
QuantiPhy Documentation
Release 2.19

Ken Kundert

Jan 06, 2023

CONTENTS

1 What? 3

2 Why? 5

3 Features 7

4 Alternatives 9

5 Quick Start 11

6 Issues 13

7 Documentation 15

Index 109

i

ii

QuantiPhy Documentation, Release 2.19

Version: 2.19
Released: 2023-01-05
Please post all bugs and suggestions at Github (or contact me directly at quantiphy@nurdletech.com).

CONTENTS 1

https://github.com/KenKundert/quantiphy/issues
mailto://quantiphy@nurdletech.com

QuantiPhy Documentation, Release 2.19

2 CONTENTS

CHAPTER

ONE

WHAT?

QuantiPhy is a Python library that offers support for physical quantities. A quantity is the pairing of a number and a
unit of measure that indicates the amount of some measurable thing. QuantiPhy provides quantity objects that keep the
units with the number, making it easy to share them as single object. They subclass float and so can be used anywhere
a real number is appropriate.

3

QuantiPhy Documentation, Release 2.19

4 Chapter 1. What?

CHAPTER

TWO

WHY?

QuantiPhy naturally supports SI scale factors, which are widely used in science and engineering. SI scale factors make
it possible to cleanly represent both very large and very small quantities in a form that is both easy to read and write.
While generally better for humans, no general programming language provides direct support for reading or writing
quantities with SI scale factors, making it difficult to write numerical software that communicates effectively with
people. QuantiPhy addresses this deficiency, making it natural and simple to both input and output physical quantities.

5

QuantiPhy Documentation, Release 2.19

6 Chapter 2. Why?

CHAPTER

THREE

FEATURES

• Flexibly reads amounts with units and SI scale factors.

• Quantities subclass the float class and so can be used as conventional numbers.

• Generally includes the units when printing or converting to strings and by default employs SI scale factors.

• Flexible unit conversion and scaling is supported to make it easy to convert to or from any required form.

• Supports the binary scale factors (Ki, Mi, etc.) along with the normal SI scale factors (k, M, etc.).

• When a quantity is created from a string, the actual digits specified can be used in any output, eliminating any
loss of precision.

7

QuantiPhy Documentation, Release 2.19

8 Chapter 3. Features

CHAPTER

FOUR

ALTERNATIVES

There are a considerable number of Python packages dedicated to units and quantities (alternatives). However, as a
rule, they focus on the units rather than the scale factors. In particular, they build a system of units that you are expected
to use throughout your calculations. These packages demand a high level of commitment from their users and in turn
provide unit consistency and built-in unit conversions.

In contrast, QuantiPhy treats units basically as documentation. They are simply strings that are attached to quantities
largely so they can be presented to the user when the values are printed. As such, QuantiPhy is a light-weight package
that demands little from the user. It is used when inputting and outputting values, and then only when it provides value.
As a result, it provides a simplicity in use that cannot be matched by the other packages.

In addition, these alternative packages generally build their unit systems upon the SI base units, which tends to restrict
usage to physical quantities with static conversion factors. They are less suited to non-physical quantities or conversion
factors that change dynamically, such as with currencies. QuantiPhy gracefully handles all of these cases.

9

https://kdavies4.github.io/natu/seealso.html
https://en.wikipedia.org/wiki/SI_base_unit

QuantiPhy Documentation, Release 2.19

10 Chapter 4. Alternatives

CHAPTER

FIVE

QUICK START

Install with:

pip3 install quantiphy

Requires Python 3.6 or newer. If you using an earlier version of Python, install version 2.10 of QuantiPhy.

You use Quantity to convert numbers and units in various forms to quantities:

>>> from quantiphy import Quantity

>>> Tclk = Quantity(10e-9, 's')
>>> print(Tclk)
10 ns

>>> Fhy = Quantity('1420.405751786 MHz')
>>> print(Fhy)
1.4204 GHz

>>> Rsense = Quantity('1e-4')
>>> print(Rsense)
100 u

>>> cost = Quantity('$11_200_000')
>>> print(cost)
$11.2M

>>> Tboil = Quantity('212 °F', scale='°C')
>>> print(Tboil)
100 °C

Once you have a quantity, there are a variety of ways of accessing aspects of the quantity:

>>> Tclk.real
1e-08

>>> float(Fhy)
1420405751.786

>>> 2*cost
22400000.0

(continues on next page)

11

QuantiPhy Documentation, Release 2.19

(continued from previous page)

>>> Rsense.units
''

>>> str(Tboil)
'100 °C'

You can use the render method to flexibly convert the quantity to a string:

>>> Tclk.render()
'10 ns'

>>> Tclk.render(show_units=False)
'10n'

>>> Tclk.render(form='eng', show_units=False)
'10e-9'

>>> Fhy.render(prec=8)
'1.42040575 GHz'

>>> Tboil.render(scale='°F')
'212 °F'

The fixed method is a variant that specializes in rendering numbers without scale factors or exponents:

>>> cost.fixed(prec=2, show_commas=True, strip_zeros=False)
'$11,200,000.00'

You can use the string format method or the new format strings to flexibly incorporate quantity values into strings:

>>> f'{Fhy}'
'1.4204 GHz'

>>> f'{Fhy:.6}'
'1.420406 GHz'

>>> f'{Fhy:<15.6}'
'1.420406 GHz '

>>> f'{Fhy:>15.6}'
' 1.420406 GHz'

>>> f'{cost:#,.2P}'
'$11,200,000.00'

>>> f'Boiling point of water: {Tboil:s}'
'Boiling point of water: 100 °C'

>>> f'Boiling point of water: {Tboil:s°F}'
'Boiling point of water: 212 °F'

12 Chapter 5. Quick Start

CHAPTER

SIX

ISSUES

Please ask questions or report problems on Github.

13

https://github.com/KenKundert/quantiphy/issues

QuantiPhy Documentation, Release 2.19

14 Chapter 6. Issues

CHAPTER

SEVEN

DOCUMENTATION

7.1 Users’ Guide

7.1.1 Overview

QuantiPhy adds support for quantities to Python. Quantities are little more than a number combined with its units.
They are used to represent physical quantities. Your height and weight are both quantities, having both a value and
units, and both are important. For example, if I told you that Mariam’s weight was 8, you might assume pounds as
the unit of measure if you lived in the US and think Mariam was an infant, or you might assume stones as the units if
you live in the UK and assume that she was an adult, or you might assume kilograms if you lived anywhere else and
assume she was a small child. The units are very important, and in general it is always best to keep the unit of measure
with the number and present the complete value when working with quantities. To do otherwise invites confusion. Just
ask NASA. Readers often stumble on numbers without units as they mentally try to determine the units from context.
Quantity values should be treated in a manner similar to money, which is also a quantity. Monetary amounts are almost
always given with their units (a currency symbol).

Having a single object represent a quantity in a programming language is useful because it binds the units to the number
making it more likely that the units will be presented with the number. In addition, quantities from QuantiPhy provide
another important benefit. They naturally support the SI scale factors, which for those that are familiar with them are
much easier to read and write than the alternatives. The most common SI scale factors are:

T (1012) tera
G (109) giga
M (106) mega
k (103) kilo
m (10-3) milli
(10-6) micro
n (10-9) nano
p (10-12) pico
f (10-15) fempto
a (10-18) atto

Numbers with SI scale factors are commonly used in science and engineering to represent physical quantities because
it is easy to read and write numbers both large and small. For example, the distance between the atoms in a silicon
lattice is roughly 230 pm whereas the distance to the sun is about 150 Gm. Unfortunately, computers do not normally
use SI scale factors. Instead, they use E-notation. The two distances would be written as 2.3e-10 m and 1.5e+11 m.
Virtually all computer languages such as Python both read and write numbers in E-notation, but none naturally read or

15

http://www.cnn.com/TECH/space/9909/30/mars.metric.02/

QuantiPhy Documentation, Release 2.19

write numbers that use SI scale factors, even though SI is an international standard that has been in place for over 50
years and is widely used.

QuantiPhy is an attempt to address both of these deficiencies. It allows quantities to be represented with a single
object that allows the complete quantity to be easily read or written as a single unit. It also naturally supports SI scale
factors. As such, QuantiPhy allows computers to communicate more naturally with humans, particularly scientists and
engineers.

7.1.2 Quantities

QuantiPhy is a library that adds support to Python for both reading and writing numbers with SI scale factors and units.
The primary working construct for QuantiPhy is Quantity, which is a class whose objects hold the number and units
that are used to represent a physical quantity. For example, to create a quantity from a string you can use:

>>> from quantiphy import Quantity

>>> distance_to_sun = Quantity('150 Gm')
>>> distance_to_sun.real
150000000000.0

>>> distance_to_sun.units
'm'

>>> print(distance_to_sun)
150 Gm

Now distance_to_sun contains an object with two values, the number 150000000000.0 and the units ‘m’. The ‘G’ was
interpreted as the giga scale factor, which scales 150 by 109.

It is worth considering the alternative for a moment:

>>> d_sol = float('150000000000.0')
>>> print(f'{d_sol} m')
150000000000.0 m

Ignoring the difficulty in writing and reading the number, there is another important difference. The units are placed
in the print statement and not kept with the number. This makes the value ambiguous, it clutters the print statement,
and it introduces a vulnerability. When coming back and refactoring your code after some time has passed, you might
change the units of the number and forget to change the units in the print statement. This is particularly likely if the
number is defined far from where it is printed. The result is that erroneous results are printed and is always a risk when
two related pieces of information are specified far from one another. QuantiPhy addresses this issue by binding the
value and the units into one object.

Quantity is a subclass of float, and so distance_to_sun can be used just like any real number. For example, you can
convert the distance to miles using:

>>> distance_in_miles = distance_to_sun / 1609.34
>>> print(distance_in_miles)
93205910.49747102

When printed or converted to strings quantities naturally use SI scale factors. For example, you can clean up that
distance in miles using:

16 Chapter 7. Documentation

https://en.wikipedia.org/wiki/International_System_of_Units

QuantiPhy Documentation, Release 2.19

>>> distance_in_miles = Quantity(distance_to_sun / 1609.34, 'miles')
>>> print(distance_in_miles)
93.206 Mmiles

However, you need not explicitly do the conversion yourself. QuantiPhy provides many of the most common conver-
sions for you:

>>> distance_in_miles = Quantity(distance_to_sun, scale='miles')
>>> print(distance_in_miles)
93.206 Mmiles

Specifying Quantities

Normally, creating a Quantity takes one or two arguments. The first is taken to be the value, and the second, if given,
is taken to be the model, which is a source of default values.

The first argument: the value

The value may be given as a float, as a string, or as a quantity. The string may be the name of a known constant or it
may represent a number. If the string represents a number, it may be in floating point notation (1200.0), in E-notation
(ex: 1.2e+3), or use SI scale factors (1.2k). It may also include the units. And like Python in general, the numbers may
include underscores to make them easier to read (they are ignored). For example, any of the following ways can be
used to specify 1ns:

>>> period = Quantity(1e-9, 's')
>>> print(period)
1 ns

>>> period = Quantity('0.000_000_001 s')
>>> print(period)
1 ns

>>> period = Quantity('1e-9s')
>>> print(period)
1 ns

>>> period = Quantity('1ns')
>>> print(period)
1 ns

>>> period2 = Quantity(period)
>>> print(period2)
1 ns

If given as a string, the value may also be the name of a known constant:

>>> k = Quantity('k')
>>> q = Quantity('q')
>>> print(k, q, sep='\n')
13.806e-24 J/K
160.22e-21 C

7.1. Users’ Guide 17

QuantiPhy Documentation, Release 2.19

The following constants are pre-defined: h, , k, q, c, 0°C, 0, 0, and Z0. You may add your own constants.

Currency units ($€¥£₩) are a bit different than other units in that they are placed at the front of the quantity.

>>> print(Quantity('$11_200_000'))
$11.2M

>>> print(Quantity(11.2e6, '$'))
$11.2M

When using currency units, if the number has a sign, it should precede the units:

>>> print(Quantity('-$11_200_000'))
-$11.2M

>>> print(Quantity(-11.2e6, '$'))
-$11.2M

When given as a string, the number may use any of the following scale factors (though you can use the input_sf pref-
erence to prune this list if desired):

Q (1030) quetta
R (1027) ronna
Y (1024) yotta
Z (1021) zetta
E (1018) exa
P (1015) peta
T (1012) tera
G (109) giga
M (106) mega
k (103) kilo
_ (1)
c (10-2) centi
m (10-3) milli
u (10-6) micro (ASCII)
µ (10-6) micro (unicode micro)
(10-6) micro (unicode Greek mu)
n (10-9) nano
p (10-12) pico
f (10-15) fempto
a (10-18) atto
z (10-21) zepto
y (10-24) yocto
r (10-27) ronto
q (10-30) quecto

In addition, the units must start with a letter or any of these characters: °ÅΩM¢$€¥£₩s,%, and may be followed by those
characters (except %) or digits or any of these characters: -^/()·0123456789. Thus, any of the following would be
accepted as units: Ohms, V/A, J-s, m/s^2, H/(m-s), , %, m·s2, V/Hz.

18 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

When specifying the value as a string you may also give a name and description, and if you do they become available
as the attributes name and desc. This conversion is under the control of the assign_rec preference. The default version
of assign_rec accepts either ‘=’ or ‘:’ to separate the name from the value, and either ‘—’, ‘–’, ‘#’, or ‘//’ to separate
the value from the description if a description is given. Thus, by default QuantiPhy recognizes specifications of the
following forms:

<name> = <value>
<name> = <value> — <description>
<name> = <value> -- <description>
<name> = <value> # <description>
<name> = <value> // <description>
<name>: <value>
<name>: <value> — <description>
<name>: <value> -- <description>
<name>: <value> # <description>
<name>: <value> // <description>

For example:

>>> period = Quantity('Tclk = 10ns -- clock period')
>>> print(f'{period.name} = {period} # {period.desc}')
Tclk = 10 ns # clock period

The second argument: the model

If you only specify a real number for the value, then the units, name, and description do not get values. Even if given
as a string or quantity, the value may not contain these extra attributes. This is where the second argument, the model,
helps. It may be another quantity or it may be a string. Any attributes that are not provided by the first argument are
taken from the second if available. If the second argument is a string, it is split. If it contains one value, that value is
taken to be the units, if it contains two, those values are taken to be the name and units, and it it contains more than
two, the remaining values are taken to be the description. If the model is a quantity, only the units are inherited. For
example:

>>> out_period = Quantity(10*period, period)
>>> print(out_period)
100 ns

>>> freq = Quantity(100e6, 'Hz')
>>> print(freq)
100 MHz

>>> freq = Quantity(100e6, 'Fin Hz')
>>> print(f'{freq.name} = {freq}')
Fin = 100 MHz

>>> freq = Quantity(100e6, 'Fin Hz input frequency')
>>> print(f'{freq.name} = {freq} — {freq.desc}')
Fin = 100 MHz — input frequency

If the model contains units, those units are only used if the value does not have units. The same is true for the description.
For example:

7.1. Users’ Guide 19

QuantiPhy Documentation, Release 2.19

>>> h = Quantity('18in', 'm')
>>> print(h)
18 in

The remaining arguments

Any arguments beyond the first two must be given as named arguments.

If you need to override the name, units or the description given in either the value or the model, you can do so by
specifying them with corresponding named arguments. For example:

>>> out_period = Quantity(
... 10*period, period, name='output period',
... desc='period at output of frequency divider'
...)
>>> print(f'{out_period.name} = {out_period} — {out_period.desc}')
output period = 100 ns — period at output of frequency divider

In this the value is 10*period, which is a float and so has no name, units, or description attributes, but the model is
period that has all three attributes, but the name name and description, coming from a quantity, are ignored. Instead,
they are specified explicitly using the name and desc arguments.

Specifying binary as True allows you to use the binary scale factors. The binary scale factors are Ki, Mi, Gi, Ti, Pi, Ei,
Zi, and Yi. Unlike the normal scale factors, you cannot use a lower case k in Ki. Also, input_sf is ignored. The normal
recognizers are used if none of the binary scale factors are found.

>>> bytes = Quantity('1 KiB', binary=True)
>>> print(bytes)
1.024 kB

You can also specify scale and ignore_sf as named arguments. scale allows you to scale the value or convert it to
different units. It is described in a bit. ignore_sf indicates that any scale factors should be ignored. This is one way of
handling units whose name starts with a scale factor character. For example:

>>> x = Quantity('1m') # unitless value
>>> print(x, x.real, x.units, sep=', ')
1m, 0.001,

>>> l = Quantity('1m', ignore_sf=True) # length in meters
>>> print(l, l.real, l.units, sep=', ')
1 m, 1.0, m

>>> d = Quantity('1m', units = 'mile', ignore_sf=True) # distance in miles
>>> print(d, d.real, d.units, sep=', ')
1 mile, 1.0, mile

>>> t = Quantity('1m', units = 'min', ignore_sf=True) # duration in minutes
>>> print(t, t.real, t.units, sep=', ')
1 min, 1.0, min

Finally, you can also specify conversion parameters using params. These values are ignored by QuantiPhy except
that they are made available to any UnitConversion conversion functions as a way of implementing parametrized
conversions.

