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Welcome to the PECOS Docs!

PECOS, which stands for “Performance Estimator of Codes On Surfaces,” is a Python package that provides a framework for studying, developing, and evaluating quantum error-correcting codes (QECCs).

PECOS is an attempt at balancing simplicity, usability, functionality, and extendibility as well as future-proofing. In the spirit of extendibility, PECOS is agnostic to quantum simulators, quantum operations, and QECCs. Of course, it is difficult to eloquently represent all QEC techniques. While agnostic to QECCs, the primary focus of PECOS has been the simulation and evaluation of lattice-surgery for topological stabilizer codes.


History

The first incarnation of PECOS was created by Ciarán Ryan-Anderson in June 2014 to verify the lattice-surgery procedures in arXiv:1407.5103 [https://arxiv.org/abs/1407.5103] [LRA14].




Make this Documentation

To build this documentation go to the docs folder and run:

>>> make clean
>>> make html








What’s Next?

To get started, check out the following:



	Getting Started
	Language Requirement

	Package Requirements

	Note on Python Distribution/Environment

	Installing and Uninstalling

	Development Branch

	Tests

	Importing





	API Guide
	Quantum Circuits

	QECCs

	Logical Circuits

	Simulators

	Standard Gates

	Circuit Runners

	Error Generators

	Decoders

	Tools





	Examples
	Verifying a Stabilizer Code

	Creating a QECC Class

	Gate-wise Error Models

	Monte Carlo Script





	Change Log
	Planned Features

	Releases





	Bibliography

	Todo List
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	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Getting Started


Language Requirement

Python 3.5.2+ is need to run.




Package Requirements

Package requirements include:


	NumPy 1.15+


	SciPy 1.1+


	Matplotlib 2.2+


	NetworkX 2.1+




Optional packages include:


	Cython (for compiling C and C++ extensions)


	PyTest (for running tests)







Note on Python Distribution/Environment

PECOS was developed using the Anaconda Distribution of Python [https://www.anaconda.com/download/]. If you decide to
use this distribution you may want to create an environment [https://conda.io/docs/user-guide/tasks/manage-environments.html]
so that PECOS’s package requirements do not restrict you when working on other projects.

To create an environment for PECOS using Anaconda run:

>>> conda create -n pecos python=X numpy scipy matplotlib networkx 





where X is whatever version of Python you wish to use with PECOS (e.g., python=3.5.2, python=3.6,
python=3.7, etc.).

Alternatively, if you clone/download the package (see next section) and navigate to the root, you can create an
environment by running:

>>> conda env create -f conda_environment.yml 





This will create the environment pecos with the specific versions of Python and required packages that were used to
develop PECOS. Note, you will still need to install PECOS using one of the methods described in the following sections.

To activate/use the environment in Windows run the command:

>>> activate pecos 





In other operating systems you may need to run the following instead:

>>> source activate pecos 





To deactivate/leave the PECOS environment run:

>>> deactivate 








Installing and Uninstalling

PECOS has been developed to run on both Windows and Linux-based systems.

To install using pip run:

>>> pip install quantum-pecos   





Alternatively, the plackage can be cloned or downloaded from GitHub:

https://github.com/PECOS-packages/PECOS

To clone PECOS using git run:

>>> git clone https://github.com/PECOS-packages/PECOS.git 





Then, download/unzip or clone the version of PECOS you would like to use. Next, navigate to the root of the package
(where setup.py is located) and run:

>>> pip install .   





To install and continue to develop the version of PECOS located in the install folder, run:

>>> pip install -e .  





To uninstall run:

>>> pip uninstall quantum-pecos  








Development Branch

For the latest features, you may wish to clone/download the version of PECOS found in the development branch:

https://github.com/PECOS-packages/PECOS/tree/development

To clone using git run:

>>> git clone -b development https://github.com/PECOS-packages/PECOS.git 





Be aware that as PECOS is in development in this branch, you may experience some bugs.




Tests

PECOS comes with tests to verify that the package is running as expected. These tests can be used in the development process to determine if any expected functionality has been broken.

To run tests, the package PyTest is require. Once installed, simply navigate to your PECOS installation directory and run:

>>> py.test    





PyTest will automatically run all the PECOS’s tests and inform you of any failures.




Importing

The standard method for importing PECOS is:

import pecos as pc





It will be assumed throughout the documentation that PECOS has been imported in this manner.







          

      

      

    

  

    
      
          
            
  
API Guide

Concepts in PECOS are organized around the following namespaces:







	circuits

	Circuits of different abstraction levels.



	qeccs

	Represent QEC protocols.



	error_gens

	Used to specify error models and generate errors.



	simulators

	Simulate states and operations.



	circuit_runners

	Coordinate gates of circuits and error_gens with a simulator.



	decoders

	Produce recovery operations given syndromes.



	tools

	Tools for studying and evaluating QEC protocols.



	misc

	A catch all namespace.






Classes and functions available in these namespaces are described in the following:



	Quantum Circuits
	Attributes

	Methods

	An Instance

	Modifying a QuantumCircuit

	Retrieving Information





	QECCs
	Methods

	Attributes

	An Instance

	Logical Gate

	Logical Instruction

	Plotting





	Logical Circuits

	Simulators
	Expected Methods

	StabSim

	Extensions





	Standard Gates
	Initializations

	Unitaries

	Measurements





	Circuit Runners
	Standard

	TimingRunner





	Error Generators
	GatewiseGen

	DepolarGen





	Decoders
	MWPM2D





	Tools









          

      

      

    

  

    
      
          
            
  
Quantum Circuits

Gate-based protocols, such as QEC procedures, are described in terms of quantum
circuits. In PECOS the data structure used to represent quantum circuits is simply
called QuantumCircuit. This class was designed with similar methods as the commonly
used data structures in Python such as list, dict, and set. This choice
was made so that users accustomed to Python data structures would find QuantumCircuit familiar and, hopefully, easy to use.

The QuantumCircuit data-structure was particularly designed to efficiently represent the quantum circuits of QEC protocols. During each time step (tick), in QEC circuits many gates of just a few gate-types are applied to most of the qubits in
the QECC. QuantumCircuit is a data structure that represents a sequence of ticks, where for each tick a collection keeps track of what few gate-types are being applied and, for each of these types, what qubits are being acted on. We will see examples of this in the following.

Note, in the following I will refer to “qudits” rather than “qubits” since a QuantumCircuit could represent a sequence of qudit operations.


Attributes







	active_qudits

	A list of sets of active qudits per tick.



	params

	A dict of additional information about the circuit.









Methods







	append

	Appends a collection of gates all belonging to a single tick.









An Instance

To represent a quantum circuit, such as as the preparation of the Bell state \(\frac{1}{\sqrt{2}}\left(|00\rangle + |11\rangle \right)\), seen here

[image: ../_images/bellcircuit.png]
we begin by creating an instance of QuantumCircuit:

>>> import pecos as pc
>>> qc = pc.circuits.QuantumCircuit()





A string representation of the QuantumCircuit can then be obtained:

>>> qc
QuantumCircuit([])





Here, that the object is a instance of the QuantumCircuit class is indicated by QuantumCircuit(). The brackets [] indicate an empty sequence.

If needed, empty ticks can be reserved when instantiating a QuantumCircuit:

>>> qc = pc.circuits.QuantumCircuit(3)
>>> qc
QuantumCircuit([{}, {}, {}])





Here, each tick is represented by a pair of braces {} and is separated by a comma. We will see later that the method update can used to add gates to empty ticks.




Modifying a QuantumCircuit

Next, we discuss how the methods append, update,
and discard are used to alter a QuantumCircuit.


Append

We can add a tick containing some gates to the end of a QuantumCircuit by using the method append. Doing so allows us to represent the Bell-state prep circuit:

>>> qc = pc.circuits.QuantumCircuit()
>>> qc.append('init |0>', {0, 1})
>>> qc.append('H', {0})
>>> qc.append('CNOT', {(0,1)})
>>> qc
QuantumCircuit([{'init |0>': {0, 1}}, {'H': {0}}, {'CNOT': {(0, 1)}}])





Here in the final line we see a string representation of the quantum circuit in Fig 6.1.
As indicated by the string, gates of the same type are grouped together. Each gatetype is indicated by a symbol (string). The standard symbols use for qubit gates in PECOS are given in appendix B. Other symbols can be used by PECOS so long as
the symbols are hashable and recognized by the state-simulator used in apply the
quantum circuit (see Section 6.5 for state simulators).

Paired with each gate symbol is set of gate locations, which are integers or tuples of integers. Integers are used to index qudits. Tuples are used to indicate qudits that are acted on by multi-qudit gates. The order of the qudit indices in a tuple may matter. For example, for a CNOT the first qubit is the control qubit while the second, is the target.

