',
 'description': 'parameter',
 'default': None,
 'range': [['gage_height', 'gage_height'],
 ['streamflow', 'streamflow'],
 ['water_temperature', 'water_temperature']]},
 {'name': 'start',
 'type': 'Date',
 'description': 'start date',
 'default': None,
 'bounds': None},
 {'name': 'end',
 'type': 'Date',
 'description': 'end date',
 'default': None,
 'bounds': None},
 {'name': 'period',
 'type': 'String',
 'description': 'time period (e.g. P365D = 365 days or P4W = 4 weeks)',
 'default': 'P365D'}]}}

This returns a dictionary keyed by the URIs that were passed to the fucntion. For each URI key the value is a dictionary
specifying the download options or properties for that URI. In this case the download options we can specify are:

	parameter: one of ‘gage_height’, ‘streamflow’, or ‘water_temperature’

	start: the start date for the period of data want

	end: the end date for the period of data you want

	period: a string representing a period of data you want

Here either the start and end date can be specified or a period string can be specified. If neither are specified then
the default period ‘P365D’ (meaning a period of 365 days ending with today) will be used by default. In the quickstart
example we specified that we were interested in ‘streamflow’ data and we didn’t specify a period so by default we got
the past year of data. We can do the same here by calling quest.api.download_datasets():

In [10]: quest.api.download_datasets(
 ...: datasets='d0b2baa58434445fb2d1fee0330d5acf',
 ...: options={'parameter': 'streamflow'},
 ...:)
Out[10]: {'d0b2baa58434445fb2d1fee0330d5acf': 'downloaded'}

The return value is a dictionary keyed by the dataset IDs that were passed in where the value is the status. In this case
‘downloaded’ means that the data associated with the dataset were successfully downloaded.

Open Datasets

When the data associated with a dataset are downloaded they are by default stored on disk. Quest can be used to
transform, visualize, or publish the data and will only require the dataset ID as an argument. If you’d like to use
other Python tools to work with your data you can use Quest to open your data and read it into a Python data structure.
The data that we downloaded are a timeseries of streamflow values. The default data structure that Quest uses for this
type of data is a pandas.DataFrame. Therefore, when we call quest.api.open_dataset() we will getback our
data in a DataFrame.

In [6]: data = quest.api.open_dataset('d0b2baa58434445fb2d1fee0330d5acf')

In [7]: data.head()
Out[7]:
 qualifiers streamflow
 datetime
 2018-04-03 16:00:00 P 1180000.0
 2018-04-03 17:00:00 P 1180000.0
 2018-04-03 18:00:00 P 1180000.0
 2018-04-03 19:00:00 P 1180000.0
 2018-04-03 20:00:00 P 1180000.0

Where to Go from Here

Quest Examples

	Slow Start: A step by step breakdown of the Quickstart example
	Create a Collection

	Select a Data Service

	Search for Datasets

	Add Datasets to Collection

	Download Datasets

	Open Datasets

	Where to Go from Here

Project Management

In [1]: from quest import api

In [2]: api.get_active_project()
Out[2]: 'default'

In [3]: api.get_projects()
Out[3]: ['default']

In [4]: api.new_project('my_proj')
Out[4]:
{'created_at': datetime.datetime(2017, 10, 13, 15, 1, 42, 322881),
 'description': '',
 'display_name': 'my_proj',
 'metadata': {},
 'updated_at': None}

In [5]: api.get_projects()
Out[5]: ['my_proj', 'default']

In [6]: api.set_active_project('my_proj')
Out[6]: 'my_proj'

In [7]: api.get_active_project()
Out[7]: 'my_proj'

In [8]: api.delete_project('my_proj')
Out[8]: {'default': {'folder': 'default'}}

In [9]: api.get_active_project()
Out[9]: 'default'

Collection Management

In [1]: from quest import api

In [2]: api.get_collections()
Out[2]: []

In [3]: api.new_collection('demo')
Out[3]:
{'created_at': datetime.datetime(2017, 10, 13, 15, 5, 33, 385739),
 'description': '',
 'display_name': 'demo',
 'metadata': {},
 'name': 'demo',
 'updated_at': None}

In [4]: api.get_collections()
Out[4]: ['demo']

In [5]: api.delete('demo')
Out[5]: True

In [6]: api.get_collections()
Out[6]: []

Applying Tools

Continuing from previous example.

In [16]: dataset = datasets[0]

In [17]: api.get_tools(filters={'dataset': dataset})
Out[17]: ['ts-flow-duration', 'ts-resample', 'ts-unit-conversion', 'ts-remove-outliers']

In [18]: filter_name = 'ts-resample'

In [19]: api.apply_filter_options(filter_name)
Out[19]:
{'properties': {'method': {'description': 'resample method',
 'type': {'default': 'mean',
 'enum': ['sum', 'mean', 'std', 'max', 'min', 'median']}},
 'period': {'description': 'resample frequency',
 'type': {'default': 'daily',
 'enum': ['daily', 'weekly', 'monthly', 'annual']}}},
 'required': ['period', 'method'],
 'title': 'Resample Timeseries Filter',
 'type': 'object'}

In [20]: options = {'method': 'max', 'period': 'daily'}

In [21]: api.run_filter(filter_name, datasets=dataset, options=options)
Out[21]: {'datasets': ['db98e371e7a64a02a773004c6ddc90ff'], 'features': []}

In [22]: api.get_metadata('db98e371e7a64a02a773004c6ddc90ff')
Out[22]:
{'db98e371e7a64a02a773004c6ddc90ff': {'collection': 'demo',
 'created_at': Timestamp('2017-10-13 16:01:20.665627'),
 'datatype': 'timeseries',
 'description': 'TS Filter Applied',
 'display_name': 'db98e371e7a64a02a773004c6ddc90ff',
 'feature': 'fa2e58257ec04d4cb0f18feec51df736',
 'file_format': 'timeseries-hdf5',
 'file_path': '/path/to/quest/projects/default/demo/usgs-nwis/iv/d70123cb1ad944a988f64f449a7d8e8e/db98e371e7a64a02a773004c6ddc90ff',
 'message': 'TS Filter Applied',
 'metadata': {},
 'name': 'db98e371e7a64a02a773004c6ddc90ff',
 'options': {'dataset': ['d70123cb1ad944a988f64f449a7d8e8e'],
 'features': None,
 'filter_applied': 'ts-resample',
 'filter_options': {'method': 'max', 'period': 'daily'}},
 'parameter': 'streamflow:daily:max',
 'source': 'derived',
 'status': 'filter applied',
 'unit': 'ft3/s',
 'updated_at': None,
 'visualization_path': ''}}

Slow Start: A step by step breakdown of the Quickstart example

The quickstart example demonstrated the fastest way to download and start working with data using Quest:

In [1]: import quest

In [2]: data = quest.api.get_data(
 ...: collection_name='quick-start',
 ...: service_uri='svc://usgs-nwis:iv',
 ...: search_filters={'bbox': [-91, 32.25, -90.8, 32.4]},
 ...: download_options={'parameter': 'streamflow'},
 ...:)[0]

In [3]: data.head()
Out[3]:
 qualifiers streamflow
datetime
2018-04-03 16:00:00 P 1180000.0
2018-04-03 17:00:00 P 1180000.0
2018-04-03 18:00:00 P 1180000.0
2018-04-03 19:00:00 P 1180000.0
2018-04-03 20:00:00 P 1180000.0

There is a lot going on in this seemingly simple example, so we’re going to break it down and explain every step.

The first thing to note is that the function quest.api.get_data(), is a workflow function, or in other words a
function that calls several other functions in succession. This provides a convenient way to get your data in one step
when you already know all of inputs you need. You can also use Quest to do the same workflow in a more interactive way.
The quest.api.get_data() call performs the following steps behind the scenes:

	Create a Collection

	Select a Data Service

	Search for Datasets

	Add Datasets to Collection

	Download Datasets

	Open Datasets

The following sections will explain each of these steps in detail.