20 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

Quantity attributes

You can overwrite Quantity attributes to override the units, name, or description.

>>> out_period = Quantity(10*period)
>>> out_period.units = 's'
>>> out_period.name = 'output period'
>>> out_period.desc = 'period at output of frequency divider'
>>> print(f'{out_period.name} = {out_period} — {out_period.desc}')
output period = 100 ns — period at output of frequency divider

In addition, you can also override the preferences with attributes:

>>> out_period.spacer = ''
>>> print(out_period)
100ns

Scaling When Creating a Quantity

Quantities tend to be used primarily when reading and writing numbers, and less often when processing numbers.
Often data comes in an undesirable form. For example, imagine data that has been normalized to kilograms but the
numbers themselves have neither units or scale factors. QuantiPhy allows you to scale the number and assign the units
when creating the quantity:

>>> mass = Quantity('2.529', scale=1000, units='g')
>>> print(mass)
2.529 kg

In this case the value is given in kilograms, and is converted to the base units of grams by multiplying the given value
by 1000. You always want to convert to base units (units with no scale factor) when creating a Quantity. This can
also be expressed as follows:

>>> mass = Quantity('2.529', scale=(1000, 'g'))
>>> print(mass)
2.529 kg

You can also specify a function to do the conversion, which is helpful when the conversion is not linear:

>>> def from_dB(value, units=''):
... return 10**(value/20), value.units[2:]

>>> Quantity('-100 dBV', scale=from_dB)
Quantity('10 uV')

Note: Since version 2.18 the first argument, in this case value, is guaranteed to be a Quantity that contains both the
units and any parameters needed during the conversion. As such, the second argument, units, is not longer needed and
will eventually be removed.

The conversion can also often occur if you simply state the units you wish the quantity to have:

7.1. Users’ Guide 21

QuantiPhy Documentation, Release 2.19

>>> Tboil = Quantity('212 °F', scale='K')
>>> print(Tboil)
373.15 K

or if you employ a subclass of Quantity that has units:

>>> class Kelvin(Quantity):
... units = 'K'

>>> Tboil = Kelvin('212 °F')
>>> print(Tboil)
373.15 K

This assumes that the initial value is specified with units. If not, you need to provide them for these mechanisms to
work.

>>> Tboil = Quantity('212', '°F', scale='K')
>>> print(Tboil)
373.15 K

To do this conversion, QuantiPhy examines the given units (°F) and the desired units (K) and chooses the appropriate
converter. No scaling is done if the given units are equivalent as the desired units. Thus you can use the scaling
mechanism to convert a collection of data with mixed units to values with consistent units. For example:

>>> weights = '''
... 240 lbs
... 230 lb
... 100 kg
... 210
... '''.strip().split('\n')
>>> for weight in weights:
... w = Quantity(weight, 'lb', scale='lb')
... print(w)
240 lb
230 lb
220.46 lb
210 lb

To perform these conversions QuantiPhy uses predefined relationships between pairs of units. These relationships are
defined using Unit Converters.

When using unit conversions it is important to only convert to units without scale factors when creating a quantity. For
example, it is better to convert to ‘g’ rather than ‘kg’. Otherwise, if the desired units used when creating a quantity
includes a scale factor, it is easy to end up with two scale factors when converting the number to a string (ex: 1 mkg or
one milli-kilo-gram).

Here is another example that uses quantity scaling. Imagine that a table is being read that gives temperature versus
time, but the temperature is given in °F and the time is given in minutes and neither are given with units. Assume
that for the purpose of later analysis it is desirable for the values be converted to the more natural units of Kelvin and
seconds:

>>> rawdata = '0 450, 10 400, 20 360'
>>> data = []
>>> for pair in rawdata.split(','):

(continues on next page)

22 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

(continued from previous page)

... time, temp = pair.split()

... time = Quantity(time, 'min', scale='s')

... temp = Quantity(temp, '°F', scale='K')

... data += [(time, temp)]

>>> for time, temp in data:
... print(f'{time:9q} {temp:9q}')

0 s 505.37 K
600 s 477.59 K
1.2 ks 455.37 K

Creating a Quantity by Scaling an Existing Quantity

The Quantity.scale() method scales the value of a quantity and then uses the new value to create a new Quantity.
For example:

>>> import math

>>> h_line = Quantity('1420.405751786 MHz')
>>> sagan = h_line.scale(math.pi)
>>> sagan2 = sagan.scale(2)
>>> print(sagan, sagan2, sep='\n')
4.4623 GHz
8.9247 GHz

>>> print(repr(h_line))
Quantity('1.420405751786 GHz')

>>> print(repr(sagan))
Quantity('4.462336274928 GHz')

Any value that can be passed to the scale argument for Quantity or Quantity.render() can be passed to the scale
method. Specifically, the following types are accepted:

float or Quantity
The argument scales the underlying value (a new quantity is returned whose value equals the underlying quantity
multiplied by scale). In this case the scale is assumed unitless (any units are ignored) and so the units of the new
quantity are the same as those of the underlying quantity.

tuple
The argument consists of two values. Tthe first value, a float, is treated as a scale factor. The the second value,
a string, is taken to be the units of the new quantity.

function
The function takes two arguments, the value to be scaled and its units. The value is guaranteed to be a Quantity
that includes the units, so the second argument is redundant and will eventually be deprecated. The function
returns two values, the value and units of the new value.

string
The argument is taken to the be desired units. This value along with the units of the underlying quantity are used
to select a known unit conversion, which is applied to create the new value.

7.1. Users’ Guide 23

QuantiPhy Documentation, Release 2.19

>>> Tboil_C = Tboil.scale('C')
>>> print(Tboil_C)
100 C

Creating a Quantity by Adding to an Existing Quantity

The Quantity.add() method adds a contribution to the value of a quantity and then uses the sum to create a new
Quantity. For example:

>>> import math

>>> total = Quantity(0, '$')
>>> for contribution in ['1.23', '4.56', '7.89']:
... total = total.add(contribution)
>>> print(total)
$13.68

The argument to add can be a quantity, a real number, or a string.

When adding quantities, the units of the quantity should match. You can enforce this by adding check_units=True. If
the dimension of your quantities match but not the units, you can often use Quantity.scale() to get the units right:

>>> m1 = Quantity('1kg')
>>> m2 = Quantity('1lb')
>>> m3 = m1.add(m2.scale('g'), check_units=True)
>>> print(m3)
1.4536 kg

Accessing Quantity Values

There are a variety of ways of accessing the value of a quantity. If you are just interested in its numeric value, you
access it with:

>>> h_line.real
1420405751.786

>>> float(h_line)
1420405751.786

Or you can simply use a quantity in the same way that you would use any real number, meaning that you can use it in
expressions and it evaluates to its numeric value:

>>> second_sagan_freq = 2 * math.pi * h_line
>>> print(second_sagan_freq)
8924672549.85517

>>> sagan2 = Quantity(second_sagan_freq, h_line)
>>> print(sagan2)
8.9247 GHz

>>> type(h_line)
(continues on next page)

24 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

(continued from previous page)

<class 'quantiphy.quantiphy.Quantity'>

>>> type(second_sagan_freq)
<class 'float'>

>>> type(sagan2)
<class 'quantiphy.quantiphy.Quantity'>

Notice that when performing arithmetic operations on quantities the units are completely ignored and do not propagate
in any way to the newly computed result.

If you are interested in the units of a quantity, you can use:

>>> h_line.units
'Hz'

Or you can access both the value and the units, either as a tuple or in a string:

>>> h_line.as_tuple()
(1420405751.786, 'Hz')

>>> str(h_line)
'1.4204 GHz'

SI scale factors are used by default when converting numbers to strings. The following scale factors could be used:
QRYZEPTGMkc%munpfazyrq, though by default % is treated as a unit rather than a scale factor. You need to activate %
in input_sf for it to be treated as a scale factor.

Only the scale factors listed in the output_sf preference are actually used, and by default that is set to TGMkmunpfa,
which avoids the more uncommon scale factors. You can set output_sf to Quantity.all_sf to output all known scale
factors except c or %, which are never used in output.

The Quantity.render() method allows you to control the process of converting a quantity to a string. For example:

>>> h_line.render()
'1.4204 GHz'

>>> h_line.render(form='eng')
'1.4204e9 Hz'

>>> h_line.render(show_units=False)
'1.4204G'

>>> h_line.render(form='eng', show_units=False)
'1.4204e9'

>>> h_line.render(prec=6)
'1.420406 GHz'

>>> h_line.render(form='fixed', prec=2)
'1420405751.79 Hz'

>>> bytes.render(form='binary')
'1 KiB'

(continues on next page)

7.1. Users’ Guide 25

QuantiPhy Documentation, Release 2.19

(continued from previous page)

>>> k.render(negligible=1e-12)
'0 J/K'

show_label allows you to display the name and description of the quantity when rendering. If show_label is False,
the quantity is not labeled with the name or description. Otherwise the quantity is labeled under the control of the
show_label value and the show_desc, label_fmt and label_fmt_full preferences (described further in Preferences and
Quantity.set_prefs()). If show_label is ‘a’ (for abbreviated) or if the quantity has no description, label_fmt is
used to label the quantity with its name. If show_label is ‘f’ (for full), label_fmt_full is used to label the quantity with
its name and description. Otherwise label_fmt_full is used if show_desc is True and label_fmt otherwise.

>>> freq.render(show_label=True)
'Fin = 100 MHz'

>>> freq.render(show_label='f')
'Fin = 100 MHz — input frequency'

>>> Quantity.set_prefs(show_desc=True)
>>> freq.render(show_label=True)
'Fin = 100 MHz — input frequency'

>>> freq.render(show_label='a')
'Fin = 100 MHz'

You can also access the full precision of the quantity:

>>> h_line.render(prec='full')
'1.420405751786 GHz'

>>> h_line.render(form='eng', prec='full')
'1.420405751786e9 Hz'

Full precision implies whatever precision was used when specifying the quantity if it was specified as a string and if
the keep_components preference is True. Otherwise a fixed number of digits, specified in the full_prec preference, is
used (default=12). Generally one uses ‘full’ when generating output that is intended to be read by a machine without
loss of precision.

An alternative to render is Quantity.fixed(). It converts the quantity to a string in fixed-point format:

>>> total = Quantity('$11.2M')
>>> print(total.fixed(prec=2, show_commas=True, strip_zeros=False))
$11,200,000.00

You can also use Quantity.render() to produce a fixed format, but it does not support all of the options available
with fixed:

>>> print(total.render(form='fixed', prec=2))
$11200000

Another alternative to render is Quantity.binary(). It converts the quantity to a string that uses binary scale factors:

>>> mem = Quantity(17_179_869_184, 'B', name='physical memory')
>>> print(mem.binary())
16 GiB

26 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

Alternatively you can also use render to render strings with binary prefixes:

>>> print(mem.render(form='binary'))
16 GiB

Scaling When Rendering a Quantity

Once it comes time to output quantities from your program, you may again may be constrained in the way the numbers
must be presented. QuantiPhy also allows you to scale the values as you render them to strings. In this case, the value
of the quantity itself remains unchanged. For example, imagine having a quantity in grams and wanting to present it in
either kilograms or in pounds:

>>> m = Quantity('2529 g')
>>> print("mass (kg): {}".format(m.render(show_units=False, scale=0.001)))
mass (kg): 2.529

>>> print(m.render(scale=(0.0022046, 'lb'), form='fixed'))
5.5754 lb

As before, functions can also be used to do the conversion. Here is an example where that comes in handy: a logarithmic
conversion to dBV is performed.

>>> import math
>>> def to_dB(value, units=''):
... return 20*math.log10(value), 'dB'+value.units

>>> T = Quantity('100mV')
>>> print(T.render(scale=to_dB))
-20 dBV

Note: Since version 2.18 the first argument, in this case value, is guaranteed to be a Quantity that contains both the
units and any parameters needed during the conversion. As such, the second argument, units, is not longer needed and
will eventually be removed.

Finally, you can also use either the built-in converters or the converters you created to do the conversion simply based
on the units:

>>> print(m.render(scale='lb'))
5.5755 lb

In an earlier example the units of time and temperature data were converted to normal SI units. Presumably this makes
processing easier. Now, when producing the output, the units can be converted back to the original units if desired:

>>> for time, temp in data:
... print("{:<7} {}".format(time.render(scale='min'), temp.render(scale='°F')))
0 min 450 °F
10 min 400 °F
20 min 360 °F

7.1. Users’ Guide 27

QuantiPhy Documentation, Release 2.19

String Formatting

Quantities can be passed into the string format method:

>>> print('{}'.format(h_line))
1.4204 GHz

>>> print('{:s}'.format(h_line))
1.4204 GHz

In these cases the preferences for SI scale factors, units, and precision are honored.

Specifying the format

You can override the precision as part of the format specification

>>> print('{:.6}'.format(h_line))
1.420406 GHz

You can also specify the width and alignment. Quantiphy follows the Python convention of right justifying numbers
by default.

>>> print('«{:16.6}»'.format(h_line))
« 1.420406 GHz»

>>> print('«{:<16.6}»'.format(h_line))
«1.420406 GHz »

>>> print('«{:>16.6}»'.format(h_line))
« 1.420406 GHz»

>>> print('«{:^16.6}»'.format(h_line))
« 1.420406 GHz »

The general form of the format specifiers supported by quantities is:

format_spec ::= [align][#][width][,][.precision][type][scale]

align specifies the alignment using one of the following characters:

Align Meaning
> Right justification.
< Left justification.
^ Center justification.

The hash (#) is a literal hash that when present indicates that trailing zeros and radix should not be stripped from the
fractional part of the number.

width is a literal integer that specifies the minimum width of the string.

The comma (,) is a literal comma that when present indicates that commas should be added to the whole part of the
mantissa, every three digits.

precision is a literal integer that specifies the precision.

28 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

And finally, type specifies which form should be used when formatting the value. The choices include:

Type Meaning
None Use default formatting options.
s Use default formatting options.
q Format using SI scale factors and show the units.
r Format using SI scale factors but do not show the units.
p Format using fixed-point notation and show the units.
e Format using exponent notation but do not show the units.
f Format using fixed-point notation but do not show the units.
b Format using binary prefixes while showing the units.
g Format using fixed-point or exponential notation, whichever is shorter, but do not show the units.
u Only include the units.
n Only include the name.
d Only include the description.

You can capitalize any of the format characters that output the value of the quantity (any of ‘sqrpefg’, but not ‘und’).
If you do, the label will also be included.

These format specifiers are generally included in format strings. However, in addition, Quantitphy provides the
Quantity.format() method that converts a quantity to a string based on a naked format string. For example:

>>> print(h_line.format('.6q'))
1.420406 GHz

Any format specification that is not recognized by QuantiPhy is simply passed on to the underlying float. For example:

>>> print(f'TOTAL: {total:+#,.2f}')
TOTAL: +11,200,000.00

>>> with Quantity.prefs(input_sf='%'):
... growth = Quantity('23.7%')
>>> print(f'growth = {growth:.0%}')
growth = 24%

Examples

Here is an example of these format types:

>>> h_line = Quantity('f = 1420.405751786 MHz — hydrogen line')
>>> for f in 'sSpPqQrRbBeEfFgGund':
... print(f + ':', h_line.format(f))
s: 1.4204 GHz
S: f = 1.4204 GHz — hydrogen line
p: 1420405751.786 Hz
P: f = 1420405751.786 Hz — hydrogen line
q: 1.4204 GHz
Q: f = 1.4204 GHz — hydrogen line
r: 1.4204G
R: f = 1.4204G — hydrogen line
b: 1.3229 GiHz
B: f = 1.3229 GiHz — hydrogen line

(continues on next page)

7.1. Users’ Guide 29

QuantiPhy Documentation, Release 2.19

(continued from previous page)

e: 1.4204e+09
E: f = 1.4204e+09 — hydrogen line
f: 1420405751.786
F: f = 1420405751.786 — hydrogen line
g: 1.4204e+09
G: f = 1.4204e+09 — hydrogen line
u: Hz
n: f
d: hydrogen line

The ‘q’ type specifier is used to explicitly indicate that both the number and the units are desired and that SI scale
factors should be used, regardless of the current preferences.

>>> print('{:.6q}'.format(h_line))
1.420406 GHz

Alternately, ‘r’ can be used to indicate just the number represented using SI scale factors is desired, and the units should
not be included.