Listing# shows how to append a tick that consists of only one gate type. We can also append multiple gate-types per tick:

>>> qc = pc.circuits.QuantumCircuit()
>>> qc.append({'init |0>': {0, 1, 2, 3}})
>>> qc.append({'H': {0, 2}, 'X': {1, 3}})
>>> qc.append('CNOT', {(0,1), (2, 3)})
>>> qc
QuantumCircuit([{'init |0>': {0, 1, 2, 3}}, {'H': {0, 2}, 'X': {1, 3}}, {'CNOT': {(0, 1), (2, 3)}}])





Both QuantumCircuits and gates may have extra information that we wish to include. Such information can be added to the QuantumCircuit by including extra keywords as seen here:

>>> qc = pc.circuits.QuantumCircuit(a_var=3.0)
>>> qc.append('init |0>', {0, 1}, duration=5)
>>> qc.append({'H': {0}, 'X': {1}}, duration=1)
>>> qc
QuantumCircuit(params={'a_var': 3.0}, ticks=[{'init |0>': loc: {0, 1} - params={'duration': 5}}, {'H': loc: {0} - params={'duration': 1}, 'X': loc: {1} - params={'duration': 1}}])





As we can see in this example, extra keyword arguments are gathered into the dicts referred to as params. We will see later how the information in the params can be retrieved.

Note, the append method associates the extra keywords with all the gates in the tick. This limitation can be overcome by the update, which is discussed next.




Update

The update method of QuantumCircuit adds additional gates to a pre-existing tick. An example of using update is seen in the following:

>>> qc = pc.circuits.QuantumCircuit()
>>> qc.append({'X': {0, 1}, 'Z': {2, 3}})
>>> qc.append({'H': {0, 1}})
>>> qc.update({'CNOT': {(6, 7), (8, 9)}, 'H': {10, 11}}, tick=0)
>>> qc.update('X', {4, 5})
>>> qc
QuantumCircuit([{'X': {0, 1}, 'Z': {2, 3}, 'CNOT': {(8, 9), (6, 7)}, 'H': {10, 11}}, {'H': {0, 1}, 'X': {4, 5}}])





By default, update adds gates to the current last tick of the QuantumCircuit. The tick keyword can be used to specify a tick. Each tick is index by an integer starting with 0.

Note, update will not override gate symbol-location pairs in the tick; instead, it will only add additional gate locations.

Like append, update accepts other keyword arguments and stores such information in the params dict:

>>> qc = pc.circuits.QuantumCircuit(1)
>>> qc.update('X', {0, 1}, duration=3)
>>> qc.update('H', {2, 3}, duration=2)
>>> qc
QuantumCircuit([{'X': loc: {0, 1} - params={'duration': 3}, 'H': loc: {2, 3} - params={'duration': 2}}])





Note, since gates in a tick should be parallel operations, if more than one gate acts on a single qudit during a gate, an Exception is raised.




Discard

If needed, gate locations can be removed using the method discard. This can be seen in the following:

>>> qc = pc.circuits.QuantumCircuit()
>>> qc.append('X', {0, 1, 2})
>>> qc.discard({1})
>>> qc
QuantumCircuit([{'X': {0, 2}}])





A tick keyword can be used to specify which tick the gate is discarded from. If no tick is specified, then discard removes gates from the last tick.






Retrieving Information

Next, how to retrieve information from a QuantumCircuit will be dicuss, for example, through attributes or for loops.


Number of Ticks

The number of ticks in a QuantumCircuit can be obtained using Python’s code{len} function:

>>> qc = pc.circuits.QuantumCircuit(5)
>>> len(qc)
5
>>> qc
QuantumCircuit([{}, {}, {}, {}, {}])








Active Qudits

The QuantumCircuit data structure keeps track of which qudits have been acted on during a tick. These qudits are known as active qudits. The active_qudits attribute can be used to retrieve a list of these qudits:

>>> qc = pc.circuits.QuantumCircuit()
>>> qc.append({'X': {0}, 'Z': {2, 3}})
>>> qc.append({'CNOT': {(0, 2), (1, 3)}})
>>> qc.append('H', {2})
>>> qc.active_qudits
[{0, 2, 3}, {0, 1, 2, 3}, {2}]





This information can be useful if one wants to apply errors to inactive qudits.




For Loops

The QuantumCircuit class has the generator items, which can be used to iterate over the circuit and obtain a sequence of gate symbols, locations, and params:

>>> qc = pc.circuits.QuantumCircuit()
>>> qc.append({'X': {3, 5}, 'Z': {0, 1, 2}}, duration=1)
>>> qc.append({'H': {0, 1, 2, 3}})
>>> qc.append({'measure Z': {0, 3, 5}})
>>> for gate, gate_locations, params in qc.items():
...     print('%s -> %s, params: %s' % (gate, gate_locations, params))
X -> {3, 5}, params: {'duration': 1}
Z -> {0, 1, 2}, params: {'duration': 1}
H -> {0, 1, 2, 3}, params: {}
measure Z -> {0, 3, 5}, params: {}





One can loop over a single tick by using the keyword tick:

>>> # Following the previous example
>>> for gate, gate_locations, params in qc.items(tick=0):
...     print('%s -> %s, params: %s' % (gate, gate_locations, params))
X -> {3, 5}, params: {'duration': 1}
Z -> {0, 1, 2}, params: {'duration': 1}













          

      

      

    

  

    
      
          
            
  
QECCs

Each QECC or family of QECCs can be represented by a class. The classes available in PECOS are in the namespace qeccs. In this section we will discuss the methods, attributes, and structure of a qecc. In Creating a QECC Class, an example is given of how to construct a new QECC class, which can be used by PECOS.

The primary role of a qecc is to provide the quantum circuits of QEC protocols associated with the qecc such as the logical-state initialization, logical gates, and logical measurements. In the following, we will look at some examples of qecc classes and how they encapsulate QEC procedures.


Methods

The minimal methods expects for a qecc:







	gate

	Returns an instance of a requested logical gate.



	instruction

	Returns an instance of a requested logical instruction.



	plot

	Plots the physical layout of qudits.









Attributes







	name

	Name of the QECC.



	qecc_params

	Dictionary of parameters.



	distance

	Minimum number of single qudit operations that results in a logical error.



	num_logical_qudits

	Number of logical qudits.



	num_data_qudtis

	Number of data qudits.



	num_ancilla_qudits

	Number of ancillas.



	num_qudits

	Number of qudits.



	qudit_set

	Set of qudit labels used internally in the qecc.



	data_qudit_set

	Set of data qudit labels used internally.



	ancilla_qudit_set

	Set of ancilla qudit labels used internally.



	layout

	A dict of qudit label to position tuple.



	sides

	A dict describing the geometry of the qecc.









An Instance

Currently, the namespace qeccs contains classes representing the surface code on the 4.4.4.4 lattice (Surface4444) [Kit97b], the medial surface-code on the 4.4.4.4 lattice (SurfaceMedial4444) [BMD07], and the color-code on the 4.8.8 lattice (Color488) [BMD06].

An example instance of a Surface4444 that represents a distance 4 surface code is given here:

>>> import pecos as pc
>>> surface = pc.qeccs.Surface4444(distance=3)





As seen in Listing 6.20, parameters are used to identify a member of the code family.
For Surface4444, either the keyword distance or the keywords height and width are used to specify a member. If distance is used, then a representation of a square surface-code patch will be created. The SurfaceMedial4444 class will take the same keywords as code family parameters as the Surface4444 class. The Color488 class only accepts distance as a keyword.




Logical Gate

The class LogicalGate represent a collection of quantum circuits that act on logical qubits. Each LogicalGates is identified by a symbol (string). Using this symbol, the gate method of a qecc can be used to obtain an instance of a corresponding LogicalGate instance:

>>> surface = pc.qeccs.Surface4444(distance=3)
>>> identity = surface.gate('I')





In the above code, the symbol 'I' is used to retrieve a logical gate corresponding to identity (syndrome extraction).

Keyword arguments may be used to modify LogicalGates:

>>> surface = pc.qeccs.Surface4444(distance=3)
>>> # Get an identity gate with only one round of syndrome extraction.
>>> identity = surface.gate('I', num_syn_extract=1)





Here the keyword argument num_syn_extract is used to explicitly request an identity with only one round of syndrome extraction. Typically, the number of rounds of syndrome extraction for an identity gate is equal to the QECC’s distance.

The main use for LogicalGate instances is as logical operations in the logical analogs of quantum circuits, which are described in Logical Circuits




Logical Instruction

A LogicalGate is composed of a sequence of LogicalInstructions. A LogicalInstruction represents a collection of quantum circuits. Often these collections are repeated or used in multiple LogicalGates. An example of a LogicalInstruction is one round of error correction.

