
Qucs-S Help Documentation
Release 0.0.19-S

Contributing Authors 2015, 2016

Oct 07, 2017

Contents

1 User Manual and Reference Material 3

i

ii

Qucs-S Help Documentation, Release 0.0.19-S

Contents 1

Qucs-S Help Documentation, Release 0.0.19-S

2 Contents

CHAPTER 1

User Manual and Reference Material

Authors Mike Brinson (mbrin72043@yahoo.co.uk) and Vadim Kusnetsov (ra3xdh@gmail.com)

Copyright 2015, 2016

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free
Software Foundation. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

Contents:

Chapter 1. Introduction

Following the release of Qucs-0.0.18 in August 2014 the Qucs Development Team considered in detail a number of
possible directions that future versions of the software could take. Spice4qucs is one of these routes. It addresses a
number of problems observed with the current version of Qucs while attempting to combine some of the best fea-
tures of other GPL circuit simulation packages. The project also aims to add additional model development tools
to those currently available in Qucs-0.0.18. Qucs was originally written as an RF and microwave engineering de-
sign tool which provided features not found in SPICE, like S parameter simulation, two and multiport small signal
AC circuit analysis and RF network synthesis. Since it was first release under the General Public License (GPL) in
2003 Qucs has provided users with a relatively stable, flexible and reasonably functional circuit simulation package
which is particularly suited to high frequency circuit simulation. In the years following 2003 the Qucs Development
team added a number of additional simulation facilities, including for example, transient simulation, device parameter
sweep capabilities and single tone Harmonic Balance simulation, making Qucs functionality comparable to SPICE at
low frequencies and significantly extended at high frequencies. Considerable effort has also been made to improve the

3

mailto:mbrin72043@yahoo.co.uk
mailto:ra3xdh@gmail.com

Qucs-S Help Documentation, Release 0.0.19-S

device modelling tools distributed with Qucs. The recent versions of the software include code for algebraic equation
manipulation, Equation-Defined Device (EDD) modelling, Radio Frequency Equation-Defined Device (RFEDD) sim-
ulation and Verilog-A synthesised model development plus a range of compact and behavioural device modelling and
post simulation data analysis tools that have become central features in an open source software package of surprising
power and utility.

One of the most often requested new Qucs features is “better documentation”, especially documentation outlining the
use and limitations of the simulation and the modelling features built into Qucs. Qucs is a large and complex package
which is very flexible in the way that it can be used as a circuit design aid. Hence, however much documentation is
written describing its functionality there are always likely be simulation and modelling examples that are missing from
the Qucs documentation. In future Qucs releases will be accompanied by two or more basic Qucs documents. The
first of these, simply called “Qucs-Help”, provides introductory information for beginners and indeed any other users,
who require help in starting to use Qucs. The second Qucs document, called “Spice4qucs-Help”, introduces more
advanced simulation and modelling topics. Both documents present a large number of typical circuit simulation and
compact device modelling examples. In the text these are also linked to sets of Qucs reference material. Since 2003
the Qucs Development Team, and other authors, have published a body of work concerning Qucs and its applications.
A bibliography of these publications can be found at the end of this document. Anyone interested in learning about
Qucs is recommended to read these publications as they provide a wealth of information on basic and advanced Qucs
topics. Both the “Qucs_Help” and “Spice4qucs-Help” documents are very much work in progress. Updated versions
will be published with each new Qucs release. Moreover, to keep everyone up to date with Qucs current developments
it is planned to updated them during future Qucs development phases. The latest documentation can be found at
https://github.com/Qucs/qucs-help.

1.1 Background

The current rate of Qucs downloads from http://qucs.sourceforge.net/ is around 3000 per week with a total of roughly
1.5 million downloads since Qucs was first released in 2003. This figure does not however, imply that 1.5 million
copies of Qucs are currently in regular use. It does perhaps give an indication of the popularity of the software,
particularly amongst users interested in RF circuit design and simulation. For a high percentage of regular Qucs
users the current distribution version (Qucs 0.0.18) provides a reasonably stable and accurate simulation tool equipped
with more than enough facilities to meet their everyday needs. In reality Qucs is not perfect but includes a number of
weaknesses and known limitations. The onward march of technology also makes it imperative that Qucs evolves from a
traditional circuit simulator to a design tool that can handle modelling and simulation of circuits which include devices
from new emerging technologies. Today Qucs includes an extensive range of component, device and circuit modelling
tools, allowing it to model and simulate circuits built from standard components and new production devices.

Three of the primary aims of the work undertaken by the Qucs Development Team are firstly to remove software
bugs and improve the overall performance of the package, secondly to address known weaknesses and limitations
and thirdly to develop the package by adding features which increase it’s utility. Readers who are not familiar with
open source software development may be unaware of how the development process works. By “Qucs Development
Team” we mean a group of interested individuals who freely give both their time and expertise for the improvement
of the GPL Qucs package. The Qucs Development Team is not a fixed group but is a dynamic organisation where
different people contribute, simultaneously or at different times, to the same part or different parts of the software. The
spice4qucs project group is one of a number of sub-groups within the overall Qucs Development Team. It was formed
to address the known limitations of the previous Qucs releases and to take advantage of the work done by other GPL
circuit simulation teams working on the Ngspice (http://ngspice.sourceforge.net/), Xyce (https://xyce.sandia.gov/)
and SPICE OPUS (http://www.spiceopus.si/) circuit simulators.

The spice4qucs initiative is an ongoing project which attempts to:

1. Correct known weaknesses observed with the current Qucs analogue simulation engine “qucsator”. Qucsator is
based on classical numerical mathematics routines for the solution of electrical network linear and non-linear
real and complex algebraic equations and time domain algebraic and differential equations. For small circuits,
qucsator works well in the DC and AC small signal domains. However, in the transient and Harmonic Balance
simulation domains it can fail to converge to an acceptable solution. Its performance is also often below that

4 Chapter 1. User Manual and Reference Material

https://github.com/Qucs/qucs-help
http://qucs.sourceforge.net/
http://ngspice.sourceforge.net/
https://xyce.sandia.gov/
http://www.spiceopus.si/

Qucs-S Help Documentation, Release 0.0.19-S

expected of a modern circuit simulator employing sparse matrix algorithms. However, qucsator works well for
RF small signal AC simulation and will for some time remain the first choice for this simulation domain.

2. Provide Qucs users with a choice of simulation engine selected from qucsator, Ngspice, Xyce and SPICE OPUS.
By selecting Ngspice, Xyce or SPICE OPUS as the Qucs simulation engine users may capitalise on all the fea-
tures offered by the extensive SPICE developments which have taken place over the last forty years. Both
Ngspice, Xyce and SPICE OPUS offer improved transient simulation convergence and speed, particularly for
large non-linear circuits. Xyce brings an alternative implementation of single tone Harmonic Balance simula-
tion to Qucs which offers much improved convergence properties for both linear and non linear components and
devices. The latest version of Xyce, 6.5 at the time of writing, also offers multi-tone Harmonic Balance simula-
tion. SPICE OPUS adds transient shooting methods for the steady state analysis of large signal AC simulation
and optimization.

3. Extend Qucs subcircuit, Equation-Defined Device (EDD), Radio Frequency Equation-Defined Device (RFEDD)
and Verilog-A device modelling capabilities. The latest spice4qucs release (Qucs-0.0.19-S) offers much im-
proved component and device modelling features that work as interlinked tools, supporting model development
as a continuous flow from physical concept to compiled C/C++ code. This feature is centred around a “turn-
key” version of the XSPICE Code Model construction tools. If required the spice4qucs project can also use the
Berkeley “Model and Algorithm Prototyping Platform” (MAPP http://draco.eecs.berkeley.edu/ dracotiki/tiki-
index.php?page=MAPP) for compact model construction. It is also possible to synthesis Ngspice, Xyce SPICE
OPUS SPICE netlists from Qucs EDD and RFEDD models and to synthesise Verilog-A models from Qucs EDD
and SPICE B components.

4. Offer Qucs users access to the additional simulation tools and extra component and device models provided by
Ngspice, Xyce and SPICE OPUS. This includes much improved component library facilities which allow the
use of device manufacturers SPICE models and XSPICE Code Models.

5. Offer for the first time with Qucs a true mixed-mode analogue-digital circuit simulation capability using
Qucs/Ngspice/SPICE OPUS/XSPICE simulation.

The spice4qucs initiative is an on going project and must be considered as very much work in progress. In its early
releases not all the features listed above will be available for public use. It is however, the intention of the Qucs
Development Team to introduce them as quickly as possible. Other features not listed in the previous entries may also
be introduced.

1.2 Qucs-0.0.18 Structure

A block diagram showing the main analogue modelling and simulation functions of the Qucs-0.0.18 package is il-
lustrated in Figure 1.1. For convenience, particularly easy identification, blocks with similar modelling or similar
simulation functions have been coded with identical colours, for example dark red indicates the GUI and qucsator
analogue simulation engine and dark green major component and device modelling tools. The direction of the flow
of data between blocks are also shown with directed arrows. Central to the operation of the Qucs-0.0.18 package is
the Qucs graphical user interface (GUI), the qucsator simulation engine and a post simulation data processing feature
(indicated by the yellow block in Figure 1.1) for the extraction of device and circuit parameters and the visualisation
of simulated signal waveforms. Cyan blocks in Figure 1.1 identify the well known Octave numerical analysis package
(https://www.gnu.org/software/octave/). Qucs employs Octave for additional post simulation data processing and
waveform visualisation plus an experimental circuit simulation process where qucsator and Octave undertake coop-
erative transient circuit simulation (cyan coloured blocks). The single light brown block in Figure 1.1 represents the
ASCO optimisation package which is used by Qucs for determining circuit component values and device parameters
which result in specific circuit performance criteria.

Readers who are not familiar with the basic operation and use of the Qucs GUI, circuit simulator and output processing
routines should consult the “Qucs-Help” document before proceeding further with this more advanced document.

1.1. Chapter 1. Introduction 5

http://draco.eecs.berkeley.edu/
https://www.gnu.org/software/octave/

Qucs-S Help Documentation, Release 0.0.19-S

Figure 1.1. A block diagram showing the analogue modelling and simulation facilities provided by Qucs-0.0.18.

1.3 Qucs future capabilities

Figure 1.2. presents an extended version of the Qucs-0.0.18 functional diagram where the added blocks indicate areas
chosen for current and future Qucs development. Two major extension to Qucs functionality are obvious, namely the
addition of the Ngspice, Xyce and SPICE OPUS circuit simulators to the Qucs package and the increase in the Qucs
device modelling capabilities through the addition of the XSPICE Code Modelling software. Figure 1.2. only gives a
rough picture of the proposed changes to Qucs under development by the spice4qucs project. Much of the detail will
become clearer later in the manual text and reference sections.

6 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 1.2. An block diagram outlining the extended Qucs-S simulation and modelling tools under development by
the spice4qucs initiative.

1.4 A first view of the extended spice4qucs device modelling and simulation fea-
tures

At this point it seems appropriate to introduce a short example which demonstrates how much Qucs has evolved since
the release of version 0.0.18. This example has been deliberately chosen to present an overview of the major new
Qucs features either already developed by the spice4qucs project or planned for future releases. To provide readers
with adequate information on how to make the best use of the new spice4qucs features they are described in detail in
later chapters of this document.

Qucs version 0.0.18 is a surprisingly sophisticated program with quite a number of hidden features which are not
obvious to most Qucs users. Given in Figure 1.3 is a Qucs schematic which demonstrates a little known application
of the circuit simulator. Qucs is ideal for developing high level behavioural models of new components or devices
which are not implemented in the distributed software. The schematic in Figure 1.3. introduces the physical equations
and device parameters for a semiconductor tunnel diode. By using the Qucs parameter sweep and DC simulation
operations it is possible to scan the diode bias voltage Vpn, calculate the tunnel diode bias current Ipn at each bias
point and plot the device id = f(vd) characteristics. Note that in this introductory example the Qucs schematic does
not include any electrical components. Moreover, the tunnel diode current is calculated directly from its physical
model_equations and model_parameters.

1.1. Chapter 1. Introduction 7

Qucs-S Help Documentation, Release 0.0.19-S

Figure 1.3. Mathematical representation of Id = f(Vd) for a semiconductor tunnel diode, including device
model_parameters, model_equations and a Qucs DC scan test.

The Berkeley Model and Algorithm Prototyping Platform (MAPP) is a new GPL modelling and simulation tool.
It is developed by the MAPP team at the Department of Elecrical Engineering and Computer Science, University of
California, Berkeley using a MATLAB (copyright) subset common to the Octave numerical analysis software. As part
of the spice4qucs project the MAPP software has been interfaced with the Qucs GUI. Figure 1.4 introduces a MAPP
behavioural model for the tunnel diode in Figure 1.3. Notice how similar the models in Figures 1.3 and 1.4 are. MAPP
circuit simulation results in the diode characteristic plotted in Figure 1.4.

Figure 1.4. MAPP tunnel diode model and simulated diode current as a function of applied bias voltage.

The Qucs and MAPP modelling tools allow models represented by a set of mathematical equations based on the
physical properties of a device to be tested and their correct operation confirmed prior to constructing a simulation
model for inclusion in circuit schematics. Illustrated in Figure 1.5 is a third model for the tunnel diode plus a test
circuit for simulating the device DC current versus voltage characteristics. This model will work with Qucs-0.0.18
and spice4qucs versions of the circuit simulator. It shows how a Qucs EDD model represents the physical model of

8 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

the tunnel diode and how this model can be represented with it’s own symbol and tested by combining it with other
components to form a DC characteristic test circuit. The Qucs EDD is not implemented in SPICE simulators. SPICE
3f5 and later simulators have instead other features like, for example, the B type sources.

Figure 1.5. Qucs EDD behavioural model for the tunnel diode first introduced in Figure 1.3.

The Qucs EDD component has one feature which makes it particularly important for developing compact device sim-
ulation models, namely that its structure and modelling capabilities are similar to those available with the Verilog-A
hardware description language. Hence, once an MAPP/Qucs EDD model is operating satisfactorily it can be tran-
scribed into a Verilog-A compact model by inspection or by computer synthesis. Such a Verilog-A model and test
circuit is shown in Figure 1.6.

1.1. Chapter 1. Introduction 9

Qucs-S Help Documentation, Release 0.0.19-S

Figure 1.6. A Verilog-A compact tunnel diode model and test circuit.

One of the main aims of the spice4qucs initiative is both to improve the Qucs compact device modelling capabilities
and to streamline the flow of information between each part of the modelling and simulation sequence. In all Qucs
releases prior to the spice4qucs project a number of modelling tools were implemented in the distribution software but
users had to translate manually each type of model format to other formats if they wished to use a model with a different
simulator or modelling tool. One exception was the rudimentary translation tool called qucsconv for translating SPICE
netlists to Qucs netlist format. It was for example not possible to simulate Qucs models encoded in the Qucs netlist
format directly with a SPICE simulator or to generate a Verilog-A code model directly from a Qucs EDD model. This
situation will change significantly as the spice4qucs project moves forward: in the medium to long term a number
of synthesis-translation routines will be added to Qucs making the process of model translation transparent to the
Qucs user. The first of these is the link between the Qucs netlist format and the Ngspice, Xyce and SPICE OPUS
simulator netlist formats. Figure 1.5 shows a Qucs tunnel diode EDD model, a DC swept parameter test circuit and
a set of Ngspice simulation results. Figure 1.7 lists an Ngspice netlist generated automatically by spice4qucs for the
circuit shown in Figure 1.5. Notice that this netlist is not simply a list of SPICE component statements but includes an
embedded Ngnutmeg script between the SPICE .control andendc statements.

1 * Qucs 0.0.19
2 * Qucs 0.0.19 TD.sch
3 .SUBCKT TD _net0 _net1 VT=0.025 Is=1e-12 Ip=1e-5 Iv=1e-6 Vp=0.1 Vv=0.4 K=5 C=0.01p
4 BD1I0 _net0 _net1 I=Is*(exp((V(_net0)-V(_net1))/VT)-1.0)
5 GD1Q0 _net0 _net1 nD1Q0 _net1 1.0
6 LD1Q0 nD1Q0 _net1 1.0
7 BD1Q0 nD1Q0 _net1 I=-(C*(V(_net0)-V(_net1)))
8 BD1I1 _net0 _net1 I=Iv*exp(K*((V(_net0)-V(_net1))-Vv))
9 BD1I2 _net0 _net1 I=Ip*((V(_net0)-V(_net1))/Vp)*exp((Vp-(V(_net0)-V(_net1)))/Vp)

10 .ENDS
11 XTD2 _net0 0 TD VT=0.025 Is=1E-12 Ip=1E-5 Iv=1E-6 Vp=0.1 Vv=0.4 K=5 C=0.01P
12 VI_TD1 _net1 _net0 DC 0 AC 0
13 V1 _net1 0 DC 0.1
14 .control
15 set filetype=ascii

10 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

16 DC V1 -0.05 0.4 0.000997783
17 write _dc.txt VI_TD1#branch
18 destroy all
19 exit
20 .endc
21 .END

Figure 1.7. A synthesized Ngspice netlist for the tunnel diode circuit shown in Figure 1.5.

Figure 1.8, and the associated model code, introduce a user defined XSPICE Code Model for the tunnel diode example.
A recent extension to the spice4qucs compact device modelling capabilities adds a “turn-key” feature which allows
user defined XSPICE Code Models to be added to Qucs and automatically compiled to C code by the package. More
on this topic and all the others introduced earlier in this chapter can be found in later sections of this document.

Figure 1.8. XSPICE Code Model tunnel diode model, test circuit and Ngspice simulation results.

1 /*
2 etd cm model.
3

4 2 April 2016 Mike Brinson
5

6

7 This is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)

10 any later version.
11 */
12

13

14 #include <math.h>
15

1.1. Chapter 1. Introduction 11

Qucs-S Help Documentation, Release 0.0.19-S

16 void cm_etd(ARGS)
17 {
18 Complex_t ac_gain1;
19 static double PVP, PIP, PVV, PIV, PA2;
20 static double PIS, T2, con1, con2, con3, VT;
21 double ith, ix, it, dith, dix, ditu;
22 static double vtd, itd, diff;
23 double P_K, P_Q;
24

25 if (INIT) {
26 PVP = PARAM(vp);
27 PIP = PARAM(ip);
28 PVV = PARAM(vv);
29 PIV = PARAM(iv);
30 PA2 = PARAM(a2);
31 PIS = PARAM(is);
32

33 /* Constants */
34

35 P_K = 1.3806503e-23 ; /* Boltzmann's constant in J/K */
36 P_Q = 1.602176462e-19; /* Charge of an electron in C */
37 T2 = PARAM(temp)+237.15;
38 VT = P_K*T2/P_Q; /* Thermal voltage at Temp in volts */
39 con1 = PIV*PA2;
40 con2 = PIS/VT;
41 con3 = PIP/PVP;
42

43

44

45 }
46

47 if (ANALYSIS != AC) {
48 vtd = INPUT(ntd);
49 ith = PIS*(exp(vtd/VT) -1.0);
50 ix = PIV*exp(PA2*(vtd-PVV));
51 it = PIP*(vtd/PVP)*exp(1-vtd/PVP);
52 itd = ith+ix+it;
53 dith = con2*exp(vtd/VT);
54 dix = con1*exp(PA2*(vtd-PVV));
55 ditu = con3*(1-vtd/PVP)*exp(1-vtd/PVP);
56 diff = dith+dix+ditu;
57

58 OUTPUT(ntd) = itd;
59 PARTIAL(ntd, ntd) = diff;
60

61 }
62

63 else {
64 ac_gain1.real = diff;
65 ac_gain1.imag = 0.0;
66 AC_GAIN(ntd, ntd) = ac_gain1;
67

68 }
69

70 }

12 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Chapter 2. Basic Ngspice, Xyce and SPICE OPUS simulation

2.1 Introduction

This section describes a number of fundamental methods for launching circuit simulations from the Qucs GUI using the
Ngspice, Xyce and SPICE OPUS compatible simulator engines. Spice4qucs includes built-in support for SPICE
via a subsystem specifically designed for this purpose. The Ngspice, Xyce and SPICE OPUS simulators are not
embedded in Qucs but operate as independent external simulators. Before use they must be installed on the computer
operating system that you are running Qucs.

2.2 Supported simulators

Ngspice is a mixed-level/mixed-signal circuit simulator implemented from three open source software packages:
SPICE 3f5, Cider 1b1 and XSPICE. Ngspice is one of the most widely used and stable current generation open source
SPICE simulators available. It implements the original SPICE3f5 simulation capabilities, including for example, DC,
AC, and transient simulation, Fourier-analysis and sensitivity analysis, plus a significant number of extra simula-
tion and device model extensions. Distributed with Ngspice is a data manipulation package called Ngnutmeg. This
provides numerical analysis and visualisation routines for post processing Ngspice simulation data. Instructions for
installing Ngspice can be found on the Ngspice website at http://ngspice.sourceforge.net/download.html, The Ngspice
website also gives free access to all the distribution and development package code sources.