>>> print('{:r}'.format(h_line))
1.4204G

The opposite can be achieved using ‘p’, which includes the units but not use SI scale factors:

>>> print('{:p}'.format(h_line))
1420405751.786 Hz

The ‘p’ format is often used with ‘#’ to format currency values:

>>> print('{:#.2p}'.format(total))
$11200000.00

>>> print('{:#,.2p}'.format(total))
$11,200,000.00

The ‘b’ format is used to render number with binary scale factors:

>>> print('{:b}'.format(mem))
16 GiB

>>> print('{:B}'.format(mem))
physical memory = 16 GiB

You can also use the traditional floating point format type specifiers:

>>> print('{:f}'.format(h_line))
1420405751.786

>>> print('{:e}'.format(h_line))
1.4204e+09

>>> print('{:g}'.format(h_line))
1.4204e+09

30 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

Use ‘u’ to indicate that only the units are desired:

>>> print('{:u}'.format(h_line))
Hz

Access the name or description of the quantity using ‘n’ and ‘d’.

>>> print('{:n}'.format(freq))
Fin

>>> print('{:d}'.format(freq))
input frequency

Using the upper case versions of the format codes that print the numerical value of the quantity (SQRFEG) indicates
that the quantity should be labeled with its name and perhaps its description (as if the show_label preference were set).
They are under the control of the show_desc, label_fmt and label_fmt_full preferences (described further in Preferences
and Quantity.set_prefs()).

If show_desc is False or the quantity does not have a description, then label_fmt is used to add the labeling.

>>> Quantity.set_prefs(show_desc=False)
>>> trise = Quantity('10ns', name='trise')

>>> print('{:S}'.format(trise))
trise = 10 ns

>>> print('{:Q}'.format(trise))
trise = 10 ns

>>> print('{:R}'.format(trise))
trise = 10n

>>> print('{:F}'.format(trise))
trise = 0

>>> print('{:E}'.format(trise))
trise = 1e-08

>>> print('{:G}'.format(trise))
trise = 1e-08

>>> print('{0:n} = {0:q} ({0:d})'.format(freq))
Fin = 100 MHz (input frequency)

>>> print('{:S}'.format(freq))
Fin = 100 MHz

If show_desc is True and the quantity has a description, then label_fmt_full is used if the quantity has a description.

>>> Quantity.set_prefs(show_desc=True)

>>> print('{:S}'.format(trise))
trise = 10 ns

(continues on next page)

7.1. Users’ Guide 31

QuantiPhy Documentation, Release 2.19

(continued from previous page)

>>> print('{:S}'.format(freq))
Fin = 100 MHz — input frequency

Scaling while formatting

Finally, you can add units after the format code, which causes the number to be scaled to those units if the transformation
represents a known unit conversion. In this case the format code must be specified (use ‘s’ rather than ‘’).

>>> Tboil = Quantity('Boiling point = 100 °C')
>>> print('{:S°F}'.format(Tboil))
Boiling point = 212 °F

>>> eff_channel_length = Quantity('leff = 14nm')
>>> print(f'{eff_channel_length:SÅ}')
leff = 140 Å

>>> print(f'{mem:bb}')
128 Gib

This feature can be used to simplify the conversion of the time and temperature information back into the original units:

>>> for time, temp in data:
... print(f'{time:<7smin} {temp:s°F}')
0 min 450 °F
10 min 400 °F
20 min 360 °F

You can add a scale factor to the units, in which case the number will be scaled accordingly:

>>> for p in range(1, 5):
... bytes = Quantity(256**p, 'B')
... print(f"An {8*p} bit bus addresses {bytes:,pkB}.")
An 8 bit bus addresses 0.256 kB.
An 16 bit bus addresses 65.536 kB.
An 24 bit bus addresses 16,777.216 kB.
An 32 bit bus addresses 4,294,967.296 kB.

Generally you should only specify base units when using a format that renders with scale factors as otherwise you could
see two scale factors on the same number. For example, if the q format was used in the above example, the last address
space would be rendered as 4.295 MkB.

7.1.3 Ambiguity of Scale Factors and Units

By default, QuantiPhy treats both the scale factor and the units as being optional. With the scale factor being optional,
the meaning of some specifications can be ambiguous. For example, ‘1m’ may represent 1 milli or it may represent 1
meter. Similarly, ‘1meter’ my represent 1 meter or 1 milli-eter. In this case QuantiPhy gives preference to the scale
factor, so ‘1m’ normally converts to 1e-3. To allow you to avoid this ambiguity, QuantiPhy accepts ‘_’ as the unity
scale factor. In this way ‘1_m’ is unambiguously 1 meter. You can instruct QuantiPhy to output ‘_’ as the unity scale
factor by specifying the unity_sf argument to Quantity.set_prefs():

32 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

>>> Quantity.set_prefs(unity_sf='_', spacer='')
>>> l = Quantity(1, 'm')
>>> print(l)
1_m

This is often a good way to go if you are outputting numbers intended to be read unambiguously or by both people and
machines.

If you need to interpret numbers that have units and are known not to have scale factors, you can specify the ignore_sf
preference:

>>> Quantity.set_prefs(ignore_sf=True, unity_sf='', spacer=' ')
>>> l = Quantity('1000m')
>>> l.as_tuple()
(1000.0, 'm')

>>> print(l)
1 km

>>> Quantity.set_prefs(ignore_sf=False)
>>> l = Quantity('1000m')
>>> l.as_tuple()
(1.0, '')

If there are scale factors that you know you will never use, you can instruct QuantiPhy to interpret a specific set and
ignore the rest using the input_sf preference.

>>> Quantity.set_prefs(input_sf='GMk')
>>> l = Quantity('1000m')
>>> l.as_tuple()
(1000.0, 'm')

>>> print(l)
1 km

Specifying input_sf=None causes QuantiPhy to again accept all known scale factors.

>>> Quantity.set_prefs(input_sf=None)
>>> l = Quantity('1000m')
>>> l.as_tuple()
(1.0, '')

Alternatively, you can specify the units you wish to use whose leading character is a scale factor. Once known, these
units no longer confuse QuantiPhy. These units can be specified as a list or as a string. If specified as a string the string
is split to form the list. Specifying the known units replaces any existing known units.

>>> d1 = Quantity('1 au') # astronomical unit
>>> d2 = Quantity('1000 pc') # parsec
>>> p = Quantity('138 Pa') # Pascal
>>> print(d1.render(form='eng'), d2, p, sep='\n')
1e-18 u
1 nc
138e15 a

(continues on next page)

7.1. Users’ Guide 33

QuantiPhy Documentation, Release 2.19

(continued from previous page)

>>> Quantity.set_prefs(known_units='au pc Pa')
>>> d1 = Quantity('1 au')
>>> d2 = Quantity('1000 pc')
>>> p = Quantity('138 Pa')
>>> print(d1.render(form='eng'), d2, p, sep='\n')
1 au
1 kpc
138 Pa

This same issue comes up for temperature quantities when given in Kelvin. There are again several ways to handle this.
First you can specify the acceptable input scale factors leaving out ‘K’, ex. input_sf = ‘TGMkmunpfa’, or:

>>> Quantity.set_prefs(input_sf=Quantity.get_pref('input_sf').replace('K', ''))
>>> temp = Quantity('100K')
>>> print(temp.as_tuple())
(100.0, 'K')

>>> temp = Quantity('100k')
>>> print(temp.as_tuple())
(100000.0, '')

>>> temp = Quantity('100k', 'K')
>>> print(temp.as_tuple())
(100000.0, 'K')

Alternatively, you can specify ‘K’ as one of the known units. Finally, if you know exactly when you will be converting
a temperature to a quantity, you can specify ignore_sf for that specific conversion. The effect is the same either way,
‘K’ is interpreted as a unit rather than a scale factor.

The same techniques would be used to handle volumes in cubic centimeters:

>>> vol = Quantity('10 cc')
>>> print(vol.as_tuple())
(0.1, 'c')

>>> with Quantity.prefs(input_sf=Quantity.get_pref('input_sf').replace('c', '')):
... vol = Quantity('10 cc')
>>> print(vol.as_tuple())
(10.0, 'cc')

>>> with Quantity.prefs(known_units='cc'):
... vol = Quantity('100 cc')
>>> print(vol.as_tuple())
(100.0, 'cc')

Percentages are a special case. QuantiPhy can treat the % character as either a unit or a scale factor (0.01). By default
it is treated as a unit:

>>> tolerance = Quantity('10%')
>>> change = Quantity('10%')
>>> print(tolerance.as_tuple(), change.as_tuple(),)
(10.0, '%') (10.0, '%')

34 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

If, however, you add % as a known scale factor, it then acts as a scale factor.

>>> with Quantity.prefs(input_sf = Quantity.get_pref('input_sf') + '%'):
... tolerance = Quantity('10%')
... change = Quantity('10%')
... print(tolerance.as_tuple(), change.as_tuple(),)
(0.1, '') (0.1, '')

In general you cannot simply add to the list of known scale factors. The % character is an exception as QuantiPhy
knows about it but disables it by default.

7.1.4 Subclassing Quantity

You can subclass Quantity to make it easier to create a particular type of quantity, or to create quantities with particular
qualities. The following example demonstrates both. It creates a subclass for dollars that both sets the units and the
display preferences. Any Quantity preference (see Quantity.set_prefs()) may be given as an attribute. Display
preferences for currencies are often very different from what you would want from physical quantities:

>>> class Dollars(Quantity):
... units = '$'
... form = 'fixed'
... prec = 2
... strip_zeros = False
... show_commas = True

>>> cost = Dollars(100_000)
>>> print(cost)
$100,000.00

This example creates a special class for bytes.

>>> class Bytes(Quantity):
... units = 'B'
... form = 'binary'
... accept_binary = True

>>> memory = Bytes('64KiB')
>>> print(memory)
64 KiB

Here, two classes are created for voltage and current, each with their own perspective on what values should be con-
sidered negligible.

>>> class Voltage(Quantity):
... units = 'V'
... negligible = 1e-6

>>> class Current(Quantity):
... units = 'A'
... negligible = 1e-12

>>> Vout = Voltage(1e-9)
>>> Ileak = Current(1e-9)

(continues on next page)

7.1. Users’ Guide 35

QuantiPhy Documentation, Release 2.19

(continued from previous page)

>>> print(f"Vout = {Vout}, Ileak = {Ileak}.")
Vout = 0 V, Ileak = 1 nA.

Lastly, this example creates a special class for temperatures. It disallows use of ‘K’ as a scale factor to avoid confusion
with Kelvin units.

>>> class Temperature(Quantity):
... units = 'K'
... input_sf = Quantity.get_pref('input_sf').replace('K', '')

>>> Tcore = Temperature('15M')
>>> Tphoto = Temperature('5.3k')
>>> Tcmb = Temperature('3.18')
>>> print(Tcore, Tphoto, Tcmb, sep='\n')
15 MK
5.3 kK
3.18 K

Scaling with Subclasses

Special scaling rules come into play if the units attribute is present on a Quantity class. In such a case you can specify
the class as an argument to a scaling operation. For example:

>>> class Grams(Quantity):
... units = 'g'

>>> class Pounds(Quantity):
... units = 'lbs'

>>> wt = Pounds(10)
>>> mass = wt.scale(Grams)

>>> print(mass, repr(mass), sep='\n')
4.5359 kg
Grams('4.5359237 kg')

>>> print(wt.render(scale=Grams))
4.5359 kg

Notice that use of Grams with the Quantity.scale() method resulted in a return value of type Grams. This does
not naturally occur if you scale using scale factors or units:

>>> mass = wt.scale('g')
>>> print(mass, repr(mass), sep='\n')
4.5359 kg
Quantity('4.5359237 kg')

In this case you can replicate the previous behavior by adding Grams as an argument to the conversion:

>>> mass = wt.scale('g', cls=Grams)
>>> print(mass, repr(mass), sep='\n')

(continues on next page)

36 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

(continued from previous page)

4.5359 kg
Grams('4.5359237 kg')

Scaling Upon Subclass Creation

When creating quantities using a subclass, a conversion automatically occurs if both the subclass and the value have
units. The conversion converts the given units to those expected by the class. For example:

>>> class Seconds(Quantity):
... units = 's'

>>> ttl = Seconds('2 days')
>>> print(ttl)
172.8 ks

If you also specify a scale argument, that conversion occurs before the result is converted to the units of the class:

>>> class Days(Quantity):
... units = 'days'

>>> expires = Days('48 hr', scale='s')
>>> print(expires)
2 days

Adding the scale argument is handy because QuantiPhy does not provide a built-in direct conversion between hours
and days. In this case two conversions occur, from hours to seconds, as a result of the scale request, and from seconds
to days, to convert to the units expected by the class.

7.1.5 Unit Converters

The UnitConversion class defines conversion relationships between pairs of units, which saves you the trouble of
having to remember the actual conversion factors. Once defined, a relationship is available anywhere in QuantiPhy
where a unit conversion can occur. For example:

>>> from quantiphy import Quantity, UnitConversion

>>> m_smoot = UnitConversion('m', 'smoots', 1.7)

>>> length_of_harvard_bridge = Quantity('364.4 smoots')
>>> print(length_of_harvard_bridge.render(scale='m', prec=1))
620 m

This is a linear conversion. This unit conversion says, when converting smoots to m, multiply by 1.7. When going the
other way, divide by 1.7.

You can also specify units with a scale factor when scaling a number. For example, you can explicitly direct that the
length of the bridge should be output in kilometers using:

>>> print(f"{length_of_harvard_bridge:.2pkm}")
0.62 km

7.1. Users’ Guide 37

https://en.wikipedia.org/wiki/Smoot

QuantiPhy Documentation, Release 2.19

QuantiPhy* provides a collection of built-in converters for common units:

base units related units
C °C K, F °F, R °R
K C °C, F °F, R °R
m micron, Å angstrom, mi mile miles, ft feet, in inch inches
g oz, lb lbs
s sec second seconds, min minute minutes, hour hours hr, day days
b B
BTC btc sat sats s,

The conversions can occur between a pair of units, one from the first column and one from the second. They do not
occur when both units are only in the second column. So for example, it is possible to convert between g and lbs, but
not between oz and lb. However, if you notice, the units in the second column are grouped using commas. A set of
units within commas are considered equivalent, meaning that there are multiple names for the same underlying unit.
For example, in, inch, and inches are all considered equivalent. You can convert between equivalent units even though
both are found in either the first or second columns.

UnitConversion supports linear conversions (slope only), affine conversions (slope and intercept) nonlinear con-
versions, parameterized conversions (conversions with extra parameters) and dynamic conversions (convertions that
change over time). Here are some examples:

>>> def from_dB(dB):
... return 10**(dB/20)

>>> def to_dB(v):
... return 20*math.log10(v)

>>> m_inch = UnitConversion('m', 'in inch inches', 0.0254) # linear
>>> C_F = UnitConversion('C °C', 'F °F', 5/9, -32*5/9) # affine
>>> _dB = UnitConversion('', 'dB', from_dB, to_dB) # nonlinear

>>> print(Quantity('12 in', scale='m'))
304.8 mm

>>> print(Quantity('100 °C', scale='°F'))
212 °F

>>> print(Quantity('100', scale='dB'))
40 dB

One thing to be aware of with affine conversions like °C to °F: they are suitable for converting absolute temperatures
but not temperature differences. One way around this is to add another conversion specifically for differences:

>>> dC_F = UnitConversion('C °C', 'F °F', 5/9)
>>> print(Quantity('100 °C', scale='°F'))
180 °F

Notice that the scaling functions used here differ from those described previously in that they only take one argument
and return one value. The units are not included in either then argument list or the return value.

Also notice that the return value of UnitConversion was not used in the examples above. It is enough to simply create
the UnitConversion for it to be available to Quantity. So, it is normal to not capture the return value of UnitConversion.
However, there are a few things you can do with the return value. First you can convert it to a string to get a description
of the relationship. This is largely used as a sanity check:

38 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

>>> print(C_F)
C ← 0.5555555555555556*F + -17.778

In addition, you can use it to directly perform conversions:

>>> temp_F = C_F.convert(0, '°C', '°F')
>>> print(temp_F)
32 °F

>>> temp_C = C_F.convert(32, '°F', '°C')
>>> print(temp_C)
0 °C

Finally, you can pre-define multiple conversions between the same pairs of units, and activate the one you currently
wish to use. This can be useful with conversions that change over time. For example

>>> btc_usd_2017_peak = UnitConversion('USD $', 'BTC ', 19870.62)
>>> btc_usd_2021_peak = UnitConversion('USD $', 'BTC ', 68978.64)

>>> print(Quantity("5 BTC", scale='$'))
$344.89k

>>> btc_usd_2017_peak.activate()
>>> print(Quantity("5 BTC", scale='$'))
$99.353k

>>> btc_usd_2021_peak.activate()
>>> print(Quantity("5 BTC", scale='$'))
$344.89k

Defining a conversion between the same pair of units acts to conceal an earlier definition, but the previous definition
can be restored using activate().