Like LogicalGates, LogicalInstuctions are represented by symbols (strings). The instr_symbols attribute of a LogicalGate can be use to retrieve a list of symbols corresponding to the LogicalInstuctions that form the LogicalGate:

>>> surface = pc.qeccs.Surface4444(distance=3)
>>> identity = surface.gate('I')
>>> identity.instr_symbols
['instr_syn_extract', 'instr_syn_extract', 'instr_syn_extract']
>>> # Request an identity with a single round of syndrome extraction.
>>> identity = surface.gate('I', num_syn_extract=1)
>>> identity.instr_symbols
['instr_syn_extract']





In the following, we see how to retrieve an instance of the 'instr_syn_extract' instruction and then see what QuantumCircuit it represents:

>>> surface = pc.qeccs.SurfaceMedial4444(distance=3)
>>> # Get the LogicalInstruction instance representing the syndrome-extraction instruction.
>>> instr = surface.instruction('instr_syn_extract')
>>> instr.circuit
QuantumCircuit([{'init |0>': {0, 16, 4, 5, 6, 10, 11, 12}}, {'H': {0, 16, 11, 5}}, {'CNOT': {(15, 12), (11, 14), (8, 6), (5, 7), (13, 10), (0, 2)}}, {'CNOT': {(9, 12), (2, 6), (7, 10), (11, 15), (0, 3), (5, 8)}}, {'CNOT': {(7, 4), (16, 13), (14, 10), (11, 8), (5, 1), (9, 6)}}, {'CNOT': {(3, 6), (16, 14), (11, 9), (5, 2), (8, 10), (1, 4)}}, {'H': {0, 16, 11, 5}}, {'measure Z': {0, 16, 4, 5, 6, 10, 11, 12}}])








Plotting

Both qeccs and LogicalInstuctions have a method called plot that will generate a plot that represents the object. These plots can be useful in understanding the structure of a QECC and its logical instructions.

The following is an example of using the plot method for a qecc:

>>> surface = pc.qeccs.SurfaceMedial4444(distance=3)
>>> surface.plot()   





This results in the plot seen in:

[image: ../_images/surfacemedialplot_layout.png]
The plot of LogicalInstructions often indicates the sequence of gate operations. An example of a plot of the syndrome extraction instruction of surface be obtained by the following lines:

>>> surface = pc.qeccs.SurfaceMedial4444(distance=3)
>>> syn_extract = surface.instruction('instr_syn_extract')
>>> syn_extract.plot()   





The resulting plot is seen in:

[image: ../_images/surfacemedialplot_syn.png]
The previous figure depicts the syndrome-extraction logical-instruction of a distance-three, medial surface-code. Red squares represent the ancillas involved in X checks, the blue squares represent the ancillas involved in Z checks, and the cream circles represent the data qubits. The numbers inside the squares and circles are labels of the qubits as used in QuantumCircuits. The edges indicate the CNOTs used in the checks. The thicker end of each edge denotes the qubit that is the target of the CNOT. The numbers labeling the edges are ticks when the corresponding CNOT is applied.







          

      

      

    

  

    
      
          
            
  
Logical Circuits

The class LogicalCircuit, which is found in the circuits namespace, is a logical analog of the class QuantumCircuit. The LogicalCircuit class has the same methods and attributes as QuantumCircuit; however, there are a few changes in the behavior of some of the methods. As the two classes are very similar, I will give a few examples of using the LogicalCircuit class to illustrate their differences.

An instance of a LogicalCircuit can be created using the following lines:

>>> import pecos as pc
>>> logic = pc.circuits.LogicalCircuit()





Instead of gate symbols, the append method of the LogicalCircuit class accepts LogicalGates directly. Also, if a LogicalCircuit contains a single qecc then a gate location is not needed:

>>> surface = pc.qeccs.Surface4444(distance=3)
>>> logic = pc.circuits.LogicalCircuit()
>>> logic.append(surface.gate('ideal init |0>'))
>>> logic.append(surface.gate('I'))









          

      

      

    

  

    
      
          
            
  
Simulators

Quantum states and their dynamics are simulated by classes belonging to the namespace simulators. PECOS contains a stabilizer simulator called StabSim.


Expected Methods

The set of gates allowed by a simulator may differ (the standard set for PECOS is given in Standard Gates; however, each simulator is expected to have a set of standard methods. I will describe them in this section.

When initializing a simulator, the first argument is expected to be the number of qudits to be simulated. This reserves the size of the quantum registry:

>>> from pecos.simulators import StabSim
>>> state = StabSim(4)





Note, for all simulators, the initial state of each qudit is the state \(|0\rangle\).

The only other method expected is the run_gate method. This method can be used to apply gates to a simulator instance by using the run_gate method:

>>> # Continuing from the previous Listing.
>>> state.run_gate('X', {0, 1})
{}





Here the first argument is a gate symbol that is recognized by the simulator and the second argument is a set of gate locations. Other keywords and arguments may be supplied if it is allowed by the simulator. Such arguments could be used to change the behavior of the gate. For example, arguments could be used to define gate rotation-angles.

If measurements are made then a dictionary indicating the measurement results is returned by run_gate:

>>> # Continuing from the previous Listing.
>>> state.run_gate('measure Z', {0, 1, 3})
{0: 1, 1: 1}





Here we see that the keys of the results dictionary are the qudit locations of the measurements, and the values are the corresponding measurement results except that zero results are not returned.

Classes in the circuit_runners namespace combine QuantumCircuits and simulators to apply gates to simulated quantum states. For a discussion about these classes see Circuit Runners.




StabSim

Methods that specific to StabSim will now be described.

The print_stabs method prints a stabilizer table corresponding to the state currently store in the simulator:

>>> state = StabSim(3)
>>> state.run_gate('CNOT', {(0, 1)})
{}
>>> state.run_gate('X', {0})
{}
>>> state.print_stabs()
 -ZII
 -ZZI
  IIZ
-------------------------------
  XXI
  IXI
  IIX
([' -ZII', ' -ZZI', '  IIZ'], ['  XXI', '  IXI', '  IIX'])





Here in the print output stabilizer generators are indicated by the strings above the dashed lines, while destabilizer generators are indicated by the strings below.

The logical_sign method can be used to determine the sign of stabilizer generators. As the stabilizer simulators represent stabilizer states, logical basis-states are stabilized by logical operators. Therefore, this method is useful in Monte Carlo simulations to determine if logical errors have flipped the sign of logical operators.


An example of using the logical_sign method is seen in the following:




>>> # Continuing with the following example:
>>> from pecos.circuits import QuantumCircuit
>>> stab = QuantumCircuit([{'Z': {0, 1}}])
>>> state.logical_sign(stab)
1
>>> stab = QuantumCircuit([{'Z': {2}}])
>>> state.logical_sign(stab)
0





A \(1\) is returned if the phase of the stabilizer is \(-1\), and a \(0\) is returned if the phase is \(+1\). If the stabilizer supplied to logical_sign is not a stabilizer of the state, then an exception will be raised.




Extensions


Todo

Discuss the simulator extensions when finished…









          

      

      

    

  

    
      
          
            
  
Standard Gates

While some simulators may allow access to other gate sets, the standard gates recognized by PECOS are:


Initializations

State initializations in Pauli bases:







	'init |+>'

	(Re)initiate the state \(|+\rangle\)



	'init |->'

	(Re)initiate the state \(|-\rangle\)



	'init |+i>'

	(Re)initiate the state \(|+i\rangle\)



	'init |-i>'

	(Re)initiate the state \(|-i\rangle\)



	'init |0>'

	(Re)initiate the state \(|0\rangle\)



	'init |1>'

	(Re)initiate the state \(|1\rangle\)









Unitaries

Pauli operations:







	'I'

	\(X\rightarrow X\), \(Z\rightarrow Z\)



	'X'

	\(X\rightarrow X\), \(Z\rightarrow -Z\)



	'Y'

	\(X\rightarrow -X\), \(Z\rightarrow -Z\)



	'Z'

	\(X\rightarrow -X\), \(Z\rightarrow Z\)






Square-root of Pauli operations:







	'Q'

	\(X \rightarrow X\), \(Z \rightarrow -Y\)



	'R'

	\(X \rightarrow -Z\), \(Z \rightarrow X\)



	'S'

	\(X \rightarrow Y\), \(Z \rightarrow Z\)



	'Qd'

	\(X \rightarrow X\), \(Z \rightarrow Y\)



	'Rd'

	\(X \rightarrow Z\), \(Z \rightarrow -X\)



	'Sd'

	\(X \rightarrow -Y\), \(Z \rightarrow Z\)






Hamadard-like:







	'H'}, ``'H+z+x'}, or ``'H1'

	Hadamard: \(X\leftrightarrow Z\)



	'H-z-x' or 'H2'

	\(X\leftrightarrow -Z\)



	'H+y-z' or 'H3'

	\(X\rightarrow Y\), \(Z\rightarrow -Z\)



	'H-y-z' or 'H4'

	\(X\rightarrow -Y\), \(Z\rightarrow -Z\)



	'H-x+y' or 'H5'

	\(X\rightarrow -X\), \(\rightarrow Y\)



	'H-x-y' or 'H6'

	\(X\rightarrow -X\), \(Z\rightarrow -Y\)






Rotations about the face of an octahedron:







	'F1'

	\(X \rightarrow Y\rightarrow Z \rightarrow X\)



	'F2'

	\(X \rightarrow -Z\), \(Z \rightarrow Y\)



	'F3'

	\(X \rightarrow Y\), \(Z \rightarrow -X\)



	'F4'

	\(X \rightarrow Z\), \(Z \rightarrow -Y\)



	'F1d'

	\(X\rightarrow Z\rightarrow Y \rightarrow X\)



	'F2d'

	\(X \rightarrow -Y\), \(Z \rightarrow -X\)



	'F3d'

	\(X \rightarrow -Z\), \(Z \rightarrow -Y\)



	'F4d'

	\(X \rightarrow -Y\), \(Z \rightarrow X\)






Two-qubit gates:







	'CNOT'

	The controlled-X gate



	'CZ'

	The controlled-Z gate



	'SWAP'

	Swap two qubits



	'G'

	Equivalent to: \(CZ_{1,2}\;H_1 \otimes H_2\; CZ_{1,2}\)









Measurements

Measurements in Pauli bases:







	'measure X'

	Measure in the \(X\)-basis



	'measure Y'

	Measure in the \(Y\)-basis



	'measure Z'

	Measure in the \(Z\)-basis












          

      

      

    

  

    
      
          
            
  
Circuit Runners

Classes belonging to the circuit_runners namespace apply the gates of LogicalCircuits and QuantumCircuits to states represented by simulators. circuit_runners are also responsible for applying error models to quantum circuit; however, we will discus this in Error Generators.