Xyce is an open source, SPICE-compatible, high-performance analogue circuit simulator, capable of solving extremely
large circuit problems when installed on large-scale parallel computing platforms. It also supports serial execution on
all common desktop platforms, and small-scale parallel execution on Unix-like systems. Xyce for Linux, Microsoft
Windows, and MacOS can be downloaded from the official Xyce website at https://xyce.sandia.gov/Xyce. The Xyce
parallel circuit simulator running on Linux requires installation of the openMPI libraries. Spice4qucs supports
both Xyce-Serial and Xyce-Parallel (not currently available for the Microsoft Windows operating system).

SPICE OPUS is an improved version of SPICE based on the original SPICE 3f5 code with extensions for circuit and
device performance optimization and a transient simulation shooting method for large signal steady state AC analysis.
SPICE OPUS can be downloaded from its official website at http://www.spiceopus.si/.

Although Ngspice, Xyce and SPICE OPUS are all compatible SPICE simulators they also include extensions to the
original SPICE 3f5 netlist syntax which are often incompatible and may not simulate but generate errors. The Qucs
Team is aware of this limitation and are attempting to correct such problems as quickly as possible. Please note this
may take some time. However, if you do identify a compatibility bug please inform us by sending in a bug report to
the Qucs web site (with an example test schematic if possible) describing the problem you have identified.

2.3 General simulation methods

The starting point for understanding how the spice4qucs extensions are built into the Qucs GUI is to study the
basic operations needed to simulate Qucs circuit schematics with external simulators. For this purpose consider the
simple RCL circuit shown in Figure 2.1.

1.2. Chapter 2. Basic Ngspice, Xyce and SPICE OPUS simulation 13

http://ngspice.sourceforge.net/download.html
https://xyce.sandia.gov/Xyce
http://www.spiceopus.si/

Qucs-S Help Documentation, Release 0.0.19-S

Figure 2.1. A simple RCL test circuit for demonstrating Ngspice, Xyce and SPICE OPUS simulation controlled from
Qucs.

This schematic specifies two simulations:

• AC simulation from 4 MHz to 12 MHz.

• Transient simulation from 0 to 5 us;

Make sure the schematic in Figure 2.1 is drawn correctly then simulate it with Qucsator using the sequence Simulation-
>Simulate, or by pressing key F2. After Qucs finishes the the AC and transient simulations, plot the output data listed
below:

• The voltage across R1 resistor in the frequency domain (given by the voltage at the Vr node),

• The input and output voltage waveforms (the voltages given by the Vin and Vr nodes) - your plots should be
similar to those shown in Figure 2.1,

• The current in the frequency domain (Pr1 current probe),

• The transient current waveform sensed by the current probe Pr1.

Spice4qucs allows schematic component properties to be defined in the same way as Qucs. Component values and
other icon properties are converted automatically into SPICE compatible netlist format. There is no need for manual
adaptation by users. However, please note that not all the predefined Qucs components are available for simulation
with Ngspice, Xyce or SPICE OPUS. A number of tables provided in later sections of the text list which components

14 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

can be used with which simulator. Following placement and wiring of components, plus the addition of one or more
simulation icons, SPICE simulation is launched using the Qucs menu sequence Simulation -> Simulate or by pressing
key F2. An External simulator dialogue then appears. This is illustrated in Figure 2.2.

Figure 2.2. External simulator dialogue: where button Simulate launches a circuit simulation, button Stop causes a
running simulation to finish; button Save netlist generates, and stores, the netlist of the circuit being simulated and
button Exit closes the external simulator dialogue.

If the Ngspice, Xyce or SPICE OPUS installation directories are not included in the operating system shell $PATH
statement the location of their executable code must be registered with spice4qucs before Ngspice Xyce or SPICE
OPUS simulations will work. This step is necessary for all the operating systems used to run spice4qucs. To reg-
ister external circuit simulator installation directories spice4qucs users need to launch the Select default simulator,
from the Simulate dialogue. The resulting Setup simulators executable simulator location dialogue is illustrated in
Figure 2.3. Using this dialogue enter the absolute address of the Ngspice, Xyce or SPICE OPUS executable program
code from the keyboard or by pressing the appropriate Open File Select button.. In the case of the Xyce Parallel simu-
lator the number of processors installed in your computer system, must also be entered from the keyboard or selected
using the dialogue up-down arrow controls.

1.2. Chapter 2. Basic Ngspice, Xyce and SPICE OPUS simulation 15

Qucs-S Help Documentation, Release 0.0.19-S

Figure 2.3. Setup simulator executable locations dialogue.

Please note the Xyce parallel command line for binary Xyce-Parallel package has the following format:

<Path_to_xyce_executable>/xmpirun -np %p

Where spice4qucs substitutes the number of processors for the %p wildcard entry.

Also please note that “user builds” of Xyce-Parallel have no xmpirun script, implying that the full script must be
completed by users during the external simulators set up process, for example if opeMPI is installed in directory
/usr/bin and Xyce-Parallel installed in /usr/local/Xyce_Parallel the command line will be:

/usr/bin/mpirun -np %p /usr/local/Xyce_Parallel/bin/Xyce

16 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Spice4qucs users can also define a directory where temporary simulator data and netlists are stored: this simulator
working directory is by default assumed to be at $HOME/.qucs/spice4qucs.

To simulate a Qucs schematic with the Ngspice simulator, select simulator Ngspice and press the Simulate button
shown in Figure 2.2. During simulation Ngspice produces a simulation log. This is displayed in the External simulator
dialog window, see Figure 2.4. The Qucs Log text is also saved at Qucs system Log location $HOME/.qucs/log.
txt. The Log text can be viewed and using the drop down menue sequence Simulation->Show last messages (or
by pressing key F5). If the Ngspice simulation fails, any errors reported by Ngspice during simulation are listed in
simulation Log window. Similarly, a successful completion of a Qucs/Ngspice simulation is reported.

Figure 2.4. A section of an Ngspice execution Log displayed in the Simulate with an external simulator dialogue
window.

An novel feature introduced by spice4qucs is its ability to generate and save SPICE netlist files from the informa-
tion contained in a Qucs schematic. To save the SPICE netlist file for the current simulation press the Save netlist but-
ton shown in Figure 2.2. This process causes a SPICE netlist to be saved as file “netlist.cir” in the ~/.qucs/spice4qucs
directory. Here is the generated netlist for the RCL test example:

1 * Qucs 0.0.19 /home/vvk/qucs/examples/ngspice/RCL.sch
2 V1 _net0 0 DC 0 SIN(0 0.6 7.5MEG 0 0) AC 0.6
3 VPr1 _net0 vIn DC 0 AC 0

1.2. Chapter 2. Basic Ngspice, Xyce and SPICE OPUS simulation 17

Qucs-S Help Documentation, Release 0.0.19-S

4 L1 vIn _net1 10U
5 R1 0 vR 30
6 C1 _net1 vR 40P
7 .control
8 set filetype=ascii
9 AC LIN 1000 4MEG 12MEG

10 write RCL_ac.txt VPr1#branch v(vIn) v(vR)
11 destroy all
12 TRAN 4.97512e-09 1e-06 0
13 write RCL_tran.txt VPr1#branch v(vIn) v(vR)
14 destroy all
15 exit
16 .endc
17 .END

The simulation sequence introduced in the previous sections of the spice4qucs-help text also applies to the Xyce and
SPICE OPUS simulators. However, the information displayed in the simulation log is likely to be different for different
simulators and indeed operating systems.

After an Ngspice, Xyce or SPICE OPUS simulation has successfully completed close the External simulation dialogue
by pressing the “Exit” button. The simulation data generated by a spice4qucs simulation is available for plotting
using the normal Qucs visualisation routines: either drag a diagram icon, or table icon, onto the current Qucs schematic
window or onto the associated Qucs display page. After a diagram or table is placed a Diagram properties dialog
appears. On selecting the dataset for the current simulation the simulation output quantities become available for
plotting or tabulating in a similar fashion to standard Qucs.

18 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 2.5. Diagram properties dialogue, listing the selected simulator and the available simulation data names.

Ngspice, Xyce and SPICE OPUS simulation data output is in raw-binary SPICE 3f5 output format. Qucs converts
the SPICE 3f5 style data into a Qucs dataset using routines provided in the spice4qucs Qucs subsystem. Results
from different types of simulation, for example SPICE AC and TRAN, are combined into a single Qucs dataset.
Qucs adds an appropriate suffix to each simulator dataset name in order to avoid name clashes and mixing up results
from different types of simulation. In the RCL test example the Qucs schematic is named RCL.sch. Qucs qucsator
simulation, Ngspice, Xyce and SPICE OPUS simulations result in three different datasets:

• RCL.dat — for Qucsator;

• RCL.dat.ngspice — for Ngspice;

• RCL.dat.xyce — for Xyce;

• RCL.dat.spopus — for SPICE OPUS;

All four datasets have an extension dat to signify that each set contains Qucs data for post simulation visualisation.
The Ngspice, Xyce and SPICE OPUS datasets include second a extension to the file name to identify the name of the
external Qucs simulator.

The Dataset selector (see Figure 2.5) shows only the base names of a dataset (for example test_RC). Users must also
select the appropriate simulator from the simulator name selector drop-down list. This drop-down only gives existing
simulator datasets which prevents users from selecting non-existent datasets by mistake.

Following the selection of a specific data set users must select the variables that are to be plotted. Spice4qucs
preserves SPICE notation for node voltage names and current probe names. SPICE names are assumed to be case
insensitive by spice4qucs, for example

• v(out) — Voltage at node out;

• i(Pr1) — Current recorded by current probe Pr1;

The Qucs spice4qucs extension also adds a simulation-dependent prefix to each variable name in order to differ-
entiate output variables from different SPICE simulations, for example ac. for AC simulation, tran. for transient
simulation, and dc. for DC-sweep.

There are also individual prefixes for each simulator:

• ngspice/ — Ngspice simulator prefix;

• xyce/ — Xyce simulator prefix;

• spopus/ — SPICE OPUS prefix;

Hence for example, the full name of variable from an Ngspice simulation could be ngspice/v(out) This naming
system helps to avoid dataset name conflicts.

Individual items for plotting are selected by double clicking on a name in the variable list. As an example when double
clicking on ac.i(pr1) its name is copied by Qucs into the right-hand plotting window. Like standard Qucs one
or more variable items may be selected for plotting on the same 2D or 3D graph. Finally pressing the Apply button
shown at the bottom of Figure 2.5. causes the selected variable items to be plotted. The plotted simulation results for
the external Ngspice AC simulation of the RCL test circuit are shown in Figure 2.6.

1.2. Chapter 2. Basic Ngspice, Xyce and SPICE OPUS simulation 19

Qucs-S Help Documentation, Release 0.0.19-S

Figure 2.6. External SPICE AC simulation magnitude response for the current flowing in RCL circuit with a series
resonant peak of roughly 8 MHz .

Plotting the transient simulation data for the RCL test example follows the same procedure as the sequence described
for the AC simulation except that in the transient plot variables with tran in their name are selected, see Figure 2.7.

Figure 2.7. Transient simulation voltage waveforms at the input and output nodes of the RCL circuit.

20 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

A similar proceedure is adopted for plotting simulation data generated with the Xyce and SPICE OPUS simulators.
Readers should make sure they can simulate the example RCL circuit with both Xyce and SPICE opus, then plot the
resulting simulation data. More advanced techniques for post processing, plotting and undertaking a range of different
visualization processes using Qucs and Octave are outlined in chapter 7.

2.4 Variable names

As part of the spice4qucs extensions Ngspice and Xyce simulation variable names are converted from Qucs nota-
tion to SPICE notation and vica versa. Table 2.1 shows the correspondence between the two notations.

Table 2.1 Qucs and SPICE variable equivalences

Variable type Qucs display notation Spice display notation
DC node voltage Node.V V(node)
AC node voltage Node.v ac.v(node)
TRAN node voltage Node.Vt tran.v(node)
HB node voltage Node.Vb hb.v(node)
DC probe current Pr1.I i(pr1)
AC probe current Pr1.i ac.i(pr1)
TRAN probe current Pr1.It tran.i(pr1)

Also variable prefixes used to designate data from different simulators (Table 2.2)

Table 2.2 Qucs and SPICE variable name prefixes

Prefix Explanation
Node.Vt Qucs simulation, default dataset
dataset:Node.Vt Qucs simulation, external dataset
ngspice/tran.v(node) Ngspice simulation, default dataset
ngspice/dataset:tran.v(node) Ngspice simulation, external dataset
xyce/tran.v(node) Xyce simulation, default dataset
xyce/dataset:tran.v(node) Xyce simulation, external dataset
spopus/tran.v(node) SPICE OPUS simulation, default dataset
spopus/dataset:tran.v(node) SPICE OPUS simulation, external dataset

2.5 DC simulation

Conventional SPICE 3f5 simulation commands OP and DC are not implemented by Qucs or indeed by spice4qucs.
Instead more convenient versions of these simulation commands are implemented. These alternative forms of non-
linear steady state DC circuit analysis are linked directly to circuit schematic capture, making them easy to use.
Moreover, they provide spice4qucs users with a power full diagnostic and analysis tools for investigating basic
circuit operation. The circuit shown in Figure 2.8 represents a simple resistive network with single voltage and current
1 V and 1 A sources respectively. Pressing key “F8” instigates a DC analysis and adds the DC node voltages, probe
voltages and probe currents to the current schematic. This feature provides a practical method for scanning a circuit
to see if the DC bias values are of the correct order of magnitude. The calculation of DC bias values via the F8 key
applies to all the circuit simulators controlled by spice4qucs. Schematics which include the spice4qucs DC
icon do not however, list a similar set of voltage and currents in the *Simulate with an external Simulator” dialogue
window. A DC voltage and current list is output when a schematic includes a transient simulation icon, see Figure 2.9.

1.2. Chapter 2. Basic Ngspice, Xyce and SPICE OPUS simulation 21

Qucs-S Help Documentation, Release 0.0.19-S

Figure 2.8 A simple linear resistive electrical network driven by single DC voltage and current sources: DC node
voltages (V) and voltage probe values (V) are illustrated in blue and current probe values (A) in green.

22 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 2.9 A screen dump showing transient simulation initial DC simulation voltage and current values in (V) and
(A) respectively for the resistive circuit given in Figure 2.8: NOTE that the voltage and current variable names are
output in SPICE style syntax.

Qucs does not define a separate analysis type which is equivalent to the original SPICE 2g6 “DC sweep” simulation
or the extended SPICE 3f5 version which allows current and voltage source scans plus resistor value scans. In contrast
to SPICE the Qucs equivalent “DC sweep” is just a specific case of the more general Qucs Parameter sweep
capability. To emulate the original SPICE DC sweep‘ spice4qucs use a combination of Qucs DC simulation plus
the Parameter sweep of an independent DC voltage or DC current source or of a resistor numerical value; when
the spice4qucs Spice netlist builder finds these two linked types of simulation it synthesises them into a DC SPICE
netlist entry. This procedure is demonstrated in Figure 2.10. where the test circuit consists of a diode DC bias network
connected as a test bench for simulating the non-linear DC current-voltage characteristic of a 1N4148 diode. This
example can be found in the Qucs examples directory tree listed as examples\ngspice\diode.sch .

1.2. Chapter 2. Basic Ngspice, Xyce and SPICE OPUS simulation 23

Qucs-S Help Documentation, Release 0.0.19-S

Figure 2.10. Test circuit and simulated DC current-voltage characteristics for a 1N4148 silicon diode.

PLease note the following differences between SPICE and Qucs DC-sweep simulation:

• Specify a sweep source name or a resistor name NOT a source or resistor value; for example in Figure 2.10 V1.

• SPICE model parameters can be swept using the notation Device.Param, for example T1.Bf to sweep the
Bf parameter of transistor T1.

2.6 AC simulation

Small signal AC simulation is fully supported by the spice4qucs subsystem. It doesn’t require any special adap-
tation. Just simple place the AC simulation component icon on a schematic and execute an Ngspice, Xyce or
SPICE OPUS simulation. Variable name conversions are listed in Table 2.1. The Qucs spice4qucs dataset builder
adds the ac. prefix to all variables generated by an AC simulation.

Ngspice, Xyce and SPICE OPUS small signal frequency domain AC simulations use linear, decade or octave frequency
scales. Adaptive frequency steps are not implemented.

2.7 TRANsient simulation

Transient simulation is also fully supported by the spice4qucs subsystem. Just place the Transient
simulation component icon on a schematic and simulate it. There is a difference between the way the qucsator,
Ngspice, Xyce and SPICE OPUS simulators implement transient simulation time steps.

Qucsator always uses a fixed time step. Ngspice, Xyce and SPICE OPUS use adaptive time steps. The number of
simulation points output during a simulation will only be approximately equal to the number of simulation points
specified in a Transient simulation properties list. For example, in an example test circuit 200 time points
are specified on the schematic. However, due to the fact that the SPICE simulators use adaptive time steps, Ngspice
employs 213 simulation points, and Xyce employs 799 time points. This difference should be taken into account
during simulation data post processing and when comparing simulation results.

2.8 Other forms of simulation

In contrast to SPICE 3f5, the parameter sweep facility found in Qucs has also been implemented with Ngspice, Xyce
and SPICE OPUS where the parameter sweep setup and control is organized by spice4qucs. The details of how
this Parameter sweep feature works is the topic of section 5.8.

24 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

As well as the fundamental DC, AC and transient simulation types, Ngspice, Xyce and SPICE OPUS also support the
additional forms of simulation listed in Table 2.3.

Table 2.3 Spice4qucs simulation types additional to DC, AC and TRAN

Simulation Type Ngspice Xyce SPICE OPUS See section
Fourier X X X 5.1
Distortion X X 5.2
Noise X X X 5.3
Pole-zero X X 5.4
Sensitivity X X X 5.5
Harmonic Balance X 13.5
Tran shooting method X 13.7
Custom simulation X X 8.0

Fourier, distortion pole-zero circuit simulation require special GUI icons. These can be found in the Qucs Spice
simulations group. In contrast sensitivity, the SPICE OPUS tran shooting method is accessed by spice4qucs via
the Custom simulation technique, see section 8.0.

2.9 Spice4qucs circuit simulation components

Qucs is released with a good selection of passive and active component models. This selection includes both funda-
mental circuit components, like R, C and L and collections of specific components for a given circuit design sector,
like the RF microstrip component models. All the original Qucs component and device models were written to work
with Qucs and there is NO Guarantee that they will be work with Ngspice, Xyce or SPICE OPUS. For circuit sim-
ulation packages which take advantage of simulation multi-engines this can be a serious problem, particularly for the
less experienced user. To help reduce problems to a minimum, spice4qucs uses a policy of “blacklisting” those
models which do not work with the chosen circuit simulation engine. This policy works in the following way:- when
a specific simulator is chosen by a Qucs spice4qucs user, on running the chosen simulator, ONLY those models
which work with the selected simulator become available for drawing circuit schematics and simulation. The same
approach applies to the components held in the spice4qucs libraries.

2.10 More basic simulation examples

2.10.1 DC Example 1: Calculating circuit input resistance and power dissipation in
a resistor.

Figure 2.11 DC resistive test network.

• Draw the circuit diagram shown in Figure 2.11,

1.2. Chapter 2. Basic Ngspice, Xyce and SPICE OPUS simulation 25

Qucs-S Help Documentation, Release 0.0.19-S

• Select simulator Ngspice,

• Press key F8

• Determine DC Rin = V(Pr3)/I(Pr1) = 10/1.66667 = 6 Ohm,

• Determine the power dissipated in R4 = V(Pr4)*I(Pr2) = 1.66667*0.277778 = 0.463 W.

2.10.2 DC Example 2: Variation of power dissipation with varying DC input voltage.

Figure 2.12 DC example 1 with varying DC input voltage: demonstrating the use of a DC sweep simulation.

• Draw the circuit diagram shown in Figure 2.11,

• Select simulator Ngspice,

• Add the dc simulation, Parameter sweep and Nutmeg component icons to the drawn schematic,

• Complete the Parameter sweep and Nutmeg component data entries so that they are the same as given in Figure
2.11,

• Press the F2 to simulate the circuit,

• Plot the graphs illustrated in Figure 2.11,

26 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

• Check that your results are the same - if not or the simulation fails check your schematic for errors and re-
simulate.

Notes:

• Current probe values are represented by the SPICE 3f5 notation: vpr1#branch and vpr2#branch.