Create a Collection

When Quest downloads data it needs to know where to put them. To keep data organized Quest provides a local organization
hierarchy to manage data (see Local Data Organization). At the top of the hierarchy is a project, and all Quest calls
will always apply to whatever project is active. For more details about managing projects see (Project Management).
Within projects are collections . All data that are downloaded by Quest are put in a collection . In the
quest.api.get_data() example above the collection_name argument specifies which collection to put the data
in. If there isn’t already a collection with the name specified by the collection_name argument then get_data
function will create it.

This process can also be done manually. Using the Quest API we can get a list of the collections with the
quest.api.get_collection() function:

In [4]: quest.api.get_collections()
Out[4]: ['quick-start']

As you can see there currently is only one collection called “quick-start” that was created as a result of the get_data
call made previously. To create a new collection we manually we can use the quest.api.new_collection() function:

In [5]: quest.api.new_collection('slow-start')
Out[5]:
{'name': 'slow-start',
 'display_name': 'slow-start',
 'description': '',
 'created_at': datetime.datetime(2019, 4, 4, 13, 43, 14, 823227),
 'updated_at': None,
 'metadata': {}}

This function returns the metadata that is associated with this newly created collection. For more details about working
with collection see Collection Management.

Select a Data Service

Once we have a place to store data locally we need to decide what data we want to download. Quest provides the ability
to search for data among many different data sources, or providers. Each provider will offer one or more data
services (see Data Repositories). We can list the available services by calling
quest.api.get_services():

In [6]: quest.api.get_services()
Out[6]:
['svc://cuahsi-hydroshare:hs_geo',
 'svc://cuahsi-hydroshare:hs_norm',
 'svc://noaa-coast:coops-meteorological',
 'svc://noaa-coast:coops-water',
 'svc://noaa-coast:ndbc',
 'svc://noaa-ncdc:ghcn-daily',
 'svc://noaa-ncdc:gsod',
 'svc://quest:quest',
 'svc://usgs-ned:1-arc-second',
 'svc://usgs-ned:13-arc-second',
 'svc://usgs-ned:19-arc-second',
 'svc://usgs-ned:alaska-2-arc-second',
 'svc://usgs-nlcd:2001',
 'svc://usgs-nlcd:2006',
 'svc://usgs-nlcd:2011',
 'svc://usgs-nwis:dv',
 'svc://usgs-nwis:iv',
 'svc://wmts:seamless_imagery']

Each service is represented by a service URI. In our quickstart example we used the penultimate service URI listed
here: ‘svc://usgs-nwis:iv’. This service URI is needed to tell Quest where to search for data.

Search for Datasets

Each service has a catalog or listing of the data it provides. To search for data we need to tell Quest which
service’s or services’ catalog to search. To limit our search we can pass in a dictionary of key-value pairs that specify
filter criteria to filter the catalog entries by. In the quickstart example we filtered the catalog using a bounding box.

...: search_filters={'bbox': [-91, 32.25, -90.8, 32.4]},

To manually search the catalog we can call the Quest API function quest.api.search_catalog() and pass it the
service URI and the filters dictionary:

In [7]: quest.api.search_catalog(uris='svc://usgs-nwis:iv', filters={'bbox': [-91, 32.25, -90.8, 32.4]})
Out[7]: ['svc://usgs-nwis:iv/07289000']

The return value from quest.api.search_catalog() is a list of catalog entry URIs. The catalog entry URI
looks just like the service URI that it came from with an appended catalog ID number. This catalog entry URI is
used to download the data associated to that catalog entry.

Add Datasets to Collection

Before we can download the data associated with a catalog entry we need to create a dataset derived from that
catalog entry. A Quest dataset represents a piece of data and stores all of the metadata associated with those
data. Every Quest dataset has an associated catalog entry that links it back to the service where the data
came from, and an associated collection that acts as a container for the data. We can create new datasets by
calling quest.api.add_datasets() and passing it both the collection and the catalog entry or entries from
which to create the datasets.

In [8]: quest.api.add_datasets('slow-start', 'svc://usgs-nwis:iv/07289000')
Out[8: ['d0b2baa58434445fb2d1fee0330d5acf']

The return value is a list of dataset IDs from the newly created datasets (in this case it’s just a list of one ID. We
can now use this dataset ID to download the data associated with it.

Download Datasets

To download data using Quest we use the quest.api.download_datasets() function. We need to pass it the dataset
IDs for the data that we want to download. We also need to pass it a dictionary of download options. Each service specifies
it’s own set of download options. To figure out what the download options are for a particular dataset we can either
refer to the documentation for that dataset’s service or we can call quest.api.get_download_options() and pass it
can pass in either the service URI the catalog entry URI, or the dataset ID.

In [9]: quest.api.get_download_options('d0b2baa58434445fb2d1fee0330d5acf')
Out[9]:
{'svc://usgs-nwis:iv/07289000': {'title': 'NWIS Instantaneous Values Service Download Options',
 'properties': [{'name': 'parameter',
 'type': 'ObjectSelector',
 'description': 'parameter',
 'default': None,
 'range': [['gage_height', 'gage_height'],
 ['streamflow', 'streamflow'],
 ['water_temperature', 'water_temperature']]},
 {'name': 'start',
 'type': 'Date',
 'description': 'start date',
 'default': None,
 'bounds': None},
 {'name': 'end',
 'type': 'Date',
 'description': 'end date',
 'default': None,
 'bounds': None},
 {'name': 'period',
 'type': 'String',
 'description': 'time period (e.g. P365D = 365 days or P4W = 4 weeks)',
 'default': 'P365D'}]}}

This returns a dictionary keyed by the URIs that were passed to the fucntion. For each URI key the value is a dictionary
specifying the download options or properties for that URI. In this case the download options we can specify are:

	parameter: one of ‘gage_height’, ‘streamflow’, or ‘water_temperature’

	start: the start date for the period of data want

	end: the end date for the period of data you want

	period: a string representing a period of data you want

Here either the start and end date can be specified or a period string can be specified. If neither are specified then
the default period ‘P365D’ (meaning a period of 365 days ending with today) will be used by default. In the quickstart
example we specified that we were interested in ‘streamflow’ data and we didn’t specify a period so by default we got
the past year of data. We can do the same here by calling quest.api.download_datasets():

In [10]: quest.api.download_datasets(
 ...: datasets='d0b2baa58434445fb2d1fee0330d5acf',
 ...: options={'parameter': 'streamflow'},
 ...:)
Out[10]: {'d0b2baa58434445fb2d1fee0330d5acf': 'downloaded'}

The return value is a dictionary keyed by the dataset IDs that were passed in where the value is the status. In this case
‘downloaded’ means that the data associated with the dataset were successfully downloaded.

Open Datasets

When the data associated with a dataset are downloaded they are by default stored on disk. Quest can be used to
transform, visualize, or publish the data and will only require the dataset ID as an argument. If you’d like to use
other Python tools to work with your data you can use Quest to open your data and read it into a Python data structure.
The data that we downloaded are a timeseries of streamflow values. The default data structure that Quest uses for this
type of data is a pandas.DataFrame. Therefore, when we call quest.api.open_dataset() we will getback our
data in a DataFrame.

In [6]: data = quest.api.open_dataset('d0b2baa58434445fb2d1fee0330d5acf')

In [7]: data.head()
Out[7]:
 qualifiers streamflow
 datetime
 2018-04-03 16:00:00 P 1180000.0
 2018-04-03 17:00:00 P 1180000.0
 2018-04-03 18:00:00 P 1180000.0
 2018-04-03 19:00:00 P 1180000.0
 2018-04-03 20:00:00 P 1180000.0

Where to Go from Here

Core Concepts

Quest is a python library designed to automate the following data management tasks:

	Discovery

	Retrieval

	Organization

	Transformation

	Archival

At the heart of all of these tasks are datasets. Each of the tasks listed above involves finding, getting, storing, changing, or sharing a dataset. The underlying concepts for how Quest accomplishes these five tasks will be described below and are grouped into the following three sections:

	Local Data Organization

	Data Transformations

	Data Repositories

	Discovery

	Retrieval

	Archival

Local Data Organization

Quest uses a hierarchical structure to organize and manage datasets, and data sources. The dataset hierarchy begins with projects which contains collections which have datasets. A more detailed description of each level is given below.