Parametrized Unit Converters

Occasionally you might encounter conversion that requires one or more extra parameters. For example, to convert
between concentration and molarity in solutions requires the atomic weight of the solute. These extra parameters can
be passed in when creating a quantity and then are available to the desired conversion. For example:

>> @UnitConversion.fixture
>> def from_molarity(M, mw):
.. return M * mw

>> @UnitConversion.fixture
>> def to_molarity(g_L, mw):
.. return g_L / mw

>> mol_conv = UnitConversion('g/L', 'M', from_molarity, to_molarity)

>> KCl_conc = Quantity('1.2 mg/L', params=74.55)
>> print(f"{KCl_conc:qM}")
16.097 uM

7.1. Users’ Guide 39

QuantiPhy Documentation, Release 2.19

For more information on defining unit converters, see UnitConversion. For more information on parametrized unit
converters, see UnitConversion.fixture(). For example of real-time dynamic conversions, see Dynamic Unit
Conversions.

7.1.6 Scale Factor Conversions

In the preceding sections it was shown that you can use the scaling features of QuantiPhy to convert between units using
only the name of the units. When doing so the relationship between the units must be known, and UnitConversion
is used to specify the relationship. However, it is also possible to perform simple scale factor conversions without
changing the units. This case is specified in a manner similar to a unit conversion, but in this case both the from-units
and the to-units are the same, and it is not necessary to define a UnitConversion. For example, imagine printing a
table of bit-rates where the rates are held in bps but are expected to be displayed in Mbps:

>>> rates = [155.52e6, 622.08e6, 2.48832e9, 9.95328e9, 39.81312e9]
>>> rates = [Quantity(r, 'bps') for r in rates]
>>> for r in rates:
... print(f"{r:>14,.2pMbps}")

155.52 Mbps
622.08 Mbps

2,488.32 Mbps
9,953.28 Mbps
39,813.12 Mbps

You can also do the inverse; convert simple numbers given in Mbps to quantities in bps:

>>> rates = [155.52, 622.08, 2488.32, 9953.28, 39813.12]
>>> rates = [Quantity(r, 'Mbps', scale='bps') for r in rates]
>>> for r in rates:
... print(r.as_tuple())
(155520000.0, 'bps')
(622080000.0, 'bps')
(2488320000.0, 'bps')
(9953280000.0, 'bps')
(39813120000.0, 'bps')

7.1.7 Quantity Functions

It is sometimes handy to convert directly to and from real values rather than converting to Quantity objects and holding
them. Generally it is preferred to key a value and its units together, but as said before, the primary use of QuantiPhy
is inputting and outputting numbers. If you are not inputting and outputting the same numbers, may not be worth even
the small overhead of a Quantity object. In that case, you can use quantity functions to convert directly to and from
real values. If you wish to use QuantiPhy to convert to a simple float, use as_real(). It takes the same arguments as
a Quantity, but returns a float rather than a Quantity:

>>> from quantiphy import as_real
>>> print(as_real('10 mL'))
0.01

It is common to use Scale Factor Conversions to scale the result to the desired size:

>>> print(as_real('10 mL', scale='uL'))
10000.0

40 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

as_tuple() is similar except it returns both the value and the units as a tuple:

>>> from quantiphy import as_tuple
>>> print(as_tuple('10 mL'))
(0.01, 'L')

>>> print(as_tuple('10 mL', scale='uL'))
(10000.0, 'uL')

Finally, you can use render(), fixed(), and binary() to convert a real value and units into a string. Besides
the value and the units, the these functions the same arguments as Quantity.render(), Quantity.fixed(), and
Quantity.binary().

>>> from quantiphy import render, fixed, binary
>>> print(render(1e-6, 'L'))
1 uL

>>> print(fixed(1e7, '$', show_commas=True, strip_zeros=False, prec=2))
$10,000,000.00

>>> print(binary(2**32, 'B'))
4 GiB

7.1.8 Physical Constants

QuantiPhy has several built-in constants that are available by specifying their name to the Quantity class. The fol-
lowing quantities are built in:

Name MKS value CGS value Description
h 6.626070040e-34 J-s 6.626070040e-27 erg-s Plank’s constant
hbar, 1.054571800e-34 J-s 1.054571800e-27 erg-s Reduced Plank’s constant
k 1.38064852e-23 J/K 1.38064852e-16 erg/K Boltzmann’s constant
q 1.6021766208e-19 C 4.80320425e-10 Fr Elementary charge
c 2.99792458e8 m/s 2.99792458e8 m/s Speed of light
0C, 0°C 273.15 K 273.15 K 0 Celsius
eps0, 0 8.854187817e-12 F/m — Permittivity of free space
mu0, 0 4e-7 H/m — Permeability of free space
Z0, Z0 376.730313461 Ohms — Characteristic impedance of free space

Constants are given in base units (g, m, etc.) rather than the natural units for the unit system (kg, cm, etc.). For example,
when using the CGS unit system, the speed of light is given as 300Mm/s (rather than 30Gcm/s).

As shown, these constants are partitioned into two unit systems: mks and cgs. Only those constants that are associated
with the active unit system and those that are not associated with any unit system are available when creating a new
quantity. You can activate a unit system using set_unit_system(). Doing so deactivates the previous system. By
default, the mks system is active.

You can create your own constants and unit systems using add_constant():

>>> from quantiphy import Quantity, add_constant
>>> add_constant(Quantity(": 211.061140539mm // wavelength of hydrogen line"))

>>> hy_wavelength = Quantity('')
(continues on next page)

7.1. Users’ Guide 41

QuantiPhy Documentation, Release 2.19

(continued from previous page)

>>> print(hy_wavelength.render(show_label=True))
= 211.06 mm — wavelength of hydrogen line

In this case is the name given in the quantity is used when creating the constant. You can also specify an alias as an
argument to add_constant.

>>> add_constant(
... Quantity(" = 211.061140539mm # wavelength of hydrogen line"),
... alias='lambda h'
...)

>>> hy_wavelength = Quantity('lambda h')
>>> print(hy_wavelength.render(show_label=True))
= 211.06 mm — wavelength of hydrogen line

It is not necessary to specify both the name and the alias, one is sufficient; the constant is accessible using either. Notice
that the alias does not actually become part of the constant, it is only used for looking up the constant.

By default, user defined constants are not associated with a unit system, meaning that they are always available regard-
less of which unit system is being used. However, when creating a constant you can specify one or more unit systems
for the constant. You need not limit yourself to the predefined mks and cgs unit systems. You can specify multiple unit
systems either by specifying a list of strings for the unit systems, or by specifying one string that would contain more
than one name once split.

>>> from quantiphy import Quantity, add_constant, set_unit_system

>>> add_constant(Quantity(4.80320427e-10, 'Fr'), 'q', 'esu gaussian')
>>> add_constant(Quantity(1.602176487e-20, 'abC'), alias='q', unit_systems='emu')
>>> q_mks = Quantity('q')
>>> set_unit_system('cgs')
>>> q_cgs = Quantity('q')
>>> set_unit_system('esu')
>>> q_esu = Quantity('q')
>>> set_unit_system('gaussian')
>>> q_gaussian = Quantity('q')
>>> set_unit_system('emu')
>>> q_emu = Quantity('q')
>>> set_unit_system('mks')
>>> print(q_mks, q_cgs, q_esu, q_gaussian, q_emu, sep='\n')
160.22e-21 C
480.32 pFr
480.32 pFr
480.32 pFr
16.022e-21 abC

42 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

7.1.9 Preferences

QuantiPhy supports a wide variety of preferences that control its behavior. For example, when rendering quantities
you can control the number of digits used (prec), whether SI scale factors are used (form), whether the units are
included (show_units), etc. Similar preferences also control the conversion of strings into quantities, which can help
disambiguate whether a suffix represents a scale factor or a unit. The list of available preferences and their descriptions
are given in the description of the Quantity.set_prefs() method.

To set a preference, use the Quantity.set_prefs() class method. You can set more than one preference at once:

>>> Quantity.set_prefs(prec=6, map_sf={'u': ''})

This statements tells QuantiPhy to use 7 digits (the prec plus 1) and to output rather u for the 10-6 scale factor.

Setting preferences to None returns them to their default values:

>>> Quantity.set_prefs(prec=None, map_sf=None)

The preferences are changed on the class itself, meaning that they affect any instance of that class regardless of whether
they were instantiated before or after the preferences were set. If you would like to have more than one set of preferences,
then you should subclass Quantity. For example, imagine a situation where you have different types of quantities that
would naturally want different preferences:

>>> class Temperature(Quantity):
... units = 'C'
>>> Temperature.set_prefs(prec=1, known_units='K', spacer='')

>>> class Frequency(Quantity):
... units = 'Hz'
>>> Frequency.set_prefs(prec=5, spacer='')

>>> frequencies = []
>>> for each in '-25.3 999987.7, 25.1 1000207.1, 74.9 1001782.3'.split(','):
... temp, freq = each.split()
... frequencies.append((Temperature(temp), Frequency(freq)))

>>> for temp, freq in frequencies:
... print(f'{temp:4} {freq}')
-25C 999.988kHz
25C 1.00021MHz
75C 1.00178MHz

In this example, a subclass is created that is intended to report in concentrations.

>>> class Concentration(Quantity):
... pass
>>> Concentration.set_prefs(
... map_sf = dict(u=' PPM', n= ' PPB', p=' PPT'),
... show_label = True,
...)

>>> pollutants = dict(CO=5, SO2=20, NO2=0.10)
>>> concentrations = [Concentration(v, scale=1e-6, name=k) for k, v in pollutants.
→˓items()]
>>> for each in concentrations:

(continues on next page)

7.1. Users’ Guide 43

QuantiPhy Documentation, Release 2.19

(continued from previous page)

... print(each)
CO = 5 PPM
SO2 = 20 PPM
NO2 = 100 PPB

Alternately, you can simply set the preferences as attributes when creating the sublclasses. For example:

>>> class Dollars(Quantity):
... units = '$'
... prec = 2
... form = 'fixed'
... show_commas = True
... minus = Quantity.minus_sign
... strip_zeros = False

When a subclass is created, the preferences active in the main class are copied into the subclass. Subsequent changes
to the preferences in the main class do not affect the subclass.

You can also go the other way and override the preferences on a specific quantity.

>>> print(hy_wavelength)
211.06 mm

>>> hy_wavelength.show_label = True
>>> print(hy_wavelength)
= 211.06 mm — wavelength of hydrogen line

This is often the way to go with quantities that have logarithmic units such as decibels (dB) or shannons (Sh) (or the
related bit, digits, nats, hartleys, etc.). In these cases use of SI scale factors is often undesired.

>>> gain = Quantity(0.25, 'dB')
>>> print(gain)
250 mdB

>>> gain.form = 'fixed'
>>> print(gain)
0.25 dB

To retrieve a preference, use the Quantity.get_pref() class method. This is useful with known_units. Normally
setting known_units overrides the existing units. You can simply add more with:

>>> Quantity.set_prefs(known_units=Quantity.get_pref('known_units') + ['K'])

A variation on Quantity.set_prefs() is Quantity.prefs(). It is basically the same, except that it is meant to
work with Python’s with statement to temporarily override preferences:

>>> with Quantity.prefs(form='fixed', show_units=False, prec=2):
... for time, temp in data:
... print(f"{time:<7} {temp}")
0 505.37
600 477.59
1200 455.37

(continues on next page)

44 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

(continued from previous page)

>>> print(f"Final temperature = {data[-1][1]} @ {data[-1][0]}.")
Final temperature = 455.37 K @ 1.2 ks.

Notice that the specified preferences only affected the table, not the final printed values, which were rendered outside
the with statement.

If you are using QuantiPhy in a large package with multiple modules and more than one includes Quantity, you
may find that the preferences are not shared between the modules. This occurs because each module gets its own
independent version of Quantity. To work around this issue you would create your own module that imports from
QuantiPhy. Each of the packages’ modules then import from your new module rather than directly from QuantiPhy.
For example, consider creating a local module named quantity.py:

from quantiphy import *
import locale

Base preferences
loc_conv = locale.localeconv()
radix = loc_conv['decimal_point']
comma = loc_conv['thousands_sep']
Quantity.set_prefs(radix=radix, comma=comma, known_units='K')

Alternate preference sets
preferences = dict(

user = dict(
assumes a user is reading values on a terminal with fixed-width font
form = 'si',
map_sf = Quantity.map_sf_to_greek,
prec = 4,
spacer = ' ',
strip_radix = True,
minus = Quantity.minus_sign,
show_units = True,

),
sphinx = dict(

assumes values are to be rendered with a variable-with font by Sphinx
form = 'si',
map_sf = Quantity.map_sf_to_sci_notation,
prec = 4,
spacer = Quantity.narrow_non_breaking_space,
minus = Quantity.minus_sign,
strip_radix = True,
show_units = True,

),
code_with_si = dict(

assumes values are to be rendered to code that accepts sf but not units
form = 'sia',
map_sf = None,
prec = 'full',
spacer = '',
minus = '-'.minus_sign,
strip_radix = 'cover', # assures quantities are always treated as reals

)
code_without_si = dict(

(continues on next page)

7.1. Users’ Guide 45

QuantiPhy Documentation, Release 2.19

(continued from previous page)

assumes values are to be rendered to code that does not accept sf or units
form = 'eng',
map_sf = None,
prec = 'full',
spacer = '',
minus = '-'.minus_sign,
strip_radix = 'cover', # assures quantities are always treated as reals

)
)

def set_quantity_defaults(choice):
Quantity.set_prefs(**peferences[choice])

set_quantity_defaults('user')

Now, in the other modules, you would simply import from quantity rather than quantiphy:

from quantity import Quantity, QuantiPhyError, set_quantity_defaults

Then, if you change the preferences using set_quantity_defaults from one module, the preferences are changed for all
modules.

7.1.10 Localization

Quantiphy provides 7 preferences that help with localization: radix, comma, plus, minus, inf, nan, and spacer.

radix
The decimal point; generally . or ,.

comma
The thousands separator; generally ,, ., _ or a narrow non-breaking space.

plus
QuantitPhy does not use plus signs when rendering quantities either on the mantissa or the exponent. But it will
accept this symbol as a plus signs when converting strings to quantities.

minus
The symbol used to indicate a negative number; generally - or . This symbol is also accepted as a minus signs
when converting strings to quantities.

inf
The symbol or word that signifies infinity; generally inf or ∞.

nan
The symbol or word that indicates a NaN or Not-a-Number; generally NaN or nan.

spacer
The character used to separate the mantissa from trailing units, or scale factor combined with units: generally ``
`` or Quantity.narrow_non_breaking_space. spacer does not affect how strings are converted quantities, where
the spacer is optional and may ether be a space, a non-breaking space, a thin space, or a narrow non-breaking
space.

By default QuantiPhy uses ., ,, +, -, inf, nan and `` `` as the defaults. These are all simple ASCII characters. They
work as expected for the numbers normally used in programming, such as -5.17e+06.

46 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

Both radix and comma affect the way stings are converted to quantities and they way quantities are rendered. When
interpreting a string as a number, QuantiPhy first strips the comma character from the string and then replaces the radix
character with ..

If you prefer to use , for your radix, you generally have two choices. With the first, radix is set to , and comma to ..
This allows you to properly read and write numbers like €100.000.000,00 but misinterpretes a number if it uses . as
the radix.

>>> Quantity.set_prefs(radix=',', comma='.')
>>> q1 = Quantity('€100.000,00')
>>> q2 = Quantity('€100000.00')
>>> print(q1, q2, sep='\n')
€100k
€10M

With the second, radix is set to , and comma to ‘’. This allows both , and . to be used as the radix, so €100,000 and
€100.000 have the same value. However, it fails for numbers that use . as the thousands separator.

>>> Quantity.set_prefs(radix=',', comma='')
>>> q1 = Quantity('€100,000')
>>> q2 = Quantity('€100.000')
>>> print(q1, q2, sep='\n')
€100
€100

You can automatically adapt to local conventions using the Python locale package:

>>> from quantiphy import Quantity
>>> import locale

>>> loc_conv = locale.localeconv()
>>> radix = loc_conv['decimal_point']
>>> comma = loc_conv['thousands_sep']
>>> Quantity.set_prefs(radix=radix, comma=comma)

>>> q = Quantity('€100.000')
>>> print(q)
€100

>>> print(f"radix is '{radix}'\ncomma is '{comma}'")
radix is '.'
comma is ''

You can convert from one convention to the other by changing radix and comma on the fly:

>>> with Quantity.prefs(radix=',', comma='.'):
... q = Quantity('€100.000.000,00')
>>> with Quantity.prefs(radix='.', comma=','):
... print(f'{q:#,.2p}')
€100,000,000.00

7.1. Users’ Guide 47

QuantiPhy Documentation, Release 2.19

7.1.11 Formatting Tabular Data

When creating tables it is often desirable to align the decimal points of the numbers, and perhaps align the units. You
can use the number_fmt to arrange this. number_fmt is a format string that if specified is used to convert the components
of a number into the final number. You can control the widths and alignments of the components to implement specific
arrangements. number_fmt is passed to the string format function with named arguments: whole, frac and units, which
contains the integer part of the number, the fractional part including the decimal point, and the units including the scale
factor. More information about the content of the components can be found in Quantity.set_prefs().