• There is a discontinuity in Rin when the vpr1#branch current is zero Amperes; hence the need for the dummy
1pA in the Nutmeg equation for Rin.

back to the top

Chapter 3. Spice4qucs subcircuits, macromodels and device li-
braries

3.1 Spice4qucs Subcircuits: with and without parameters

Subcircuits are a concept that has been part of established circuit simulation practice since the early days of computer
aided circuit design. Today, all practical circuit simulators have subcircuits as part of their basic device compliment.
This is not surprising because they form a natural way of breaking an electonic system down into a number of smaller
self contained functional blocks. Spice4qucs supports all the features available with Qucs subcircuits. In a similar
fashion to Qucs, the Ngspice, Xyce and SPICE OPUS circuit simulators allow subcircuits with or without parameters.
However, an optional part of the Ngspice, Xyce and SPICE OPUS subcircuit netlist syntax that signifies that a pa-
rameter extension is present is not allowed (see section 3.1.2). As a starting point spice4qucs subcircuits without
parameters are considered first. This introduction is followed by a detailed description of the structure, and netlist
syntax, of subcircuits with one or more parameters.

3.1.1 Spice4qucs subcircuits without parameters

Figure 3.1 shows a Qucs subcircuit model for a 15MHz centre frequency band pass passive filter. Note that the three
distinct parts of a subcircuit model without parameters are: (1) a circuit representing the model body with one or
more input (Pin) and output (Pout) pins plus connected components selected from Qucs pre-defined components and
user designed subcircuits (there are no user defined subcircuits present in Figure 3.1), (2) a subcircuit symbol, and
(3) a Qucs netlist giving a list of the internal components, their connection nodes and a wrapper which defines the
subcircuit. The syntax of the subcircuit netlist listed in Figure 3.1 is only understood by Qucs and cannot be read
without error by external SPICE simulators.

1.3. Chapter 3. Spice4qucs subcircuits, macromodels and device libraries 27

Qucs-S Help Documentation, Release 0.0.19-S

Figure 3.1 Qucs 15MHz centre frequency band pass passive filter subcircuit without parameters

A test bench circuit for simulating the band pass filter circuit shown in Figure 3.1 is given in Figure 3.2. This figure
includes a plot of the small signal AC output voltage for a filter with 50 Ohm input and output matching resistors.
Note the use of a node voltage probe and the signal name allocated by Qucs. Also note that the individual capacitor
voltage and inductor current initial conditions are not set as they are not needed due to fact that the filter subcircuit is
not DC biased. As a consequence the DC simulation icon shown in Figure 3.2 is not strictly necessary. However, its

28 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

a good idea to add it automatically to AC simulations because circuits with semiconductor devices or other non-linear
components must have their small signal AC properties calculated, at their DC bias conditions, prior to small signal
AC simulation.

Figure 3.2 Qucs 15MHz centre frequency band pass passive filter test bench with 50 Ohm source and load matching

Figure 3.3 to Figure 3.5 present AC simulation results for the band pass filter generated with the Ngspice, Xyce and
SPICEOPUS circuit simulators.

1.3. Chapter 3. Spice4qucs subcircuits, macromodels and device libraries 29

Qucs-S Help Documentation, Release 0.0.19-S

Figure 3.3 Band pass filter Ngspice test results and SPICE netlist for test bench circuit.

30 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 3.4 Band pass filter Xyce test results and SPICE netlist for test bench circuit.

1.3. Chapter 3. Spice4qucs subcircuits, macromodels and device libraries 31

Qucs-S Help Documentation, Release 0.0.19-S

Figure 3.5 Band pass filter SPICEOPUS test results and SPICE netlist for test bench circuit.

Most readers will probably have noticed that the SPICE netlists for the Ngspice and SPICEOPUS band pass filter test
benches are identical except for file names. This is because Ngspice and SPICEOPUS both include implementations
of the SPICE 3f5 Nutmeg post simulation data processing package that is distributed with their SPICE engines.

32 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

These are not the same however, mainly because the SPICE OPUS development team have modified the original
SPICE 3f5 Nutmeg package to firstly remove errors/bugs and secondly to improve its syntax. The extent to how this
will affect the operation of spice4qucs is at this time unclear. If problems/bugs, due to implementation differences,
surface in the future the spice4qucs Development Team will attempt to correct them as quickly as possible. The
Xyce circuit simulator does not include a version of Nutmeg in its distribution package. This implies that Nutmeg
style post simulation data processing is not possible with Xyce. However, to minimise the effects of this omission
an extended form of the SPICE .PRINT statement has been implemented in Xyce, allowing algebraic expressions for
data processing to be embedded in .PRINT statements. This topic and other aspects of Xyce post simulation data
processing are covered in later sections of this help manual.

3.1.2 Spice4qucs subcircuits with parameters

Subcircuits which have component or physical parameter values set by a list of names and values attached to a
schematic symbol add a significant “value added” feature to the subcircuit concept. This form of subcircuit can, for
example, be used to represent manufacturers product variations which have identical circuits but require component
values or device parameter values of differing value. Unfortunately, SPICE 3f5 only implements subcircuits without
parameters. Recent generations of open-source GPL circuit simulators, including Ngspice, Xyce and SPICE OPUS,
have been extended by their Development Teams to allow subcircuits with parameters. One consequence of this is
that over time divergence of the SPICE subcircuit statement syntax has occurred amongst different circuit simulators.
Spice4qucs implements a common subset of the published extended SPICE subcircuit syntax. This works well, but
does have one disadvantage however, in that some published subcircuit netlists may require a small amount of editing
before they will simulate with Spice4qucs. One code word often found in the SPICE extended subcircuit syntax is
the term PARAMS:. This can occur in an X subcircuit call to signify a subcircuit with parameters. As this is optional
in Ngspice, and indeed in other SPICE derived circuit simulators, it is not implemented in Spice4qucs.

Qucsator, Ngspice, Xyce and SPICEOPUS all allow parameters to be attached to subcircuit symbols and to be used in
design equation calculations. As an introductory example Figure 3.6 illustrates a circuit schematic and user generated
symbol for a simple Qucs harmonic generator composed of a fundamental AC signal and three sinusoidal harmonic
components. Parameters 𝑓1 to 𝑓4 set the frequencies of the harmonics. The Qucs Equation block, at the subcircuit
internal circuit level, is used to calculate the individual harmonic frequencies. In a similar fashion 𝑝ℎ1 to 𝑝ℎ4 represent
the phases of the signal harmonics.

1.3. Chapter 3. Spice4qucs subcircuits, macromodels and device libraries 33

Qucs-S Help Documentation, Release 0.0.19-S

Figure 3.6 Qucs subcircuit sinusoidal harmonic signal generator: 𝑓1 is the fundamental frequency and 𝑓2 to 𝑓4 the
higher order harmonics; 𝑝ℎ1 to 𝑝ℎ4 the phases of the fundamental signal and its harmonics. For clarity long Qucs
netlist lines have been spread over more than one line.

34 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 3.7 Ngspice subcircuit sinusoidal harmonic signal generator.

Figure 3.7 shows an Ngspice version of the Qucs sinusoidal harmonic generator illustrated in Figure 3.6. A casual
look at these two subcircuit diagrams shows that they are not dissimilar. However, there are a number of subtle
changes apparent from the diagrams. First it is important to realise that the Qucs and SPICE sinusoidal (sin) signal
generator specifications are different; Qucs requires the signal phase and SPICE the signal delay to be specified as
parameters. In Figure 3.7 extra equations to convert phase to time delay are added to Equation block Eqn1 inside
subcircuit SPICEHarmonicGen. To ensure that Eqn1 variables, for example frequency 𝑓2, are passed to the subcircuit
component values as numerical values SPICE curly deliminator brackets, {...}, are placed round equation variable
names. Finally, it is important to realize that the order of the variables in Equation blocks are important. Qucs allows
them to be in any order because it arranges all entries into a sequence which ensures each variable can be allocated
a numerical value before it is used in other equations. However, SPICE does not do the same but assumes that all
variables included in the right hand side of an equation have been allocated a numerical value prior to being used in
the calculation of the variable named on the left hand side of the same equation. To check that the Ngspice generated
waveform is correctly generated a Fourier analysis of signal 𝑉 (𝑛𝑔𝑒𝑛𝑠𝑖𝑔) is displayed on Figure 3.7. At frequencies
above 𝑓4 the phase values have no meaning. The simulated signal waveform obtained with SPICE OPUS was found to
be similar to that obtained with NGSPICE, see Figue 3.8. Try simulating the sinusoidal harmonic generator waveform
with SPICE OPUS to check this statement for your self.

1.3. Chapter 3. Spice4qucs subcircuits, macromodels and device libraries 35

Qucs-S Help Documentation, Release 0.0.19-S

Figure 3.8 Xyce subcircuit sinusoidal harmonic signal generator.

3.1.3 A second more complex example of Spice4qucs subcircuits with parameters

Variable assignment equations, defined in Qucs Equation Eqn blocks and embedded in a subcircuit, are converted by
Spice4qucs into SPICE .PARAM statements. These are listed in the initial section of the SPICE-netlist of the circuit
being simulated, or in the first section of a subcircuit netlist, allowing their values to be determined before the start of a
simulation. With Qucs Equation Eqn blocks it is important to remember that the variables defined cannot be functions
of circuit voltage or current or any other voltage/current dependent properties. Restrictions placed by Spice4qucs
on the use of Qucs Equation Eqn blocks are considered in detail in Chapter 4. However, one fundamental rule that
must be followed at all times is that Qucs simulation icons must not be placed inside a subcircuit.

The electrical equivalent circuit of a HC-49/U 8.86 MHz Quartz crystal resonator is shown in Figure 3.9. In this model
the crystal resonator is represented as the RCL parallel electric network illustrated in the following two schematics:

• quarz.sch — Quartz crystal resonator subcircuit; Figure 3.9.

• quarz_test.sch — Spice4qucs test circuit; Figure 3.10.

These files can be found in the Qucs-S subdirectory examples\ngspice\.

Figure 3.9 shows the crystal resonator subcircuit. A brief introduction to the theory of crystal resonators can be found

36 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

at https://en.wikipedia.org/wiki/Crystal_oscillator.

Figure 3.9 Equivalent circuit of Quartz crystal resonator.

In the HC-49/U Quartz crystal resonator model the 𝑅𝐶𝐿 network has two resonant frequencies:

a series resonance frequency 𝑓 , where

𝑓 =
1

2𝜋
√︀
𝐿𝑞𝐶𝑞

and a parallel resonance frequency 𝑓𝑝, where

𝑓𝑝 =
1

2𝜋
√︀
𝐿𝑞𝐶𝑞

√︂
1 +

𝐶𝑞

𝐶𝑠

Transposing equation 𝑓 yields an expression for the series capacitance 𝐶𝑞 , where

𝐶𝑞 =
1

4𝜋2𝑓2𝐿2
𝑞

This equation is placed in Qucs Equation Eqn1 block inside the Quartz crystal resonator subcircuit.

Performing an AC simulation with Ngspice and Xyce, using the test circuit given in Figure 3.10, yields the amplitude
response data plotted in Figure 3.11, Ngspice transfer coefficient K (ac.k) and Xyce voltage ac.V(OUT).

1.3. Chapter 3. Spice4qucs subcircuits, macromodels and device libraries 37

https://en.wikipedia.org/wiki/Crystal_oscillator

Qucs-S Help Documentation, Release 0.0.19-S

Figure 3.10 Test circuit for Quartz crystal resonator.

Figure 3.11 indicates that the Ngspice and Xyce plotted results are identical. The only difference being that Xyce
simulation result postprocessing is not implemented. Hence, only the Xyce output voltage can be plotted; this is done
by choosing a logarithmic Y scale, then the Xyce plot effectively displays a scaled decibel output. The two resonant
frequencies 𝑓 and 𝑓𝑝 are clearly visible on these plots.

Figure 3.11 Magnitude response of HC-49/U Quartz crystal.

Subcircuits are converted by Spice4qucs into SPICE .SUBCKT routines. The SPICE netlist for the Quartz crys-
tal resonator test circuit, Figure 3.10, shown below illustrates how the Spice4qucs handles SPICE .PARAM, .
SUBCIRCUIT and subcircuit X call statements, placing them in the correct position within the SPICE netlist of the
circuit being simulated.

1 * Qucs 0.0.19 /home/vvk/qucs/examples/ngspice/quarz_test.sch
2 * Qucs 0.0.19 /home/vvk/qucs/examples/ngspice/quarz.sch
3 .SUBCKT quarz _net0 _net1 f=8863k Lq=0.01406 Cs=6.5p
4 .PARAM Cq={1/(4*3.1415926539^2*f^2*Lq)}
5 R1 _net0 _net1 50MEG
6 C2 _net0 _net1 {CS}
7 R2 _net2 _net1 2
8 L1 _net3 _net2 {LQ}
9 C1 _net0 _net3 {CQ}

10 .ENDS
11 R1 out 0 1
12 V1 _net0 0 DC 0 SIN(0 1 1G 0 0) AC 1
13 R2 _net0 in 50
14 XSUB1 in out quarz f=8863K Lq=0.01406 Cs=6.5P

38 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

15 .control
16 set filetype=ascii
17 AC LIN 400 8800K 9000K
18 let K=dB(V(out)/V(in))
19 write quarz_test_ac.txt v(in) v(out) K
20 destroy all
21 exit
22 .endc
23 .END

3.2 Component and circuit libraries

Library components are supported in spice4qucs subsystem. You can use all library components. Some libraries
have embedded original SPICE code of components. You should prefer to use these libraries to archive the best result
with Spice simulation of Qucs schematics. The example of library component (IRFZ44 MOSFET from MOSFETS
library) usage is examples/ngspice/irfz44_switch.sch

3.3 Using manufacturers component data libraries

Electronic components manufacturers often provide spice models of components in datasheets. You can attach these
datasheet spice models using SPICE netlist component. You need to perform the following steps to use Spice-model
from component datasheet. Spice netlist builder substitutes SPICE-models directly to output netlist without any con-
versions.

1. Extract Spice netlist text and save it as text file. You can use any extension for this file. Preferable are .ckt , .cir, .sp

2. Place on schematic component SPICE netlist and attach SPICE netlist nodes to component port using standard
SPICE component properties dialog.

3. Simulate schematic with Ngspice/Xyce.

It’s need to note that SPICE-netlist of component must not be ended by .END directive. In this case simulator exits
after it reads .SUBCKT routine and simulation cannot be executed.

The example of spice model usage (LM358 opamp) is shown in the Figure 3.12

1.3. Chapter 3. Spice4qucs subcircuits, macromodels and device libraries 39

Qucs-S Help Documentation, Release 0.0.19-S

Figure 3.12 AC Simulation of LM358 opamp with Ngspice.

Here is the netlist of LM358 spice-model. Model can be found in LM358 datasheet.

1 * from http://www.ti.com/lit/zip/sloj045
2 * LM358 OPERATIONAL AMPLIFIER "MACROMODEL" SUBCIRCUIT
3 * CREATED USING PARTS RELEASE 4.01 ON 09/08/89 AT 10:54
4 * (REV N/A) SUPPLY VOLTAGE: +/-5V
5 * CONNECTIONS: NON-INVERTING INPUT
6 * | INVERTING INPUT
7 * | | POSITIVE POWER SUPPLY
8 * | | | NEGATIVE POWER SUPPLY
9 * | | | | OUTPUT

10 * | | | | |
11 .SUBCKT LM358 1 2 3 4 5
12 *
13 C1 11 12 5.544E-12
14 C2 6 7 20.00E-12
15 DC 5 53 DX
16 DE 54 5 DX
17 DLP 90 91 DX
18 DLN 92 90 DX
19 DP 4 3 DX
20 EGND 99 0 POLY(2) (3,0) (4,0) 0 .5 .5
21 FB 7 99 POLY(5) VB VC VE VLP VLN 0 15.91E6 -20E6 20E6 20E6 -20E6
22 GA 6 0 11 12 125.7E-6
23 GCM 0 6 10 99 7.067E-9
24 IEE 3 10 DC 10.04E-6
25 HLIM 90 0 VLIM 1K
26 Q1 11 2 13 QX
27 Q2 12 1 14 QX
28 R2 6 9 100.0E3
29 RC1 4 11 7.957E3

40 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

30 RC2 4 12 7.957E3
31 RE1 13 10 2.773E3
32 RE2 14 10 2.773E3
33 REE 10 99 19.92E6
34 RO1 8 5 50
35 RO2 7 99 50
36 RP 3 4 30.31E3
37 VB 9 0 DC 0
38 VC 3 53 DC 2.100
39 VE 54 4 DC .6
40 VLIM 7 8 DC 0
41 VLP 91 0 DC 40
42 VLN 0 92 DC 40
43 .MODEL DX D(IS=800.0E-18)
44 .MODEL QX PNP(IS=800.0E-18 BF=250)
45 .ENDS
46

3.4 Usage of unmodified SPICE Libraries

3.4.1 SpiceLibComp device

You can use an unmodified SPICE libraries with new SpiceLibComp device. This component could be found at the
File components group. This component have three properties:

• File is full SPICE library file (usually *.lib, *.cir, or *.sp files) path. You can use unmodified library
here.

• Device is SUBCKT entry name that represents desired device. Every component is defined as subcircuit and
identified by .SUBCKT entry name. This property holds device name. You need to fill this property manually.

• SymPattern is symbol pattern for device. You can select one of predefined symbol patterns or use automatic
pattern. Automatic pattern is simple rectangular symbol with pins.

Let’s consider SPICE library structure. There exists a SPICE library file ad822.cir that contains AD822 model.
Here is library source code:

1 .SUBCKT AD822 1 2 99 50 25
2 *
3 * INPUT STAGE & POLE AT 5 MHZ
4 R3 5 99 2456
5 R4 6 99 2456
6 CIN 1 2 5E-12
7 C2 5 6 6.48E-12
8 I1 4 50 108E-6
9 IOS 1 2 1E-12

10 EOS 7 1 POLY(1) (12,98) 100E-6 1
11 J1 5 2 4 JX
12 J2 6 7 4 JX
13 GB1 50 2 POLY(3) (2,4) (2,5) (2,50) 0 1E-12 1E-12 1E-12
14 GB2 50 7 POLY(3) (7,4) (7,5) (7,50) 0 1E-12 1E-12 1E-12
15 *
16 * GAIN STAGE & POLE AT 13.4 HZ
17 EREF 98 0 (30,0) 1
18 R5 9 98 2.313E6
19 C3 9 25 32E-12
20 G1 98 9 (6,5) 4.07E-4

1.3. Chapter 3. Spice4qucs subcircuits, macromodels and device libraries 41

Qucs-S Help Documentation, Release 0.0.19-S

21 V1 8 98 0
22 V2 98 10 -1
23 D1 9 10 DX
24 D2 8 9 DX
25 *
26 * COMMON-MODE GAIN NETWORK WITH ZERO AT 1 KHZ
27 R21 11 12 1E6
28 R22 12 98 100
29 C14 11 12 159E-12
30 E13 11 98 POLY(2) (2,98) (1,98) 0 0.5 0.5
31 *
32 * POLE AT 10 MHZ
33 R23 18 98 1E6
34 C15 18 98 15.9E-15
35 G15 98 18 (9,98) 1E-6
36 *
37 * OUTPUT STAGE
38 ES 26 51 POLY(1) (18,98) 1.72 1
39 RS 26 22 500
40 V3 23 51 1.03951
41 V4 21 23 1.36
42 C16 20 25 2E-12
43 C17 24 25 2E-12
44 RG1 20 97 1E8
45 RG2 24 97 1E8
46 Q1 20 20 97 PNP
47 Q2 20 21 22 NPN
48 Q3 24 23 22 PNP
49 Q4 24 24 51 NPN
50 Q5 25 20 97 PNP 20
51 Q6 25 24 51 NPN 20
52 VP 96 97 0
53 VN 51 52 0
54 EP 96 0 POLY(1) (99,0) 0.01 1
55 EN 52 0 POLY(1) (50,0) -0.015 1
56 R25 30 99 63.5E3
57 R26 30 50 63.5E3
58 FSY1 99 0 VP 1
59 FSY2 0 50 VN 1
60 *
61 * MODELS USED
62 *
63 .MODEL JX NJF(BETA=7.67E-4 VTO=-2.000 IS=1E-12)
64 .MODEL NPN NPN(BF=120 VAF=150 VAR=15 RB=2E3 RE=4 RC=200)
65 .MODEL PNP PNP(BF=120 VAF=150 VAR=15 RB=2E3 RE=4 RC=900)
66 .MODEL DX D(IS=1E-15)
67 .ENDS AD822

This library example contains only one model defined by one subcircuit entry, but you can use any library containing
any amount of device models.

Let’s use AD822 opamp model. Create new schematic and place SpiceLibComp device on schematic (Figure 3.13).
Select ad822.cir file in the first property. Then fill ad822 (device name) in the second property.