Projects

A Quest Project is the base organizing factor. The first time Quest is started a
default project is created. Only one project can be active at a time and
currently the api does not allow copying data from one project to another.

Physically, a project maps to a folder on the computer. All data and metadata
associated with a project is stored under the project folder. The metadata is
stored in a sqlite database.

Collections

Collections are a way of organizing data within a project. Collection names are
unique and the collection name maps directly to a folder name in the project folder.

Datasets

These are the actual individual data files or in some cases a folder of data. Datasets have associated metadata that is stored in the project directory.

Data Transformations

Quest facilitates transforming data through the use of tools. Some examples of the kinds of transformations that Quest can do include merging datasets, aggregating data within a dataset, or changing the format that the data is stored in.

Tools

Quest tools are a way to perform some kind of operation on data. It is important to note that a tool will never perform “in-place” changes the datasets that it operates on. This means that datasets that are passed to a tool will remain unchanged, and the tool will create new datasets that have the transformed data. New tools can be added to Quest through Tool Plugins.

Tools define a set of options that a user must specify when using the tool.

Data Repositories

When Quest is used to search for data it searches among all of the data repositories or data providers that are registered with Quest. Similar to Tools Providers are added to Quest as plugins (see Provider Plugins). Providers contain one or more services. Services provide an interface for a single data product. Each service has a Catalogs, which stores metadata about the datasets that are available from that service and is what enables Quest to search for data.

Providers

Data providers are the top level source of data. Providers are composed of one or more Services, and typically represent an organization or specific part of an organization that provides data. In Quest, providers are a way of grouping related services.

Services

A data service is a specific type or channel of data that is offered from a Providers, and are the primary means of ingesting data into Quest.

Catalogs

Catalog Entries

Catalog Entries are a unique identifiers that indicate a group of datasets. Typically,
these are geospatial locations, i.e., monitoring stations, counties, lakes,
roads at which data exists. Features can also just be a tag or name to group data
that does not have a geospatial component (i.e. geotypical datasets). Features
are always either part of a collection or part of a web service.

Extending Quest

Provider Plugins

Tool Plugins

I/O Plugins

API Reference

If you are looking for information on a specific function, class or
method, this part of the documentation is for you.

Python API for Environmental Simulator Quest (QUEST).

This module defines the Python API for the Environmental Simulator Data
Services Library.

	
quest.api.add_datasets(collection, catalog_entries)

	Adds new datasets (created from catalog_entries) to collection

	Parameters

	
	collection (string, Required) – name of collection

	catalog_entries (string, comma separated strings, list of strings, or pandas.DataFrame, Required) – list of catalog entry uris from which to create new datasets to add to the collection.

	Returns

	uris of newly created datasets

	Return type

	uris (list)

	
quest.api.add_project(name, path, activate=True)

	Add a existing QUEST project to the list of available projects

	Parameters

	
	name (string, Required) – name of project; existing name can be used or project can be renamed

	path (string, Required) – path to existing project

	activate (bool, Optional, Default=True) – if True, the added project is set as the currently active project

	
quest.api.add_user_provider(uri)

	Add a custom web service created from a file or http folder.

Converts a local/network or http folder that contains a quest.yml
and associated data into a service that can be accessed through quest

	Parameters

	uri (string, Required) – uri of new ‘user’ service

	Returns

	status of adding service (i.e. failed/success)

	Return type

	message (string)

	
quest.api.authenticate_provider(uri, **kwargs)

	Authenticate the user.

	Parameters

	uri – uri of ‘user service’

	
quest.api.cancel_tasks(task_ids)

	Cancel tasks.

	Parameters

	task_ids (string or list of strings, Required) – id of tasks to be cancelled

	
quest.api.copy(uris, destination_collection, as_dataframe=None, expand=None)

	

	
quest.api.delete(uris)

	Delete metadata for resource(s)

Warning

deleting a collection deletes all associated datasets

	Parameters

	uris (string, comma separated string or list of strings, Required) – uri(s) of collection, and/or dataset to delete

	Returns

	True on success

	Return type

	status (bool)

	
quest.api.delete_project(name)

	Delete a project.

Deletes a project and all data in the project folder.

	Parameters

	name (string, Required) – name of a project

	Returns

	all remaining projects and their respective folders

	Return type

	projects (dict)

	
quest.api.delete_user_provider(uri)

	Remove ‘user’ service.

	Parameters

	uri – uri of ‘user service’

	
quest.api.download(catalog_entry, file_path, dataset=None, **kwargs)

	Download dataset and save it locally.

	Parameters

	
	catalog_entry (string, Required) – uri of catalog_entry within a service or collection

	file_path (string, Required) – path location to save downloaded data

	dataset (string, Optional, Default=None) – maybe only be used by some providers

	async – (bool, Optional, Default=False)
if True, download in background

	kwargs – optional download kwargs

	Returns

	details of downloaded data

	Return type

	data (dict)

	
quest.api.download_datasets(datasets, options=None, raise_on_error=False)

	Download datasets and save them in the Quest project.

	Parameters

	
	datasets (string or list, Required) – datasets to download

	options (dict, Optional, Default=None) – Dictionary of download options to stage the datasets with before downloading (see quest.api.stage_for_download())

	raise_on_error (bool, Optional, Default=False) – if True, if an error occurs raise an exception

	async (bool, Optional, Default=False) – if True, download in background

Note

If options are not provided then the datasets should already download options set by calling quest.api.stage_for_download().

	Returns

	download status of datasets

	Return type

	status (dict)

	
quest.api.get_download_options(uris, fmt='json')

	List optional kwargs that can be specified when downloading a dataset.

	Parameters

	
	uris (string or list, Required) – uris of catalog_entries or datasets

	fmt – format in which to return download_options. One of [‘json’, ‘param’]

	
quest.api.get_active_project()

	Get active project name.

	Returns

	name of currently active project

	Return type

	name (string)

	
quest.api.get_api_version()

	Get QUEST API version.

	Returns

	version of QUEST API being used

	Return type

	QUEST version (string)

	
quest.api.get_auth_status(uri)

	Check to see if a provider has been authenticated

	Parameters

	uri – uri of ‘user service’

	
quest.api.get_collections(expand=False, as_dataframe=False)

	Get available collections.

Collections are folders on the local disk that contain downloaded or
created data along with associated metadata.

	Parameters

	
	expand (bool, Optional, Default=False) – include collection details and format as dict

	as_dataframe (bool, Optional, Default=False) – include collection details and format as pandas dataframe

	Returns

	all available collections

	Return type

	collections (list, dict, or pandas dataframe, Default=list)

	
quest.api.get_data(service_uri, search_filters=None, search_queries=None, download_options=None, collection_name='default', expand=False, use_cache=True, max_catalog_entries=10, as_open_datasets=True, raise_on_error=False)

	Downloads data from source uri and adds to a quest collection.

	Parameters

	
	service_uri (string, required) – uri for service to get data from

	search_filters (dict, optional, default=None) – dictionary of search filters to filter the catalog search. At least one of search_filters or
search_queries should be specified. (see docs for quest.api.search_catalog())

	search_queries (list, optional, default=None) – list of string arguments to pass to pandas.DataFrame.query to filter the catalog search. At least one
of search_filters or search_queries should be specified. (see docs for quest.api.search_catalog())

	download_options (dict or Parameterized, optional, default=None) – dictionary or Parameterized object with download options for service
(see docs for quest.api.download_datasets)

	collection_name (string, optional, default='default') – name of collection to add downloaded data to. If collection doesn’t exist it will be created.

	expand (bool, optional, default=False) – include dataset details and format as dict

	use_cache (bool, optional, default=True) – if True then previously downloaded datasets with the same download options will be returned
rather than downloading new datasets

	max_catalog_entries (int, optional, default=10) – the maximum number of datasets to allow in the search. If exceeded a Runtime error is raised.

	as_open_datasets (bool, optional, default=False) – if True return datasets as Python data structures rather than as dataset ids
(see docs for quest.api.open_dataset)

	raise_on_error (bool, optional, default=False) – if True then raise an exception if no datasets are returned in the search,
or if there is an error while downloading any of the datasets.