The main circuit_runner is simply called Standard. There is another call TimingRunner, which is essentially the same as Standard except that it is used to time how long it takes simulators to apply gates and can be used to compare the runtime of simulators. I will now discuss these two circuit_runners.


Standard

For convenience, the following tabels list the attributes and methods of Standard:


Methods







	init

	Adds a collection of gates to the end of ticks.



	run_circuit

	Applies gates from a QuantumCircuit.



	run_logic

	Applies gates from a LogicalCircuit.









Attributes







	seed

	The integer used as a seed for random number generators









Instance

To create an instance of Standard one can simply write:

>>> import pecos as pc
>>> circ_runner = pc.circuit_runners.Standard()





By default, a Standard uses the StabSim as a simulator. This can be changed as follows:

>>> from somepackage import MyCustomSim  
>>> circ_runner = pc.circuit_runners.Standard(simulator=MyCustomSim)  





The init method is used to (re)initialize a simulator instance. An example of using this method to create a four-qubit registry is seen here:

>>> # Following from the previous code block.
>>> circ_runner = pc.circuit_runners.Standard()
>>> state = circ_runner.init(4)





The run_circuit method is used to apply a QuantumCircuit to a state in the following:

>>> # Continuing with the previous code block.
>>> qc = pc.circuits.QuantumCircuit()
>>> qc.append('X', {0, 1})
>>> qc.append('measure Z', {0, 1, 3})
>>> circ_runner.run_circuit(state, qc)
{1: {0: 1, 1: 1}}





In the last line of this code block, we see the measurement record produced by the circuit_runner. The keys of the outer dictionary are tick indices, while for the inner dictionary the keys are the indices of qubits with non-zero measurements and the values are the measurement results.

The run_logic method is used to apply LogicalCircuits:

>>> surface = pc.qeccs.Surface4444(distance=3)
>>> logic = pc.circuits.LogicalCircuit()
>>> logic.append(surface.gate('ideal init |0>'))
>>> logic.append(surface.gate('I'))
>>> state = circ_runner.init(surface.num_qudits)
>>> circ_runner.run_logic(state, logic)
({}, {})





The final line is the output of run_logic. The first dictionary is a record measurement and the second is a record of the errors generated. In this example, all the measurement results are zero and we have not applied any error models. In Error Generators, there are examples of where this is not the case; therefore, refer to that section if you are curious about the output of run_logic.






TimingRunner

As mention, TimingRunner is essentially the same as Standard except the runtime for applying gates is recorded. The attribute total_time stores this value and is used in the following:

>>> circ_runner = pc.circuit_runners.TimingRunner()
>>> state = circ_runner.init(4)
>>> qc = pc.circuits.QuantumCircuit()
>>> qc.append('X', {0, 1, 2, 3})
>>> circ_runner.run_circuit(state, qc)
{}
>>> circ_runner.total_time   
7.22257152574457e-06





TimingRunner times the execution of gates by using Python’s perf_counter method. The time recorded by total_time continues to accumulate until it is reset by the reset_time method:

>>> # Continuing from previous Listing.
>>> circ_runner.reset_time()
>>> circ_runner.total_time
0.0











          

      

      

    

  

    
      
          
            
  
Error Generators

Error models are represented by classes called “error generators” that are in the error_gens namespace. They are called upon by circuit_runners to apply noise to ideal quantum circuits.

In this section I will discuss GatewiseGen and DepolarGen classes. Both represent stochastic error models. That is, error models that apply gates as noise according to classical probability distributions.


GatewiseGen

The GatewiseGen class allow one to define custom stochastic error-models where for each ideal gate-type the errors applied to the ideal gate and the classical probability distribution for applying errors can be specified. Since many examples of using the class are given, I have moved the discussion of the GatewiseGen class to Gate-wise Error Models.

The follow section provides examples of how error_gens are used in practice




DepolarGen

The DepolarGen class is used to represent the symmetric depolarizing channel, which is commonly studied in QEC. For single-qubit gates, this class is used to apply errors at probability \(p\) from set \(\{X, Y, Z\}\). For two-qubit gates, errors also occur with probability \(p\) but errors are chosen uniformally from the set \(\{I, X, Y, Z\}^{\otimes 2} \; \setminus \; I\otimes I\). Errors are always applied after ideal gates except for measurements. In which case, the errors are applied before.

An example of creating an instance of DepolarGen is seen here:

>>> import pecos as pc
>>> depolar = pc.error_gens.DepolarGen(model_level='code_capacity', has_idle_errors=False, perp_errors=True)





The model_level keyword is used to specify to what set of gates the DepolarGen is applied to. If model_level is set to the value of 'code\_capacity', then the error model is applied before each LogicalInstruction to each data qubits as if these qubits are acted on by 'I'. The error model is not applied to any other circuit element. If model_level is set to the value 'phenomenological', then the error model applied to data qubits before each LogicalInstruction as well as to any measurement. If model_level is set to the value 'circuit', then the error model is applied to all the gates in the QuantumCircuit. The default value of model_level is 'circuit'.

The has_idle_errors is a keyword that is only relevant when model_level == 'circuit'. If has_idle_errors is set to True, then the error model is applied to inactive qubits as if the qubit is acted on by 'I'. If has_idle_errors is set to False, then this does not occur. The default value of has_idle_errors is True.

If the perp_errors keyword is set to True, then errors that are applied to Pauli-basis initializations and measurements are errors that do not include the Pauli-basis of the initializations or measurements. So, for example, \(Z\) is not applied as an error to the 'init |0>' operation. If the perp_errors keyword is set to False, then there is no restriction to the errors. The default value of perp_errors is True.

An example of applying an error model using DepolarGen to a LogicalCircuit is seen in the following:

>>> depolar = pc.error_gens.DepolarGen(model_level='code_capacity')
>>> surface = pc.qeccs.Surface4444(distance=3)
>>> logic = pc.circuits.LogicalCircuit()
>>> logic.append(surface.gate('ideal init |0>'))
>>> logic.append(surface.gate('I'))
>>> circ_runner = pc.circuit_runners.Standard(seed=1)
>>> state = circ_runner.init(surface.num_qudits)
>>> meas, err = circ_runner.run_logic(state, logic, error_gen=depolar, error_params={'p': 0.1})





Note that the keyword argument error_params is used to pass a dictionary that indicates the probability \(p\) of the depolarizing error model.

The values returned by the run_logic method is recorded in the variables meas and err. These variables are dictionaries that record the measurement output and applied errors.

An example of measurement outcomes is given here:

>>> # Following the previous example.
>>> meas   
{(1, 0): {7: {9: 1, 11: 1}}}





Here, in the last line, we see the measurement outcome. The key of the outer dictionary is a tuple where the first element is the tick index of the LogicalGate and the second element is an index corresponding to a LogicalInstance. That is, the tuple records at what point in the LogicalCircuit was the measurement made. The value of the outer dictionary is just the measurement-outcome dictionary of a QuantumCircuit.

We can see the errors that were generated by the DepolarGen in these lines:

>>> # Following the previous example.
>>> err   
{(1, 0): {0: {'after': QuantumCircuit([{'X': {4}, 'Z': {10}}])}}}





In the above Listing, we see a dictionary that stores what errors were applied to the LogicalCircuit. The key of the outer dictionary, once again, is a tuple indicating the tick of a LogicalGate and the index of a LogicalInstance. The key of the next inner dictionary is QuantumCircuit tick when the error occurred. The key 'after' of the next inner dictionary indicates that the errors are applied after ideal gates. The key 'before' is used when indicating that errors are applied before gates. The values of both the 'after' and 'before' keys are QuantumCircuits. These circuits are the errors that are applied.