For example, you can align the decimal point and units of a column of numbers like this:

>>> lengths = [
... Quantity(l)
... for l in '1mm, 10mm, 100mm, 1.234mm, 12.34mm, 123.4mm'.split(',')
...]

>>> with Quantity.prefs(number_fmt='{whole:>3}{frac:<4} {units}'):
... for l in lengths:
... print(l)
1 mm

10 mm
100 mm
1.234 mm

12.34 mm
123.4 mm

You can also give a function as the value for number_fmt rather than a string. It would be called with whole, frac
and units as arguments given in that order. The function is expected to return the assembled number as a string. For
example:

>>> def fmt_num(whole, frac, units):
... return '{mantissa:<5} {units}'.format(mantissa=whole+frac, units=units)

>>> with Quantity.prefs(number_fmt=fmt_num):
... for l in lengths:
... print(l)
1 mm
10 mm
100 mm
1.234 mm
12.34 mm
123.4 mm

If there are multiple columns it might be necessary to apply a different format to each column. In this case, it often
makes sense to create a subclass of Quantity for each column that requires distinct formatting:

>>> def format_temperature(whole, frac, units):
... return '{:>5} {:<5}'.format(whole+frac, units)

>>> class Temperature(Quantity):
... units = 'C'
>>> Temperature.set_prefs(
... prec = 1, known_units = 'K', number_fmt = format_temperature
...)

(continues on next page)

48 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

(continued from previous page)

>>> class Frequency(Quantity):
... units = 'Hz'
>>> Frequency.set_prefs(prec=5, number_fmt = '{whole:>3}{frac:<6} {units}')

>>> frequencies = []
>>> for each in '-25.3 999987.7, 25.1 1000207.1, 74.9 1001782.3'.split(','):
... temp, freq = each.split()
... frequencies.append((Temperature(temp), Frequency(freq)))

>>> for temp, freq in frequencies:
... print(temp, freq)
-25 C 999.988 kHz
25 C 1.00021 MHz
75 C 1.00178 MHz

7.1.12 Extract Quantities

It is possible to put a collection of quantities in a text string and then use the Quantity.extract() method to parse
the quantities and return them in a dictionary. For example:

>>> design_parameters = '''
... Fref (f) = 156 MHz — Reference frequency
... Kdet = 88.3 uA — Gain of phase detector
... Kvco = 9.07 GHz/V — Gain of VCO
... '''
>>> quantities = Quantity.extract(design_parameters)

>>> Quantity.set_prefs(
... label_fmt = '{n} = {v}',
... label_fmt_full = '{V:<18} # {d}',
... show_label = 'f',
...)
>>> for k, q in quantities.items():
... print(f'{k}: {q}')
Fref: f = 156 MHz # Reference frequency
Kdet: Kdet = 88.3 uA # Gain of phase detector
Kvco: Kvco = 9.07 GHz/V # Gain of VCO

The string is processed one line at a time and may contain any number of quantity definitions. Blank lines are ignored.
Each non-blank line is passed through assign_rec to determine if it is recognized as an assignment. If it is recognized,
the assign_rec named fields (name, qname, val, and desc) are used when creating the quantity. The default recognizer
allows you to separate the name from the value with either ‘=’ or ‘:’. It allows you to separate the value from the
description using ‘—’, ‘–’, ‘//’, or ‘#’. These substrings are also used to introduce comments, so you could start a line
with ‘#’ and it would be treated as a comment. If the line is not recognized, then it is ignored.

In this example, the first line is nonconforming and so is ignored. The second Kvdo line is a comment, the comment
character and anything beyond is ignored. Finally, empty lines are ignored.

>>> design_parameters = '''
... PLL Design Parameters

(continues on next page)

7.1. Users’ Guide 49

QuantiPhy Documentation, Release 2.19

(continued from previous page)

...

... Fref = 156 MHz — Reference frequency

... Kdet = 88.3 uA — Gain of phase detector

... Kvco = 9.07 GHz/V — Gain of VCO

... // Kvco = 5 GHz/V — Gain of VCO

... N = 128 — Divide ratio

... Fout = N*Fref "Hz" — Output Frequency

... '''
>>> globals().update(Quantity.extract(design_parameters))

>>> print(f'{Fref:S}\n{Kdet:S}\n{Kvco:S}\n{N:S}\n{Fout:}')
Fref = 156 MHz # Reference frequency
Kdet = 88.3 uA # Gain of phase detector
Kvco = 9.07 GHz/V # Gain of VCO
N = 128 # Divide ratio
Fout = 19.968 GHz # Output Frequency

In this case the output of the Quantity.extract() call is fed into globals().update() so as to add the quantities into the
module namespace, making the quantities accessible as local variables. This is an example of how simulation scripts
could be written. The system and simulation parameters would be gathered together at the top into a multiline string,
which would then be read and loaded into the local name space. It allows you to quickly give a complete description of a
collection of parameters when the goal is to put something together quickly in an expressive manner. Another example
of this ideas is shown a bit further down where the module docstring is used to contain the quantity definitions.

Here is an example that uses this feature to read parameters from a file. This is basically the same idea as above, except
the design parameters are kept in a separate file. It also subclasses Quantity to create a version that displays the name
and description by default.

>>> from quantiphy import Quantity, InvalidNumber
>>> from inform import os_error, fatal, display

>>> class VerboseQuantity(Quantity):
... show_label = 'f'
... label_fmt = '{n} = {v}'
... label_fmt_full = '{V:<18} — {d}'

>>> filename = '.parameters'
>>> try:
... with open(filename) as f:
... globals().update(VerboseQuantity.extract(f.read()))
... except OSError as e:
... fatal(os_error(e))
... except InvalidNumber as e:
... fatal(e, culprit=filename)

>>> print(Fref, Kdet, Kvco, N, Fout, sep='\n')
Fref = 156 MHz — Reference frequency
Kdet = 88.3 uA — Gain of phase detector (Imax)
Kvco = 9.07 GHz/V — Gain of VCO
N = 128 — Divide ratio
Fout = 19.968 GHz — Output Frequency

With Quantity.extract() the values of quantities can be given as a expression that contains previously defined

50 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

quantities (or physical constants or select mathematical constants (pi, tau, , or). You can follow an expression with a
string to give the units. Finally, you can use the predefined argument to pass in a dictionary of named values that can
be used in your expressions. For example:

#!/usr/bin/env python3
>>> __doc__ = """
... Simulates a second-order modulator with the following parameter values:
...
... Fclk = Fxtal/4 "Hz" — clock frequency
... Fin = 200kHz — input frequency
... Vin = 950mV — input voltage amplitude (peak)
... gain1 = 0.5V/V — gain of first integrator
... gain2 = 0.5V/V — gain of second integrator
... Vmax = 1V — quantizer maximum input voltage
... Vmin = -1V — quantizer minimum input voltage
... levels = 5 — quantizer output levels
... Tstop = 2/Fin "s" — simulation stop time
... Tstart = -1/Fin 's' — initial transient interval (discarded)
... file_name = 'out.wave' — output filename
... sim_name = f'{Fclk:q} Modulator' — simulation name
...
... The values given above are used in the simulation; no further
... modification of the code given below is required when changing
... these parameters.
... """

>>> from quantiphy import Quantity

>>> Fxtal = Quantity('200 MHz')
>>> parameters = Quantity.extract(__doc__, predefined=dict(Fxtal=Fxtal))
>>> globals().update(parameters)

>>> with Quantity.prefs(
... label_fmt = '{n} = {v}',
... label_fmt_full = '{V:<18} — {d}',
... show_label = 'f',
...):
... print('Simulation parameters:')
... for k, v in parameters.items():
... try:
... print(f' {v:Q}')
... except ValueError:
... print(f' {k} = {v!s}')
Simulation parameters:

Fclk = 50 MHz — clock frequency
Fin = 200 kHz — input frequency
Vin = 950 mV — input voltage amplitude (peak)
gain1 = 500 mV/V — gain of first integrator
gain2 = 500 mV/V — gain of second integrator
Vmax = 1 V — quantizer maximum input voltage
Vmin = -1 V — quantizer minimum input voltage
levels = 5 — quantizer output levels
Tstop = 10 us — simulation stop time

(continues on next page)

7.1. Users’ Guide 51

QuantiPhy Documentation, Release 2.19

(continued from previous page)

Tstart = -5 us — initial transient interval (discarded)
file_name = out.wave
sim_name = 50 MHz Modulator

Notice in this case the parameters were specified and read out of the docstring at the top of the file. In this way, the
parameters become very easy to set and the documentation is always up to date. Ignore the fact that the docstring is
assigned to __doc__. That was a hack that was needed to make the example executable from within the documentation.

7.1.13 Translating Quantities

Quantity.all_from_conv_fmt() recognizes conventionally formatted numbers and quantities embedded in text
and reformats them using Quantity.render(). This is an difficult task in general, and so some constraints are placed
on the values to make them easier to distinguish. Specifically, the units, if given, must be simple and immediately
adjacent to the number. Units are simple if they only consist of letters and underscores. The characters °, Å, and are
also allowed. So ‘47e3Ohms’, ‘50_Ohms’ and ‘1.0e+12’ are recognized as quantities, but ‘50 Ohms’ and ‘12m/s’ are
not.

Besides the text to be translated, all_from_conv_fmt() takes the same arguments as render(), though they must
be given as named arguments.

>>> test_results = '''
... Applying stimulus @ 2.00500000e-04s: V(in) = 5.000000e-01V.
... Pass @ 3.00500000e-04s: V(out): expected=2.00000000e+00V, measured=1.99999965e+00V,␣
→˓diff=3.46117130e-07V.
... '''.strip()

>>> Quantity.set_prefs(spacer='')
>>> translated = Quantity.all_from_conv_fmt(test_results)
>>> print(translated)
Applying stimulus @ 200.5us: V(in) = 500mV.
Pass @ 300.5us: V(out): expected=2V, measured=2V, diff=346.12nV.

Quantity.all_from_si_fmt() is similar, except that it recognizes quantities formatted with either a scale factor or
units and ignores plain numbers. Again, units are expected to be simple and adjacent to their number.

>>> Quantity.set_prefs(spacer='')
>>> translated_back = Quantity.all_from_si_fmt(translated, form='eng')
>>> print(translated_back)
Applying stimulus @ 200.5e-6s: V(in) = 500e-3V.
Pass @ 300.5e-6s: V(out): expected=2V, measured=2V, diff=346.12e-9V.

Notice in the translations the quantities lost resolution. This is avoided if you use ‘full’ precision:

>>> translated = Quantity.all_from_conv_fmt(test_results, prec='full')
>>> print(translated)
Applying stimulus @ 200.5us: V(in) = 500mV.
Pass @ 300.5us: V(out): expected=2V, measured=1.99999965V, diff=346.11713nV.

52 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

7.1.14 Equivalence

You can determine whether a value is equivalent to that of a quantity using Quantity.is_close(). The value may
be given as a quantity, a real number, or a string. The two values need not be identical, they just need to be close to be
deemed equivalent. The reltol and abstol preferences are used to determine if they are close.

>>> h_line.is_close(h_line)
True

>>> h_line.is_close(h_line + 1)
True

>>> h_line.is_close(h_line + 1e4)
False

Quantity.is_close() returns true if the units match and if:

abs(a - b) <= max(reltol * max(abs(a), abs(b)), abstol)

where a and b represent other and the numeric value of the underlying quantity.

By default, is_close() looks at the both the value and the units if the argument has units. In this way if you compare two
quantities with different units, the is_close() test will always fail if their units differ. This behavior can be overridden
by specifying check_units.

>>> Quantity('$10').is_close('10 USD')
False

>>> Quantity('$10').is_close('10 USD', check_units=False)
True

7.1.15 Negligible Values

QuantiPhy can round small values to zero when rendering them, which can help to reduce visual clutter. You can
specify the size of a negligible value as a preference using Quantity.set_prefs() or Quantity.prefs(), or you
can specify it locally using Quantity.render(). Any quantity whose absolute value is smaller than the specified
value is rendered as zero with the underlying value remaining unchanged.

>>> from quantiphy import Quantity
>>> from math import exp

>>> Vt = 0.025852
>>> def cond(v):
... return Quantity(1e-27 * exp(v/Vt)/Vt, '')

>>> Quantity.set_prefs(prec=2)
>>> for i in range(11):
... v = Quantity(i/5, 'V')
... print(f'{v:>6}: {cond(v):>10}, {v:>26}: {cond(v).render(negligible=1e-3):>10}')

0 V: 38.7e-27 , 0 V: 0
200 mV: 88.6e-24 , 200 mV: 0

(continues on next page)

7.1. Users’ Guide 53

QuantiPhy Documentation, Release 2.19

(continued from previous page)

400 mV: 203e-21 , 400 mV: 0
600 mV: 465 a, 600 mV: 0
800 mV: 1.06 p, 800 mV: 0

1 V: 2.44 n, 1 V: 0
1.2 V: 5.58 u, 1.2 V: 0
1.4 V: 12.8 m, 1.4 V: 12.8 m
1.6 V: 29.3 , 1.6 V: 29.3
1.8 V: 67 k, 1.8 V: 67 k
2 V: 153 M, 2 V: 153 M

7.1.16 Exceptional Values

QuantiPhy supports NaN (not a number) and infinite values:

>>> inf = Quantity('inf Hz')
>>> print(inf)
inf Hz

>>> nan = Quantity('NaN Hz')
>>> print(nan)
NaN Hz

You can test whether the value of the quantity is infinite or is not-a-number using Quantity.is_infinite() or
Quantity.is_nan(). These method return a rendered value for the number without units if they are true and None
otherwise:

>>> h_line.is_infinite()

>>> inf.is_infinite()
'inf'

>>> h_line.is_nan()

>>> nan.is_nan()
'NaN'

The rendered value is affected by the inf and nan preferences or attributes:

>>> inf.inf = '∞'
>>> inf.is_infinite()
'∞'

54 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

7.1.17 Exceptions

The way exceptions are defined in QuantiPhy has changed. Initially, the standard Python exceptions were used to
indicate errors. For example, a ValueError was raised by Quantity if it were passed a string it cannot convert into a
number. Now, a variety of QuantiPhy specific exceptions are used to indicate specific errors. However, these exceptions
subclass the corresponding Python error for compatibility with existing code. It is recommended that new code catch
the QuantiPhy specific exceptions rather than the generic Python exceptions as their use will be deprecated in the future.

Note: It is expected that in release 2.20, expected in the first half of 2023, the exceptions will no longer inherit from
the generic Python exceptions.

QuantiPhy employs the following exceptions:

ExpectedQuantity:
Subclass of QuantiPhyError and ValueError. Used by add_constant().

Raised when the value is either not an instance of Quantity or a string that can be converted to a quantity.

IncompatiblePreferences:
Subclass of QuantiPhyError and ValueError. Used by Quantity constructor.

Raised when comma and radix preference is the same.

IncompatibleUnits:
Subclass of QuantiPhyError and TypeError. Used by Quantity.add().

Raised when the units of contribution do not match those of underlying quantity.

InvalidNumber:
Subclass of QuantiPhyError, ValueError, and TypeError. Used by Quantity().

Raised if the value given could not be converted to a number.

InvalidRecognizer:
Subclass of QuantiPhyError and KeyError. Used by Quantity().

The assign_rec preference is expected to be a regular expression that defines one or more named fields, one of
which must be val. This exception is raised when the current value of assign_rec does not satisfy this requirement.

MissingName:
Subclass of QuantiPhyError and NameError. Used by add_constant().

Raised when alias was not specified and no name was available from value.

UnknownConversion:
Subclass of QuantiPhyError and KeyError.

Used by UnitConversion.convert(), Quantity(), Quantity.scale(), Quantity.render(),
Quantity.fixed(), Quantity.format(), Quantity.binary(), as_real(), as_tuple(), render(),
fixed(), and binary().

Raised when a unit conversion was requested and there is no corresponding unit converter.

UnknownFormatKey:
Subclass of QuantiPhyError and KeyError. Used by Quantity.render(), Quantity.fixed(), and
Quantity.format().

The label_fmt and label_fmt_full are expected to be format strings that may interpolate certain named arguments.
The valid named arguments are n for name, v for value, and d for description. This exception is raised when some
other name is used for an interpolated argument.