	Returns

	the quest dataset name, or an python data structure if open_dataset=True.

	
quest.api.get_datasets(expand=None, filters=None, queries=None, as_dataframe=None)

	Return all available datasets in active project.

	Parameters

	
	expand (bool, Optional, Default=None) – include dataset details and format as dict

	filters (dict, Optional, Default=None) – filter dataset by any metadata field

	queries (list, Optional, Default=None) – list of string arguments to pass to pandas.DataFrame.query to filter the datasets

	as_dataframe (bool or None, Optional, Default=None) – include dataset details and format as pandas dataframe

	Returns

	staged dataset uids

	Return type

	uris (list, dict, pandas Dataframe, Default=list)

	
quest.api.get_mapped_parameters()

	Get list of common parameters.

	Returns

	list of common parameters

	Return type

	parameters (list)

	
quest.api.get_metadata(uris, as_dataframe=False)

	Get metadata for uris.

	Parameters

	
	uris (string, comma separated string, or list of strings, Required) – list of uris to retrieve metadata for

	as_dataframe (bool, Optional, Default=False) – include details of newly created dataset as a pandas Dataframe

	Returns

	metadata at each uri keyed on uris

	Return type

	metadata (dict or pd.DataFrame, Default=dict)

	
quest.api.get_parameters(service_uri, update_cache=False)

	Get available parameters, even unmapped ones, for specified service.

	Parameters

	
	service_uri (string, Required) – uri of service to get parameters for

	update_cache (bool, Optional, Default=True) – if True, update metadata cache

	Returns

	all available parameters for specified service

	Return type

	parameters (list)

	
quest.api.get_pending_tasks(**kwargs)

	Return list of pending tasks

calls get_tasks with filter -> status=pending, passes through other kwargs
(filters={}, expand=None, as_dataframe=None, with_future=None)

	
quest.api.get_projects(expand=False, as_dataframe=False)

	Get list of available projects.

	Parameters

	expand – include collection details and format as dict

	Returns

	all available projects

	Return type

	projects (list, dict, or pandas Dataframe,Default=list)

	
quest.api.get_providers(expand=None, update_cache=False)

	Return list of Providers.

	Parameters

	
	expand (bool, Optional, Default=None) – include providers’ details and format as dict

	update_cache (bool, Optional, Default=False) – reload the list of providers

	Returns

	list of all available providers

	Return type

	providers (list or dict, Default=list)

	
quest.api.get_publishers(expand=None, publisher_type=None)

	This method returns a list of avaliable publishers.

The method first gets a dictionary filled with the available providers
in Quest. Then we loop through grabbing the keys and the objects within
the dictionary. Then we loop again, accessing each service getting another
dictionary with the provider as the key and the metadata as the values.
Then we create a publish uri, and get the publisher class name for the
service. We return a list of publishers.

	Parameters

	
	expand (bool, Optional, Default=False) – include providers’ details and format as dict

	publisher_type (string, Optional, Default=None') – filter to only include specific type

	Returns

	list of all available providers

	Return type

	providers (list or dict,Default=list)

	
quest.api.get_quest_version()

	Get QUEST version.

	Returns

	version of QUEST being used

	Return type

	QUEST version (string)

	
quest.api.get_seamless_data(service_uri, bbox, search_filters=None, search_queries=None, download_options=None, collection_name='default', expand=False, use_cache=True, max_catalog_entries=10, as_open_dataset=True, raise_on_error=False)

	Downloads raster data from source uri and adds to a quest collection.

If multiple raster tiles are retrieved for the given bounds it calls a quest
tool to merge the tiles into a single raster.

	Parameters

	
	service_uri (string, required) – uri for service to get data from

	bbox (list, required) – list of lat/lon coordinates representing the bounds of the data in for form
[lon_min, lat_min, lon_max, lat_max].

	search_filters (dict, optional, default=None) – dictionary of search filters to filter the catalog search (see docs for quest.api.search_catalog())

	search_queries (list, optional, default=None) – list of string arguments to pass to pandas.DataFrame.query to filter the catalog search
(see docs for quest.api.search_catalog())

	download_options (dict or Parameterized, optional, default=None) – dictionary or Parameterized object with download options for service
(see docs for quest.api.download_datasets)

	collection_name (string, optional, default='default') – name of collection to add downloaded data to. If collection doesn’t exist it will be created.

	expand (bool, optional, default=False) – include dataset details and format as dict

	use_cache (bool, optional, default=True) – if True then previously downloaded datasets with the same download options will be returned
rather than downloading new datasets

	max_catalog_entries (int, optional, default=10) – the maximum number of datasets to allow in the search. If exceeded a Runtime error is raised.

	as_open_dataset (bool, optional, default=False) – if True return dataset as Python data structure rather than as a dataset id
(see docs for quest.api.open_dataset)

	raise_on_error (bool, optional, default=False) – if True then raise an exception if no datasets are returned in the search,
or if there is an error while downloading.

	Returns

	the quest dataset name.

	
quest.api.get_services(expand=None, parameter=None, service_type=None)

	Return list of Services.

	Parameters

	
	expand (bool, Optional, Default=False) – include providers’ details and format as dict

	parameter (string, Optional, Default=None) –

	service_type (string, Optional, Default=None') – filter to only include specific type

	Returns

	all available providers

	Return type

	providers (list or dict, Default=dict)

	
quest.api.get_settings()

	Get the settings currently being used by QUEST.

	Returns

	A dictionary of the current settings.

Example

{‘BASE_DIR’: ‘/Users/dharhas/’,
‘CACHE_DIR’: ‘cache’,
‘PROJECTS_DIR’: ‘projects’,
‘USER_SERVICES’: [],
}

	
quest.api.get_tags(service_uris, update_cache=False, filter=None, as_count=False)

	Get searchable tags for a given service.

	Parameters

	
	service_uris (string or list, Required) – uris of providers

	update_cache (bool, Optional) – if True, update metadata cache

	filter (list, Optional) – list of tags to include in return value

	as_count (bool, Optional) – if True, return dictionary with the number of values rather than a list of possible values

	Returns

	dict keyed by tag name and list of possible values

Note: nested dicts are parsed out as a multi-index tag where keys for nested dicts are joined with ‘:’.

	Return type

	tags (dict)

	
quest.api.get_task(task_id, with_future=None)

	Get details for a task.

	Parameters

	
	task_id (string,Required) – id of a task

	with_future (bool, Optional, Default=None) – If true include the task future objects in the returned dataframe/dictionary

	
quest.api.get_tasks(filters=None, expand=None, as_dataframe=None, with_future=None)

	Get all available tasks.

	Parameters

	
	filters (dict, Optional, Default=None) –
	filter tasks by one or more of the available filters
	
	available filters:
	
	task_ids (str or list): task id or list of task ids

	
	status (str or list): single status or list of statuses. Must be subset of
	[‘pending’, ‘cancelled’, ‘finished’, ‘lost’, ‘error’]

	fn (str): name of the function a task was assigned

	args (list): list of arguments that were passed to the task function

	kwargs (dict): dictionary of keyword arguments that were passed to the task function

	result (object): result of the task function

	expand (bool, Optional, Default=None) – include details of tasks and format as a dict

	as_dataframe (bool, Optional, Default=None) – include details of tasks and format as a pandas dataframe

	with_future (bool, Optional, Default=None) – If true include the task future objects in the returned dataframe/dictionary

	Returns

	all available tasks

	Return type

	tasks (list, dict, or pandas dataframe, Default=list)

	
quest.api.get_tools(filters=None, expand=False, **kwargs)

	List available tool plugins

	Parameters

	
	filters (dict, Optional, Default=None) – filter the list of tools by one or more of the available filters

	Available Filters:
	
	dataset

	group

	geotype

	datatype

	parameter

Note: If a dataset filter is used, all other filters are overridden and set from the dataset’s metadata.

	expand (bool, Optional, Default=None) – if True, return details of the filters as a dict

	kwargs – optional filter kwargs

	Returns

	all available tools

	Return type

	tools (list or dict, Default=list)

	
quest.api.get_tool_options(name, fmt='json', **kwargs)

	Retrieve kwarg options for run_tool.