You can either create an automatic component symbol, either use one of the predefined patterns. At current state
only opamp3t and opamp5t patterns are available. These patterns represents three- and five-terminal opamps
respectively. Symbol patterns are Qucs XML files. They are placed in the share/qucs/symbols subdirectory of
the Qucs installation root. These files have *.sym extension. Symbol pattern format will be considered further.

42 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

SPICE netlist builder performs automatic port assignment for subcircuit pins. If automatic symbol is used symbol pin
names will be automatically filled from the .SUBCKT entry definition. See Figure 3.13 for example of the automatic
pin assignment.

If symbol pattern is used, the first .SUBCKT entry port will be automatically mapped to the first symbol port, etc.
Symbol port sequence is defined in the symbol pattern file (*.sym) in Port description lines.

Figure 3.13 LM358 opamp library model usage with SpiceLibComp device

3.4.2 Symbol pattern files format description

Let’s consider symbol files format. Symbols have *.sym extension and are placed in share/qucs/symbols
subdirectory of the Qucs installation tree. Qucs automatically scans content of this subdirectory and displays all found
valid symbols in drop-down list in the third property (SymPattern) of the SpiceLibComp device. User can select
any symbol for new SPICE library device. It’s need to create a new symbol file and place it into symbols directory to
add new symbols to the existing Qucs installation.

Let’s consider symbol file format. Symbols have Qucs XML schematic format without header. An example of symbol

1.3. Chapter 3. Spice4qucs subcircuits, macromodels and device libraries 43

Qucs-S Help Documentation, Release 0.0.19-S

file (five-terminal opamp) is shown in the listing below:

1 <Symbol>
2 <Line -20 -40 0 80 #000080 2 1>
3 <Line -20 -40 60 40 #000080 2 1>
4 <Line -20 40 60 -40 #000080 2 1>
5 <Line 40 0 20 0 #000080 2 1>
6 <Line -40 -20 20 0 #000080 2 1>
7 <Line -40 20 20 0 #000080 2 1>
8 <Line -15 20 10 0 #000000 2 1>
9 <Line -10 -25 0 10 #ff0000 0 1>

10 <Line -15 -20 10 0 #ff0000 0 1>
11 <Line 10 -20 0 -20 #000080 2 1>
12 <Line 10 20 0 20 #000080 2 1>
13 <.PortSym 10 40 4 0>
14 <.PortSym 10 -40 3 0>
15 <.PortSym -40 20 2 0>
16 <.PortSym -40 -20 1 0>
17 <.PortSym 60 0 5 180>
18 <.ID 30 24 OP>
19 </Symbol>

Automatic symbol files preparation is not yet implemented, but you can use Qucs schematic editor to create new
symbol files. You may use the following sequence to create new symbol:

• Create Qucs subcircuit. Subcircuit may be empty. Place desired ports on it;

• Attach symbol to it using switching to symbol mode by F9 keystroke. Wire subcircuit ports to symbol and paint
symbol outline.

• Save subcircuit, open it with any test editor and copy-paste symbol code form it into the symbol file.

Please pay attention to the proper port mapping. Let’s consider port definition line format:

<.PortSym 10 -40 3 0>

This port definition consists of five space separated fields. The fourth field (3) contains port number. This port number
should match SPICE .SUBCKT port number (not port name!) to proper component wiring. You may need to edit this
field manually.

For example AD822 has the following definition in our library:

.SUBCKT AD822 1 2 99 50 25

Subcircuit node list follows after the subcircuit name (AD822). Subcircuit nodes will be mapped to component port
in the following sequence:

• Node 1 — to Port 1

• Node 2 — to Port 2

• Node 99 — to Port 3

• Node 50 — to Port 4

• Node 25 — to Port 5

3.5 Usage of the whole SPICE library

Qucs-S supports usage of the whole SPICE libraries. Such libraries will be visible in the QucsLib tool and left-side
Library dock. Library modification will be not required, but user may need to attach components symbols as resource

44 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

files.

Let’s consider how to use it. SPICE library again will be treated as a set of .SUBCKT entries. You should give *.lib
extension an existing SPICE library and put in into $HOME/.qucs/user_lib or system Qucs library directory (for
example /usr/share/qucs-s/library for Unix). Then you can get access to this newly added SPICE library
via QucsLib tool or from the left-side dock. You will see its name and component list (Figure 3.14).

Figure 3.14 An example of a SPICE library view in the Qucs library manager.

Every .SUBCKT found is considered as a single component. It will be shown in the library manager and it will be
available for drag’n’drop. Subcircuits are available via an existing SpiceLibComp component.

Default symbol will be created, if there is no symbol attached to component. But you can attach user symbol to
every component. Symbol file (Qucs XML) should be placed at the library_name subdirectory. For example, you
should create opamps subdirectory for opamps.lib file and put all necessary symbol files int it. This location is
used also for other resources such as XSPICE CodeModel sources (*.mod and *.ifs files). Symbol file *.sym
format is considered in the previous section. Two symbol types are implemented:

1. Default symbol for all components in library. It should be placed at library_name.sym file. For example
opamps.sym will be treated as the default symbol for opamps.lib library. 2. Symbol for every component
(component_name.sym file). For example, LM358.sym will be mapped to LM358 component.

Default symbol will be substituted, if component symbol file is not found.

Please keep in mind that SPICE subcircuit names are case-insensitive, but symbol file names may be case-sensitive for
some specific platforms. In other words ad822.sym may not work for AD822 component. But AD822.sym will
be attached properly.

1.3. Chapter 3. Spice4qucs subcircuits, macromodels and device libraries 45

Qucs-S Help Documentation, Release 0.0.19-S

You can look at SPICE library example with attached symbols here: https://github.com/ra3xdh/qucs_spicelib Clone
this repository and copy ad822.lib file and ad822 subdirectory into $HOME/.qucs/user_lib directory. This
library contains one component (AD822 opamp).

Let’s consider library and resource files tree:

qucs_spicelib/
- ad822
| - ad822.sym
- ad822.lib

As you can see, resources are placed into ad822 subdirectory. It contains one default symbol file ad822.sym that
is placed in resource subdirectory.

3.6 Libraries blacklisting

Every library may consist of simulator-incompatible components. For example XSPICE devices will not work with
Xyce backend. And Qucsator microwave devices will not work with any of SPICE.

Library blacklisting serves to hide simulator incompatible libraries in Qucs-S library manager view. User will not see
such libraries. This prevents simulator compatibility issue.

There are three *.balcklist files in the system Qucs-S library directory (for example $QUCSDIR/share/
qucs-s/library/). All files have plain text format and contain a list of simulator-incompatible library files with
extension in the current directory. File entries are newline-separated. These libraries will be blacklisted and will be
not shown in the library manager if appropriate simulator is selected as default.

Here is blacklist files list:

• ngspice.blacklist — The list of Ngspice-incompatible libraries;

• xyce.blacklist — The list of XYCE-incompatible libraries;

• qucs.blacklist — The list of Qucsator-incompatible libraries;

For example, let’s consider contents of the qucs.blacklist file:

AnalogueCM.lib
Cores.lib
Transformers.lib
Xanalogue.lib

All of these libraries contain SPICE-only components (XSPICE analogue blocks) and will not work with Qucsator.

back to the top

Chapter 4. Device and component modelling with algebraic equa-
tions

4.1 The role of algebraic and numeric equations in circuit simulation

Algebraic/numerical equations play the following important roles in circuit simulation:

1. Circuit device parametrization,

2. Post-processing of simulation data, and

3. Definition of user-defined components.

46 Chapter 1. User Manual and Reference Material

https://github.com/ra3xdh/qucs_spicelib

Qucs-S Help Documentation, Release 0.0.19-S

With the spice4qucs subsystem the first and second operations in the above list and the third item can be performed
easily.

Spice4qucs supports the following algebraic/numeric equations:

1. The usual Qucs equations. These are converted automatically to SPICE .PARAM statements and ngnutmeg scripts.
Equations that don’t include simulation variables (for example, node voltages and device currents) are passed as .
PARAM statements in the generated SPICE netlist. In contrast equations that include one or more simulation variables
are placed in the SPICE simulation file between the ngspice .control and .endc statements. The .control
and .endc block is normally located following one or more SPICE simulation commands. Please NOTE equations
which include simulation variables can only be processed with ngspice because Xyce is not equipped with a suitable
post-processor for this purpose.

2. .PARAM items. Such statements are passed directly as a .PARAM entry in a generated SPICE netlist.

3. .GLOBAL_PARAM sections. This feature works in the same manner as a .PARAM item.

4. .OPTIONS sections. This feature provides a way of changing the value of internal ngspice or Xyce defined
variables, such as, for example GMIN.

5. Ngnutmeg scripts. These are directly passed to the ngnutmeg post-processor after simulation. Again please note
this feature is not supported by Xyce.

Icons representing the last four equation types can be found in the Spice sections group of the Components palette.

4.2 Qucs equations usage with ngspice and Xyce

Ngspice fully supports equations. Only mathematical functions related to S-parameter simulation will (such as
stoz(), stoy(), etc.) are niot implemented. Complex number arithmetic is also supported. Similarly, physi-
cal constants (q, kB, etc.) are also allowed. Qucs equations can be used for both parametrization and post-processing
purposes. However, please remenber that SPICE variable names are not case sensitive but Qucsator is case dependent.
Hence, Kv and KV refer to different variables for Qucsator and the same variable for ngspice and Xyce. Algebraic
expressions are evaluated from the left to right with brackets, in the normal fashion, determining evaluation order.

As mentioned above, equations that contain simulator variables, such as node voltages and device currents, are con-
verted into ngnutmeg script. The following example (complex power calculation in RC-circuits, Fig 4.1) illustrates
the usage of Qucs equations with ngspice. This circuit simulates correctly with both ngspice and Qucsator.

Figure 4.1 Total power in an RC-circuit.

It’s need to evaluate the following equations:

Total power

𝑆 = 𝑎𝑏𝑠(�̇� · 𝐼)

Active power:

𝑃 = ℜ[�̇� · 𝐼]

1.4. Chapter 4. Device and component modelling with algebraic equations 47

Qucs-S Help Documentation, Release 0.0.19-S

Reactive power

𝑄 = ℑ[�̇� · 𝐼]

The simulated results are shown in the Figure 4.2.

Figure 4.2 Total, active, and reactive power curves.

The Xyce circuit simulator is distributed without a post-simulation data processor like ngnutmeg. Unfortunately,
this implies that Xyce can only partial process Qucs equations. In particularly, Xyce only supports parametrization.
Algebraic equations that include node voltages or device currents are ignored by Xyce.

Here is a small example. It illustrates how parametrization could be used with all of three simulation back ends.
Parametrisation is used to estimate the resonant frequency 𝑓𝑟𝑒𝑠 of the RCL circuit:

𝑓𝑟𝑒𝑠 =
1

2𝜋
√
𝐿𝐶

48 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 4.3 Parametrised RCL-circuit.

You can see that simulation results for all three circuits are identical.

NOTE:

There is an important note on equations order. SPICE simulators are succeptible to equations order, but equations order
has not matter for Qucsator. It concerns both parametric equations and postprocessor equations. Spice4qucs don’t
care on equations order. User should select proper equations order to avoid Undefined variable... simulation
errors. This concern also two or more Equation components on schematic.

4.3 Manipulating simulation data with algebraic measurement scripts

Post-processing of the simulation data is very important feature of a circuit simulator. There are two general ways
employ data postprocessing with ngspice and qucsator.

Firstly, a special component Nutmeg Equation has been implemented. It works in a similar fashion to the established
Qucs Equation component. It’s properties dialog (Fig.4.4) is opened by double clicking on the Nutmeg Equation icon.

1.4. Chapter 4. Device and component modelling with algebraic equations 49

Qucs-S Help Documentation, Release 0.0.19-S

Figure 4.4 The Ngnutmeg Equation properties dialog.

You need to specify (as first parameter) the type of simulation to which the ngnutmeg script is be linked. The following
simulation types are allowed:

• AC

• TRAN

• DISTORTION

• DC

• All simulations

If type “All simulations” is selected, equations will be evaluated for all simulations. You should use the standard
SPICE notation for node voltages and device current, for example; node voltages are specified as v(node) or V(n1,
n2). In a similar fashion probe currents are specified in SPICE terms as VPr1#branch which represents the current
flowing in Qucs probe named Pr1. Spic4qucs allows the use of all of the ngnutmeg functions and operators without
any limitations. However, please take into account that variables in ngnutmeg equations are case independent!

All other equations/parameters form ngnutmeg equations. These are converted into ngnutmeg let statements:

let Var1 = Expression1
let Var2 = Expression2
let VarN = ExpressionN

Expressions are evaluated from the first to last with brackets determining the order of priority. You should take into
account expression order when writing ngspice equations.

The following example (Fig.4.5) illustrates how the two equation types are used.

50 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 4.5 Distortion analysis with ngnutmeg simulation data postprocessing.

The second way of postprocessing simulation output data uses the normal Qucs Equation component. However,
please note thar spice4qucs allows the use of SPICE notation in Qucs equations. The following example shows how
this feature can be utilized.

1.4. Chapter 4. Device and component modelling with algebraic equations 51

Qucs-S Help Documentation, Release 0.0.19-S

Figure 4.6 Using SPICE notation in Qucs equations.

52 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

4.4 Qucs Equation-Defined Device (EDD) models

Qucs EDD models are described by current equations and charge equations. EDD has 𝑁 branches. Current equations
bind current 𝐼𝑁 flowing through a branch with voltage 𝑉𝑁 across branch 𝑁 :

𝑡𝑜

𝐼1 = 𝑓1(𝑉1, . . . , 𝑉𝑁)

. . .

𝐼𝑁 = 𝑓𝑁 (𝑉1, . . . , 𝑉𝑁)

. . .

Charge equations bind charge 𝑄𝑁 accumulated by a branch with voltage 𝑉𝑁 across branch 𝑁 and current 𝐼𝑁 flowing
through branch 𝑁 :

𝑡𝑜

𝑄1 = 𝑔1(𝑉1, . . . , 𝑉𝑁)

. . .

𝑄𝑁 = 𝑔𝑁 (𝑉1, . . . , 𝑉𝑁 , 𝐼1, . . . , 𝐼𝑁)

. . .

1.4. Chapter 4. Device and component modelling with algebraic equations 53

Qucs-S Help Documentation, Release 0.0.19-S

Qucs equation notation must be used in EDD equations. Qucs notation is converted to SPICE notation automatically,
where the Qucs EDD function is synthesised by a SPICE netlist builder to form an electrical equivalent circuit built
around SPICE B-type sources.

The Spice4qucs subsystem supports both EDD current and charge equations. You can simulate EDD models with
ngspice and Xyce without any special adaptations. All SPICE mathematical functions are allowed. The following
examples (Figures 4.7 and 4.8) demonstrate how EDD based circuits are simulated.

The first example illustrates a set of IV-curves for a Tunnel diode, where the Tunnel diode IV-curve is approximated
by the following equation:

𝐼 = 𝐼𝑠

(︁
𝑒

𝑉
𝜙𝑇 − 1

)︁
+ 𝐼𝑣𝑒

𝑘(𝑉−𝑉𝑣) + 𝐼𝑝 ·
𝑉

𝑉𝑝
𝑒

𝑉𝑝−𝑉

𝑉𝑝

Figure 4.7 Tunnel diode simulation using an EDD compact device model.

The second example illustrates how a nonlinear capacitor can be approximated by a polynomial that binds capacitor
charge 𝑄 with applied voltage 𝑉

𝑄 = 𝐶1𝑉 +
𝐶2𝑉

2

2
+

𝐶3𝑉
3

3
+ . . . +

𝐶𝑁𝑉 𝑁

𝑁

54 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 4.8 A non-linear capacitor simulation using ngspice and Xyce

Figure 4.9 The magnitude response of an RC circuit with a non-linear capacitor.

The spice4qucs special component called Equation defined source could be used as alternative to the Qucs EDD.
This component is located in group Spice components. It implements a behavioural B-type SPICE voltage or current
source. See chapter 5.1 of ngspice manual for more information. The example introduced in Figure 4.10 shows how
this source is used. Please note that SPICE notation must be used with B-source expressions.

1.4. Chapter 4. Device and component modelling with algebraic equations 55

Qucs-S Help Documentation, Release 0.0.19-S

Figure 4.10 A voltage multiplier model with B-type sources.

4.5 Qucs Frequency Equation-Defined Device (FEDD) models

Qucs RFEDD devices is not yet supported by spice4qucs. As a temporary work around behavioural R,C,L models and
B-type sources should be used instead. Moreover, the ngspice hertz variable is defined to represent signal frequency,
allowing models with the same function as the Qucs RFEDD model to be synthesised. Refer to chapters 3.2.4, 3.2.8,
3.2.12, and 5.1 of the official ngspice manual for further information.

4.6 ngspice and Xyce translation/synthesis of EDD and FEDD models

back to the top

Chapter 5. More advanced circuit simulation techniques.

5.1 Fourier simulation

The Qucs-S implementation of Fourier simulation allows users to perform a Fourier analysis of one or more time
domain circuit signals and to investigate their spectrum in the frequency domain. Qucs-S Fourier simulation is imple-
mented by Ngspice, Xyce and SPICE OPUS. Fourier simulation is available to Qucs-S users via a special icon called
Fourier simulation. This icon is located in the simulations group. To request a Fourier simulation place a copy of
the “Fourier simulation” icon on the current work schematic alongside a transient simulation icon. Qucs-S Fourier
simulation uses the simulation data generated by a transient simulation and has no meaning without a set of transient

56 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

time domain data. The link between Fourier simulation and transient simulation is formed by entering the name of
the coupled transient simulation as the first property of Fourier simulation.

The Fourier analysis property list has the following entries:

1. Sim — Linked transient simulation icon name.

2. numfreq — Number of harmonics: variable number for ngspice and SPICE OPUS but fixed at 10 for Xyce.

3. F0 — This parameter is the fundamental frequency of the generated frequency domain spectrum.

4. Vars — This parameter is a list of output signals. These may be node voltages and currents. In the list each
entry must be space separated.

Fourier simulation creates four output vectors for each specified output signal, for example in the case of signal
v(out):

1. magnitude(v(out)) — Magnitude spectrum.

2. phase(v(out)) — Phase spectrum (in degrees–).

3. norm(mag(v(out)) — Normalized magnitude spectrum.

4. norm(phase(v(out)) — Normalized phase spectrum.

Qucs-S allows each of these four display vectors to be plotted.

Here is a small example of a Fourier simulation which demonstrates the main features introduced above and the
relation between small signal AC simulation and Fourier simulation.

Figure 5.1 Fourier and small signal AC analysis of a single stage transistor amplifier.

1.5. Chapter 5. More advanced circuit simulation techniques. 57

Qucs-S Help Documentation, Release 0.0.19-S

5.1.1 Additional Ngspice, SPICE OPUS and Xyce Fourier simulation examples

Figure 5.1.1 SPICE OPUS Fourier simulation basic example.

58 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 5.1.2 Ngspice Fourier simulation basic example: see section 17.5.25 of the Ngspice User Manual for an expla-

1.5. Chapter 5. More advanced circuit simulation techniques. 59

Qucs-S Help Documentation, Release 0.0.19-S

nation of the Ngnutmeg fouriermn statement.

Figure 5.1.3 Xyce Fourier simulation basic example: simulation controlled by transient simulation and Fourier simu-
lation Icons.

60 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 5.1.4 Xyce Fourier simulation: controlled by Xyce script; see section 2.1.6 of the Xyce Reference Guide for an
explanation of the .four and associated .print statement.

5.2 Distortion simulation

SPICE Distortion analysis provides a small signal distortion analysis of a circuit being simulated. To request a dis-
tortion analysis place a copy of the special Distortion analysis icon on the current work schematic. It undertakes a
simulation similar to the small signal AC analysis, but calculates the circuit distortion components instead. SPICE

1.5. Chapter 5. More advanced circuit simulation techniques. 61

Qucs-S Help Documentation, Release 0.0.19-S

Distortion analysis is only available with ngspice. The calculated distortion components, for example values for
the second and third harmonic components, can be extracted using ngnutmeg script statements. Refer to the official
ngspice manual for the details of the available ngnutmeg operators and functions.

Ngspice Distortion analysis requires that the circuit being simulated is driven by aspecial AC voltage source compo-
nent. This extended signal source can be found in the Spice components group. You need to specify voltage source
parameters DISTOF1 and/or DISTOF2 for the ngspice Distortion analysis to function correctly. Refer to the offi-
cial ngspice manual for a detailed description of all the ngspice Distortion analysis features. Please NOTE that the
standard Qucs AC source will not work with ngspice Distortion analysis.

Here is an basic example of the application of SPICE Distortion analysis for estimating the distortion components of
a single stage transistor amplifier.

Figure 5.2 SPICE small signal distortion analysis of a single stage transistor amplifier.