7.1. Users’ Guide 55

QuantiPhy Documentation, Release 2.19

UnknownPreference:
Subclass of QuantiPhyError and KeyError. Used by Quantity.set_prefs(), Quantity.get_pref(), and
Quantity.prefs().

Raised when the name given for a preference is unknown.

UnknownScaleFactor:
Subclass of QuantiPhyError and ValueError. Used by Quantity(), Quantity.set_prefs(), or
Quantity.prefs().

The input_sf preference gives the list of scale factors that should be accepted. This exception is raised if input_sf
contains an unknown scale factor.

UnknownUnitSystem :
Subclass of QuantiPhyError and KeyError. Used by set_unit_system().

Raised when the name given does not correspond to a known unit system.

QuantiPhy defines a common base exception, QuantiPhyError, that all specific exceptions derive from. This allows
you to simplify your exception handling if you are not interested in distinguishing between the specific errors:

>>> from quantiphy import Quantity, QuantiPhyError

>>> try:
... q = Quantity('tweed')
... except QuantiPhyError as e:
... print(str(e))
'tweed': not a valid number.

The alternative would be to catch each error individually:

>>> from quantiphy import (
... Quantity, InvalidNumber, UnknownScaleFactor,
... UnknownConversion, InvalidRecognizer
...)

>>> try:
... q = Quantity('tweed')
... except (InvalidNumber, UnknownScaleFactor, UnknownConversion, InvalidRecognizer) as␣
→˓e:
... print(str(e))
'tweed': not a valid number.

QuantiPhy provides uniform access methods for its exceptions. You can access all the unnamed arguments passed to the
exception using the args attribute, you can access the named arguments using kwargs, and you can create a customized
message that incorporates the arguments using QuantiPhyError.render() method. The argument to render is a
format string that can access both the unnamed and named arguments:

>>> try:
... q = Quantity('tweed')
... except InvalidNumber as e:
... print(e.render('{}: no es un número valido.'))
... except UnknownScaleFactor as e:
... print(e.render('factor de escala desconocido.'))
... except UnknownConversion as e:
... if 'to_units' in e.kwargs:
... if 'from_units' in e.kwargs:

(continues on next page)

56 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

(continued from previous page)

... template = 'incapaz de convertir entre {} y {}'

... else:

... template = 'incapaz de convertir a {}'

... else:

... template = 'incapaz de convertir de {}'

... print(e.render(template))

... except InvalidRecognizer as e:

... print(e.render("el reconocedor no contiene la clave 'val'"))
tweed: no es un número valido.

Alternately, if you wish to globally replace the default QuantiPhy error messages, you can simply override the
_template attribute for the exceptions:

>>> InvalidNumber._template = '{!r}: no es un número valido.'
>>> UnknownScaleFactor._template = 'factor de escala desconocido.'
>>> UnknownConversion._template = (
... 'incapaz de convertir entre ‘{to_units}’ y ‘{from_units}’',
... 'incapaz de convertir a ‘{to_units}’',
... 'incapaz de convertir de ‘{from_units}’',
...)
>>> InvalidRecognizer._template = "el reconocedor no contiene la clave ‘val’"

>>> try:
... q = Quantity('tweed')
... except QuantiPhyError as e:
... print(e.render())
'tweed': no es un número valido.

As shown in UnknownConversion, _template may be given as a tuple of format strings, in which case the first one
for which all arguments are available is used.

7.2 Classes and Functions

7.2.1 Quantities

class quantiphy.Quantity(value, model=None, *, units=None, scale=None, binary=None, name=None,
desc=None, ignore_sf=None, params=None)

Create a physical quantity.

A quantity is a number paired with a unit of measure.

Parameters

• value (real, string or quantity) – The value of the quantity. If a string, it may be
the name of a pre-defined constant or it may be a number that may be specified with SI scale
factors and/or units. For example, the following are all valid: ‘2.5ns’, ‘1.7 MHz’, ‘1e6’,
‘2.8_V’, ‘1e4 m/s’, ‘$10_000’, ‘42’, ‘’, etc. The string may also have name and description
if they are provided in a way recognizable by assign_rec. For example, ‘trise: 10ns — rise
time’ or ‘trise = 10ns # rise time’ would work with the default recognizer.

• model (quantity or string) – Used to pick up any missing attibutes (units, name, desc).
May be a quantity or a string. If model is a quantity, only its units would be taken. If model

7.2. Classes and Functions 57

QuantiPhy Documentation, Release 2.19

is a string, it is split. Then, if there is one item, it is taken to be units. If there are two, they
are taken to be name and units. And if there are three or more, the first two are taken to the
be name and units, and the remainder is taken to be description.

• units (str) – Overrides the units taken from value or model.

• scale (float, tuple, func, string, or quantity) –

– If a float or quantity, it multiplies by the given value to compute the value of the quantity.
If a quantity, the units are ignored.

– If a tuple, the first value, a float, is treated as a scale factor and the second value, a string,
is take to be the units of the quantity.

– If a function, it takes two arguments, the given value and the units and it returns two values,
the value and units of the quantity.

– If a string, it is taken to the be desired units. This value along with the units of the given
value are used to select a known unit conversion, which is applied to create the quantity.

• name (str) – Overrides the name taken from value or model.

• desc (str) – Overrides the desc taken from value or model.

• ignore_sf (bool) – Assume the value given within a string does not employ a scale factors.
In this way, ‘1m’ is interpreted as 1 meter rather than 1 milli.

• binary (bool) – Allow use of binary scale factors (Ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi).

• params – Parameters to be used in scaling. May be scalar, tuple, or dictionary.

Raises

• UnknownConversion(QuantiPhyError, KeyError) – A unit conversion was requested
and there is no corresponding unit converter.

• InvalidRecognizer(QuantiPhyError, KeyError) – Assignment recognizer (as-
sign_rec) does not match at least the value (val).

• UnknownScaleFactor(QuantiPhyError, ValueError) – Unknown scale factor or fac-
tors.

• InvalidNumber(QuantiPhyError, ValueError, TypeError) – Not a valid number.

• IncompatiblePreferences(QuantiPhyError, ValueError) – radix and comma
must differ.

You can use Quantity to create quantities from floats, strings, or other You can use Quantity to create quantities
from floats, strings, or other quantities. If a float is given, model or units would be used to specify the units.

Examples:

>>> from quantiphy import Quantity
>>> from math import pi, tau
>>> newline = '''
... '''

>>> fhy = Quantity('1420.405751786 MHz')
>>> sagan = Quantity(pi*fhy, 'Hz')
>>> sagan2 = Quantity(tau*fhy, fhy)
>>> print(fhy, sagan, sagan2, sep=newline)
1.4204 GHz

(continues on next page)

58 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

(continued from previous page)

4.4623 GHz
8.9247 GHz

You can use scale to scale the number or convert to different units when creating the quantity.

Examples:

>>> Tfreeze = Quantity('273.15 K', ignore_sf=True, scale='°C')
>>> print(Tfreeze)
0 °C

>>> Tboil = Quantity('212 °F', scale='°C')
>>> print(Tboil)
100 °C

Public Methods:

reset_prefs() Reset preferences
set_prefs(**kwargs) Set class preferences.
get_pref(name) Get class preference.
prefs(**kwargs) Set class preferences.
is_infinite() Test value to determine if quantity is infinite.
is_nan() Test value to determine if quantity is not a number.
as_tuple() Return a tuple that contains the value as a float along

with its units.
scale(scale[, cls]) Scale a quantity to create a new quantity.
add(addend[, check_units]) Create a new quantity that is the sum of the original

and a contribution.
render(*[, form, show_units, prec, ...]) Convert quantity to a string.
fixed(*[, show_units, prec, show_label, ...]) Convert quantity to fixed-point string.
binary(*[, show_units, prec, show_label, ...]) Convert quantity to string using binary scale factors.
is_close(other[, reltol, abstol, check_units]) Are values equivalent?
format([template]) Convert quantity to string under the guidance of a

template.
extract(text[, predefined]) Extract quantities.
map_sf_to_sci_notation(sf) Render scale factors in scientific notation.
map_sf_to_greek(sf) Render scale factors in Greek alphabet if appropriate.
all_from_conv_fmt(text[, only_e_notation]) Convert all numbers and quantities from conventional

notation.
all_from_si_fmt(text, **kwargs) Convert all numbers and quantities from SI notation.

add(addend, check_units=False)
Create a new quantity that is the sum of the original and a contribution.

Parameters

• addend (real, quantity, string) – The amount to add to the quantity.

• check_units (boolean or 'strict') – If True, raise an exception if the units of the
addend are not compatible with the underlying quantity. If the addend does not have units,
then it is considered compatible unless check_units is ‘strict’.

7.2. Classes and Functions 59

QuantiPhy Documentation, Release 2.19

Raises
IncompatibleUnits(QuantiPhyError, TypeError) – Units of contribution do not
match those of underlying quantity.

Example:

>>> total = Quantity(0, '$')
>>> for contribution in [1.23, 4.56, 7.89]:
... total = total.add(contribution)
>>> print(total)
$13.68

classmethod all_from_conv_fmt(text, only_e_notation=False, **kwargs)
Convert all numbers and quantities from conventional notation.

Only supports a subset of the conventional formats that QuantiPhy normally accepts. For example, leading
units (ex. $1M) and embedded commas are not supported, and the radix is always ‘.’.

There may be a space between the number an units, but it cannot be a normal space. Only non-breaking,
thin-non-breaking and thin spaces are allowed.

Parameters

• text (str) – A search and replace is performed on this text. The search looks for numbers
and quantities in floating point or e-notation. They are replaced with the same number ren-
dered as a quantity. To be recognized any units must be simple (only letters or underscores,
no digits or symbols) and the units must be immediately adjacent to the number.

• only_e_notation (bool) – If true, only numbers that explicitly have exponents are con-
verted (1e6Hz is converted, but not 1.6 or 2009). If False, numbers with or without expo-
nents are converted (1e6Hz, 1.6 and 2009 are all converted.

• **kwargs – By default the numbers are rendered using the currently active preferences,
but any valid argument to Quantity.render() can be passed in to control the rendering.

Returns
A copy of text where all numbers that were formatted conventionally have been reformatted.

Return type
str

Example:

>>> text = 'Applying stimulus @ 2.05000e-05s: V(in) = 5.00000e-01V.'
>>> with Quantity.prefs(spacer=''):
... xlated = Quantity.all_from_conv_fmt(text)
... print(xlated)
Applying stimulus @ 20.5us: V(in) = 500mV.

classmethod all_from_si_fmt(text, **kwargs)
Convert all numbers and quantities from SI notation.

Only supports a subset of the SI formats that QuantiPhy normally accepts. For example, leading units (ex.
$1M) and embedded commas are not supported, and the radix is always ‘.’.

Parameters

• text (str) – A search and replace is performed on this text. The search looks for numbers
and quantities formatted in SI notation (must have either a scale factor or units or both).
They are replaced with the same number rendered as a quantity. To be recognized any units

60 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

must be simple (only letters or underscores, no digits or symbols) and the units must be
immediately adjacent to the number.

• **kwargs – By default the numbers are rendered using the currently active preferences,
but any valid argument to Quantity.render() can be passed in to control the rendering.

Returns
A copy of text where all numbers that were formatted with SI scale factors have been refor-
matted.

Return type
str

Example:

>>> print(Quantity.all_from_si_fmt(xlated))
Applying stimulus @ 20.5 us: V(in) = 500 mV.

>>> print(Quantity.all_from_si_fmt(xlated, form='eng'))
Applying stimulus @ 20.5e-6 s: V(in) = 500e-3 V.

as_tuple()

Return a tuple that contains the value as a float along with its units.

Example:

>>> period = Quantity('10ns')
>>> period.as_tuple()
(1e-08, 's')

binary(*, show_units=None, prec=None, show_label=None, strip_zeros=None, strip_radix=None,
scale=None)

Convert quantity to string using binary scale factors.

When in range the number is divided by some integer power of 1024 and the appropriate scale factor is
added to the quotient, where the scale factors are ‘’ for 0 powers of 1024, ‘Ki’ for 1, ‘Mi’ for 2, ‘Gi’ for 3,
‘Ti’ for 4, ‘Pi’ for 5, ‘Ei’ for 6, ‘Zi’ for 7 and ‘Yi for 8. Outside this range, the number is converted to a
string using a simple floating point format.

Within the range the number of significant figures used is equal to prec+1. Outside the range, prec give the
number of figures to the right of the decimal point.

Parameters

• show_units (bool) – Whether the units should be included in the string.

• prec (integer or 'full') – The desired precision (number of digits to the right of the
radix when normalized). If specified as ‘full’, full_prec is used as the number of digits (and
not the originally specified precision as with render).

• show_label ('f', 'a', or boolean) – Add the name and possibly the description when
rendering a quantity to a string. Either label_fmt or label_fmt_full is used to label the
quantity.

– neither is used if show_label is False,

– otherwise label_fmt is used if quantity does not have a description or if show_label is
‘a’ (short for abbreviated),

– otherwise label_fmt_full is used if show_desc is True or show_label is ‘f’ (short for full).

7.2. Classes and Functions 61

QuantiPhy Documentation, Release 2.19

• strip_zeros (boolean) – Remove contiguous zeros from end of fractional part. If not
specified, the global strip_zeros setting is used.

• strip_radix (boolean) – Remove radix if there is nothing to the right of it. If not spec-
ified, the global strip_radix setting is used.

• scale (real, pair, function, or string) –

– If a float, it scales the displayed value (the quantity is multiplied by scale before being
converted to the string).

– If a tuple, the first value, a float, is treated as a scale factor and the second value, a string,
is take to be the units of the displayed value.

– If a function, it takes two arguments, the value and the units of the quantity and it returns
two values, the value and units of the displayed value.

– If a string, it is taken to the be desired units. This value along with the units of the quantity
are used to select a known unit conversion, which is applied to create the displayed value.

Raises

• UnknownConversion(QuantiPhyError, KeyError) – A unit conversion was re-
quested and there is no corresponding unit converter.

• UnknownFormatKey(QuantiPhyError, KeyError) – ‘label_fmt’ or ‘label_fmt_full’
contains an unknown format key.

Example:

>>> t = Quantity('mem = 16 GiB — amount of physical memory', binary=True)
>>> print(
... t.binary(),
... t.binary(prec=3, strip_zeros=False),
... t.binary(show_label=True, scale='b'), sep=newline)
16 GiB
16.00 GiB
mem = 128 Gib

classmethod extract(text, predefined=None, **kwargs)
Extract quantities.

Takes a string that contains quantity definitions, one per line, and returns those quantities in a dictionary.

Parameters

• text (str) – The string that contains the quantities, one definition per line. Each is parsed
by assign_rec. By default, the lines are assumed to be of the form:

[<name> [(<qname>)] = <value>] [— <description>]

where ‘=’ may be replaced by ‘:’ and ‘—’ (the em-dash) may be replaced by ‘–’, ‘//’ or ‘#’.
In addition, brackets delimit optional fields and parentheses represent literal parentheses.
Each of the fields are allowed be largely arbitrary strings.

The brackets indicate that the name/value pair and the description is optional. However,
<name> must be given if <value> is given.

<name>:
the name is used as a key for the value.

62 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

<qname>:
the name taken by the quantity.

<value>:
A number with optional units (ex: 3 or 1pF or 1 k); the units need not be a simple
identifier (ex: 9.07 GHz/V).

The value may also be an expression. When giving an expression, you may follow it with
a string surrounded by double quotes, which is taken as the units. For example: Tstop
= 5/Fin “s”. The expressions may only contain value defined previously in the same
set of definitions, values contained in predefined, physical constants, the mathematical
constants pi and tau (2*pi), which may be named or , or number literals without scale
factors or units. The units should not include a scale factor.

When processing the value, it is passed as an argument to Quantity, if cannot be converted
to a quantity, then it is treated as a Python expression.

<description>:
Optional textual description (ex: Frequency of hydrogen line).

Blank lines and any line that does not contain a value are ignored. So with the default
assign_rec, lines with the following form are ignored:

— comment
-- comment
comment
// comment

• predefined (dict) – A dictionary of predefined values. When specified, these values
become available to be used in the expressions that give values to the values being defined.
You can use locals() as this argument to make all local variables available.

You can specify both values and functions. For example,
predefined=dict(sqrt=sqrt) allows sqrt to be used in expressions.

• **kwargs – Any argument that can be passed to Quantity can be passed to this function,
and are in turn passed to Quantity as the quantities are created. This can be used, for
example, to allow the binary scale factors.

Returns
a dictionary of quantities for the values specified in the argument.