The data structure used to describe the errors that are applied to a LogicalCircuit can be directly supplied to a run_logic method of a circuit_runner. Doing so will cause the run_logic method to apply the given error to a LogicalCircuit. This can be seen in the following:

>>> # Continuing the previous examples.
>>> logic2 = pc.circuits.LogicalCircuit()
>>> logic2.append(surface.gate('ideal init |+>'))
>>> logic2.append(surface.gate('I'))
>>> state2 = circ_runner.init(surface.num_qudits)
>>> meas2, err2 = circ_runner.run_logic(state2, logic2, error_circuits=err)





One use for this is to apply the same error to a different logical basis-state. Doing so allows one to determine if a logical error occurs for the logical operations that stabilizer the basis state.

Note that the circuit_runners currently only apply errors to LogicalCircuits and not to QuantumCircuits.


Todo

Discuss the leakage error model when it is verified…









          

      

      

    

  

    
      
          
            
  
Decoders

A decoder in PECOS is simply a function or other callable that takes the measurement outcomes from error extractions (syndromes) as input and returns a QuantumCircuit, which is used as a recovery operation to mitigate errors. Decoder classes and functions are in the decoders namespace.

The MWPM2D class is an available decoder class, which I will discuss next.


MWPM2D

One of the standard decoders used for surface codes is the minimum-weight-perfect-matching (MWPM) decoder [Den+02]. The MWPM2D class implements the 2D version of this decoder for Surface4444 and SurfaceMedial4444, that is, it decodes syndromes for a single round of error extraction:

>>> import pecos as pc
>>> depolar = pc.error_gens.DepolarGen(model_level='code_capacity')
>>> surface = pc.qeccs.Surface4444(distance=3)
>>> logic = pc.circuits.LogicalCircuit()
>>> logic.append(surface.gate('ideal init |0>'))
>>> logic.append(surface.gate('I', num_syn_extract=1))
>>> circ_runner = pc.circuit_runners.Standard(seed=1)
>>> state = circ_runner.init(surface.num_qudits)
>>> decode = pc.decoders.MWPM2D(surface).decode
>>> meas, err = circ_runner.run_logic(state, logic, error_gen=depolar, error_params={'p': 0.1})
>>> meas   
{(1, 0): {7: {3: 1, 5: 1, 9: 1, 15: 1}}}
>>> err   
{(1, 0): {0: {'after': QuantumCircuit([{'Y': {4}, 'X': {10}}])}}}
>>> decode(meas)   
QuantumCircuit([{'X': {10}, 'Y': {4}}])











          

      

      

    

  

    
      
          
            
  
Tools


Todo

Write about the available tools.







          

      

      

    

  

    
      
          
            
  
Examples

The following are a collection of examples:



	Verifying a Stabilizer Code

	Creating a QECC Class
	The QECC class

	Logical Instruction Classes

	Logical Gate Classes

	Example Usage





	Gate-wise Error Models
	Example: The Symmetric Depolarizing-channel

	Example: The Amplitude-dampening Channel





	Monte Carlo Script









          

      

      

    

  

    
      
          
            
  
Verifying a Stabilizer Code

In this example we will see how VerifyStabilizers can be used to develop a simple, distance-three code. We begin by considering the generators in:

[image: ../_images/stabcode1.png]
In this figure we see an example stabilizer code. Data qubits are indicated as white circles and are labelled by numbers. Polygons represent checks. The coloring of the polygons indicate how the associated check acts on qubits it touches. When the check is white on a qubit, the check acts as \(Z.\)  When black, \(X.\)   When brown, \(Y.\)

We now use VerifyStabilizers to represent the checks given in the previous figure:

>>> import pecos as pc
>>> qecc = pc.tools.VerifyStabilizers()
>>> qecc.check('X', (3, 4, 7, 8))
>>> qecc.check('X', (5, 6, 7, 9))
>>> qecc.check('Z', (2, 4, 5, 7))
>>> qecc.check('Z', (7, 8, 9))
>>> qecc.check(('Z', 'Z', 'Y'), (0, 1, 2))
>>> qecc.check(('X', 'X', 'Z', 'Y'), (0, 2, 3, 4))
>>> qecc.check(('X', 'X', 'Z', 'Y'), (1, 2, 6, 5))





Here we see that the check method can be used to specify a generator. If the first argument is a string, then this indicates the Pauli-type of the check. The second argument then indicates which qubits the check acts on. If the first argument is a tuple, then the tuple is a sequence of strings which indicate how the generator acts on the corresponding qubits indicated in the tuple of the second argument.

Once one has finished specifying the generators of the code, the compile method should be used:

>>> # Continuing the last listing.
>>> qecc.compile()   
Check:
check(('Z', 'Z', 'Y'), (0, 1, 2))
anticommutes with:
check(Z, (2, 4, 5, 7))





Once compile is called, VerifyStabilizers checks to see if all the generators anticommute. If any do VerifyStabilizers prints out a message indicating which checks anticommute.

Finding that our original stabilizer code design does have anticommuting generators, we can modify the QECC slightly to address the issue as seen in:

[image: ../_images/stabcode2.png]
Re-specifying the generators according to the figure above, we run compile again and see that we have solved the commutation problem:

>>> qecc = pc.tools.VerifyStabilizers()
>>> qecc.check('X', (3, 4, 7, 8))
>>> qecc.check('X', (5, 6, 7, 9))
>>> qecc.check('Z', (2, 4, 5, 7))
>>> qecc.check('Z', (7, 8, 9))
>>> qecc.check(('Z', 'Z', 'Z'), (0, 1, 2))
>>> qecc.check(('X', 'X', 'Z', 'Y'), (0, 2, 3, 4))
>>> qecc.check(('X', 'X', 'Z', 'Y'), (1, 2, 6, 5))
>>> qecc.compile()





It is possible that we have specified a set of generators with redundant elements. That is, some of the generators can be written as products of the others. To check if this is the case, we use the method generators:

>>> # Following the last listing.
>>> qecc.generators()
Number of data qubits: 10
Number of checks: 7
Number of logical qubits: 3

Stabilizer generators:
XIXZYIIIII
IXXIIYZIII
IIZIZZIZII
ZZZIIIIIII
IIIIIIIZZZ
IIIXXIIXXI
IIIIIXXXIX

Destabilizer generators:
ZIIIIIIIII
IZIIIIIIII
ZIIIXIIIII
ZIXIXIIIII
ZIIIXIIXII
IIIIIIIIZI
IIIIIIIIIZ

Logical operators:
. Logical Z #1:
  IIIZIIIIZI
. Logical X #1:
  ZIIXIIIIII
. Logical Z #2:
  IZIIIZIIIZ
. Logical X #2:
  ZZIIXXIIII
. Logical Z #3:
  IIIIIIZIIZ
. Logical X #3:
  IZIIIIXIII





If we had redundant generators then generators would alert us. Luckily, we do not and generators has printed out some useful information including number of logical qubits, destabilizers, and a possible set of logical operators.

We can then use the distance method to determine the distance of the code. Note, to find the distance of a code, this method will try all combinations of possible Pauli errors. It starts with the smallest weight and evaluating larger and larger weights until a logical error is detected. Since this is a combinatorial search, the algorithm is not efficient and the runtime quickly grows with the size of the code. In practice, for smaller code of less than 20 or so qubits, the runtime is manageable.

We now run the distance method:

>>> # Following the last listing.
qecc.distance()
----
Checking errors of length 1...
Checking errors of length 2...
Logical error found: Xs - {0, 1} Zs - set()
This is a [[10, 3, 2]] code.





The last line of the code block indicates what type of QECC we have. The notation \([[n, k, d]]\) indicates that the code encodes \(k\) qubits into \(n\) physical qubits and has a distance of \(d\). Since the number of errors a QECC can correct is \(t=\left \lfloor{(d-1)/2}\right\rfloor\) and the distance of our code is two, this means our QECC can only detect but not correct errors. Because the distance method indicates the smallest logical error it found, we can use this information to mitigate the error by either introducing another check to detect the error or by including the logical error as a check. We do the later. Doing this, we find that we have not increased the distance of the code. If we repeat the process two more times we will end up with a code that has no logical qubits and, therefore, encodes a stabilizer state:

[image: ../_images/stabcode3.png]
We seemly failed to create a higher distance code; however, we can persevere by removing a higher-weight stabilizer generator. If we remove the check that acts like Pauli \(Z\) on qubits 7, 8, and 9, we will get the stabilizer code in:

[image: ../_images/stabcode4.png]
Evaluating the distance of this new version of the code:

>>> qecc = pc.tools.VerifyStabilizers()
>>> qecc.check('Z', (2, 4, 5, 7))
>>> # qecc.check('Z', (7, 8, 9))
>>> qecc.check('X', (3, 4, 7, 8))
>>> qecc.check('X', (5, 6, 7, 9))
>>> qecc.check(('X', 'X', 'Z', 'Y'), (0, 2, 3, 4))
>>> qecc.check(('X', 'X', 'Z', 'Y'), (1, 2, 6, 5))
>>> qecc.check('Z', (0, 1, 2))
>>> qecc.check('X', (0, 1))
>>> qecc.check('Z', (3, 8))
>>> qecc.check('Z', (6, 9))
>>> qecc.compile()
>>> qecc.generators()
Number of data qubits: 10
Number of checks: 9
Number of logical qubits: 1
----

Stabilizer generators:
  XIXZYIIIII
  IXXIIYZIII
  IIZIZZIZII
  IIIZIIIIZI
  XXIIIIIIII
  ZZZIIIIIII
  IIIIIIZIIZ
  IIIXXIIXXI
  IIIIIXXXIX

Destabilizer generators:
  IIIIZIIIZI
  ZZIIZIIIZI
  ZZIIZXIIZI
  IIIXZIIIZI
  ZIIIZIIIZI
  ZZXIZXIIZI
  ZZIIZIXIZI
  IIIIIIIIZI
  IIIIIIIIIZ

Logical operators:
. Logical Z #1:
  IIIIIIIZZZ
. Logical X #1:
  ZZIIZXIXZI
>>> qecc.distance()

----
Checking errors of length 1...
Checking errors of length 2...
Checking errors of length 3...
Logical error found: Xs - {0, 2, 7} Zs - set()
This is a [[10, 1, 3]] code.