62 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

5.3 Noise simulation

SPICE noise simulation allows the calculation of total circuit noise over a specified frequency bandwidth. ngspice
noise simulation creates two vectors:

1. onoise_total — Integrated output noise.

2. inoise_total — Equivalent input noise.

Spice4qucs allows these vectors to be plotted. NOTE the Noise simulation at a single signal frequency only outputs
a single set of noise data. At this time only ngspice has noise analysis implemented. However, in the near future is
expected that noise simulation will be added to Xyce.

To set up a Noise analysis add the following four parameters to the Noise analysis icon drop-down list:

1. Bandwidth limits — Analysis start and stop frequencies in Hz.

2. Points count — The number of noise simulation frequency points.

3. Output — The output parameter name; this may be a node voltage or branch current.

4. Source — Name of the input voltage source. A standard Qucs voltage source is allowed in this context.

Figure 5.3 Noise analysis of a single stage transistor amplifier.

5.4 One and two parameter sweep controlled simulations

Both one and two Parameter sweep simulations (in nested loops) are implemented with Ngspice, SPICE OPUS and
Xyce. However, there is no warranty that proper results will be obtained with the Xyce time domain simulation linked

1.5. Chapter 5. More advanced circuit simulation techniques. 63

Qucs-S Help Documentation, Release 0.0.19-S

to Parameter sweep changes, mainly because Xyce uses an adaptive time step for each step of a sweep variable.
Parameter sweep simulations operating with DC and frequency domain circuit simulation do not suffer from this
problem and normally report accurate output data.

The differences between the Qucs-S and Qucs Parameter sweep definitions are listed below

1. Qucs-S uses a component name instead of a variable name to set a sweep component instance value; for example
use C1, R1, etc. to sweep capacitance and resistance values of components C1 and R1.

2. Ngspice and Xyce allow model parameter values to be swept using the following notation: Ngspice uses
@dev[param] and Xyce uses dev:param. This notation is selected by setting the Parameter sweep vari-
able SweepModel to true. Note also that the Ngspice nutmeg command altermod can also be used to change
the value of a component or model parameter value. Qucs legacy devices use notation Component_name.
Parameter_name. This notation is selected by setting the Parameter sweep variable SweepModel to false.
Table 5.1 shows the allowed combinations of SweepModel and parameter values. All other combinations are
illegal and will give incorrect output data or cause Qucs-S to crash and should no be used.

3. Qucs-S does not allow the use of .PARAM and .GLOBAL_PARAM names as sweep variables.

Table 5.1 Allowed combinations of Component/Model identifiers and SweepMpdel access codes

Simulator SweepModel Component access Model access
Qucsator FALSE Value

FALSE Device.parameter_value
Ngspice FALSE Name

TRUE @Device_name[parameter_name]
Xyce FALSE Name

TRUE Device_name:parameter_name

Figure 5.4 shows how changing the values of collector resistance effects the mid-band gain of a single stage BJT
amplifier. Theoretically, the ideal gain is given by R2/R4, suggesting good agreement between the simulated output
data and theory. The schematic illustrated in Figure 5.4 also presents a technique for scanning a component value in
different simulation domains. In this example the same component value (R2) is changed by a Parameter sweep icon
linked to individual simulation icons (SW3+TR1 and SW2+AC1).

64 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 5.4 Ngspice component sweep example.

The example shown in Figure 5.5 demonstrates the effect of changing capacitor C1 on the low frequency response
of the single stage BJT amplifier introduced in Figure 5.4. Figures 5.6 and 5.7 introduce further extensions of the
Qucs-S swept parameter capabilities. Notice that Xyce allows semiconductor, and indeed other component models
with parameters specified by the .MODEL statement, to be swept in DC simulations. However, this is not the case with
Ngspice and SPICE OPUS DC simulations where only independent voltage and current source values and resistor
values can be swept. This limitation follows directly from the original SPICE 3f5 simulator C code. In contrast to
Ngspice and SPICE OPUS, Xyce includes a .STEP statement which supports an extended range of swept component
parameter features, making it similar to the original Qucs swept parameter simulation.

1.5. Chapter 5. More advanced circuit simulation techniques. 65

Qucs-S Help Documentation, Release 0.0.19-S

Figure 5.5 Xyce component sweep example two.

66 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 5.6 Two variable nested loop parameter scan: Ngspice and Xyce BJT output characteristics.

1.5. Chapter 5. More advanced circuit simulation techniques. 67

Qucs-S Help Documentation, Release 0.0.19-S

Figure 5.7 Effects of BJT BF parameter scan on DC collector current: Xyce simualtion.

5.5 Qucs and SPICE simulation of device and circuit temperature properties

5.6 Spectrum analysis with Ngspice and Nutmeg scripting

Qucs-S have no unified simulation type “Spectrum analysis” for all simulation backends. But you may use Nutmeg
scripting to implement Spectrum analysis if Ngspice or SpiceOpus is selected as the default simulation kernel.

Let’s consider double balanced passive diode mixer circuit.

68 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 5.8 Diode double balanced mixer simulation

Balanced mixer circuit has two inputs: local oscillator 𝑓𝐿𝑂 = 15MHz (LO node) and RF signal 𝑓𝑅𝐹 = 7MHz (RF
node on schematic) and gives a set of signals at the outputs. Transformer models are taken from the Transformer
library form the Qucs-S distribution. Output signal is taken from the out node. It contains components with the
following frequencies:

𝑓𝑜𝑢𝑡 = ±𝑚𝑓𝑅𝐹 ± 𝑛𝑓𝐿𝑂 where 𝑚,𝑛 ̸= 0

The following two components are the strongest (upper IF and lower IF respectively):

𝑓𝐼𝐹2 = 𝑓𝐿𝑂 + 𝑓𝑅𝐹

𝑓𝐼𝐹1 = 𝑓𝐿𝑂 − 𝑓𝑅𝐹

We should see these signals as peaks at the spectrum plot.

We want to obtain mixer output voltage plot V(out). It’s need to use Nutmeg scripting to obtain the spectrum.
Nutmeg script component serves for this purpose at the presented circuit. Let’s consider Nutmeg script structure.
Such structure is need to be used for every spectrum analysis. Nutmeg script source code is presented here:

1 tran 1n 10u 0
2 linearize v(out)
3 fft V(out)
4 let S = db(v(out))

Spectrum calculation is performed by the fft() operator at the line #3. The argument of this function is transient
simulation result vector (voltage or current). And it’s need to perform a transient simulation before. Transient simula-
tion is performed at the line #1. Simulation step is 𝑡𝑠 = 1ns and duration is 𝑇𝑑 = 10𝜇s. This gives

𝑁 =
𝑇𝑑

2𝑡𝑠
=

10𝜇s

2 · 1 ns
= 5000

1.5. Chapter 5. More advanced circuit simulation techniques. 69

Qucs-S Help Documentation, Release 0.0.19-S

spectrum points.

Frequency step will be:

𝐹 =
1

2𝑁𝑡𝑠
= 100kHz

We can summarize that the smallest timestep and the longest duration gives the most precise frequency step and
spectrum analysis precision. But it increases the simulation time.

Ngspice uses dynamic timestep calculation at simulation time. And real timestep may differ from the specified in the
tran statement. It’s need to perform simulation analysis linearization. Line#2 linearizes simulation result (output
voltage V(out)). Vector V(out) contains now linearized transient simulation result and could be passed to the
fft() input (line #3).

After FFT we can plot V(out) vector and see spectrum. But we can apply any postprocessing to it. For example we
can express spectrum in decibels (dB) with dB() nutmeg function (line #4, S variable). You need to specify these two
variables in the Nutmeg script properties (Figure 5.9)

Figure 5.9 Nutmeg script properties setup

Simulation results are shown in the Figure 5.10. Both spectrum and logarithmic spectrum (dB) are shown.

70 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 5.10 Spectrum simulation result.

We can see two main peak on spectrum (𝑓𝐼𝐹1 = 22MHz and 𝑓𝐼𝐹2 = 8MHz respectively). RF and LO signals are
rejected.

back to the top

Chapter 6. Ngspice, Xyce and SPICE OPUS post-simulation data pro-
cessing with Qucs-S and Octave

6.1 Introduction to capabilities

In this chapter the Ngspice, Xyce and SPICE OPUS post-simulation data processing and visualization capabilities are
introduced and applied to a number of example simulation case studies. Qucs-S makes use of the existing Qucs post-
simulation data processing facilities BUT modifies their operation to take into account the numerical and algebraic
functions provided by Ngspice and SPICE OPUS nutmeg scripts and Xyce embedded equations in SPICE .PRINT
statements.

The following list presents a resume of the data manipulation and plotting features implemented by Qucs and the
spice4qucs additions central to Qucs-S.

• Qucs : Built in MATLAB style numerical data processing; GUI data visualization; Octave data processing and
plotting

• Ngspice : Spice nutmeg script controlled numerical data processing; Extended Qucs GUI style data visualiza-
tion; H SPICE style .measurement post-simulation data processing; Octave data processing and plotting

• SPICE OPUS : Spice nutmeg script controlled numerical data processing; Extended Qucs GUI style data vi-
sualization; Octave data processing and plotting

• XYCE : Extended SPICE .PRINT statements with “algebraic and numeric” non-linear equations for numeric
data processing; H SPICE style .measurement post-simulation data processing; Extended GUI style data
visualization; Octave data processing and plotting

Qucs-S post-simulation data processing is linked to the use of Qucs Equation blocks and Qucs-S Nutmeg Equation
blocks. To understand how Qucs-S deals with post-simulation data processing and visualization it is important that

1.6. Chapter 6. Ngspice, Xyce and SPICE OPUS post-simulation data processing with Qucs-S and
Octave

71

Qucs-S Help Documentation, Release 0.0.19-S

readers become aware of a number of critical, highly significant, facts concerning Qucs Equation blocks. Figure 6.1
shows a very simple RC circuit who’s performance is simulated with AC and transient simulation.

Figure 6.1 A basic RC test circuit with component values set by a Qucs Equation block: component properties,
parameter equations and post processing equations are shown marked with arrows.

In Figure 6.1 Equation block Eqn1 includes a mixture of variable assignments that are independent of simulation
output data, component values Cp and Rs, and variable assignments that are functions of output data, variable Kv
which is a function of out.v and in.v. All Equation block variables that are NOT functions of output data are actioned
before the start of a simulation and their values remain constant throughout simulation. In contrast Equation block
variables that are functions of output data are actioned AFTER a simulation is finished. Notice that if there are more
than one Equation block placed on a schematic they are joined together to form one larger Equation block before
processing by Qucs. With Qucs the order of the left hand variables in an Equation block is not important because Qucs
arranges the list into an order which gives the correct sequence during list processing. Readers need only remember
that each named left hand side variable is allowed only one entry in the Equation block list. More than one entry with
the same name flags an error message. Notice also that for all types of Qucs simulation the output data processed by
an Equation block is named with identification letters after the “full stop .”, for example in Figure 6.1 there are both
AC and transient icons BUT variable Kv is only defined for the SPICE AC simulation. Qucs Equation block variable
entries are defined by right hand equations which are a mixture of numerical constants, named variables, functions,
and mathematics operators defined in the “Qucs Help Index” documentation (see the section called “Short description
of mathematical functions”). Please NOTE that all the functions in this list are only applicable to Qucs and ONLY a
percentage are available with the Ngspice, Xyce and SPICE OPUS simulators. The next few sections of this document
provide more detail on the Qucs functions that can be used with Ngspice, Xyce and SPICE OPUS.

6.2 Ngspice and SPICE OPUS output data post-processing

The Ngspice and SPICE OPUS circuit simulators also use Nutmeg Equation blocks for output data post-processing.
Figure 6.2 illustrates how Nutmeg Equation blocks are applied to the data post-processing task. Unlike Qucs Equa-
tion blocks the Qucs-S Nutmeg Equation blocks are characterised by being linked to each different type of Qucs-S
SPICE simulation, for example in Figure 6.2 there are two Nutmeg Equation blocks one for AC simulation and one
for transient simulation. Qucs-S Nutmeg Equation block entries result in SPICE nutmeg let statements being placed
between the relevant SPICE .control and .endc statements in a synthesised SPICE netlist generated by Qucs-S prior

72 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

to simulation by Ngspice or SPICE OPUS. Notice that one let statement is generated per Nutmeg Equation block
entry and that the order of the variables is important because ALL named variables must be defined before they are
used in subsequent variable assignments. Opposite to Qucs these variables are NOT arranged by Qucs-S in an order
that ensures all left hand variables can be evaluated correctly prior to use in other statements during post-simulation
data processing. In most cases these entries will represent some form of post-simulation output data processing ac-
tion, where the right hand equation entry can be a function of numeric constants, previously defined variables, device
parameters, Ngspice or SPICE OPUS nutmeg operators and functions and data output item names. The latter need to
be expressed in SPICE format rather than the standard Qucs format described previously. Node voltages are selected
using the SPICE notation V(n) or V(n1,n2), where voltage V(n) is referenced to ground and V(n1,n2) indicates the
voltage difference between nodes n1 and n2. Currents flowing in a circuit are recorded through the use of a zero value
independent voltage source, via the SPICE notation Vxxx#branch (see Figure 6.2), or by placing a Qucs current probe
in the circuit being simulated and recording its value using VPrxxx#branch (see following examples). Also notice that
in the version of the RC test circuit introduced in Figure 6.2 the component values Cp and Rs are no longer set by a
Qucs Equation block but are allocated numerical values at component symbol level.

Figure 6.2 The basic RC test circuit introduced in Figure 6.1 with post-simulation controlled by Qucs-S Nutmeg
Equation blocks NutmegEq1 and NutmegEq2.

1.6. Chapter 6. Ngspice, Xyce and SPICE OPUS post-simulation data processing with Qucs-S and
Octave

73

Qucs-S Help Documentation, Release 0.0.19-S

6.3 Ngspice, SPICE OPUS and XYCE data post-processing operators and functions

Ngspice and SPICE OPUS both use extended versions of the SPICE 3f5 nutmeg software for manipulating and visu-
alizing simulation output data. Xyce does NOT include a version of SPICE nutmeg BUT employs an extension of the
SPICE .PRINT statement to generate tables of output values for post simulation processing. At a first reading of the
Xyce manuals the lack of nutmeg would appear to be a serious omission. However, by adding equations composed
of numerical values, output variables, mathematical operators and “Analogue behavioural modelling” functions as
arguments to SPICE .PRINT statements it becomes possible to manipulate output data in a fashion similar to SPICE
nutmeg. The Xyce extended form of .PRINT statement allows “Analogue behavioural modelling (ABM)” equations
embedded in { }. Such equations ONLY operate on real quantities and hence some restrictions apply to AC
and HB simulataion, see later notes.

The following list presents a summary of the operators and functions implemented by the Ngspice, SPICE OPUS and
Xyce circuit simulators. These can be used for simulation output data manipulation using Ngspice and SPICE OPUS
nutmeg scripts and Xyce .PRINT netlist statements. A more detailed explanation of their function can be found in the
individual simulator manuals listed in the reference section at the end of spice4qucs-help document.

• Ngspice

– Operators:

+ -,+,*,/, ^, %, ,
+ gt, lt, ge, le, ne, and, or, not, eq
+ >, <, >=, <=, <>, &, |, !, =

– Functions:

+ mag(), ph(), cph(), unwrap(), j(), real(), imag(), db(), log(), ln(),
+ exp(), abs() sqrt(), sin(). cos(), tan(), atan(), sinh(), cosh(), tanh(),
+ floor(), ceil(), name(), mean(), arg(), group-delay(), vector(), initvec(),
+ length(), interpolate(), deriv(), vecd(), vecmin(), minimum(),
+ vecmax(), maximum(), fft(), ifft(), sortorder(), rnd,
+ sgauss(), sunif(), poisson(), exponential()

– Constants:

+ pi, e, c, i, kelvin, echarge, boltz, planck, yes, no, TRUE, FALSE

• SPICE OPUS

– Operators:

+ -,+, *,/, ^, %, ,
+ gt, lt, ge, le, ne, and, or, not, eq. ;, [], [%]

– Functions:

+ abs(), mag(), magnitude(), db(), ph(), phase(), unwrap(), real(), re(),
+ imag(), im(), j(), ln(), log(), log10(), exp(), sqrt(), sin(),
+ cos(), tan(), atan(), floor(), ceil(), round(), length(), mean(), sum(),
+ min(), max(), vector(), unitvec(), rnd(), rndunif(), rndgauss(),
+ interpolate(), deriv(), integrate(), timer, clock(), area()

– Constants:

+ pi, e, c, i, kelvin, echarge, boltz, planck, yes, no, true, false

• Xyce

74 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

– Operators:

+ -,+ , *, /, **
+ ==, !=, >, >=, <, <=

– Functions:

+ abs(), agauss(), gauss(), ddt(), ddx(), if(), int(), limit(), m(), min(),
→˓max(),
+ pwr(), pow(), pwrs(), rand(), sgn(), stp(),sqrt(),
+ table(), uramp(), acos(), acosh(), arctan(), asin(), asinh(), atan(),
→˓atanh(),
+ atan2(), cos(), cosh(), exp(), ln(), log(), log10(),
+ sin(), sinh(), tan(), tanh()

– Constants:

+ PI, EXP

Comparing the above lists with the Qucs list of post processing functions readers will observe that many of the Qucs RF
data manipulation functions and electronic data analysis and plotting functions, like for example function PlotVs(),
are NOT supported by Ngspice, SPICE OPUS and Xyce. Normally, this is not a particular problem because other
means for generating these missing functions have been implemented by Xyce and Qucs-S Development Teams. This
topic is expanded further in sections 6.5 and 6.6. One additional point to note concerning the above list is that all the
operator, function and constant names are reserved words and must NOT be used for other purposes, like for example,
naming circuit nodes. If they are used out of context the SPICE engines often fail when passing circuit netlists. In the
case of misuse in “naming circuit nodes” Qucs-S will report an error and stop passing a circuit netlist.

Figures 6.3 and 6.4 introduce a single stage BJT common emitter amplifier circuit set up for AC small signal simulation
with Ngspice. The Nutmeg equation block demonstrates the basic use of post simulation scripts for extracting circuit
properties from output data. Results obtained with SPICE OPUS are identical to those shown in Figure 6.5 when
Ngspice function cph() is replaced by SPICE OPUS function phase(). Please note only one Nutmeg equation
block of each simulation type, for example ac, is allowed per schematic.

Figure 6.3 Test circuit for a single stage BJT common emitter amplifier and post simulation Nutmeg equation script.

1.6. Chapter 6. Ngspice, Xyce and SPICE OPUS post-simulation data processing with Qucs-S and
Octave

75

Qucs-S Help Documentation, Release 0.0.19-S

Figure 6.4 Plots of the single stage common emitter amplifier, Rin (in OHM), Xin (in Ohm), Zin (in Ohm), voltage
gain (in dB) and phase (in degrees) against frequency.

6.4 Xyce simulation output data post processing with the Xyce script component
and SPICE .PRINT statements

Xyce simulation output data post processing uses an entirely different approach to that adopted by Ngspice and SPICE
OPUS. Xyce is a circuit simulator developed from scratch some time after the release of SPICE 3f5. This route has
allowed the Xyce Development Team to make software decisions which are not constrained except that the Xyce
circuit simulator netlist should be compatible with the SPICE 3f5 netlist structure and statements. In contrast to
both Ngspice and SPICE OPUS the Xyce .PRINT statement has been extended to allow additional types of output
variables and embedded algebraic and numeric equations designated by a wrapping of brackets { }. In this section
the extended form of the Xyce .PRINT statement is introduced, for each of the different simulation types, and its
features and limitations explained. At the time of writing these notes Xyce AC node voltage data simulation data
can only be manipulated using the real and imaginary components of individual variables and the basic mathematical
operators (+, -, * and /), see the Xyce documentation for further details. However, embedded AC and HB equations
are allowed provided they ONLY apply to variables represented by real data, for example the magnitude or phase of a
node voltage. Xyce .PRINT statements use ABM to evaluate embedded data processing equations. However, the ABM
package does not use complex numbers but only returns real numbers when calculating algebraic expressions. Xyce
.PRINT statements are entered in a SPICE netlist between the netlist title on the first line and the last line .END entry.
To generate a Xyce SPICE netlist, from a Qucs-S circuit schematic, which allows users to add simulation commands
(AC, tran etc), .PRINT statements, and any other valid SPICE statement requires the addition of a specific control icon
to Qucs-S. This component icon is called an Xyce script. Figure 6.5 shows a basic example of its use to set up and
simulate the AC performance of a twin-tee notch filter circuit.

76 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 6.5 Xyce AC simulation of a twin-tee notch filter controlled by a Xyce script.

Figures 6.6 and 6.7 give the Xyce SPICE netlist and plotted waveforms requested by the .PRINT statement shown in
Figure 6.5.