Return type
dict

Example:

>>> sagan_frequencies = r'''
... — Carl Sagan's SETI frequencies of high interest
...
... f_hy = 1420.405751786 MHz — Hydrogen line frequency
... f_sagan1 = *f_hy "Hz" — Sagan's first frequency
... f_sagan2 = *f_hy "Hz" — Sagan's second frequency
... '''
>>> freqs = Quantity.extract(sagan_frequencies)
>>> for f in freqs.values():
... print(f.render(show_label='f'))
f_hy = 1.4204 GHz — Hydrogen line frequency
f_sagan1 = 4.4623 GHz — Sagan's first frequency

(continues on next page)

7.2. Classes and Functions 63

QuantiPhy Documentation, Release 2.19

(continued from previous page)

f_sagan2 = 8.9247 GHz — Sagan's second frequency

>>> globals().update(freqs)
>>> print(f_hy, f_sagan1, f_sagan2, sep=newline)
1.4204 GHz
4.4623 GHz
8.9247 GHz

fixed(*, show_units=None, prec=None, show_label=None, show_commas=None, strip_zeros=None,
strip_radix=None, scale=None)

Convert quantity to fixed-point string.

Parameters

• show_units (bool) – Whether the units should be included in the string.

• prec (integer or 'full') – The desired precision (one plus this value is the desired
number of digits). If specified as ‘full’, the full original precision is used.

• show_label ('f', 'a', or boolean) – Add the name and possibly the description when
rendering a quantity to a string. Either label_fmt or label_fmt_full is used to label the
quantity.

– neither is used if show_label is False,

– otherwise label_fmt is used if quantity does not have a description or if show_label is
‘a’ (short for abbreviated),

– otherwise label_fmt_full is used if show_desc is True or show_label is ‘f’ (short for full).

• show_commas – Add commas to whole part of mantissa, every three digits. If not specified,
the global strip_zeros setting is used.

• strip_zeros (boolean) – Remove contiguous zeros from end of fractional part. If not
specified, the global strip_zeros setting is used.

• strip_radix (boolean) – Remove radix if there is nothing to the right of it. If not spec-
ified, the global strip_radix setting is used.

• scale (real, pair, function, or string) –

– If a float, it scales the displayed value (the quantity is multiplied by scale before being
converted to the string).

– If a tuple, the first value, a float, is treated as a scale factor and the second value, a string,
is take to be the units of the displayed value.

– If a function, it takes two arguments, the value and the units of the quantity and it returns
two values, the value and units of the displayed value.

– If a string, it is taken to the be desired units. This value along with the units of the quantity
are used to select a known unit conversion, which is applied to create the displayed value.

Raises

• UnknownConversion(QuantiPhyError, KeyError) – A unit conversion was re-
quested and there is no corresponding unit converter.

• UnknownFormatKey(QuantiPhyError, KeyError) – ‘label_fmt’ or ‘label_fmt_full’
contains an unknown format key.

Example:

64 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

>>> t = Quantity('Total = $1000000.00 — the total')
>>> print(
... t.fixed(),
... t.fixed(show_commas=True),
... t.fixed(show_units=False), sep=newline)
$1000000
$1,000,000
1000000

>>> print(
... t.fixed(prec=2, strip_zeros=False, show_commas=True),
... t.fixed(prec=6),
... t.fixed(strip_zeros=False, prec=6), sep=newline)
$1,000,000.00
$1000000
$1000000.000000

>>> print(
... t.fixed(strip_zeros=False, prec='full'),
... t.fixed(show_label=True),
... t.fixed(show_label='f'), sep=newline)
$1000000.00
Total = $1000000
Total = $1000000 — the total

>>> print(
... t.fixed(scale=(1/10000, 'BTC')),
... t.fixed(scale=(1/1000, 'ETH')),
... t.fixed(scale=(1/1000, 'ETH'), show_units=False), sep=newline)
100 BTC
1000 ETH
1000

format(template='')
Convert quantity to string under the guidance of a template.

Supports the normal floating point and string format types as well some new ones. If the format code is
given in upper case, label_fmt is used to add the name and perhaps description to the result.

Parameters
template (str) – the format string.

Raises

• UnknownFormatKey(QuantiPhyError, KeyError) – ‘label_fmt’ or ‘label_fmt_full’
contains an unknown format key.

• UnknownConversion(QuantiPhyError, KeyError) – A unit conversion was re-
quested and there is no corresponding unit converter.

The format is specified using A#W,.PTU where:

A is a character and gives the alignment: either '', '>', '<', or '^'
is a literal hash that if present indicates that

trailing zeros and radix should not be suppressed from fractional part.
W is an integer and gives the width of the final string

(continues on next page)

7.2. Classes and Functions 65

QuantiPhy Documentation, Release 2.19

(continued from previous page)

, is a literal comma, it indicates that the whole part of the
mantissa should be partitioned into groups of three digits
separated by commas

.P is a literal period followed by an integer that gives the precision
T is a character and gives the type: choose from p, q, r, s, e, f, g, u, n, d,
→˓ ...
U is a string that must match a known unit, it invokes scaling

Each of these component pieces is optional.

If:

q = Quantity('f = 1420.405751786 MHz — hydrogen line')

then:

q: quantity [si=y, units=y, label=n] (ex: 1.4204 GHz)
Q: quantity [si=y, units=y, label=y] (ex: f = 1.4204 GHz)
r: real [si=y, units=n, label=n] (ex: 1.4204G)
R: real [si=y, units=n, label=y] (ex: f = 1.4204G)
: [label=n] (ex: 1.4204 GHz)

p: fixed-point [fixed=y, units=y, label=n] (ex: 1420405751.7860 Hz)
P: fixed-point [fixed=y, units=y, label=y] (ex: f = 1420405751.7860 Hz)
s: string [label=n] (ex: 1.4204 GHz)
S: string [label=y] (ex: f = 1.4204 GHz)
e: exponential form [si=n, units=n, label=n] (ex: 1.4204e9)
E: exponential form [si=n, units=n, label=y] (ex: f = 1.4204e9)
f: float [label=n] (ex: 1420400000.0000)
F: float [label=y] (ex: f = 1420400000.0000)
g: generalized float [label=n] (ex: 1.4204e+09)
G: generalized float [label=y] (ex: f = 1.4204e+09)
u: units only (ex: Hz)
n: name only (ex: f)
d: description only (ex: hydrogen line)

classmethod get_pref(name)
Get class preference.

Returns the value of given preference.

Parameters
name (str) – Name of the desired preference. See Quantity.set_prefs() for list of pref-
erences.

Raises
UnknownPreference(QuantiPhyError, KeyError) – unknown preference.

Example:

>>> Quantity.set_prefs(known_units='au')
>>> known_units = Quantity.get_pref('known_units')
>>> known_units.append('pc')
>>> Quantity.set_prefs(known_units=known_units)
>>> print(Quantity.get_pref('known_units'))
['au', 'pc']

66 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

is_close(other, reltol=None, abstol=None, check_units=True)
Are values equivalent?

Indicates whether the value of a quantity or real number is equivalent to that of a quantity. The two values
need not be identical, they just need to be close to be deemed equivalent.

Parameters

• other (quantity, real, or string) – The value to compare against.

• reltol (float) – The relative tolerance. If not specified. the reltol preference is used,
which defaults to 1u.

• abstol (float) – The absolute tolerance. If not specified. the abstol preference is used,
which defaults to 1p.

• check_units (bool) – If True (the default), and if other is a quantity, compare the units
of the two values, if they differ return False. Otherwise only compare the numeric values,
ignoring the units.

Returns
Returns true if abs(a - b) <= max(reltol * max(abs(a), abs(b)), abstol)
where a and b represent other and the numeric value of the underlying quantity.

Return type
bool

Example:

>>> print(
... c.is_close(c), # should pass, is identical
... c.is_close(c+1), # should pass, is close
... c.is_close(c+1e4), # should fail, not close
... c.is_close(Quantity(c+1, 'm/s')), # should pass, is close
... c.is_close(Quantity(c+1, 'Hz')), # should fail, wrong units
... c.is_close('299.7925 Mm/s'), # should pass, is close
...)
True True False True False True

is_infinite()

Test value to determine if quantity is infinite. Returns a representation of the number (sign combined with
self.inf) if value is infinite and None otherwise.

Example:

>>> inf = Quantity('inf Hz')
>>> inf.is_infinite()
'inf'

is_nan()

Test value to determine if quantity is not a number. Returns a representation of the number (sign combined
with self.nan) if value is not a number and None otherwise.

Example:

>>> nan = Quantity('-nan Hz')
>>> nan.is_nan()
'NaN'

7.2. Classes and Functions 67

QuantiPhy Documentation, Release 2.19

static map_sf_to_greek(sf)
Render scale factors in Greek alphabet if appropriate.

Pass this dictionary to map_sf preference if you prefer µ rather than u.

Example:

>>> with Quantity.prefs(map_sf=Quantity.map_sf_to_greek):
... print(Quantity('mu0').render(show_label='f'))
µ0 = 1.2566 µH/m — permeability of free space

static map_sf_to_sci_notation(sf)
Render scale factors in scientific notation.

Pass this function to map_sf preference if you prefer your large and small numbers in classic scientific
notation. It also causes ‘u’ to be converted to ‘µ’. Set form to ‘eng’ to format all numbers in scientific
notation.

Example:

>>> with Quantity.prefs(map_sf=Quantity.map_sf_to_sci_notation, show_label='f'):
... print(
... Quantity('k').render(),
... Quantity('mu0').render(),
... Quantity('mu0').render(form='eng'),
... sep=newline,
...)
k = 13.806×1024 J/K — Boltzmann's constant
µ0 = 1.2566 µH/m — permeability of free space
µ0 = 1.2566×106 H/m — permeability of free space

classmethod prefs(**kwargs)
Set class preferences.

This is just like Quantity.set_prefs(), except it is designed to work as a context manager, meaning that
it is meant to be used with Python’s with statement. It allows preferences to be set to new values temporarily.
They are reset upon exiting the with statement. For example:

>>> with Quantity.prefs(ignore_sf=True):
... t = Quantity('600_000 K')
>>> t_bad = Quantity('600_000 K')
>>> print(t, t_bad, sep=newline)
600 kK
600M

See Quantity.set_prefs() for list of available arguments.

Raises

• UnknownPreference(QuantiPhyError, KeyError) – Unknown preference.

• UnknownScaleFactor(QuantiPhyError, ValueError) – Unknown scale factor or
factors.

render(*, form=None, show_units=None, prec=None, show_label=None, strip_zeros=None,
strip_radix=None, scale=None, negligible=None)

Convert quantity to a string.

Parameters

68 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

• form (str) – Specifies the form to use for representing numbers by default. Choose from
‘si’, ‘sia’, ‘eng’, ‘fixed’, and ‘binary’. As an example 0.25 A is represented with 250 mA
when form is ‘si’, as 250e-3 A when form is ‘eng’, and with 0.25 A when from is ‘fixed’.
‘sia’ (SI ASCII) is like ‘si’, but causes map_sf preference to be ignored. ‘binary’ is like
‘sia’, but specifies that binary scale factors be used. Default is ‘si’.

• show_units (bool) – Whether the units should be included in the string.

• prec (integer or 'full') – The desired precision (one plus this value is the desired
number of digits). If specified as ‘full’, the full original precision is used.

• show_label ('f', 'a', or boolean) – Add the name and possibly the description when
rendering a quantity to a string. Either label_fmt or label_fmt_full is used to label the
quantity.

– neither is used if show_label is False,

– otherwise label_fmt is used if quantity does not have a description or if show_label is
‘a’ (short for abbreviated),

– otherwise label_fmt_full is used if show_desc is True or show_label is ‘f’ (short for full).

• strip_zeros (boolean) – Remove contiguous zeros from end of fractional part. If not
specified, the global strip_zeros setting is used.

• strip_radix (boolean) – Remove radix if there is nothing to the right of it. If not spec-
ified, the global strip_radix setting is used.

• scale (real or dict) –

– If a float or a quantity, it scales the displayed value (the quantity is multiplied by scale
before being converted to the string). If a quantity, the units are ignored.

– If a tuple, the first value, a float, is treated as a scale factor and the second value, a string,
is take to be the units of the displayed value.

– If a function, it takes two arguments, the value and the units of the quantity and it returns
two values, the value and units of the displayed value.

– If a string, it is taken to the be desired units. This value along with the units of the quantity
are used to select a known unit conversion, which is applied to create the displayed value.

• negligible – If the absolute value of the quantity is equal to or smaller than negligible, it
is rendered as 0. To make negligible a function of the units of the quantity, pass a dictionary
where the keys are the units and the values are the value to use for negligible. A key of ‘’ is
used for quantities with no units and a key of None provides a default value for negligible
that is used if the units of the quantity are not found in the dictionary.

Raises

• UnknownConversion(QuantiPhyError, KeyError) – A unit conversion was re-
quested and there is no corresponding unit converter.

• UnknownFormatKey(QuantiPhyError, KeyError) – ‘label_fmt’ or ‘label_fmt_full’
contains an unknown format key.

Example:

>>> c = Quantity('c')
>>> print(
... c.render(),
... c.render(form='si'),

(continues on next page)

7.2. Classes and Functions 69

QuantiPhy Documentation, Release 2.19

(continued from previous page)

... c.render(form='eng'),

... c.render(form='fixed'),

... c.render(show_units=False),

... c.render(prec=6),

... c.render(prec='full'),

... c.render(show_label=True),

... c.render(show_label='f'),

... sep=newline

...)
299.79 Mm/s
299.79 Mm/s
299.79e6 m/s
299792458 m/s
299.79M
299.7925 Mm/s
299.792458 Mm/s
c = 299.79 Mm/s
c = 299.79 Mm/s — speed of light

>>> print(
... Tfreeze.render(scale='°F'),
... Tboil.render(scale='°F'),
... sep=newline
...)
32 °F
212 °F

classmethod reset_prefs()

Reset preferences

Resets all preferences to the current preferences of the parent class. If there is no parent class, they are reset
to their defaults.

scale(scale, cls=None)
Scale a quantity to create a new quantity.

Parameters

• scale (real, pair, function, string, or quantity) –

– If a float, it scales the existing value (a new quantity is returned whose value equals the
existing quantity multiplied by scale. In this case the scale is assumed unitless and so
the units of the new quantity are the same as those of the existing quantity).

– If a tuple, the first value, a float, is treated as a scale factor and the second value, a string,
is taken to be the units of the new quantity.

– If a function, it takes two arguments, the value to be scaled and its units. The value is
guaranteed to be a Quantity that includes the units, so the second argument is redundant
and will eventually be deprecated. The function returns two values, the value and units
of the new value.

– If a string, it is taken to the be desired units. This value along with the units of the
quantity are used to select a known unit conversion, which is applied to create the new
value.

70 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

– If a quantity, the units are ignored and the scale is treated as if were specified as a unitless
float.

– If a subclass of Quantity that includes units, the units are taken to the be desired units
and the behavior is the same as if a string were given, except that cls defaults to the given
subclass.

• cls (class) – Class to use for return value. If not given, the class of self is used it the
units do not change, in which case Quantity is used.

Raises
UnknownConversion(QuantiPhyError, KeyError) – A unit conversion was requested
and there is no corresponding unit converter.

Example:

>>> Tf = Tfreeze.scale('°F')
>>> Tb = Tboil.scale('°F')
>>> print(Tf, Tb, sep=newline)
32 °F
212 °F

classmethod set_prefs(**kwargs)
Set class preferences.

Any values not passed in are left alone. Pass in None to reset a preference to its default value.

Parameters

• abstol (float) – Absolute tolerance, used by Quantity.is_close()when determining
equivalence. Default is 1012.

• accept_binary (bool) – Allow use of binary scale factors (Ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi).
Default is False.

• assign_rec (str) – Regular expression used to recognize an assignment. Used in con-
structor and extract(). By default an ‘=’ or ‘:’ separates the name from the value and a ‘—’,
‘–’, ‘#’, or ‘//’ separates the value from the description, if a description is given. So the
default recognizes the following forms:

'vel = 60 m/s'
'vel = 60 m/s — velocity'
'vel = 60 m/s -- velocity'
'vel = 60 m/s # velocity'
'vel = 60 m/s // velocity'
'vel: 60 m/s'
'vel: 60 m/s — velocity'
'vel: 60 m/s -- velocity'
'vel: 60 m/s # velocity'
'vel: 60 m/s // velocity'

The name, value, and description are identified in the regular expression using named
groups the names name, val and desc. For example:

assign_req = r'(?P<name>.*+) = (?P<val>.*?) — (?P<desc>.*?)',

The regular expression is interpreted using the re.VERBOSE flag.

When used with Quantity.extract() there are a few more features.

7.2. Classes and Functions 71

QuantiPhy Documentation, Release 2.19

First, you may also introduce comments using ‘—’, ‘–’, ‘#’, or ‘//’:

'— comment'
'-- comment'
'# comment'
'// comment'

Second, you can specify an alternate name using by placing in within parentheses following
the name:

'wavelength () = 21 cm — wavelength of hydrogen line'

In this case, the name attribute for the quantity will be ‘’ and the quantity will be filed in
the output dictionary using ‘wavelength’ as the key. If the alternate name is not given, then
‘wavelength’ is used for the quantity name and dictionary key.