Thus, we have developed a simple distance three code.





          

      

      

    

  

    
      
          
            
  
Creating a QECC Class

To facilitate the evaluation of QECC protocols not included in PECOS, this appendix shows how to represent a QECC with a Python so can be used with PECOS. In particular, we look at representing the repetition code.

To begin, we create an empty Python file called zrepetition.py and import some useful classes:

"""
A representation of the Z-check repetition code.
"""
from pecos.circuits import QuantumCircuit
from pecos.qeccs import QECC, LogicalGate, LogicalInstruction





Subclasses of QECC, LogicalGate, and LogicalInstruction inherit numerous methods and attributes that simplify the creation of new qeccs. If some of the inherited methods and attributes are not appropriate for a QECC, one can typically override them.


The QECC class

We now create a class ZReptition to represent our qecc:

 class ZRepetition(QECC):
    def __init__(self, **qecc_params):
         # Pass qecc_params to the parent class:
         super().__init__(**qecc_params)
         # Set variables that describe the QECC:
         self._set_qecc_description()
         # Create a lattice for placing qubits:
         self.layout = self._generate_layout()
         # Identify the sides of the QECC:
         self._determine_sides()
         # Identify symbols with gate/instruction classes:
         self._set_symbols()





Here, the dict called qecc_params will be used to specify parameters that identify a member of the QECC’s family. We will discuss later the method calls see in the __init__ method.

Next, we write the _set_qecc_description, which sets class attributes that describe the QECC:

 def _set_qecc_description(self):
     self.name = 'Z Repetition Code'
     # Size of the repetition code:
     self.length = self.qecc_params['length']
     self.distance = 1
     self.num_data_qudits = self.length
     self.num_logical_qudits = 1
     self.num_ancillas = self.num_data_qudits - 1





The name attribute identifies the code. The length attribute we will use to define how long the QECC is. We use distance to determine the size of the QECC. We will be describing a repetition that only has \(Z\) checks; therefore, the code will not detect any \(Z\) errors. For this reason, the distance is one no matter the length of the QECC. num_data_qudits is the number of data qubits. The attribute num_logical_qudits is the number of logical qubits we will encode with this QECC. The total number of ancillas used in all the qecc’s procedures is equal to num_ancillas. The total number of qubits is equal to the num_qudits attribute. This attribute is determined by the parent class QECC.

Next, we construct _set_symbols, which contain dictionaries that associate symbols to LogicalInstructions and LogicalGates. We will describe these classes later.

def _set_symbols(self):
    # instruction symbol => instr. class:
    self.sym2instruction_class = {
        'instr_syn_extract': InstrSynExtraction,
        'instr_init_zero': InstrInitZero, }
    # gate symbol => gate class:
    self.sym2gate_class = {
        'I': GateIdentity,
        'init |0>': GateInitZero, }





Now we write the method _generate_layout, which generates the physical layout of qubits. As we will see later, a physical layout is useful for defining the quantum circuits of the QECC protocol.

def _generate_layout(self):
    self.lattice_width = self.num_qudits
    data_ids = self._data_id_iter()
    ancilla_ids = self._ancilla_id_iter()
    y = 1
    for x in range(self.lattice_width):
        if x%2 == 0: # Even (ancilla qubit)
            self._add_node(x, y, data_ids)
        else: # Odd (data qubit)
            self._add_node(x, y, ancilla_ids)
    # `add_nodes` updates an attribute called `layout.`
    return self.layout





Finally for the qecc, we will add the method _determine_sides to create a dictionary that defines the physical boundary of the QECC. This information can be used by decoders to understand the geometry of the code.

def _determine_sides(self):
    self.sides = {
        'length': set(self.data_qudit_set)
        }








Logical Instruction Classes

Now that we have created a class to represent the QECC, we will now create classes to represent logical instructions. First create an logical instruction class, called InstrSynExtraction, that represents one round of syndrome extraction. Similar to the ZRepitition class, we will subclass our class off of the LogicalInstruction, which is provided by PECOS. After we do this, we will write an initialization method that receives as arguments the qecc instance the instruction belongs to, the associated symbol, and a dictionary of logical gate parameters called gate_params. This dictionary will come from the LogicalGate that contains the LogicalInstruction and may alter the LogicalGate and the QuantumCircuit contained in the LogicalInstruction.

class InstrSynExtraction(LogicalInstruction):
    def __init__(self, qecc, symbol, **gate_params):
        super().__init__(qecc, symbol, **gate_params)

        # The following are convienent for plotting:
        self.ancilla_x_check = set()
        self.ancilla_z_check = qecc.ancilla_qudit_set
        self._create_checks()
        self.set_logical_ops()
        self._compile_circuit(self.abstract_circuit) # Call at end





We now include the _create_checks method, which we will use to define the checks of the QECC:

   def _create_checks(self):
       self.abstract_circuit = QuantumCircuit(**self.gate_params)
       for qid in self.qecc.ancilla_qudit_set:
           x, y = qecc.layout[qid]

           # Get the data qubits to each side.
           d1 = qecc.position2qudit[(x-1, y)]
           d2 = qecc.position2qudit[(x+1, y)]
           self.abstract_circuit.append('Z check', {qid, d1, d2}, datas=[d1, d2], ancillas=[qid])

Here we use the physical layout of the QECC to construct checks. A ``QuantumCircuit`` called ``abstract_circuit`` is used to register each :math:`Z`-type check, the qubits it acts on, and whether the qubits are used as data or ancilla qubits. Note, check circuits such as the ones seen in Fig~\ref{fig:surf-checks} are used to implement the checks. The order of the data qubits in the ``datas`` keyword indicates the order which the data qubits are acted on by the check circuits. The checks registered by ``abstract_circuit`` are later compiled into quantum circuits.





Now we will write the method set_logical_ops, which define the logical operators of the QECCs.

  def set_logical_ops(self):
      data_qubits = set(self.qecc.data_qudit_set)
      logical_ops = [
          {'X': QuantumCircuit([{'X': {0}}]),
           'Z': QuantumCircuit([{'Z': data_qubits}])}
           ]
      self.initial_logical_ops = logical_ops
      self.final_logical_ops = logical_ops

      # The final logical sign and stabilizer
      self.logical_stabilizers = None
      self.logical_signs = None

Here, the variables ``initial_logical_ops`` and ``final_logical_ops`` that represent the initial and final logical operators, respectively, are set. Each of these variables are a list where each element represents a collection of logical operators of an encoded qudit. In particular, each element is a dictionary where the keys are symbols identified with the logical operator and the values are ``QuantumCircuits`` representing the unitaries of logical operators.





If a logical operator encodes a stabilizer state then logical_stabilizers is a list of the strings representing the logical operators that stabilizer the state. If the logical operator does not specifically encode a stabilizer state, then logical_stabilizers is set to None. The variable logical_signs is a list of signs the corresponding logical operators in logical_stabilizers. If the phase of the operators is \(+1\), then the element of logical_signs is 0. If the phase of the operators is \(-\), then the element of logical_signs is 1.  If logical_stabilizers is None, then logical_signs is None.

We now define the initialization of the logical zero-stat:

  class InstrInitZero(LogicalInstruction):
      def __init__(self, qecc, symbol, **gate_params):
          super().__init__(qecc, symbol, **gate_params)
          # The following are convienent for plotting:
          self.ancilla_x_check = set()
          self.ancilla_z_check = qecc.ancilla_qudit_set
          self._create_checks()
          self.set_logical_ops()
          # Must be called at the end of initiation.
          self._compile_circuit(self.abstract_circuit)

Here, the method ``_create_checks`` is used to create check by first making a shallow copy of the ``abstract_circuit`` of the ``InstrSynExtraction`` class. After doing this we add :math:`|0\rangle` initialization of the data qubits on the 0th tick.