Figures 6.6 Xyce twin-tee SPICE netlist generated by Qucs-S.

1.6. Chapter 6. Ngspice, Xyce and SPICE OPUS post-simulation data processing with Qucs-S and
Octave

77

Qucs-S Help Documentation, Release 0.0.19-S

Figures 6.7 Qucs-S plotted waveforms for variables listed in the twin-tee .PRINT statement.

The Qucs-S processing of the AC version of the Xyce .PRINT statement allows the following types of output variable
to be either tabulated (when complex numbers), or manipulated and plotted (when real numbers):

v(nx) or v(n1,n2)

• Node voltage with respect to ground or node voltage difference; complex number, tabulated by Qucs-S,

vr(nx) or vr(n1,n2)

• Node voltage real component with respect to ground or node voltage difference real part; real number, plotted
by Qucs-S,

vi(nx) or vi(n1,n2)

• Node voltage imaginary component with respect to ground or node voltage difference imaginary part; real
number, plotted by Qucs-S,

Vm(nx) or vm(n1,n2)

78 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

• Magnitude of a node voltage with respect to ground or magnitude of node voltage differences; real number,
plotted by Qucs-S,

vp(nx) or vp(n1,n2)

• Phase of a node voltage with respect to ground or phase of node voltage differences; real number in radians,
plotted by Qucs-S,

vdb(nx) or vdb(n1,n2)

• Magnitude of a node voltage with respect to ground or magnitude of node voltage differences; real number in
dB, plotted by Qucs-S,

im(vx)

• Magnitude of current flowing in voltage source vx (it may be an independent voltage source or Qucs-S current
probe); real number, plotted by Qucs-S,

ip(vx)

• Phase of current flowing in voltage source vx (it may may be an independent voltage source or Qucs-S current
probe); real number in radians, plotted by Qucs-S,

idb(vx)

• Magnitude of current flowing in voltage source vx (it may be an independent voltage source or Qucs-S current
probe): real number in dB, plotted by Qucs-S.

Examples of these output data types are given in Figure 6.7. Figure 6.7 also shows readers how Xyce ABM equations
can used to convert phase data from radians to degrees. When using Xyce equations in .PRINT statements it is
important to remember that ABM mathematical operators and functions ONLY work correctly with real numbers.

Post processing of Xyce HB simulation data is similar to AC data post processing in that the information outline above
also applies to Xyce HB data. Figures 6.8 presents a typical HB simulation example. In this figure a single stage BJT
amplifier, with feedback via an RC network, is driven by an AC signal of 50mV peak and 100kHZ frequency. The
HB simulation output data to be stored in an output file, hb.txt in Figure 6.8, is set by the .PRINT statement entered
as part of the Xyce script icon. Figure 6.8 gives a selection of the resulting HB output data plots. Notice these are
all represented by a complex conjugate style of graph. More details of this format and other aspects of Xyce HB
simulation can be found in Chapter 13 section 4. All Xyce HB .PRINT statement variables must be of the same format
to those introduced in the earlier paragraphs referencing Xyce AC simulation. Although multiple Xyce script icons
are allowed this can result in problems during the post processing of AC and HB simulation data due to uncertainties
in determining which frequency scale applies to each type of simulation. Hence, it is suggested that Xyce AC and HB
Xyce script controlled simulations are not requested at the same time. Similarly, multiple .PRINT statements attached
to a single Xyce script icon can result in simulation failure. A better approach is to use a single .PRINT statement and
multiple SPICE continuation lines, see Figure 6.8.

1.6. Chapter 6. Ngspice, Xyce and SPICE OPUS post-simulation data processing with Qucs-S and
Octave

79

Qucs-S Help Documentation, Release 0.0.19-S

Figure 6.8 Xyce HB simulation of a single stage BJT amplifier with collector to base RC feedback network.

80 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 6.9 Plotted Xyce voltage and current output data for the BJT amplifier introduced in Figure 6.8.

In contrast to AC simulation the Xyce tran .PRINT statement allows the full range of built-in ABM mathematical
functions to be employed when computing expressions that include node voltage and component current simulation
data, see section 6.3. These functions only work correctly with real arguments; any variables represented by complex
numbers with real and imaginary parts will cause an error. Bracketed, {.....} expressions can be functions of constants,
predefined variables, mathematical operators, implemented functions, node voltages, Qucs-S style probe currents, and
the current flowing in SPICE style independent voltage sources. Xyce also allows B style non-linear dependent voltage
and current sources to be used to compute transient simulation output data, like for example behavioural multiplication
where the inputs are node voltages or component currents. Although this is a valid use of Xyce B sources the practice
does have a number of disadvantages, namely that Xyce B sources do NOT work correctly with AC simulation, and
secondly that the circuitry used to generate additional functions often adds nodes to the circuit under test, which as
a consequence can slow down simulation. Hence, it is suggested that Xyce B sources should only be used when no
other solution can be found.

The Qucs-S version of the Xyce transient .PRINT statement has the following syntax:

1.6. Chapter 6. Ngspice, Xyce and SPICE OPUS post-simulation data processing with Qucs-S and
Octave

81

Qucs-S Help Documentation, Release 0.0.19-S

• .PRINT tran format=raw file=tran.txt V(n1) {------} V(d1) vpr1#branch
.........

where tran.txt is the name of the output data file generated by a .PRNT statement, and

• V(nx), V(n1,n2) are functions of circuit node voltages,

• vprx#branch or vx#branch are probe currents,

• {------} represents an equation for computing an output quantity; Qucs-S identifies different quantities by
their bracketed equation names at the top of the columns of data in file tran.txt,

• I(two-terminal device) where the two-terminal device can be one of V, I, B, E, G, H, D, R, L,C, and
YMEMRESISTOR,

• Ik(three-or-more-termnal-device), see Xyce Reference Guide,

• P(two-terminal-device) or W(two-terminal-device) is the power dissipated in a two-terminal
device,

• A full list of the allowed tran .PRINT output variables can be found in the Xyce User and Reference Guides.

The Xyce transient simulation shown in Figures 6.10 and 6.11 illustrate how the .PRINT statement syntax is used to
store and plot circuit voltages, currents and equations. Notice that the test circuit in Figure 6.10 also demonstrates how
the SPICE non-linear B style current source can be used to generate a function of circuit data.

Figure 6.10 An ideal OPAMP adder test circuit which demonstrates the Xyce transient .PRINT statement syntax.

82 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 6.11 Qucs-S/Xyce plotted data illustrating different types of .PRINT argument.

The Xyce script component is designed to allow users to embed a Xyce SPICE netlist on a Qucs-S circuit schematic.
The main purpose of this feature is to allow users to construct Xyce simulation netlists which contain the fundamental
simulation commands, like .ac, .tran and .hb, and less common simulation statements, like .four, and .sens, plus other
SPICE netlist statements, including data write statements. Anyone interested in exploring this topic further should read
the Xyce user and reference documentation then experiment with a few trial simulations. In the future it is possible
that the Qucs-S developers will add to this document a series of example simulations which demonstrate additional
uses of the Xyce script.

1.6. Chapter 6. Ngspice, Xyce and SPICE OPUS post-simulation data processing with Qucs-S and
Octave

83

Qucs-S Help Documentation, Release 0.0.19-S

6.5 Ngspice and Xyce H SPICE style .measurement output data processing

6.6 Qucs-S emulation of the Qucs PlotVs() function

The Qucs PlotVs() function allows users to select a specific output data vector as a plot X variable and to plot a
different output data vector as the Y variable, for example in AC simulation users may require a plot where the X axis
is in angular form 𝜔 in radians, where 𝜔 = 2 · 𝜋 · 𝑓 rather than frequency 𝑓 in Hz. Figure 6.12 gives a simple RC low
pass filter circuit with different output data visualization plots. In this example graph (a) shows a Qucs locus plot of
node voltage V(nout), graph (b) shows a Qucs polar plot of node voltage V(nout), graph (c) shows a Qucs-S simulated
PlotVs() plot of the imaginary part of voltage V(nout) plotted against the real part of voltage V(nout), and finally
graph (d) presents the voltage transfer function 𝑉 (𝑛𝑜𝑢𝑡)/𝑉 (𝑛𝑖𝑛) plotted against frequency. Notice that graphs (a)
and (c) are identical. Figure 6.12 also illustrates how Qucs Equation blocks and Qucs-S Nutmeg blocks can be used
to set different properties on a single circuit schematic: remember Equation blocks are actioned before simulation and
Nutmeg blocks after simulation. Unfortunately, the Qucs PlotVs() function is not implemented by Ngspice, SPICE
OPUS or Xyce. To eliminate this deficiency the Qucs-S Development Team have added program code which simulates
PlotVs() allowing users to select which Y axis output vector is plotted against a chosen X axis data vector. Figure 6.13
shows the Qucs-S drop-down menu which allows users to select both the X and Y data vector variables. On Qucs-S
plots the simulated Qucs style PlotVs() graphs are indicated by an @ sign leading the X axis variable name. Notice
that the key tab New Graph adds the user specified Y@X item to the plot list on clicking it with the left-hand mouse
button.

84 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 6.12 A simple RC low pass filter illustrating a number of different output data visualization plot styles.

1.6. Chapter 6. Ngspice, Xyce and SPICE OPUS post-simulation data processing with Qucs-S and
Octave

85

Qucs-S Help Documentation, Release 0.0.19-S

Figure 6.13 The Qucs-S drop-down menu showing The Edit Diagram Properties output data list and key tabs for
generating a list of Y variables, for plotting against the default X variable, and composite Y@X plot variables.

6.7 Qucs-S output data processing with the Octave numerical analysis and visual-
ization package

6.7.1 Introduction

The Qucs output data post-processing package provides a sophisticated, and very practical, computer aided tool for
analysing, and reporting, simulated performance of electronic systems and circuit designs. The fact that it allows
schematics, data tables, two and three dimensional graphics plus blocks of user input text to be displayed simulta-
neously on an interactive graphical interface window, makes the tool suitable for generating “eye catching” slides,
reports, theses ,books and indeed any other equivalent media. Qucs output data post-processing has a structure and
features which are similar to that available with the well known GPL Octave program. Octave is a numerical analysis
and visualization package with an extensive range of optional Tool Boxes. However, the Qucs data post-processing
tool was never intended to be a replacement for packages like Octave. Today, Qucs post-processing has evolved into a
facility which allows simple every day data analysis and visualization tasks to be done with ease. Moreover, the post-
processing capabilities can be easily learned and applied to most simulation data, making the Qucs data post-processing

86 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

routines ideal for both beginners and more knowledgeable users. Qucs-S also makes use of a high percentage of the
Qucs post-processing capabilities. Throughout this document readers will find numerous examples of Qucs-S output
data processing. In most circuit simulations the Qucs style output data processing is more than adequate for analysing
and presenting simulation data. For those cases where a more sophisticated, and often more complex, form of simu-
lation data analysis and visualization is required the Qucs/Qucs-S Development Teams have provided a link between
output simulation data and the Octave package. This section introduces this link and describes how it is set up and
employed. In order to use Octave with Qucs-S the Octave package must be installed on the computer running Qucs-S.
Users are advised to install the Octave 4 series package (at time of writing the current release is Octave 4.0.3) because
this includes a Qt based plotting system which interfaces well with Qucs-S. Once Octave is installed and working
correctly Qucs-S must be informed by registering the location of the Octave binary on a Qucs-S menu. Firstly, click
on the Qucs-S “File” tab (top right hand of GUI window). Secondly, click on menu item Application Settings or
press keys ctrl+,. This action should result in the display of the menu window shown in Figure 6.14. Thirdly, click on
the Locations menu tab. This action causes the display of the menu window shown in Figure 6.15. Enter the absolute
directory location of the installed Octave program in the box labelled Octave Path:, for example /usr/bin. If the above
sequence is followed correctly Qucs-S and Octave should be linked and ready for post-processing of Qucs-S output
data by Octave.

Figure 6.14 File − > Edit Qucs Properties − > Application Settings menu.

1.6. Chapter 6. Ngspice, Xyce and SPICE OPUS post-simulation data processing with Qucs-S and
Octave

87

Qucs-S Help Documentation, Release 0.0.19-S

Figure 6.15 − > Locations menu.

6.7.2 Using Octave for numerical analysis and visualization of Qucs-S simulation
output data

By combining Qucs-S schematics with Octave script files (name.m style files) the post-simulation data processing
provided by Qucs-S is extended to include significant extra facilities. Octave not only adds full numerical analysis
and programming capabilities but also makes available all the features provided by the optional Octave Tool Boxes.
To use Octave with Qucs-S for output data processing two Qucs-S files are required; firstly a Qucs-S schematic file
called xxxxxx.sch, and secondly an Octave script file called xxxxxx.m, where name “xxxxxx” must be identical for both
files. By using the same name Qucs-S assumes that script file xxxxxx.m is to be used to control the post-simulation
processing of the output data generated by the simulation of file xxxxxx.sch. Figures 6.16 and 6.17 show examples
of the xxxxxx.sch and xxxxxx.m files. Figure 6.16 presents a Qucs-S schematic of a basic RC low pass filter driven
from an AC voltage signal comprising a series of independent AC current generators of one ampere magnitude and
differing frequencies driving a one Ohm resistor. This circuit generates and filters a composite time domain signal
with differing input (node nin) and output (node nout) voltage spectra. Figure 6.17 illustrates how xxxxxx.m files can
be entered and edited using the Qucs-text editor. In this example the Octave file is called S4Q_FFT2V_Test.m and the
Qucs-S schematic file S4Q_FFT2V_Test.sch. Figure 6.17 also shows the location of the (1) the Qucs-S window where
Octave displays output data and messages and (2) the Qucs-S window (bottom Octave Dock window) where Octave
commands/statements can be entered by users. Note that saved xxxxxx.m files are listed under the Octave subsection
of the Content tab in the Main Dock window on the left-hand side of the Qucs-S GUI.

88 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 6.16 Qucs-S circuit schematic S4Q_FFT2V_Test.sch.

1.6. Chapter 6. Ngspice, Xyce and SPICE OPUS post-simulation data processing with Qucs-S and
Octave

89

Qucs-S Help Documentation, Release 0.0.19-S

Figure 6.17 Octave post processing script S4Q_FFT2V_Test.m.

Once the xxxxxx.sch and xxxxxx.m files are entered they can be run by Qucs-S to generate circuit simulation output
and undertake output processing with Octave. Qucs-S allows this to be done in two ways; firstly manually controlled
by users and secondly automatically controlled by Qucs-S. Both methods require users to load the xxxxxx.sch file into
the main Qucs-S GUI window before undertaking circuit simulation and output data post-processing:

Manual method

• Load xxxxxx.sch* into Qucs-GUI window

• Simulate circuit (press key F2)

• Type the name of the xxxxxx.m file without the .m extension in the Octave Dock command window

• If both the xxxxxxx.sch and xxxxxx.n files are error free Qucs-S simulates the loaded circuit and undertakes the
requested output data post-processing with Octave.

• Any requested visualization plots are displayed using Qt in new windows superimposed on the Qucs-S GUI

Automatic method

• Load xxxxxx.sch* into Qucs-GUI window

• Simulate circuit (press key F2)

• If both the xxxxxxx.sch and xxxxxx.n files are error free Qucs-S simulates the loaded circuit and undertakes the
requested output data post-processing with Octave.

• Any requested visualization plots are displayed using Qt in new windows superimposed on the Qucs-S GUI

90 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Please note only one of the two Qucs-S/Octave simulation data post-processing methods can be active at any one time.
To select which tick the correct boxes in the Edit File Properties window located under File -> Document Settings,
see Figure 6.18. For example when box open data display after simulation is ticked and box run script after
simulation is NOT ticked then the Manual method is selected. Reversing which box is ticked results in selection of
the Automatic method of Octave post-simulation data processing.

Figure 6.18 The Edit File Properties window.

Before introducing the structure and function of the Octave xxxxxx.m file the simulation post-processing results for
the S4Q_FFT2V_Test example are introduced and briefly explained. This allows a number of the basic features
required for an Octave m file to successfully process Qucs-S simulation output data to be listed before presenting
the more complex features of individual Octave numerical analysis and plotting functions, and hopefully help all
Qucs-S users understand the background and requirements for writing functioning Octave post-processing m scripts.
Figure 6.16 shows a selection of the tabulated and graphical results for the RC filter circuit represented by schematic
S4Q_FFT2_Test.sch. Octave simulation data post-processing scripts are required to undertake a number of basic tasks
if they are to successfully extract useful data from simulation performance results: firstly they must be able to read the
numerical output data generated by Qucs-S and convert this information into a numerical format which Octave can
read and process, secondly they must instruct Octave as to the data processing tasks that it is required to undertake
and thirdly they must be able to tabulate, and/or plot the transformed data in a format that can be easily understood by
Qucs-S users. How this is done forms the central topic of the next part of this document.

1.6. Chapter 6. Ngspice, Xyce and SPICE OPUS post-simulation data processing with Qucs-S and
Octave

91

Qucs-S Help Documentation, Release 0.0.19-S

Figure 6.19 Qucs-S/Octave output data results for example circuit illustrated in Figure 6.16.

6.7.3 The structure and content of Octave xxxxxx.m script files

Octave xxxxxx.m script files are one of the principle tools available to Qucs-S users for controlling the post-processing
of Qucs-S output data. They allow the resources provided by the Octave numerical analysis and visualization package,
and its optional Tool Boxes, to be used as an advanced output data analysis tool, allowing detailed analysis of circuit
and system performance. Applying Octave for this purpose is very worth while but does however, require users to be
proficient with MATLAB/Octave numerical analysis and programming. Figure 6.20 shows a copy of the Octave post-
process output data processing script S4Q_FFT2V_Test.m previously introduced in section 6.7.2. On the right-hand
side of Figure 6.20 is snapshot of the Qucs-S Main Dock window where a numbered set of notes outlining each major
section of the S4Q_FFT2V_Test.m script. The list of headings on the right-hand side of Figure 6.20 indicates where
the files referenced in the S4Q_FFT2V_Test.m script are stored in the current Qucs-S project. Notice that copies of
specific Octave functions written to process script xxxxxx.m are also stored in the current Qucs-S project directory,
alongside xxxxxxx.sch schematic files. Octave post-simulation output data processing scripts consist of a series of
sections which are actioned as a sequence of sequential stages, typically these are

Section 1

• This section is at the start of a xxxxxx.m script. In most instances it consists of a group of comment statements
which outline script specification and its use

Section 2

• Section 2 consists of a series of statements which define the name of the Qucs-S simulation output data file ,
S4Q_FFT2V_.Test.dat.spopus in Figure 6.20, and the name of the Octave variable (qdset) that stores the Octave
version of Qucs-S Data converted by function loadQucsDataSet(). In this example names, types and sizes of
individual Octave variables held by qdset are displayed in the Octave Dock output window by calling Octave
function ShowQucsDataSet(qdset). Notes 1. to 3., Figure 6.20, provide more detail.

92 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Section 3

• Section 3 is primarily made up of a series of Octave statements which extract individual Qucs-S output quantities
from qdset. The Octave function GetQucsVariable() is used for this purpose, see Notes 4. and 5., Figure 6.20. In
many instances Section 3 would also include additional Octave statements for calculating values characterizing
the properties of the circuit/model being simulated. The full power of the Octave matrix based numerical
analysis programming language and its optional Tool Boxes are available for this purpose.

Section 4

• Section 4, the last section in the xxxxxx.m script is normally reserved for Octave code which outputs the cal-
culated results from Section 3, see notes 6. and 7. Figure 6.20. In the majority of cases this output takes the
form of plotted graphs, tabulated data or files. The exact form of the generated output data is entirely under the
control of individual users and its form will largely depend a users Octave programming skills.

Figure 6.20 An example Octave xxxxxx.m script file.

Qucs simulation output data is stored in files designated by xxxxxx.dat where xxxxxx denotes the name of the schematic
illustrating the circuit/model under simulation test. Individual xxxxxx.dat files are stored in project files, named
name_prj and are listed in the Main Dock window under subheading Datasets. Qucs-S uses a variation of this proce-
dure. This change is necessary because Qucs-S can undertake simulations with any of the external SPICE simulators
Ngspice, SPICE OPUS and Xyce currently linked to Qucs-S. Output simulation data from each of these simulators are
identified by adding an extra naming tag attached to the end of the original Qucs xxxxxx.dat name, yielding

• Ngspice : xxxxxx.dat.ngspice

• SPICE OPUS : xxxxxx.dat.spopus

• Xyce : xxxxxx.dat.xyce

1.6. Chapter 6. Ngspice, Xyce and SPICE OPUS post-simulation data processing with Qucs-S and
Octave

93

Qucs-S Help Documentation, Release 0.0.19-S

These modified Qucs-S output data files are listed under the Main Dock window subheading Others, If the schematic
under test includes more than one type of circuit simulation, for example see the schematic shown in Figure 6.16, the
Qucs-S output data file will include output data for all types of simulation, Displaying the content of a Qucs-S data
file lists individual output data items, including their simulation type, name and the numerical data, To assist Qucs
and Qucs-S users apply Octave in post-processing simulation output data a number of Octave functions are distributed
with each package. These functions are grouped into two main categories.