	Parameters

	
	name (string, Required) – name of filter

	fmt (string, Required, Default='json') – format in which to return options. One of [‘json’, ‘param’]

	kwargs – keyword arguments of options to set and exclude from return value.

	Returns

	tool options that can be applied when calling quest.api.run_filter

	Return type

	tool options (json scheme)

	
quest.api.move(uris, destination_collection, as_dataframe=None, expand=None)

	

	
quest.api.new_catalog_entry(geometry=None, geom_type=None, geom_coords=None, metadata=None)

	Add a new entry to a catalog either a quest local catalog (table) or file.

	Parameters

	
	geometry (string or Shapely.geometry.shape, optional, Default=None) – well-known-text or Shapely shape representing the geometry of the catalog_entry.
Alternatively geom_type and geom_coords can be passed.

	geom_type (string, Optional, Default=None) – geometry type of catalog_entry (i.e. point/line/polygon)

	geom_coords (string or list, Optional, Default=None) – geometric coordinates specified as valid geojson coordinates (i.e. a list of lists i.e.
‘[[-94.0, 23.2], [-94.2, 23.4] …]’
——— OR ———
[[-94.0, 23.2], [-94.2, 23.4] …] etc)

	metadata (dict, Optional, Default=None) – optional metadata at the new catalog_entry

	Returns

	uri of newly created entry

	Return type

	uri (string)

	
quest.api.new_collection(name, display_name=None, description=None, metadata=None, exists_ok=False)

	Create a new collection.

Create a new collection by creating a new folder in project directory
and adding collection metadata in project database.

	Parameters

	
	name (string, Required) – Name of the collection used in all quest function calls,must be unique.
Will also be the folder name of the collection

	display_name (string, Optional, Default=None) – display name for collection

	description (string, Optional, Default=None) – description of collection

	metadata (dict, Optional, Default=None) – user defined metadata

	exists_ok (bool, Optional, Default=False) – If True then ValueError is not raised if the collection already exits. Rather the metadata of the
existing colleciton is returned.

	Returns

	details of the newly created collection

	Return type

	dict

	Raises

	ValueError – If collection with name already exists.

	
quest.api.new_dataset(catalog_entry, collection, source=None, display_name=None, description=None, file_path=None, metadata=None, name=None)

	Create a new dataset in a collection.

	Parameters

	
	catalog_entry (string, Required) – catalog_entry uri

	collection (string, Required) – name of collection to create dataset in

	source (string, Optional, Default=None) – type of the dataset such as timeseries or raster

	display_name (string, Optional, Default=None) – display name for dataset

	description (string, Optional, Default=None) – description of dataset

	file_path (string, Optional, Default=None) – path location to save new dataset’s data

	metadata (dict, Optional, Default=None) – user defined metadata

	name (dict, Optional, Default=None) – optionally pass in a UUID starting with d as name, otherwise it will be generated

	Returns

	uid of dataset

	Return type

	uri (string)

	
quest.api.new_parameter(uri, parameter_name)

	Add new parameter to collection.

	
quest.api.new_project(name, display_name=None, description=None, metadata=None, folder=None, activate=True)

	Create a new QUEST project and add it to list of available projects.

	Parameters

	
	name (string, Required) – name of newly created project

	display_name (string, Optional, Default=None) – display name for project

	description (string, Optional, Default=None) – description of project

	metadata (dict, Optional, Default=None) – user defined metadata

	folder (string, Optional, Default=None) – folder where all project data will be saved

	activate (bool, Optional, Default=True) – if True, set newly created project as currently active project

	
quest.api.open_dataset(dataset, fmt=None, **kwargs)

	Open the dataset and return in format specified by fmt

	Parameters

	
	dataset (string, Required) – uid of dataset to be opened

	fmt (string, Optional, Default=None) – format in which dataset should be returned
will raise NotImplementedError if format requested is not possible

	Returns

	contents of dataset

	Return type

	data (pandas dataframe, json, or dict, Default=dataframe)

	
quest.api.publish(publisher_uri, options=None, **kwargs)

	

	
quest.api.get_publish_options(publish_uri, fmt='json')

	

	
quest.api.remove_project(name)

	Remove a project from the list of available projects.

This does not delete the project folder or data, just removes it from the
index of available projects.

	Parameters

	name – name of project

	
quest.api.remove_tasks(task_ids=None, status=None)

	Remove tasks.

	Parameters

	
	task_ids (string or list, Optional, Default=None) – tasks with specified id(s) will be removed

	status (string or list, Optional, Default=None) –
	tasks with specified status(es) will be removed. Valid statuses are:
	
	cancelled

	finished

	lost

	error

	NOTE: pending is not a valid option and will be ignored,
	since pending tasks must be canceled before they can be removed.

	no status is specified, remove tasks with (If) –

	= ['cancelled', 'finished', 'lost', 'error'] from task list (status) –

	
quest.api.run_tool(name, options=None, as_dataframe=None, expand=None, as_open_datasets=None, **kwargs)

	Apply Tool to dataset.

	Parameters

	
	name (string,Required) – name of filter

	options (dict, Required) – a dictionary of arguments to pass to the filter formatted as specified by get_tool_options

	expand (bool, Optional, Default=False) – include details of newly created dataset and format as a dict

	as_dataframe (bool, Optional, Default=False) – include details of newly created dataset and format as a pandas dataframe

	as_open_datasets (bool, Optional, Default=False) – returns datasets as Python data structures rather than Quest IDs

	async (bool,Optional) – if True, run filter in the background

	kwargs – keyword arguments that will be added to options

	Returns

	resulting datasets and/or catalog_entries

	Return type

	dataset/catalog_entry uris (dict or pandas dataframe, Default=dict)

	
quest.api.save_settings(filename=None)

	Save settings currently being used by QUEST to a yaml file.

	Parameters

	filename (string) – Path to the yaml file to save the settings.

	Returns

	A true boolean if settings were saved successfully.

	
quest.api.set_active_project(name)

	Set active QUEST project.

	Parameters

	name (string, Required) – name of a project

	Returns

	name of project currently set as active

	Return type

	project (string)

	
quest.api.search_catalog(uris=None, expand=False, as_dataframe=False, as_geojson=False, update_cache=False, filters=None, queries=None)

	Retrieve list of catalog entries from resources.

	Parameters

	
	uris (string or list, Required) – uris of service_uris

	expand (bool, Optional, Default=False) – if true then return metadata along with catalog entries

	as_dataframe (bool, Optional, Default=False) – include catalog_entry details and format as a pandas DataFrame indexed by catalog_entry uris

	as_geojson (bool, Optional, Default=False) – include catalog_entry details and format as a geojson scheme indexed by catalog_entry uris

	update_cache (bool, Optional,Default=False) – if True, update metadata cache

	filters (dict, Optional, Default=None) – filter catalog_entries by one or more of the available filters

Note

	available filters:
	
	bbox (string, optional): filter catalog_entries by bounding box

	geom_type (string, optional): filter catalog_entries by geom_type, i.e. point/line/polygon

	parameter (string, optional): filter catalog_entries by parameter

	display_name (string, optional): filter catalog_entries by display_name

	description (string, optional): filter catalog_entries by description

	search_terms (list, optional): filter catalog_entries by search_terms

catalog_entries can also be filtered by any other metadata fields

	queries (list, Optional, Default=None) – list of string arguments to pass to pandas.DataFrame.query to filter the catalog_entries

	Returns

	datasets of specified service(s), collection(s) or catalog_entry(s)

	Return type

	datasets (list, geo-json dict or pandas.DataFrame, Default=list)

	
quest.api.stage_for_download(uris, options=None)

	Apply download options before downloading

	Parameters

	
	uris (string or list, Required) – uris of datasets to stage for download

	options (dict or list of dicts, Optional, Default=None) – options to be passed to quest.api.download function specified for each dataset

If options is a dict, then apply same options to all datasets,
else each dict in list is used for each respective dataset

	Returns

	staged dataset uids

	Return type

	uris (list)

	
quest.api.unauthenticate_provider(uri)

	Un-Authenticate the user.