The _create_checks method is as follows:

def _create_checks(self):
    # Get an instance of the syndrome extraction instruction
    syn_ext = qecc.instruction('instr_syn_extract', **self.gate_params)
    # Make a shallow copy of the abstract circuits.
    self.abstract_circuit = syn_ext.abstract_circuit.copy()
    # Add it the initialization of the data qubits
    data_qudits = set(qecc.data_qudit_set)
    self.abstract_circuit.append('init |0>', locations=data_qudits, tick=0)
}





The set_logical_ops method is similar to the of method of the same name in InstrSynExtraction. The difference for this class is that a logical zero-state is encoded by the logical operator. Because of this, logical_stabilizers is set to ['Z'] and logical_signs is set to [0].

def set_logical_ops(self):
    data_qubits = set(self.qecc.data_qudit_set)
    self.initial_logical_ops = [
        {'X': QuantumCircuit([{'X': {0}}]),
         'Z': QuantumCircuit([{'Z': {0}}])}  ]
    self.final_logical_ops = [
        {'X': QuantumCircuit([{'X': {0}}]),
         'Z': QuantumCircuit([{'Z': data_qubits}])}  ]
    self.logical_stabilizers = ['Z']
    self.logical_signs = [0]








Logical Gate Classes

We now construct the LogicalClass classes. The construction of these classes is relatively simple compared to the create of LogicalInstruction classes.

To begin, we write the class representing the logical identity called GateIdentity:

  class GateIdentity(LogicalGate):
      def __init__(self, qecc, symbol, **gate_params):
          super().__init__(qecc, symbol, **gate_params)
          self.expected_params(gate_params, {'num_syn_extract', 'error_free', 'random_outcome'})
          self.num_syn_extract = gate_params.get('num_syn_extract', qecc.length)
          self.instr_symbols = ['instr_syn_extract'] * self.num_syn_extract


Here, the initialization method includes the argument ``qecc`` and the argument ``symbol``. These are the ``qecc`` instance of the ``LogicalGate`` class and the string used to represent the ``LogicalGate``, respectively. The initialization method also accepts a keyword arguments, which are stored in the dictionary ``gate_params`` and may be used to alter the ``LogicalGate`` and associated ``LogicalInstructions``.





The method expected_params determines the keyword arguments that are accepted from gate_params. The number of syndrome extraction rounds equal to 'num_syn_extract'. in the gate_params dictionary. Finally, a list of LogicalInstruction symbols is stored in the variable instr_symbols. The instr_symbols indicates the order of LogicalInstructions that the gate represents. The correspondence between the LogicalInstruction classes and symbols was established by the sym2instruction_class method of the ZRepetition class.

We will also create a LogicalGate class the represents the initialization of logical zero:

  class GateInitZero(LogicalGate):
      def __init__(self, qecc, symbol, **gate_params):
          super().__init__(qecc, symbol, **gate_params)
          self.expected_params(gate_params, {'num_syn_extract', 'error_free', 'random_outcome'})
          self.num_syn_extract = gate_params.get('num_syn_extract', 0)
          self.instr_symbols = ['instr_init_zero']
          syn_extract = ['instr_syn_extract'] * self.num_syn_extract
          self.instr_symbols.extend(syn_extract)

Here, all the methods function the same way as those in the ``GateIdentity`` class.








Example Usage

Now we will look at a small example of using the ZRepetition class that we created. We begin by importing the class from the zrepetition.py script and creating an instance of length three:

from zrepetition import ZRepetition
qecc = ZRepetition(length=3)





Now that we have created an instance, we will use the plot method that is inherited by the syndrome-extraction instruction:

qecc.instruction('instr_syn_extract').plot()





This code results in the plot of the length three repetition code:

[image: ../_images/qecc_zrep_syn_extract.png]
The ZRepetition class can be used just like any other qecc that comes with PECOS. For example, we can run the following simulation:

>>> import pecos as pc
>>> depolar = pc.error_gens.DepolarGen(model_level='code_capacity')
>>> logic = pc.circuits.LogicalCircuit()
>>> logic.append(qecc.gate('ideal init |0>'))
>>> logic.append(qecc.gate('I'))
>>> circ_runner = pc.circuit_runners.Standard(seed=3)
>>> state = circ_runner.init(qecc.num_qudits)
>>> meas, err = circ_runner.run_logic(state, logic, error_gen=depolar, error_params={'p': 0.1})
>>> meas
{(1, 2): {3: {3: 1}}}
>>> err
{(1, 2): {0: {'after': QuantumCircuit([{'X': {4}}])}}}











          

      

      

    

  

    
      
          
            
  
Gate-wise Error Models

The GatewiseGen is an error_gen  that allows users to design error models where gates can be applied according to classical probability distributions that are specified for individual ideal gates or groups of ideal gates. To being we write the following:

>>> import pecos as pc
>>> myerrors = pc.error_gens.GatewiseGen()





To randomly add an \(X\) error after every Hadamard we write:

>>> # Continuing from last example.
>>> myerrors.set_gate_error('H', 'X')





Here, the probability of a \(X\) error occurring will, by default, equal to the value of the key 'p' in an error_params dictionary that is passed to the run_logic method of a circuit_runner.

To test the error model we are creating, we can use the get_gate_error method to generate errors. The first argument of the method is the ideal gate-symbol. The second, is a set of qudit locations the errors may occur on. The third, is a error_params dictionary used to specify the probability of errors. An example of using this method is seen here:

>>> # Continuing from last example.
>>> myerrors.get_gate_error('H', {0, 1, 2, 3, 4}, error_params={'p':0.5})   
(QuantumCircuit([{'X': {0, 1, 3}}]), QuantumCircuit([]), set())





Here, the method returns a tuple. The first element is the error circuit that is applied after the ideal gates. The second, before the ideal gates. The third element is the set of qudit locations corresponding to gate locations of ideal gates to be removed from the ideal quantum-circuit.

Note, by default errors specified by the set_gate_error method will be generated after the ideal quantum-gates. To generate errors before the gates, one can set the keyword after to False when using the add_gate_error method.

The probability-parameter used (default being 'p') can be changed by using the keyword error_param:

>>> # Continuing from last example.
>>> myerrors.set_gate_error('H', 'X', error_param='q', after=False)
>>> myerrors.get_gate_error('H', {0, 1, 2, 3, 4}, error_params={'q':0.5})   
(QuantumCircuit([]), QuantumCircuit([{'X': {0, 3}}]), set())





Here we used the keyword``error_param`` to declare that 'q' will be used to set the probability of an \(X\) error occurring. We also see an example of the keyword after being used to indicate that errors should be applied before the ideal gates rather than after.

Besides specifying errors of a single gate-type, we can declare a set of errors to be uniformly drawn from:

>>> # Continuing from last example.
>>> myerrors.set_gate_error('X', {'X', 'Y', 'S'}, error_param='r')
>>> myerrors.get_gate_error('X', {0, 1, 2, 3, 4}, error_params={'r':0.5})   
(QuantumCircuit([{'S': {3, 4}}]), QuantumCircuit([]), set())





Such uniform error-distributions can be made for two-qubit gates as well:

>>> # Continuing from last example.
>>> myerrors.set_gate_error('CNOT', {('I', 'X'), ('X', 'X'), 'CNOT'}, error_param='r')
>>> myerrors.get_gate_error('CNOT', {(0,1), (2,3), (4,5), (6,7), (8,9)}, error_params={'r':0.8})   
(QuantumCircuit([{'CNOT': {(0, 1), (4, 5), (8, 9)}, 'X': {3, 6, 7}, 'I': {2}}]), QuantumCircuit([]), set())





Here we see that two-qubit gates or tuples of single-qubit gates can be supplied as errors.

Other distributions besides the uniform distribution can be specified by passing a callable, such as a function or a method. An example is seen in the following:

>>> # Continuing from last example.
>>> import random
>>> def error_func(after, before, replace, location, error_params):
...    s = error_params['s']
...    rand = random.triangular(0, 1, 0.6)
...    if rand < 0.6:
...       err = 'Q'
...    elif rand < 0.7:
...       err = 'S'
...    else:
...       err ='R'
...    before.update(err, {location}, emptyappend=True)





Here, callables that are used to create unique error distributions must take the arguments after, before, replace, location, and error_params. The variables after and before are QuantumCircuits representing the errors that are applied after and before the ideals gates of a single tick, respectively. The variable replace is the set of qubit gate-locations of the ideals gates to be removed from the ideal quantum-circuit. These callables are called only if error occurs according to the probability of an associated error parameter, which we will see later how to set. The location variable is the qudit index or tuple of qudit indices where the error has occurred. The variable error_params is the dictionary of error parameters that are being used to determine the probability distribution of errors. In the above callable, we see a triangular distribution being used to apply quantum errors. Note that the callable is responsible for updating QuantumCircuits  after, before, replace as appropriate.