Group 1 : - Data extraction utilities

Function: [x] = getQucsVariable(Data, “yyy”), where

• x is the Octave name of the extracted data variable,

• Data is the name of the Qucs/Qucs-S data set, and

• “yyy” is the Qucs/Qucs-S name of the extracted data variable.

Function: dataSet = loadQucsDataSet(dataSETFile), where dataSet is an array of structures containing the infor-
mation from the Qucs/Qucs-S data file, and each structure contains the following fields

• name is the name of the variable associated with the data in the data field of the structure,

• nameDep is the name of the dependent variable associated with the data, for example in a transient simulation
this will be time with another structure holding the time data as a variable,

• dep is 0 (FALSE) or 1 (TRUE) and flags if the data in the data field is dependent on another variable,

• data is a vector of values containing the numerical data for a specified variable.

Function: showQucsDataSet(dataSet), where

• dataset is the name of the Octave data set which is to be displayed in the Octave Dock window.

Group 2 : - Visualization utilities

Function S4Q_plotCartesian2D(Type, XName, YName, Xlabel, Ylabel, Xstart, Xstop, Linewidth), where

• Type is the plot style; “semilogx”, or “semilogy” or “loglog” else “plot”,

• XName is the X variable name,

• YName is the Y variable name,

• Xlabel is the X axis label,

• Ylabel is the Y axis label,

• Xstart is the X axis start value,

• Xstop is the X axis stop value, and

• Linewidth is the thickness of plotted line in pixels.

Function S4Q_plotCarteaian2D2V(XName, Xlabel, Xstart, Xstop, Y1Name, Y1label, Y1Colour, Y2Name,
Y2label, Y2Colour, Linewidth), where

• XName is the X variable name,

• Xlabel is the X axis label,

• Xstart is the X axis start value,

• Xstop is the X axis stop value,

• Y1Name is the Y1 variable name,

• Y1label is the Y1 axis label,

• Y1Colour is the Y1 plot colour,

94 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

• Y2Name is the Y2 variable name,

• Y2label is the Y2 axis label,

• Y2Colour is the Y2 plot colour, and

• Linewidth is the thickness of plotted line in pixels.

Function S4Q_plotFFT(Type, VName, Xlabel,Xstart, Xstop, Ylabel,YColour, Linewidth), where

• Type is the plot style; “Line” else “stem”,

• VName is Y variable plot variable name,

• Xlabel is the X axis label,

• Xstart is the X start value,

• Xstop is the X axis stop value,

• Ylabel is the Y axis label,

• YColour is the colour of the plot,

• Linewidth is the thickness of plotted line or stem curve in pixels.

Function S4Q_plotFFT2V(Type, Freq, Xlabel, Y1Name, Y1label, Y1Colour, Y2Name, Y2label, Y2Colour,
Linewidth), where

• Type is the plot style; “Line” else “Stem”

• Freq is the X axis frequency vector,

• Xlabel i the X axis label,

• Y1Name is the Y1 variable name,

• Y1label is the Y1 axis label,

• Y1Colour is the Y1 plot colour,

• Y2Name is the Y2 variable name,

• Y2label is the Y2 axis label,

• Y2Colour is the Y2 plot colour,

• Linewidth is the thickness of plotted line or stem curve in pixels.

These Octave functions are distributed with the Qucs-S software package. In the future more will be added as the
Qucs-S simulation and modelling community develops further useful analysis and visualization functions and sends
them to the Qucs-S Development Team for publication as GPL Octave software.

1.6. Chapter 6. Ngspice, Xyce and SPICE OPUS post-simulation data processing with Qucs-S and
Octave

95

Qucs-S Help Documentation, Release 0.0.19-S

6.7.4 A second Octave xxxxxx.m script file

Figure 6.21 A two stage low power BJT amplifier schematic testTwoStageBJT.sch.

Figure 6.22 Xyce synthesised netlist and Octave script file.

96 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 6.23 Octave plotted transient and Harmonic Balance performance graphs for the two stage low power BJT
amplifier..

back to the top

Chapter 7. Qucs and SPICE simulation models that work with
ngspice, Xyce and SPICE OPUS

7.1 Introduction

For a circuit simulator to be a useful circuit design aid it must be able to simulate a range of analogue and digital circuits
which include passive components, semiconductor devices, integrated circuits and non-electrical devices when needed.
By combining Qucs with ngspice and Xyce the number of available simulation models has increased significantly,
making the spice4qucs version of Qucs more flexible and powerful, when compared to earlier Qucs releases. One of
the primary motives behind the development of spice4qucs was to provide Qucs users with access to published SPICE
component models while keeping all the existing Qucs models and simulation capabilities unchanged. With the first

1.7. Chapter 7. Qucs and SPICE simulation models that work with ngspice, Xyce and SPICE OPUS97

Qucs-S Help Documentation, Release 0.0.19-S

release of spice4qucs, as Qucs-0.0.19S, this aim has largely been achieved. However, there are still significant gaps
in the Qucs-0.0.19S simulation capabilities (for example no SPICE 3f5 .PZ simulation yet) and model coverage (for
example the number of power analogue and digital models are limited). More work is planned on model development
for later releases of the software, including improvements to power device models and the introduction of XSPICE
digital models for true mixed-mode analogue-digital simulation. Any improvements and additions to the Qucs-0.0.19S
model complement will be recorded in this document as they are introduced by the Qucs Development Team.

This chapter of the spice4qucs-help document consists of two parts; firstly a brief component specification and a more
detailed technical reference, and secondly a selection of typical simulation examples which illustrate the use of the
various component models. Part two has been added as an aid to help Qucs users appreciate the new style software
and the differences between Qucs-0.0.19S and earlier releases of Qucs.

No two circuit simulators are equipped with an identical number, and the same identical types, of circuit simulation
models. This is even true with the various implementations of SPICE developed from SPICE 3f5. Hence, by com-
bining Qucs, ngspice and Xyce within one circuit simulation software package there has to be a way of identifying
which models work with which simulator. A second feature that further complicates model selection is the fact that
supposedly identical models representing the same generic device, for example a BJT, may be based on different phys-
ical device equations and a different number of device parameters. In an attempt to identify which model works with
which simulator the Qucs Development Team have adopted the following model symbol colouring scheme; existing
Qucs models are coloured dark blue (no change), SPICE models which work with both ngspice and Xyce are coloured
red, SPICE models that only work with ngspice are coloured cyan and SPICE models that only work with Xyce are
coloured dark green. This scheme is not perfect because a number of the original Qucs models also work with ngspice
and Xyce. However, for legacy reasons the Qucs Development Team has decided not to change the colours of these
models at this time. This decision will probably be reviewed in later releases of Qucs.

The models shown in Figure 7.1 are the original Qucs-0.18 models which can be included in ngspice and Xyce
simulations. Please NOTE that for those Qucs users who do not wish to simulate circuits with either ngspice or Xyce
all the models distributed with Qucs-0.0.18 work with Qucs-0.0.19S without any modification via the usual Simulation
(key F2) command. So far no attempt has been made to interface Qucs Verilog-A models with ngspice or Xyce. This
task is scheduled for a later spice4qucs development phase.

98 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 7.1. Qucs-0.0.18 models that work with ngspice and (sometimes) Xyce.

7.2 Spice4qucs component specifications and technical reference

1.7. Chapter 7. Qucs and SPICE simulation models that work with ngspice, Xyce and SPICE OPUS99

Qucs-S Help Documentation, Release 0.0.19-S

Capacitor (C)

Inductor (L)

100 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Resistor (R)

1.7. Chapter 7. Qucs and SPICE simulation models that work with ngspice, Xyce and SPICE OPUS101

Qucs-S Help Documentation, Release 0.0.19-S

Independent AC Current Source (I)

102 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Independent AC Voltage Source (V)

Independent DC Current Source (I)

1.7. Chapter 7. Qucs and SPICE simulation models that work with ngspice, Xyce and SPICE OPUS103

Qucs-S Help Documentation, Release 0.0.19-S

Independent DC Voltage Source (V)

Linear Current Controlled Current Source (F)

104 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Linear Current Controlled Voltage Source (H)

Linear Voltage Controlled Current Source (G)

1.7. Chapter 7. Qucs and SPICE simulation models that work with ngspice, Xyce and SPICE OPUS105

Qucs-S Help Documentation, Release 0.0.19-S

Linear Voltage Controlled Voltage Source (E)

106 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Probes

1.7. Chapter 7. Qucs and SPICE simulation models that work with ngspice, Xyce and SPICE OPUS107

Qucs-S Help Documentation, Release 0.0.19-S

Qucs Netlist

108 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Ngspice Netlist

1.7. Chapter 7. Qucs and SPICE simulation models that work with ngspice, Xyce and SPICE OPUS109

Qucs-S Help Documentation, Release 0.0.19-S

NOTE: To make the Qucs and ngspice netlists readable single lines of width greater than a page width have been
indented and continued on one or more lines after the initial entry.

Relay (Voltage controlled switch) (S)

110 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Diode (D)

1.7. Chapter 7. Qucs and SPICE simulation models that work with ngspice, Xyce and SPICE OPUS111

Qucs-S Help Documentation, Release 0.0.19-S

BJT npn (Qucs T, ngspice Q)

112 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

1.7. Chapter 7. Qucs and SPICE simulation models that work with ngspice, Xyce and SPICE OPUS113

Qucs-S Help Documentation, Release 0.0.19-S

Ngspice diode (D)

114 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Ngspice resistor (R)

1.7. Chapter 7. Qucs and SPICE simulation models that work with ngspice, Xyce and SPICE OPUS115

Qucs-S Help Documentation, Release 0.0.19-S

Ngspice capacitor (C)

116 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Ngspice inductor (L)

1.7. Chapter 7. Qucs and SPICE simulation models that work with ngspice, Xyce and SPICE OPUS117

Qucs-S Help Documentation, Release 0.0.19-S

Ngspice mutual inductor (K)

118 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Ngspice independent AC voltage source (V)

1.7. Chapter 7. Qucs and SPICE simulation models that work with ngspice, Xyce and SPICE OPUS119

Qucs-S Help Documentation, Release 0.0.19-S

Ngspice non-linear dependent voltage and current sources (B)

120 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

B source example 1: Simulation of the DC characteristics of a diode modelled with a B source pwl
function; diode series resistor set at 1e-3 Ohm

1.7. Chapter 7. Qucs and SPICE simulation models that work with ngspice, Xyce and SPICE OPUS121

Qucs-S Help Documentation, Release 0.0.19-S

B source example 2: Simulation of the properties of a high power half-wave rectifier circuit with 0.5
Ohm load

122 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

6.3 Linear and non-linear transformer models

Qucs release 0.0.18, and earlier versions of the software, includes a number of transformer and coupled inductance
models. These models are linear with none of the important non-linear effects found in real transformers, including
for example, winding resistance, inductance fringing effects and core saturation. The transformer models introduced
in this section inctroduce a number of physical effects which correct the linear transformer limitations. The ideas
introduced in their design also act as a set of building blocks which can be used to construct more complex models.
The non-linear transformer and core models can be found in the libraries called “Transformers” and “Cores” located
in the spice4qucs system library.

1.7. Chapter 7. Qucs and SPICE simulation models that work with ngspice, Xyce and SPICE OPUS123

Qucs-S Help Documentation, Release 0.0.19-S

Two winding transformer model with in phase primary and secondary voltages and winding resis-
tance

*

124 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Two winding transformer model with out of phase primary and secondary voltages and winding
resistance

1.7. Chapter 7. Qucs and SPICE simulation models that work with ngspice, Xyce and SPICE OPUS125

Qucs-S Help Documentation, Release 0.0.19-S

Two winding transformer model with in phase primary and secondary voltages, winding resistance
and fringing inductance

126 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Two winding transformer model with in phase primary and secondary voltages, winding resistance
and core saturation

1.7. Chapter 7. Qucs and SPICE simulation models that work with ngspice, Xyce and SPICE OPUS127

Qucs-S Help Documentation, Release 0.0.19-S

Spice4qucs magnetic core library: symbols and B/H specifications

128 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Two winding transformer model with in phase primary and secondary voltages, winding resistance
and core saturation (using XSPICE models)

1.7. Chapter 7. Qucs and SPICE simulation models that work with ngspice, Xyce and SPICE OPUS129

Qucs-S Help Documentation, Release 0.0.19-S

130 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Three winding transformer model with winding resistance and core saturation effects (using XSPICE
models): full-wave rectifier example

1.7. Chapter 7. Qucs and SPICE simulation models that work with ngspice, Xyce and SPICE OPUS131

Qucs-S Help Documentation, Release 0.0.19-S

132 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

1.7. Chapter 7. Qucs and SPICE simulation models that work with ngspice, Xyce and SPICE OPUS133

Qucs-S Help Documentation, Release 0.0.19-S

7.4 More complex circuit simulations that demonstrate the use of spice4qucs mod-
els

back to the top

Chapter 8. Ngspice custom simulation technology

8.1 Introduction

8.2 Setting up single and multiple circuit simulations

8.3 Extracting circuit and device properties from ngspice simulations

8.4 Statistical circuit simulation including Monte-Carlo analysis

8.5 Building ngnutmeg scripts for circuit simulation control and data analysis

back to the top

Chapter 9. XSPICE standard components and library

back to the top

Chapter 10. XSPICE user written device models and library

back to the top

Chapter 11. Introduction to mixed analogue/digital simulation

11.1 XSPICE basics

11.2 Mixed mode simulation with Ngspice

11.3 Mixed mode simulation with Xyce

11.4 Mixed mode simulation with SPICE OPUS

back to the top

134 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Chapter 12. Verilog-A compact semiconductor device modelling

12.1 Introduction to Verilog-A for compact device modelling

12.2 The Qucs/ADMS Verilog-A “turn key” modelling system

12.3 The Qucs Verilog-A module synthesizer

12.4 Using Xyce for Verilog-A compact device modelling

back to the top

Chapter 13. RF simulation with Ngspice, Xyce and SPICE OPUS

13.1 Introduction to capabilities

The original motivation behind the development of Qucs was the need for an open source RF circuit simulator which
was freely available to all interested in RF and microwave circuit and system design. Today, Qucs has become a
relatively stable simulation package with good high frequency analysis capabilities like small signal AC two port and
multi-port S parameter analysis, noise analysis and rudimentary single tone Harmonic Balance (HB) circuit simulation.
For anyone interested in RF circuit design Qucs is distributed with a selection of built-in RF component models,
including microstrip and coplanar technology components, making the package a good choice for investigation the
performance of high frequency circuits. At RF, Qucs implements models and analysis features not included in the
traditional SPICE 2g6 and 3f5 circuit simulators. In contrast to SPICE 3f5 the Ngspice, Xyce and SPICE OPUS GPL
simulators have been extended with features which are designed specifically for RF circuit simulation. These include
single tone and multi-tone HB simulation (Xyce) and a transient simulation shooting method (SPICE OPUS) for large
signal AC steady state simulation. These RF simulation techniques, when coupled with the fact that Ngspice, Xyce
and SPICE OPUS support small signal AC two port network analysis via the spice4qucs extension, makes the Qucs-S
version of Qucs a useful addition to the GPL RF circuit simulation scene.

HB is a circuit simulation method that solves for the steady state solution of nonlinear circuits in the frequency
domain. In HB simulation, the voltages and currents in a nonlinear circuit are represented by truncated Fourier series.
HB computes the frequency spectrum of circuit voltages and currents when signals reach a steady state, following
excitation with an external signal source. This source can be a large signal AC signal. In practice the HB simulation
technique is often more efficient than transient analysis, particularly in situations where transient analysis can take a
long time to reach a steady state solution due to widely differing frequency signals present in a circuit, for example
amplitude or frequency modulated communications signals. HB is particularly suited to the simulation of analogue
RF and microwave circuits.

In this chapter the Qucs-S RF capabilities are introduced and described. To demonstrate these new features a number
of example RF circuit simulations are presented together with a new Template element which allows libraries of
analysis and post-simulation data processing Nutmeg scripts to be stored and embedded in Qucs schematics. The idea
of a predefined Test Bench is also outlined and applied to RF circuit simulation case studies.

The Qucs-S version of Qucs includes spice4qucs extensions which allow the package to be used for analysis of RF
circuits. The central features of the spice4qucs RF elements are:

• Small signal AC two port S-parameter simulation (Ngspice, XYCE and SPICE OPUS)

• Small signal AC two port Y,Z etc. network simulation/analysis (Ngspice and SPICE OPUS)

• Single and multi-tone large signal AC Harmonic Balance simulation (Xyce only)

• Large signal AC transient simulation with steady state shooting methods (SPICE OPUS only)

1.12. Chapter 12. Verilog-A compact semiconductor device modelling 135

Qucs-S Help Documentation, Release 0.0.19-S

• Emulation of Qucs RFEDD components (limited support at this time)

• A range of lumped RF and microwave components for use in high frequency circuit design (limited but growing
support)

Where needed each of the above can make use of Octave scripts and functions in the analysis of simulation data.

Readers will have probably noticed from the list presented above that multi-port S-parameter modelling and RF sim-
ulation features are not implemented in Qucs-S. Currently, there are no immediate plans to add this extension to the
existing Qucs-S simulation and modelling features. Anyone interested in multi-port S-parameter RF circuit analysis is
advised to use the standard Qucs package.

The S-parameter probes, templates and examples introduced in this chapter can be found in the Qucs-S examples
directory. They are stored as project spice4qucs-helpChapter13_prj.

13.2 Small signal AC S-parameter simulation

S-parameter two port RF and microwave circuit simulation is not implemented in traditional SPICE 2g6 and 3f5
simulators. This is a serious omission because at RF frequencies S-parameter and other two-port network parameters
are widely used in circuit analysis and design. To overcome this limitation four small signal AC analysis probes have
been added to the spice4qucs RF extensions. When combined with signal sources they form a Two-port S-parameter
circuit test bench. This test bench is shown in Figure 13.1. Its main features are space on the test bench schematic
to place the device under test (DUT) circuit diagram, input AC signal sources with 𝑍0 characteristic impedance, 𝑍0

load impedances and the S-parameter measurement probes. Notice that two copies of the DUT are require; firstly to
measure 𝑆11 and 𝑆12 and secondly 𝑆22 and 𝑆21. The test bench also includes a detailed set of instructions on how to
use it to measure simulated two-port S-parameters. The two-port S-parameter test bench illustrated in Figure 13.1 will
work with the Ngspice, Xyce and SPICE OPUS circuit simulators.

Figure 13.1 A small signal AC S-parameter test bench with S-parameter probes.

The schematic shown in Figure 13.2 demonstrates the use of the S-parameter test bench. In this example two identical
copies of a Butterworth passive low pass filter circuit with 𝑓𝑐 = 100 kHZ and 𝑍0 = 50 Ohms are connected between the
pairs of DUT terminals labelled IN and OUT. Notice that the orientation of both DUT is the same. The outputs from
the S-parameter probes are called nS11, nS12, nS21 and S22 being represented as voltages specified by complex
numbers. Figure 13.2 also shows typical plots of the magnitudes of the simulated S-parameters. For convenience the
test-bench instructions have been deleted from Figure 13.3. Also, if required the size of the area allocated to each
DUT can be changed, provided the test-bench signal and load circuit connections are not changed. Similarly, the value
of 𝑍0 and the source and load resistors (𝑅1, 𝑅2, 𝑅3 and 𝑅4 in Figure 13.2) can be changed from 50 Ohms.

136 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

1.13. Chapter 13. RF simulation with Ngspice, Xyce and SPICE OPUS 137

Qucs-S Help Documentation, Release 0.0.19-S

Figure 13.2 Extraction of a low pass filter small signal S-Parameters using a Qucs-S test-bench.

13.3 Small signal AC two port network simulation/analysis

The spice4qucs extensions introduce post-simulation data conversion for two-port networks centred around Qucs-S
Nutmeg scripts and Qucs-S Nutmeg equation blocks. These are designed specifically to work with Ngspice and
Xyce. Conversion of two port parameters from one format to another format is simply one example of the application
of Qucs-S embedded nutmeg scripts for the control of circuit simulation and the extraction of circuit parameters from
output data. The Xyce circuit simulator is more limited in that it does not have a post-processing scripting language
for extracting transfer function parameters and other data from simulation output. However, it does allow SPICE style
AC .PRINT statements which can include equations provided these are written in a form constructed from the real and
imaginary components of circuit voltages and currents. In practice this is not very convenient, particularly when these
equations involve many algebraic terms. At this time the Xyce facilities for the extraction of AC data items are at a
rudimentary stage in the packages development and for this reason are not considered further in this document.