	Parameters

	uri – uri of ‘user service’

	
quest.api.update_metadata(uris, display_name=None, description=None, metadata=None, quest_metadata=None)

	Update metadata for resource(s)

	Parameters

	
	uris (string, comma separated string, or list of strings, Required) – list of uris to update metadata for.

	display_name (string or list, Optional,Default=None) – display name for each uri

	description (string or list, Optional,Default=None) – description for each uri

	metadata (dict or list of dicts, Optional, Default=None) – user defiend metadata

	quest_metadata (dict or list of dicts, Optional, Default=None) – metadata used by QUEST

	Returns

	metadata of each uri keyed on uris

	Return type

	metadata (dict)

	
quest.api.update_project_metadata(name, display_name=None, description=None, metadata=None)

	Updates a project’s metadata

	Parameters

	
	name (string, required) – name of project to update

	display_name (string, optional, default=None) – new display name for the project. If None then the display name will not be modified.

	(string, optional, default=None (description) – new description for the project. If None then the description will not be modified.

	metadata (dict, optional, default=None) – new metadata dict with which to update the project’s current metadata. If None then the metadata will not be modified.

	Returns

	dictionary of updated metadata for project

	Return type

	dict

	
quest.api.update_settings(config={})

	
	Update the settings file that is being stored in the Quest
	settings directory.

Notes

Only key/value pairs that are provided are updated,
any other existing pairs are left unchanged or defaults
are used.

	Parameters

	config (dict) – Key/value pairs of settings that are to be updated.

	Returns

	Updated Settings

Example

{‘BASE_DIR’: ‘/Users/dharhas/’,
‘CACHE_DIR’: ‘cache’,
‘PROJECTS_DIR’: ‘projects’,
‘USER_SERVICES’: [],
}

	
quest.api.update_settings_from_file(filename)

	Update the settings from a new yaml file.

Notes

Only key/value pairs that are provided are updated,
any other existing pairs are left unchanged or defaults
are used.

	Parameters

	filename (string) – Path to the yaml file containing the new settings.

	Returns

	Updated settings

Example

{‘BASE_DIR’: ‘/Users/dharhas/’,
‘CACHE_DIR’: ‘cache’,
‘PROJECTS_DIR’: ‘projects’,
‘USER_SERVICES’: [],
}

	
quest.api.visualize_dataset(dataset, update_cache=False, **kwargs)

	Visualize the dataset as a matplotlib/bokeh plot.

Check for existence of dataset on disk and call appropriate file format
driver.

	Parameters

	
	dataset (string, Required) – uri of dataset to be visualized

	update_cache (bool, Optional, Default=False) – currently unused

	kwargs – optional download kwargs

	Returns

	path to the newly visualized dataset

	Return type

	path (string)

	
quest.api.get_visualization_options(dataset, fmt='json')

	Return visualization available options for dataset.

	Parameters

	
	dataset (string, Required) – uid of dataset

	fmt (string, Required, Default='json') – format in which to return options

	Returns

	options that can be specified when calling
quest.api.visualize_dataset

	Return type

	get_visualization_options (dict)

Developer Documentation

This documentation is geared toward those wanting to contribute to the Quest source code.

Table of Contents

	Quest Design
	Core Concepts

	Settings

	Writing Quest Service Plugin

	Data Service Plugins
	1. Provider Base Class

	2. Service Base Class

	3. Service Classes

	Testing
	Running Tests

	Custom Test Options

	Adding Tests

Quest Design

Quest has several (sometimes conflicting) design goals. The current design aims
for a practical balance between these goals.

	Architectural Goals:
	
	Cross platform: OS X, Windows, Linux

	Needs to be easily extendable.

	API Goals:
	
	The api should be optimized to allow ease of scripting and interactive in python

	The api should allow for use as a backend library to drive web and gui interfaces

	Data Goals:
	
	Downloaded data should be reasonably structured, portable and usable even if you don’t use Quest later

	Should allow reasonable tracking of provenance and transformations of data

	Provide mechanisms to publish/share data that has been downloaded/transformed

	Easily publish structured data as user defined services

Core Concepts

Refer to Core Concepts.

Settings

Quest can be configured in three ways:

	Setting Environmental Variables

	Passing in a python dictionary to quest.api.update_settings()

	Reading a yaml file with quest.api.update_settings_from_file()

Any settings that are not set explicitly are given default values

Description of Settings:

	Variable Name

	Description

	Default

	QUEST_BASE_DIR

	Base directory to save quest data/metadata

	determined by appdirs python package

	QUEST_CACHE_DIR

	Location to save cached data/metadata

	QUEST_BASE_DIR/cache/

	QUEST_PROJECT_FILE

	Name of project metadata file

	quest_project.yml

	QUEST_PROJECTS_INDEX_FILE

	Name of projects index file listing available projects and their paths

	quest_projects_index.yml

	QUEST_CONFIG_FILE

	Name of quest_config file that these settings are saved in

	quest_config.yml

	QUEST_USER_SERVICES

	list of web/file uris to user defined Quest services

	None

You can add any extra settings needed by a plugin here as well using the keyword:arg structure.

	Projects and Collections:
	
	A project is a folder that has some metadata and a set of collections

	All collections in a project are saved in subdirectories of the main project folder for portability

	Only one project can be active at a time, if none is specified a project called ‘default’ will be created and used

	Other projects can be opened as ‘local’ web services and features/data ‘downloaded’ in to the current project

	Only one dataset (with linear progression of versions) can exist in a (collection,parameter,feature) tuple. i.e. You cannot have two temperature datasets like 2015 Temperature and 2013 Temperature in the same collection+feature. You will either need to copy the feature with a new feature_id or copy to a new collection.

	Any ‘project’ can be added as a user defined Quest service (either from a local/network drive or http folder). In that case, the ‘project’ is equivalent to a ‘provider’ and each ‘collection’ is equivalent to a ‘service’

	There will be a way to convert folders of non Quest data into a user defined service by adding a quest_project.yml to the folder with appropriate metadata. These will be read-only projects.

	Services:
	
	
	There will be three types of services available (use the service_type filter in quest.api.get_service() to return a specific list)
	
	geo-discrete: These are what we currently use, feature based, features have location info

	geo-seamless: This is for seamless datasets. There is no get_features function. Instead you pass a geometric feature (bbox, line etc) to the service and the data is extracted and returned (eg. GEBCO Global Bathymetry data)

	geo-typical: This had features, by the features do not have geometry defined. Will function the same as geo-discrete. Will need to add a tag based search option.