To use callables to generate errors, we can call the set_gate_error method in the following manner:

>>> # Continuing from last example.
>>> myerrors.set_gate_error('Y', error_func, error_param='s')
>>> myerrors.get_gate_error('Y', {0, 1, 2, 3, 4}, error_params={'s':0.5})   
(QuantumCircuit([]), QuantumCircuit([{'R': {0, 4}, 'Q': {1, 2}}]), set())





Here we set the probability of error_func being called to generate errors using the error_params keyword argument.

There are two special gate-symbols for which error distributions can be assigned to. These special symbols are 'data' and 'idle'. The error distribution associated with 'data' is used to generate errors at the beginning of each LogicalInstruction for each data qudit. An error distribution associated with the 'idle' symbol is used to generate errors whenever a qubit is not acted on by a quantum operation during a LogicalCircuit.

An example of setting the errors of a 'data' and 'idle' can see here:

>>> # Continuing from last example.
>>> myerrors.set_gate_error('data', 'X', error_param='q')
>>> myerrors.set_gate_error('idle', 'Y', error_param='s')





Besides specifying errors for individual gate-types, one can specify errors for a group of gates. To do this one may define a gate group and set the error distribution for this group:

>>> # Continuing from last example.
>>> myerrors.set_gate_group('measurements', {'measure X', 'measure Y', 'measure Z'})
>>> myerrors.set_group_error('measurements', {'X', 'Y', 'Z'}, error_param='m')





Note, set_group_error will override the error distribution of any gate belonging to the gate group.

The gate groups that are defined by default can be found by running:

>>> newerrors = pc.error_gens.GatewiseGen()
>>> newerrors.gate_groups   
{'measurements': {'measure X', 'measure Y', 'measure Z'},
 'inits': {'init |+>', 'init |+i>', 'init |->', 'init |-i>', 'init |0>', 'init |1>'},
 'two_qubits': {'CNOT', 'CZ', 'G', 'SWAP'},
 'one_qubits': {'F1', 'F1d', 'F2', 'F2d', 'F3', 'F3d', 'F4', 'F4d', 'H', 'H+y-z', 'H+z+x', 'H-x+y', 'H-x-y', 'H-y-z', 'H-z-x', 'H1', 'H2', 'H3', 'H4', 'H5', 'H6', 'I', 'Q', 'Qd', 'R', 'Rd', 'S', 'Sd', 'X', 'Y', 'Z'}}





Here the keys are symbols representing the gate groups and the values are the set of gate symbols belong to the corresponding gate group. These gate groups ('measurements', 'inits', 'two_qubits', and 'one_qubits') can be redefined by the user.


Example: The Symmetric Depolarizing-channel

As an example, the circuit-level symmetric depolarizing-channel is modeled by DepolarGen as discussed in ths page, can be represented by the GatewiseGen class as follows:

depolar_circuit = pc.error_gens.GatewiseGen()
set_gate_group('Xinit', {'init |+>', 'init |->'})
set_gate_group('Yinit', {'init |+i>', 'init |-i>'})
set_gate_group('Zinit', {'init |0>', 'init |1>'})
depolar_circuit.set_group_error('Xinit', 'Z')
depolar_circuit.set_group_error('Yinit', 'Z')
depolar_circuit.set_group_error('Zinit', 'X')
depolar_circuit.set_gate_error('measure X', 'Z', after=False)
depolar_circuit.set_gate_error('measure Y', 'Z', after=False)
depolar_circuit.set_gate_error('measure Z', 'X', after=False)
depolar_circuit.set_group_error('one_qubits', {'X', 'Y', 'Z'})
depolar_circuit.set_group_error('two_qubits', {('I', 'X'), ('I', 'Y'), ('I', 'Z'), ('X', 'I'), ('X', 'X'), ('X', 'Y'), ('X', 'Z'), ('Y', 'I'), ('Y', 'X'), ('Y', 'Y'), ('Y', 'Z'), ('Z', 'I'), ('Z', 'X'), ('I', 'Y'), ('Z', 'Z')})








Example: The Amplitude-dampening Channel

The stochastic circuit-level amplitude-dampening channel can be described as:

amp_damp = pc.error_gens.GatewiseGen()
amp_damp.set_group_error('inits', 'init |0>')
amp_damp.set_gate_error('measurements', 'init |0>',   after=False)
amp_damp.set_group_error('one_qubits', 'init |0>')
amp_damp.set_group_error('two_qubits', {('I', 'init |0>'), ('init |0>', 'I'), ('init |0>', 'init |0>')})











          

      

      

    

  

    
      
          
            
  
Monte Carlo Script

In this appendix, I present how PECOS can be used to create a script to runs a Monte Carlo simulation to determine logical error-rates versus physical error-rates for a fixed distance of a medial surface-code patch. The break-even point where the physical error-rate equals the logical error-rate is known as the pseudo-threshold. The threshold is the value the pseudo-threshold converges to as the distance of the code approaches infinity.

We begin by creating a Python script error_rates.py and importing NumPy and PECOS:

import numpy as np
import pecos as pc





For this example, we will evaluate the identity gate of SurfaceMedial4444 and start in the ideal logical zero-state:

surface = pc.qeccs.SurfaceMedial4444(distance=3)
logic = pc.circuits.LogicalCircuit(layout=surface.layout)
logic.append(surface.gate('ideal init |0>'))
logic.append(surface.gate('I', num_syn_extract=1))
circ_runner = pc.circuit_runners.Standard(seed=0)
logical_ops = surface.instruction('instr_syn_extract').final_logical_ops[0]





Here we also initialize the circuit_runner we will use and create the variable logical_ops, which stores the logical operations of the QECC. This can be used to determine the logical error-rate since we can track whether errors flip the signs of the logical operators.

Now we choose the depolarizing channel as our noise model (see Section Error Generators) and the MWPM decoder (see Decoders) to interpret syndromes and determine recovery operations:

depolar = pc.error_gens.DepolarGen(model_level='code_capacity')
decode = pc.decoders.MWPM2D(surface).decode





We next create the function  determine_fails to decide if logical error occurs by examining whether, after applying a recovery operation to the state, errors have flipped logical \(Z\). Note, since we are just protecting a logical zero-state we are only concerned with errors that flip the sign of the logical \(Z\) operator. \(Z\) errors do not affect the state.

The determine_fails function is:

def determine_fails(meas, decoder, circ_runner, state, logical_ops, fails):
    if meas:
        recovery = decoder(meas)
        circ_runner.run_circuit(state, recovery)
    sign = state.logical_sign(logical_ops['Z'], logical_ops['X'])
    fails += sign
    return fails





We are now almost ready to define the Monte Carlo loop. First, however, we set runs to represent the number of evaluations we will make per physical error-rate. Next, we add the variable ps, which is set to an array of  10 linearly space points between 0.1 and 0.3 to serve as the physical error-rates that we will evaluate. This array is created by NumPy’s linspace function. Finally, we include the variable plog, which stores the logical error-rates we find corresponding to the physical error-rates in ps. All of this is done in the following lines:

runs = 10000
ps = np.linspace(0.1, 0.4, 10)
plog = []





We now create the Monte Carlo loop, which prepares a fresh initial state, applies depolarizing noise with a probability chosen by looping over ps, and counts the number of failures (logical flips) to determine the logical error-rate, which is stored in plog:

for p in ps:
    fails = 0
    for i in range(runs):
        state = circ_runner.init(surface.num_qudits)
        meas, _ = circ_runner.run_logic(state, logic, error_gen=depolar, error_params={'p': p})
        fails = determine_fails(meas, decoder, circ_runner, state, logical_ops, fails)
    plog.append(fails / runs)
print('ps=', list(ps))
print('plog=', plog)





When this script is ran, an example output is:

ps= [0.1, 0.13333333333333336, 0.16666666666666669, 0.2, 0.23333333333333336, 0.2666666666666667, 0.30000000000000004, 0.33333333333333337, 0.3666666666666667, 0.4]
plog= [0.0588, 0.102, 0.1497, 0.1835, 0.2241, 0.2702, 0.3052, 0.3485, 0.3783, 0.4017]





One can then use plotting packages such as Matplotlib to produce plots as appropriate for the data. PECOS provides a tool for quickly plotting and evaluating logical vs physical error-rates:

from pecos.tools import plot_pseudo
plot_pseudo(deg=2,plist=ps,plog=plog)





Running this tool results in the plot:

[image: ../_images/nonmedial_pseudo_threshold.png]
The script described in this appendix can be used as a basis for developing other Monte Carlo simulation scripts for evaluating pseudo-thresholds or thresholds.





          

      

      

    

  

    
      
          
            
  
Change Log


Planned Features

The following features are intended to be included:


	Apply error models directly to QuantumCircuits.


	Include simulator extensions for popular quantum software that include quantum simulators.


	Facilitate the prototyping of stabilizer qeccs.







Releases


PECOS 0.1.0

Release date: October 3, 2018

Initial release.
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Todo List


Todo

Discuss the leakage error model when it is verified…



original entry


Todo

Discuss the simulator extensions when finished…



original entry


Todo

Write about the available tools.



original entry
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