138 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 13.3 Nutmeg script controlled simulation and two-port parameter extraction.

Figure 13.3 presents an S-parameter test bench used to extract the S parameters of the same low pass filter introduced
in Figure 13.1. However, unlike Figure 13.1 Qucs/Qucs-S simulation icons are NOT attached to the test-bench circuit
schematic. Instead a Qucs-S Nutmeg script is used. This script controls the simulation sequence and provides post
processing algebraic equations which generate small signal AC 𝑌 and 𝑍 parameters from the data output by the S-
parameter probes. Figure 13.4 shows a set of simulation plots obtained with the Nutmeg script and SPICE OPUS.
Identical data was recorded with Ngspice. However, one difference was noticed when simulating circuits via the
Nutmeg script route. SPICE OPUS requires that the code words, like for example ac and let, must be entered with
lower case letters, otherwise the SPICE OPUS simulation fails. Chapter 8 presents much more detail on how to set up
Nutmeg scripts and gives a number of additional examples of their use in Qucs-S circuit simulation.

1.13. Chapter 13. RF simulation with Ngspice, Xyce and SPICE OPUS 139

Qucs-S Help Documentation, Release 0.0.19-S

Figure 13.4 Typical S-parameter, 𝑌 parameter and 𝑍 parameter data for the test circuit given in Figure 13.3.

One of the pioneering circuit simulation features implemented by Qucs is the Equation block. This allows blocks of
algebraic equations to be attached to a circuit schematic. Any equations which do NOT include quantities computed
during simulation, like circuit voltages and currents, are evaluated prior to the start of simulation. These quantities
remain fixed during simulation and may be referenced by the simulator when calculating voltages and currents. In
contrast, if an Equation block includes variables which are functions of simulation variables these are evaluated,
based on the stored simulation output data, after a simulation finishes. Qucs has a Octave style numerical analysis
package built into the software for this purpose.

Qucs-S uses a slightly different approach to post simulation data processing. Both Ngspice and Xyce use an extended
form of the SPICE nutmeg software for post-simulation data processing. Unfortunately, because Xyce does not include
a feature equivalent to SPICE nutmeg, AC post-simulation data processing is not possible with Xyce. To setup and
use a Qucs-S Nutmeg equation block place the Nutmeg icon on an empty schematic sheet and enter the individual
variable equations in a similar fashion to Qucs Equation blocks. Once complete copy the Nutmeg equation black to
the current work circuit schematic. Such Nutmeg equation blocks are called Templates by the Qucs-S Development
Team. These templates can be saved in a project and used over and over again. Templates add a new and important

140 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

facility to Qucs-S which allows users to develop libraries of-post simulation data processing scripts and store them for
future use. See Chapters 7 and 8 for more details and examples of the use of Qucs-S Custom Simulation technology
and Nutmeg equation blocks. Figure 13.5 shows Qucs-S Templates for the conversion of S-parameters to 𝑌 and 𝑍
two port parameters. Note that these do NOT include commands for simulations, for example ac, and do not have
the same named variable defined more than ONCE.

Figure 13.5 Qucs-S Nutmeg equation block templates for 𝑆 to 𝑌 and 𝑍 parameter conversion.

13.4 Single tone large signal AC Harmonic Balance simulation

The Spice4qucs subsystem supports Xyce single tone and multi-tone Harmonic Balance (HB). Unlike the rudimentary
version of HB simulation implemented in Qucs the Xyce version can simulate circuits with a full range of SPICE
components. It is also faster and much more stable. In general no changes to the SPICE semiconductor device or
component models are required. To invoke single tone HB just place the Qucs-S HB simulation icon on a circuit
schematic, define the number of harmonics and simulate the circuit with Xyce. The spice4qucs output data parser
automatically converts output variable names to Qucs notation. For example, for node voltage out plot out.Vb.

Figure 13.6 shows the schematic and Figure 13.7 the simulation output plots for a basic diode circuit similar to the
original Qucs HB example found on the Qucs web site. For comparison Figure 13.7 presents the output voltage
spectrum plots generated by Qucs and Qucs-S/Xyce.

1.13. Chapter 13. RF simulation with Ngspice, Xyce and SPICE OPUS 141

Qucs-S Help Documentation, Release 0.0.19-S

Figure 13.6 Diode clipper harmonic balance simulation.

The HB simulation results for the diode clipper circuit are shown in the Figure 13.7.

Figure 13.7 Output voltage spectrum at Node2 for Qucs (left plot), and measured with voltage probe Pr1 for Xyce
(right plot).

Comparing these two plots highlights an obvious difference in the plot frequency scales. The Qucs-S/Xyce output plot
is represented as a function of negative and positive frequency components. In this example there are eight harmonics
(n=8) arranged as 8 positive frequencies and eight negative frequencies plus a DC component.

Qucs HB simulation data are output as a plot of frequency domain spectral amplitude components |𝐻|, where

|𝐻| = 𝑈(0), 𝑈(𝑓1), 𝑈(𝑓2), 𝑈(𝑓3),

𝑈(0) is the DC spectral component, 𝑈(𝑓𝑛) is the magnitude of a harmonic component at frequency 𝑓𝑛 and 𝑛 =
1, 2, 3, 4, In contrast to Qucs, Xyce outputs HB voltage and current simulation data as plots of complex conjugate
spectral components, where

|𝐻| = 𝑈(0), 2 ·
√︁
𝑈(−𝑓1) · 𝑈(𝑓1), 2 ·

√︁
𝑈(−𝑓2) · 𝑈(𝑓2),

yielding, eight very similar magnitude harmonic spectra values to Qucs |𝐻|. If required the phase at each harmonic
frequency can be extracted from the Xyce HB simulation data.

13.5 Multi-tone Large signal AC HB simulation

Since Xyce release 6.3 the package has supported multi-tone HB simulation. Xyce multi-tone allows more than one
tone frequency in the HB simulation component properties box. Perform the following steps to setup a multi-

142 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

tone Xyce HB simulation:

• Specify a list of space separated frequencies in the f parameter box.

• Specify a comma separated list of the number of harmonic frequencies for each of the source signals in the n
parameter box.

• Construct an input signal generator using two or more series AC voltage sources, with the required frequencies
and amplitudes, or

• construct an input signal generator using two or more parallel AC current sources driving a one Ohm resistor.

Normally, multi-tone HB simulation signal sources consist of two or three AC sources with different frequencies
and similar amplitudes. With two AC signal sources with nearly equal frequencies, that are not integer related, circuit
modulation components can be extracted from circuit output spectra. A multi-tone HB example illustrating this feature
is given in Figure 13.8, where two AC signals of 0.8 V peak and frequencies 0.95 MHz and 1.05 MHz are applied to
a simple diode circuit. The frequencies of individual diode current spectral components are show as combinations of
signal frequencies 𝑓1 and 𝑓2 and marked in red on Figure 13.9.

Figure 13.8 An example diode 2-tone Xyce HB simulation circuit plus diode voltage spectra.

1.13. Chapter 13. RF simulation with Ngspice, Xyce and SPICE OPUS 143

Qucs-S Help Documentation, Release 0.0.19-S

Figure 13.9 Diode 2-tone Xyce HB simulation current spectra.

13.6 The SPICE OPUS large signal AC steady state transient shooting method

Fourier analysis of circuits driven by periodic AC input signals works well at low to moderate frequencies provided
that they have a period similar to the circuit time constants. Unfortunately, high frequency RF signals normally have
very small periods, implying that an RF transient simulation has to run for a very large number of signal cycles before
a steady state circuit response is reached. This can result in a prohibitively long simulation time which can grow at
an alarming rate as the circuit size is increased. One way to reduce simulation time is to undertake the simulation of
RF communication circuits in the AC domain. This approach forms the basis for the single and multi-tone Harmonic
Balance methods introduced in previous sections of this chapter.

A second method, which is particularly suited to simulating RF communication circuits, is the so called “shooting
method”. This is a modified form of time domain transient simulation. In the shooting method it is assumed that a
non-linear circuit has a periodic solution which can be found from the circuit state where transients are NOT present.
This state is called a steady state circuit solution. If 𝑥(𝑡) is a set of circuit variables obtained by time domain simulation
at time t, then for periodicity 𝑥(𝑡) = 𝑥(𝑡 + 𝑇), where T is the period of the input signal. The time domain simulation
starts by calculating the initial state 𝑥(0), often using DC simulation when the input signal is zero. Using 𝑥(0) as an
initial state, a circuit under test is simulated in the time domain from 𝑡 = 0 to 𝑡 = 𝑇 than an estimate of the circuit state is
made. This process is repeated, increasing time by 𝑇 at each iteration, until 𝑥(𝑡+𝑛 ·𝑇) = 𝑥(𝑡+(𝑛+1) ·𝑇) is satisfied
within a reasonable tolerance. Unlike direct transient methods a circuit is only simulated over one period per solution
iteration cycle. Hence, the shooting method can be more more efficient, provided that a steady state solution can be
found in a number of iterations that are smaller than the number of periods simulated by direct transient simulation.

The SPICE OPUS implementation of the shooting method was first released with software version 2.25 in December
2006. It can be used to simulate the performance of linear and non-linear circuits with either small or large amplitude
periodic input signals. It can be launched by Qucs-S using the new Custom simulation feature. SPICE OPUS steady
response analysis in the transient domain is implemented as an additional nutmeg command called ssse. Nutmeg
command ssse runs a time domain shooting method with extrapolation via the following statement:

ssse v([,]) [level] [step] [skip] [period] [history]

where v([,]) indicates the observed response of a voltage at a circuit node, referenced to ground, or a voltage difference

144 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

between two nodes, for example v(n1) or v(n1,n2) respectively; level indicates the circuit hierarchical at which the
shooting method data is calculated, level=0 is a circuit expanded to component level, default=0; step is the time step
for transient simulation (same meaning as the nutmeg tran command), default=1; skip is the time skipped before the
shooting method starts sampling response v([,]), default=0; period is the number of periods taken into account for
sampling, default=2; history is a flag which if set causes nutmeg to record data from all transient iterations. If history
is NOT set then only the final steady state solution is recorded. In the above SPICE OPUS nutmeg ssse statement the
brackets [] indicate optional quantities. Also note that SPICE OPUS option sssetol can be changed, if required,
to improve simulation convergence.

Figure 13.20 introduces a simple test circuit designed to test the performance of a DC forward biassed semiconductor
diode subjected to an AC input voltage signal. The SPICE OPUS nutmeg script is shown in Figure 13.20 attached tp
a Qucs-S Nutmeg script icon. This script follows the statement rules required by the SPICE OPUS extended form
of SPICE nutmeg. For comparison the example script shown in Figure 13.20 and Figure 13.21 includes entries for
launching and saving the simulation data from transient, Fourier and ssse simulations. Notice that each set of simulated
data is written to separate named files. The names of these files are registered by pressing the “Find all outputs” tab
on the Qucs-S Custom simulation control script editing window, see Figure 13.21. Variables for post-simulation
visualization can be found in a similar way by pressing the “Find all variables” tab. More details of the use of Qucs-
S Custom simulation can be found in Chapter 8. Pressing key “F2” causes Qucs-S to simulate the current circuit
schematic; firstly generating a Qucs circuit netlist, secondly synthesizing a SPICE style netlist from the Qucs netlist
(Figure 13.22 shows the SPICE OPUS netlist generated by Qucs-S for the diode test circuit Custom simulation),
and finally simulates the circuit netlist using the nutmeg statements located between the SPICE .control and .
endc statements. Following successful simulation Qucs-S visualization features can be used to plot the transient and
frequency domain data output. A typical set of plots is illustrated in Figure 13.23. Notice that the Fourier and ssse
spectral data for the diode current are identical.

Figure 13.20 SPICE OPUS shooting method test circuit for a semiconductor diode.

1.13. Chapter 13. RF simulation with Ngspice, Xyce and SPICE OPUS 145

Qucs-S Help Documentation, Release 0.0.19-S

Figure 13.21 Qucs-S Custom simulation control script editing window.

146 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 13.22 SPICE OPUS netlist for semiconductor diode transient, Fourier and ssse simulation.

1.13. Chapter 13. RF simulation with Ngspice, Xyce and SPICE OPUS 147

Qucs-S Help Documentation, Release 0.0.19-S

Figure 13.23 Transient, Fourier and ssse semiconductor diode current plots in the time and frequency domains.

13.7 Emulation of Qucs RFEDD components

RFEDD passive components (RCL) and B-type sources could be represented using hertz variable in equations. See
official Ngspice manual for additional information.

13.8 RF device models

Circuit simulators based on SPICE include a range of passive component and active device models. Often the passive
R, C and L models have ideal characteristics that only provide correct simulation data at low frequencies. SPICE
active device models are the opposite in that they operate correctly over a wide band of signal frequencies, from
low frequencies to RF or microwave frequencies. At RF and above it is unusual for active models to include device
package parasitics. The models introduced in this section introduce readers to a number of passive models that provide
more realistic simulation data at RF and higher frequencies. They provide more accurate simulation data for some of
the currently available commercial components while simultaneously introducing readers to the modelling principles
needed in RF component and device modelling.

As a starting point the modelling of RF 𝑅, 𝐶 and 𝐿 is introduced through the development of lumped element models
for these components. In this context the term lumped element is taken to mean an electrical equivalent circuit which
provides accurate device characteristics up to a signal frequency where the physical size of a component is not greater

148 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

than roughly 5% of the signal wavelength. Lumped component models of this form also have the advantage that they
can be simulated in the time domain by SPICE based circuit simulators.

13.8.1 RF resistor models

The most common form of resistor used in the construction of circuits mounted on printed circuit boards (PCB) are:

• Carbon composite axial leaded resistors,

• Carbon or metal thin-film axial leaded resistors,

• Wire wound axial leaded resistors, and

• Surface mount chip resistors.

For RF circuits, metal thin-film axial resistors and surface mount chip resistors are the preferred types due to their supe-
rior RF performance and straight forward PCB mounting procedures. Cross sectional diagrams for these components
and their electrical equivalent circuits are shown in Figure 13.8.1.

Figure 13.8.1 RF resistor cross sectional diagrams and electrical models for common RF lumped component resistors.

13.8.2 Metal thin-film axial leaded resistors

The values for the 𝑅, 𝐶, and 𝐿 components in Figure 13.8.1 are often given by manufacturers, having been deter-
mined by measurement of the RF model small signal AC performance. For those components that do not have model
parameters listed in their specification approximate values for each of the model parameters can be calculated using
the following equations:

1.13. Chapter 13. RF simulation with Ngspice, Xyce and SPICE OPUS 149

Qucs-S Help Documentation, Release 0.0.19-S

1. The inductance of the resistor lead wires are labelled 𝐿1 and 𝐿2 in Figure 13.8.2(a) and 𝐿 is approximated by the
equation for a single wire with a circular cross-section

𝐿 ≈ 𝜇𝑜 ·𝑊𝑙𝑒𝑛𝑔𝑡ℎ

2.0 · 𝜋

[︂
ln

(︂
2.0 ·𝑊𝑙𝑒𝑛𝑔𝑡ℎ

𝑊𝑟𝑎𝑑𝑖𝑢𝑠

)︂
− 0.75

]︂
Here, 𝑊𝑙𝑒𝑛𝑔𝑡ℎ and 𝑊𝑟𝑎𝑑𝑖𝑢𝑠 are the lead length and radius in metres, respectively. As a first approximation the
inductance of the thin-film resistor can be estimated from the 𝐿 associated with a thin strip of resistive material
formed by a spiral of the thin-film resistive coating cut from the material deposited on a dielectric cylindrical tube,
where

𝐿 ≈ 𝜇𝑜 · 𝐿𝑠𝑡𝑟𝑖𝑝
2.0 · 𝜋

[︂
0.5 · ln

(︂
2.0 · 𝐿𝑠𝑡𝑟𝑖𝑝
𝑊𝑠𝑡𝑟𝑖𝑝

)︂
+

𝑊𝑠𝑡𝑟𝑖𝑝

3.0 · 𝐿𝑠𝑡𝑟𝑖𝑝

]︂
Here, 𝐿𝑠𝑡𝑟𝑖𝑝 is the length and 𝑊𝑠𝑡𝑟𝑖𝑝 the width of the thin-film strip, respectively. For the purposes of estimating 𝐿𝑠
the thin-film resistor is assumed to be formed from a spiral with a cut traversing the resistor material four times, set by
𝑁𝑠 = 4, giving a very rough order of magnitude for 𝐿𝑠𝑡𝑟𝑖𝑝 and 𝑊𝑠𝑡𝑟𝑖𝑝 of

𝐿𝑠𝑡𝑟𝑖𝑝 ≈ 2.0 · 𝜋 ·𝐵𝑟𝑎𝑑𝑖𝑢𝑠 ·𝑁𝑠

𝑊𝑠𝑡𝑟𝑖𝑝 ≈ 0.75 · 𝐵𝑙𝑒𝑛𝑔𝑡ℎ

𝑁𝑠

Where 𝐵𝑙𝑒𝑛𝑔𝑡ℎ and 𝐵𝑟𝑎𝑑𝑖𝑢𝑠 are the physical body length and body radius of the thin-film resistor in metres, respec-
tively. To take account of the thin-film resistor end-caps, that connect the thin-film resistor to the component leads, the
body length of the resistor is estimated to be roughly 0.75 times the external component length.

2. The thin-film resistor capacitors 𝐶𝑝 and 𝐶𝑝𝑎𝑑 can also be estimated using the following equations

𝐶𝑝 ≈ 𝐸𝑟𝑏 · 𝜖𝑜 · 𝜋 ·𝐵𝑟𝑎𝑑𝑖𝑢𝑠 ·𝐵𝑟𝑎𝑑𝑖𝑢𝑠

0.75 ·𝐵𝑙𝑒𝑛𝑔𝑡ℎ

𝐶𝑝𝑎𝑑 ≈ 𝐸𝑟𝑝 · 𝜖𝑜 · 1.5 ·𝐵𝑙𝑒𝑛𝑔𝑡ℎ ·𝐵𝑟𝑎𝑑𝑖𝑢𝑠

𝐻

Where 𝐸𝑟𝑏 is the relative permeability of the resistor substrate, 𝐸𝑟𝑝 is the relative permeability of the PCB and 𝐻
is the distance below the resistor to ground. If 𝐻 is greater than the PCB thickness it implies that there is no ground
plane on the underside of the PCB and as a consequence capacitor 𝐶𝑝 becomes very small or goes to zero.

150 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

Figure 13.18.2 The RF thin-film axial leaded resistor model: (a) a debug version which estimates the model parameters
from the component physical dimensions and material properties, and (b) a simulation version of the model that has
the 𝐿, 𝐶 and 𝑅 values as parameters.

1.13. Chapter 13. RF simulation with Ngspice, Xyce and SPICE OPUS 151

Qucs-S Help Documentation, Release 0.0.19-S

Figure 13.18.3 A basic test bench for simulating the small signal AC performance of a thin-film axial leaded resistor.

In Figure 13.18.3 the Qucs-S schematic symbol for a thin-film resistor shows a resistor colour code on a blue back-
ground. Please note that the drawn colour code is just indicative of a typical axial resistor value and is identical for all
resistor symbols placed on a schematic. However, also note that the 𝑅0 parameter must be set to a specific value as
required by the circuit under simulation test.

Figure 13.18.4 A set of resistor impedance data generated using the test bench shown in Figure 13.18.3.

Notice that in Figure 13.18.4 a resistor value of around 200 Ω gives the widest AC bandwidth, in this example ap-
proaching 1GHz. Hence, it is better to build a 50 Ω RF axial resistor from four parallel 200 Ω components rather than
use a single 50 Ω resistor.

152 Chapter 1. User Manual and Reference Material

Qucs-S Help Documentation, Release 0.0.19-S

13.9 More example RF circuit simulations

back to the top

Chapter 14. Qucs-S/Octave circuit simulation and device parameter
extraction interface

back to the top

Chapter 15. References

back to the top

A “Technical Description” of the Qucs simulator and implemented device models are available online at http://qucs.
sourceforge.net/tech/technical.html.

Spice4qucs example schematics can be found in the spice4qucs source code “examples” directory.

Unofficial Qucs build with spice4qucs features enabled called release candidate 6 (rc6) can be downloaded from
https://github.com/ra3xdh/qucs/releases/tag/0.0.19S-rc6.

1.14. Chapter 14. Qucs-S/Octave circuit simulation and device parameter extraction interface 153

http://qucs.sourceforge.net/tech/technical.html
http://qucs.sourceforge.net/tech/technical.html
https://github.com/ra3xdh/qucs/releases/tag/0.0.19S-rc6

	User Manual and Reference Material