	Parameters:
	
	external_name: what it is called in the service

	external_vocabulary: what the external vocab is

	vdatum: vertical datum if relevant

	long_name: display name

	standard_name: quest name, i.e air_temperature:daily:max

	vocabulary: ERDC Environmental Simulator

	units: m

	concept: air_temperature

	frequency: hourly, daily, etc

	statistic: instantaneous, mean, min, max etc

Example Directory Structure:

/path_to_quest_base_dir/
 cache/ # data caches go here
 quest_config.yml # quest configuration settings
 quest_projects_index.yml # list of active projects & their paths. projects do not need to be in this directory
 myproject_1/ # example project called myproject_1
 quest_project.yml # project metadata
 mycollection_1/ # example collection inside myproject_1
 quest.yml # collection metadata
 features.h5 # master list of features inside collection, can also be csv, geojson
 parameters.yml # file to keep track of available parameters, download status, versions of downloaded data etc
 temperature/ # folder for all temperature data in mycollection_1
 feature_1/ # folder for temperature data at feature_1 (feature_1 coords & metadata are in the master features.h5)
 66a4e39d # temperature datasets at feature_1
 f974a0c1 # these are different versions of the same dataset, the last one is the final
 203a91e3 # the versioning and applied filters metadata is tracked in quest_collection.yml
 feature_2/
 precipitation/
 feature_1/
 feature_3/
 feature_4/
 adh/
 feature_5/ # directory containing adh model grid defined by a polygon called feature_5
 feature_6/ # directory containing adh model grid defined by a polygon called feature_6
 timeseries/
 66a4e39d
 vitd-terrain/
 raster/

/some_other_location/myproject_2/ # another project listed in quest_projects_index.yml but not in the QUEST_BASE_DIR
 quest_project.yml
 mycollection_1/
 mycollection_2/

Writing Quest Service Plugin

Quest is designed to be extensible. It has tree types of plugins: (1) Data Service plugins, (2) Filter plugins, and (3) I/O plugins. Each of them work in a similar way, but this documentation will focus the details of the first type (Data Service plugins). Since there is not a standard interface for accessing the many web services that provide various types of data, the Quest service plugins are used as adapters that translate the specific interface used by each service to a common Quest API for searching, accessing, and downloading data. If we find a new data source that we would like to make accessible through Quest then we need to create a new service plugin for that source.

Data Service Plugins

Services are channels for finding and importing data into Quest. Data services are organized by provider. A provider is composed of one or more services, and all services must be part of a provider. For example, the U.S. Geological Survey (USGS) provides various data products. A subset of these products, say, the National Elevation Datasets (NED) haved been grouped into a usgs_ned provider. That provider has four different services that provide the various NED data products (i.e. 1 arc second, 1/3 arc second, 1/9 arc second, and Alaska 2 arc second). The process of creating a new Data Service plugin involves subclassing both the ProviderBase class and the ServiceBase class. To illustrate this process, we will provide code examples that create an example web service provider (ExampleProvider) that contains two services (ExampleService1 and ExampleService2).

1. Provider Base Class

The ProviderBase class acts as the gateway to all of the services that are part of a provider. Most of the code resides in the abstract base class, so subclassing it is very simple, and involves specifying a few attributes. For example:

from .base import ProviderBase

class ExampleProvider(ProviderBase):
 service_base_class = None #TODO: This will be implemented in the next step
 display_name = 'Example Web Provider'
 description = 'Example ProviderBase subclass for Quest'
 organization_name = 'Example Data Provider Organization'
 organization_abbr = 'EDPO'

This is all that is required to subclass the ProviderBase. As you will notice the attribute service_base_class was left as None. This attribute refers to a base class that is the parent of all of the services that belong to this provider. The ProviderBase will find all of the subclasses of the class specified by service_base_class and register them as services of the provider. Therefore the next step is to create a 2. Service Base Class.

2. Service Base Class

A data service plugin must subclass the ServiceBase class (or one of it’s subclasses, see Specialized Service Base Subclasses) to act as the base class for all services in the plugin. This ServiceBase subclass is registered in the provider as the service_base_class attribute. As an example we will create an ExampleServiceBase class that subclasses the ServiceBase class:

from .base import ProviderBase, ServiceBase

class ExampleServiceBase(ServiceBase):
 service_name = None
 display_name = None
 description = None
 service_type = None
 unmapped_parameters_available = None
 geom_type = None
 datatype = None
 geographical_areas = None
 bounding_boxes = None
 smtk_template = None
 _parameter_map = None

 def download(self, feature, file_path, dataset, **params):
 pass #TODO: This will be implemented later

 def get_features(self, **kwargs):
 pass #TODO: This will be implemented later

class ExampleProvider(ProviderBase):
 service_base_class = ExampleServiceBase
 ...

Note

The ExampleServiceBase class needed to be defined above the ExampleProvider class so we could reference it to assign the service_base_class attribute in the ExampleProvider.

The content of ExampleServiceBase has not yet been fully implemented. The above example simply illustrates the structure. All of the attributes and methods shown in the ExampleServiceBase will need to be implemented either in this class directly or in the services that subclass this base class. The specifics of how this are done will be different for each plugin, but the next step, 3. Service Classes will demonstrate one way to do it.

Specialized Service Base Subclasses

There are a couple of special cases that apply to services from various providers. To allow all of these services to use the same codebase a couple of other base classes are available that can be used in place of the ServiceBase.

TimePeriodServiceBase

This base class simply adds two parameters, a start and end date to represent the time period for the data being requested (see d. Specify the Download Options).

SingleFileServiceBase

This base class implements the download method for services where there is simply a download url that links to a single zip file that contains the data.

3. Service Classes

After a ServiceBase subclass has been created (in our example this is the ExampleServiceBase) then the next step is to create classes for each specific service. While the specifics of this step can vary significantly between plugins, the overall structure and process are similar and will be broken down in to several sub-steps:

	a. Required Service Class Attributes

	b. Implement the get_features Method

	c. Implement the download Method

	d. Specify the Download Options

Continuing the example from above we will create two service classes that each subclass the ExampleServiceBase. We’ll first focus on assigning all of the required class attributes.

a. Required Service Class Attributes

	service_name (String): A unique identifier for the service. It should contain only alpha-numeric characters or _ or -. There should be no spaces.

	display_name (String): A displayable version of the service name (may contain spaces) for use in GUIs.

	description (String): A brief description of the service that will be available in the service’s metadata.

	service_type (String): A keyword that indicates the type of data that the service provides. Must be one of geo-discrete, geo-seamless or geo-typical. (# TODO: provide link to description of service types in the docs)

	unmapped_parameters_available (Bool): Whether or not additional parameters are available from the service other than those that are listed in the _parameter_map.

	geom_type (String): Describes what type of geometry represents the locations of the data (for geo-discrete services only). Must be Point, Line, Polygon. Leave as None for service of type other than geo-discrete.

	datatype (String): Represents the type of data that is accessible from the service. Must be timeseries, raster, or other.

	geographical_areas (List): A list of descriptive words that represent the areas where data is available (e.g. [‘North America’, ‘Europe’]). Should be left as None for geo-typical service types.

	bounding_boxes (List): A list of bounding boxes represented as tuples in the form (x-min, y-min, x-max, y-max). For example [(-180, -90, 180, 90)].

	smtk_template (String): The name of the SMTK template file that describes the download options for the service.

	_parameter_map (Dict): A mapping of parameters as they are called by the service, to the controlled vocabulary parameter names in Quest.

In some cases the attributes will be the same for both services, so they can be assigned in the ExampleServiceBase class. The rest of the attributes, that are different between the two services, will be assigned in the service classes themselves:

from .base import ProviderBase, ServiceBase

class ExampleServiceBase(ServiceBase):
 service_name = None
 display_name = None
 description = None
 service_type = 'geo-discrete'
 unmapped_parameters_available = False
 geom_type = 'Point'
 datatype = 'timeseries'
 geographical_areas = ['Worldwide']
 bounding_boxes = [
 [-180, -90, 180, 90],
]
 smtk_template = None

 def get_features(self, **kwargs):
 pass #TODO: This will be implemented later

 def download(self, feature, file_path, dataset, **params):
 pass #TODO: This will be implemented later

class ExampleService1(ExampleServiceBase):
 service_name = 'example-1'
 display_name = 'Example Service 1'
 description = 'First example service'

 _parameter_map = {}

class ExampleService2(ExampleServiceBase):
 service_name = 'example-2'
 display_name = 'Example Service 2'
 description = 'Second example service'

 _parameter_map = {}

class ExampleProvider(ProviderBase):
 service_base_class = ExampleServiceBase
 ...

b. Implement the get_features Method

The purpose of the get_features method is to extract key metadata from the service that describes what data is available from that service. For geo-discrete services this would include a list of locations where the service has data in addition to other key metadata at each location. The return value for get_features should be a Pandas DataFrame indexed by a unique id (known as the service_id) with the following columns:

	display_name: (will be set to service_id if not provided)

	description: (will be set to ‘’ if not provided)

	service_id: a unique id that is used by the web service to identify the data

For geo-discrete services the DataFrame must also include a representation of the features’ geometry. Any of the following options are valid ways to specify the geometry:

	geometry: a geojson string or Shapely object

	latitude and longitude: two columns with the decimal degree coordinates of a point

	geometry_type, latitudes, and longitudes: Point, Line, or Polygon with a list of coordinates

	bbox: tuple with order (lon min, lat min, lon max, lat max)

All other fields that the DataFrame contains will be accumulated into a dict and placed in a column called metadata.

Similar to the attributes the get_features method may be implemented in the service classes (e.g. ExampleService1 and ExampleService2), or in the base class (e.g. ExampleServiceBase), or some combination of both.

c. Implement the download Method

The download method is responsible for retrieving the data from the data source using the specified download options, save it to disk, and then return a dictionary of key metadata. The download method should accept several arguments:

	feature: the service_id for the feature that is associated with the data to be downloaded

	file_path: the path to the directory on disk where Quest expects the data to be written

	dataset: the Quest dataset id associated with the data to be downloaded

	**params: key-word arguments for the dataset options

After downloading the data and saving it to disk, this method should return a dictionary ith the following keys:

	metadata: any metadata that was returned by the data source when it was downloaded in the form of a dict

	file_path: the final file path (including the filename) where the data file was writen

	file_format: the format that the file was written in (to be used to determine which I/O plugin to use to read the file)

	datatype: a string representing the type of data. Must be timeseries, raster, or other.

	parameter: a string representing the parameter of the data

	unit: a string representing the units of the data

d. Specify the Download Options

Data sources’s APIs often allow various options to be specified to determine what data to download, what format it should be in, etc.

The download options that are needed for each service are defined using the Python library Param [https://ioam.github.io/param/]. This library enables parameters to have features like type and range checking, documentation strings, default values, etc. Refer to the Param documentation [https://ioam.github.io/param/] for more information.

Testing

Quest has an expanding test suite the testing framework from pytest [http://doc.pytest.org/en/latest/contents.html].

Running Tests

To run the tests you will need to install the pytest Python package after activating your environment:

(quest) $ conda install pytest

Once pytest is installed in your environment you can execute the tests from the command line with the following command (assuming your working directory is the quest source code directory):

(quest) $ pytest test

The first time the tests are run quest will build a complete cache of all of the feature metadata for each service. This can take 5 or 6 minutes. This is only done the first time the tests are run (or when a flag is passed to update the cache). The tests will run much faster after the first time.

The tests are configured to run through both a Python interpreter and through an RPC server. This lengthens the time it takes to run the tests, but provides more coverage. If you are interested in only running one set of test or the other, this can be achived by passing in Custom Test Options.

Custom Test Options

Several custom options have been configured to allow several subsets of the tests to be run.

	–skip-slow: Any tests that have been marked as slow (e.g. the get_features tests) will not be run.

	–update-cache: Triggers the feature metadata for each service to be re-downloaded (this process takes 5 or 6 minutes).

For example, to run most of the tests very quickly you can run:

(quest) $ pytest test --skip-slow

This will will give you the most bang for you buck, running the majority of the tests in just several seconds.

To get the most coverage you should run:

(quest) $ pytest test --update-cache

This will test all of the services by regenerating the cache and will run the complete set of tests. This process can take around 10 minutes.

Adding Tests

The Quest testing framework makes extensive use of pytest fixtures [http://doc.pytest.org/en/latest/proposals/parametrize_with_fixtures.html?highlight=fixtures]. Fixtures provide a very flexible and powerful way to provide the correct baseline configuration for each test, and for running the same test with multiple configurations. The heart of the testing configuration is determined by the fixtures defined in conftest.py.

Glossary

	Catalog
	Catalogs
	see Catalogs

	Catalog Entry
	Catalog Entries
	see Catalog Entries

	Collection
	Collections
	see Collections

	Dataset
	Datasets
	see Datasets

	Project
	Projects
	see Projects

	Provider
	Providers
	see Providers

	Service
	Services
	see Services

	Tool
	Tools
	see Tools

 Python Module Index

 q

 		 	

 		
 q	

 	[image: -]
 	
 quest	

 	
 	
 quest.api	

Index

 A
 | C
 | D
 | G
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

A

 	
 	add_datasets() (in module quest.api)

 	add_project() (in module quest.api)

 	
 	add_user_provider() (in module quest.api)

 	authenticate_provider() (in module quest.api)

C

 	
 	cancel_tasks() (in module quest.api)

 	Catalog

 	Catalog Entries

 	Catalog Entry

 	
 	Catalogs

 	Collection

 	Collections

 	copy() (in module quest.api)

D

 	
 	Dataset

 	Datasets

 	delete() (in module quest.api)

 	
 	delete_project() (in module quest.api)

 	delete_user_provider() (in module quest.api)

 	download() (in module quest.api)

 	download_datasets() (in module quest.api)

G

 	
 	get_active_project() (in module quest.api)

 	get_api_version() (in module quest.api)

 	get_auth_status() (in module quest.api)

 	get_collections() (in module quest.api)

 	get_data() (in module quest.api)

 	get_datasets() (in module quest.api)

 	get_download_options() (in module quest.api)

 	get_mapped_parameters() (in module quest.api)

 	get_metadata() (in module quest.api)

 	get_parameters() (in module quest.api)

 	get_pending_tasks() (in module quest.api)

 	get_projects() (in module quest.api)

 	
 	get_providers() (in module quest.api)

 	get_publish_options() (in module quest.api)

 	get_publishers() (in module quest.api)

 	get_quest_version() (in module quest.api)

 	get_seamless_data() (in module quest.api)

 	get_services() (in module quest.api)

 	get_settings() (in module quest.api)

 	get_tags() (in module quest.api)

 	get_task() (in module quest.api)

 	get_tasks() (in module quest.api)

 	get_tool_options() (in module quest.api)

 	get_tools() (in module quest.api)

 	get_visualization_options() (in module quest.api)

M

 	
 	move() (in module quest.api)

N

 	
 	new_catalog_entry() (in module quest.api)

 	new_collection() (in module quest.api)

 	
 	new_dataset() (in module quest.api)

 	new_parameter() (in module quest.api)

 	new_project() (in module quest.api)

O

 	
 	open_dataset() (in module quest.api)

P

 	
 	Project

 	Projects

 	
 	Provider

 	Providers

 	publish() (in module quest.api)

Q

 	
 	quest.api (module)

R

 	
 	remove_project() (in module quest.api)

 	
 	remove_tasks() (in module quest.api)

 	run_tool() (in module quest.api)

S

 	
 	save_settings() (in module quest.api)

 	search_catalog() (in module quest.api)

 	Service

 	
 	Services

 	set_active_project() (in module quest.api)

 	stage_for_download() (in module quest.api)

T

 	
 	Tool

 	
 	Tools

U

 	
 	unauthenticate_provider() (in module quest.api)

 	update_metadata() (in module quest.api)

 	
 	update_project_metadata() (in module quest.api)

 	update_settings() (in module quest.api)

 	update_settings_from_file() (in module quest.api)

V

 	
 	visualize_dataset() (in module quest.api)

 nav.xhtml

 Table of Contents

 		
 Quest

 		
 Installation Instructions

 		
 Install Released Conda Package

 		
 Install from Source

 		
 Optional

 		
 Quickstart

 		
 Examples

 		
 Slow Start: A step by step breakdown of the Quickstart example

 		
 Quest Examples

 		
 Core Concepts

 		
 Local Data Organization

 		
 Projects

 		
 Collections

 		
 Datasets

 		
 Data Transformations

 		
 Tools

 		
 Data Repositories

 		
 Providers

 		
 Services

 		
 Catalogs

 		
 Catalog Entries

 		
 Extending Quest

 		
 Provider Plugins

 		
 Tool Plugins

 		
 I/O Plugins

 		
 API Reference

 		
 Developer Documentation

 		
 Table of Contents

 		
 Quest Design

 		
 Writing Quest Service Plugin

 		
 Data Service Plugins

 		
 Testing

 		
 Glossary

_static/minus.png

_static/plus.png

_static/file.png