Third, the value may be an expression involving the previously specified values. When
doing so, you can specify the units by following the value expression with a double-quoted
string. The expressions may contain numeric literals, previously defined quantities, and
the constants pi and tau. For example:

parameters = Quantity.extract(r'''
Fin = 250MHz — frequency of input stimulus
Tstop = 10/Fin "s" — simulation stop time

''')

In this example, the value for Tstop is given as an expression involving Fin.

• comma (str) – The character to be used as the thousands separator. It is very common
to use a comma, but using a space, period, or an underscore can be used. For your con-
venience, you can access a non-breaking space using Quantity.non_breaking_space,
Quantity.narrow_non_breaking_space, or Quantity.thin_space.

• form (str) – Specifies the form to use for representing numbers by default. Choose from
‘si’, ‘sia’, ‘eng’, ‘fixed’, and ‘binary’. As an example, 0.25 A is represented with 250 mA
when form is ‘si’, as 250e-3 A when form is ‘eng’, and with 0.25 A when from is ‘fixed’.
‘sia’ (SI ASCII) is like ‘si’, but causes map_sf to be ignored. ‘binary’ is like ‘sia’, but
specifies that binary scale factors be used. Default is ‘si’.

• full_prec (int) – Default full precision in digits where 0 corresponds to 1 digit. Must be
nonnegative. This precision is used when the full precision is requested and the precision
is not otherwise known. Default is 12.

• ignore_sf (bool) – Whether all scale factors should be ignored by default when recog-
nizing numbers. Default is False.

• inf (str) – The text to be used to represent infinity. By default its value is ‘inf’, but is
often set to ‘∞’ (the unicode infinity symbol). You can access the Unicode infinity symbol
using Quantity.infinity_symbol.

• input_sf (str) – Which scale factors to recognize when reading numbers. The default
is ‘YZEPTGMKk_cmuµnpfazy’. You can use this to ignore the scale factors you never
expect to reduce the chance of a scale factor/unit ambiguity. For example, if you expect to
encounter temperatures in Kelvin and can do without ‘K’ as a scale factor, you might use
‘TGMK_munpfa’. This also gets rid of the unusual scale factors.

• keep_components (bool) – Indicate whether components should be kept if quantity value
was given as string. Doing so takes a bit of space, but allows the original precision of the
number to be recreated when full precision is requested. Default is True.

72 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

• known_units (list or string) – List of units that are expected to be used in preference
to a scale factor when the leading character could be mistaken as a scale factor. If a string
is given, it is split at white space to form the list. When set, any previous known units are
overridden. Default is empty.

• label_fmt (str) – Format string used when label is requested if the quantity does not
have a description or if the description was not requested (if show_desc is False). Is passed
through string .format() method. Format string takes two possible arguments named n and
v for the name and value. A typical values include:

'{n} = {v}' (default)
'{n}: {v}'

• label_fmt_full (str) – Format string used when label is requested if the quantity has
a description and the description was requested (if show_desc is True). Is passed through
string .format() method. Format string takes four possible arguments named n, v, d and
V for the name, value, description, and value as formatted by label_fmt. Typical value
include:

'{n} = {v} — {d}' (default)
'{n} = {v} -- {d}'
'{n} = {v} # {d}'
'{n} = {v} // {d}'
'{n}: {v} — {d}'
'{n}: {v} -- {d}'
'{V} — {d}'
'{V} -- {d}'
'{V:<20} # {d}'

The last example shows the V argument with alignment and width modifiers. In this case
the modifiers apply to the name and value after being they are combined with the label_fmt.
This is typically done when printing several quantities, one per line, because it allows you
to line up the descriptions.

• map_sf (dictionary or function) – Use this to change the way individual scale fac-
tors are rendered, ex: map_sf={‘u’: ‘’} to render micro using mu. If a function is given,
it takes a single string argument, the nominal scale factor (which would be the exponent if
no scale factor fits), and returns either a string or a tuple. The string is the desired scale
factor. The tuple consists of the string and a flag. If the flag is True the string is treated
as an exponent, otherwise it is treated as a scale factors. The difference between an expo-
nent and a scale factor is that the spacer goes after an exponent and before a scale factor.
QuantiPhy provides two predefined functions intended for use with maps_sf : Quantity.
map_sf_to_greek() and Quantity.map_sf_to_sci_notation(). Default is empty.

• minus (str) – The text to be used as the minus sign. By default its value is ‘-‘, but is
sometimes ‘’ (the unicode minus sign). You can access the Unicode minus sign using
Quantity.minus_sign.

This preference only affects how numbers are rendered. Both - and the unicode are always
accepted as a minus sign when interpreting strings as numbers.

• nan (str) – The text to be used to represent a value that is not-a-number. By default its
value is ‘NaN’.

• negligible (real or dictionary) – If the absolute value of the quantity is equal to
or smaller than negligible, it is rendered as 0. To make negligible a function of the units
of the quantity, pass a dictionary where the keys are the units and the values are the value

7.2. Classes and Functions 73

QuantiPhy Documentation, Release 2.19

to use for negligible. A key of ‘’ is used for quantities with no units and a key of None
provides a default value for negligible that is used if the units of the quantity are not found
in the dictionary.

• number_fmt (dictionary or function) – Format string used to convert the compo-
nents of the number into the number itself. Normally this is not necessary. However, it can
be used to perform special formatting that is helpful when aligning numbers in tables. It
allows you to specify the widths and alignments of the individual components. There are
three named components: whole, frac, and units. whole contains the portion of the man-
tissa to the left of the radix (decimal point). It is the whole mantissa if there is no radix.
It also includes the sign and the leading units (currency symbols), if any. frac contains the
radix and the fractional part. It also contains the exponent if the number has one. units
contains the scale factor and units. The following value can be used to align both the radix
and the units, and give the number a fixed width:

number_fmt = '{whole:>3s}{frac:<4s} {units:<3s}'

The various widths and alignments could be adjusted to fit a variety of needs.

It is also possible to specify a function as number_fmt, in which case it is passed the three
values in order (whole, frac and units) and is expected to return the number as a string.

• output_sf (str) – Which scale factors to output, generally one would only use familiar
scale factors. The default is ‘TGMkmunpfa’, which gets rid or the very large (‘QRYZEP’)
and very small (‘zyrq’) scale factors that many people do not recognize. You can set this
to Quantity.all_sf to configure Quantity to use all available output scale factors.

• radix (str) – The character to be used as the radix. By default it is ‘.’.

• plus (str) – The text to be used as the plus sign. By default it is ‘+’, but is sometimes ‘’
(the unicode full width plus sign) or ‘’ to simply eliminate plus signs from numbers. You
can access the Unicode full width plus sign using Quantity.plus_sign.

This preference only affects how numbers are rendered. Both + and the unicode are always
accepted as a plus sign when interpreting strings as numbers.

QuantiPhy currently does not add leading plus signs to either mantissa or exponent, so this
setting is ignored.

• prec (int or str) – Default precision in digits where 0 corresponds to 1 digit. Must be
nonnegative. This precision is used when the full precision is not required. Default is 4.

• preferred_units (dict) – A dictionary that is used when looking up the preferred units
when rendering. For example, if preferred_units contains the entry: {“”: “Ohms Ohm
ohms ohm”}, then when rendering a quantity with units “Ohms”, “Ohm”, “ohms”, or
“ohm”, the units are rendered as “”.

• reltol (float) – Relative tolerance, used by Quantity.is_close()when determining
equivalence. Default is 106.

• show_commas (bool) – When rendering to fixed-point string, add commas to the whole
part of the mantissa, every three digits. By default this is False.

• show_desc (bool) – Whether the description should be shown if it is available when show-
ing the label. By default show_desc is False.

Deprecated since version 2.1: Use show_label='f' instead.

• show_label ('f', 'a', or bool) – Add the name and possibly the description when ren-
dering a quantity to a string. Either label_fmt or label_fmt_full is used to label the quantity.

– Neither is used if show_label is False,

74 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

– otherwise label_fmt is used if quantity does not have a description or if show_label is
‘a’ (short for abbreviated),

– otherwise label_fmt_full is used if show_desc is True or show_label is ‘f’ (short for full).

• spacer (str) – The spacer text to be inserted in a string between the numeric value
and the scale factor when units are present. Is generally specified to be ‘’ or ‘ ‘; use
the latter if you prefer a space between the number and the units. Generally using ‘ ‘
makes numbers easier to read, particularly with complex units, and using ‘’ is easier to
parse. You could also use a Unicode non-breaking space ‘ ’. For your convenience, you
can access a non-breaking space using Quantity.non_breaking_space, Quantity.
narrow_non_breaking_space, or Quantity.thin_space.

Certain units, as defined using the tight_units preference, cause the spacer to be suppressed.

• strip_radix (bool or str) – When rendering, strip the radix (decimal point) if not
needed from numbers even if they could then be mistaken for integers.

There are three valid values: True, False, and “cover”. If True, the radix is removed if it is
the last character in the mantissa, so 1 is rendered as “1”. If False, it is not removed, so 1 is
rendered as “1.”. If “cover”, the radix is replaced by “.0”, so 1 is rendered as “1.0”. Thus,
“cover” is a variant of False; it also retains the radix but adds a 0 to avoid a ‘hanging’ radix.

If this setting is False, the radix is still stripped if the number has a scale factor. The default
value is True.

Set strip_radix to False when generating output that will be read by a parser that distin-
guishes between integers and reals based on the presence of a decimal point or scale factor.

Be aware that use of “cover” can give the impression of more precision than is intended.
For example, 1.4 if rendered with prec=0 would be “1.0”, which suggests a precision of 1
rather than 0. This true only if prec is less than 3.

• strip_zeros (bool) – When rendering, strip off any unneeded zeros from the number.
By default this is True.

Set strip_zeros to False when you would like to indicated the precision of your numbers
based on the number of digits shown.

• tight_units (list of strings) – The spacer is suppressed with these units. By de-
fault, this is done for: % ° ‘ ” . Some add °F and °C as well.

• unity_sf (str) – The output scale factor for unity, generally ‘’ or ‘_’. The default is ‘’, but
use ‘_’ if you want there to be no ambiguity between units and scale factors. For example,
0.3 would be rendered as ‘300m’, and 300 m would be rendered as ‘300_m’.

Raises

• UnknownPreference(QuantiPhyError, KeyError) – Unknown preference.

• UnknownScaleFactor(QuantiPhyError, ValueError) – Unknown scale factor or
factors.

Example:

>>> mu0 = Quantity('mu0')
>>> print(mu0)
1.2566 uH/m

>>> Quantity.set_prefs(prec=6, map_sf={'u': ''})
>>> print(mu0)

(continues on next page)

7.2. Classes and Functions 75

QuantiPhy Documentation, Release 2.19

(continued from previous page)

1.256637 H/m

>>> Quantity.set_prefs(prec=None, map_sf=None)
>>> print(mu0)
1.2566 uH/m

Quantity Functions

These functions are provided for those that prefer use QuantiPhy to convert numbers in strings directly to floats, rather
than keep the values around as Quantity objects.

quantiphy.as_real(*args, **kwargs)
Convert to real.

Takes the same arguments as Quantity, but returns a float rather than a Quantity. Takes one additional optional
keyword argument . . .

Parameters
cls (class) – Quantity subclass used to do the conversion. If not given, Quantity is used.

Examples:

>>> from quantiphy import as_real
>>> print(as_real('1 uL'))
1e-06

>>> print(as_real('1.2 mg/L', scale='M', params=74.55))
1.6096579476861166e-05

quantiphy.as_tuple(*args, **kwargs)
Convert to tuple (value, units).

Takes the same arguments as Quantity, but returns a tuple consisting of the value and units. Takes one additional
optional keyword argument . . .

Parameters
cls (class) – Quantity subclass used to do the conversion. If not given, Quantity is used.

Examples:

>>> from quantiphy import as_tuple
>>> print(as_tuple('1 uL'))
(1e-06, 'L')

>>> print(as_tuple('1.2 mg/L', scale='M', params=74.55))
(1.6096579476861166e-05, 'M')

quantiphy.render(value, units, params=None, *args, **kwargs)
Render value and units to string (SI scale factors format).

The first two arguments are the value and the units and are required. The remaining arguments are the same as
those of Quantity.render().

Examples:

76 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

>>> from quantiphy import render
>>> print(render(1e-6, 'L'))
1 uL

>>> print(render(16.097e-6, 'M', scale='g/L', params=74.55))
1.2 mg/L

quantiphy.fixed(value, units, params=None, *args, **kwargs)
Render value and units to string (fixed-point format).

The first two arguments are the value and the units and are required. The remaining arguments are the same as
those of Quantity.fixed().

Example:

>>> from quantiphy import fixed
>>> print(fixed(1e7, '$', show_commas=True, strip_zeros=False, prec=2))
$10,000,000.00

quantiphy.binary(value, units, params=None, *args, **kwargs)
Render value and units to string (binary scale factors format)

The first two arguments are the value and the units and are required. The remaining arguments are the same as
those of Quantity.binary().

Example:

>>> from quantiphy import binary
>>> print(binary(2**32, 'B'))
4 GiB

7.2.2 Unit Conversion

class quantiphy.UnitConversion(to_units, from_units, slope=1, intercept=0)

Public Methods:

activate() Re-activate a unit conversion.
convert([value, from_units, to_units]) Convert value to quantity with new units.
clear_all() Remove all previously defined unit conversions.
fixture(converter_func) A decorator fixture for unit conversion functions that

can be used when creating parametrized unit conver-
sions.

activate()

Re-activate a unit conversion.

Normally it is not necessary to call this method, however it can be used re-activate a previously created unit
conversion that has since been overridden by a different unit conversion with the same to and from units.

7.2. Classes and Functions 77

QuantiPhy Documentation, Release 2.19

classmethod clear_all()

Remove all previously defined unit conversions.

convert(value=1, from_units=None, to_units=None)
Convert value to quantity with new units.

A convenience method. Normally it is not needed because once created, a unit conversion becomes directly
accessible to quantities and can be used both when creating or rendering the quantity.

Parameters

• value – The value to convert. May be a real number or a quantity. Alternately, may simply
be a string, in which case it is taken to be the from_units. If the value is not given it is taken
to be 1.

• from_units (str) – The units to convert from. If not given, the class’s first from_units
are used.

• to_units (str) – The units to convert to. If not given, the class’s first to_units are used.

If the from_units were found among the class’s from_units, and the to_units were found among the class’s
to_units, then a forward conversion is performed.

If the from_units were found among the class’s to_units, and the to_units were found among the class’s
from_units, then a reverse conversion is performed.

Raises
UnknownConversion(QuantiPhyError, KeyError) – The given units are not supported
by the underlying class.

Example:

>>> print(str(m2pc))
m ← 3.0857e+16*pc

>>> m = m2pc.convert()
>>> print(str(m))
30.857e15 m

>>> pc = m2pc.convert(m)
>>> print(str(pc))
1 pc

>>> m = m2pc.convert(pc)
>>> print(str(m))
30.857e15 m

>>> m2pc.convert(30.857e15, 'm')
Quantity('1 pc')

>>> m2pc.convert(1000, 'pc')
Quantity('30.857e18 m')

>>> m2pc.convert('pc')
Quantity('30.857e15 m')

static fixture(converter_func)
A decorator fixture for unit conversion functions that can be used when creating parametrized unit conver-
sions.

78 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

Creates an argument list for the decorated function based on the type of value given for the params argument
to Quantity.

If params is a dictionary or mapping, its values are passed as named parameters.

If params is a tuple or list, its values are passed as positional arguments.

Otherwise, the value of params is passed as the second argument.

In all cases, the value being converted (an instance of Quantity) is passed as the first argument to the
decorated converter function.

For example, when performing conversions between the molarity of a solution and its concentration in
terms of g/L, the molecular weight of the compound used to make the solution is needed:

>>> from quantiphy import Quantity, UnitConversion

>>> @UnitConversion.fixture
... def from_molarity(M, mw):
... return M * mw

>>> @UnitConversion.fixture
... def to_molarity(g_L, mw):
... return g_L / mw

>>> conv = UnitConversion('g/L', 'M', from_molarity, to_molarity)

>>> KCl_M = Quantity('1.2 mg/L', scale='M', params=74.55)
>>> print(KCl_M)
16.097 uM
>>> print(f"{KCl_M:qg/L}")
1.2 mg/L

>>> NaCl_M = Quantity('5.0 mg/L', scale='M', params=58.44277)
>>> print(NaCl_M)
85.554 uM
>>> print(f"{NaCl_M:qg/L}")
5 mg/L

However, if you want to convert between mass and molarity where the mass is the amount of a compound
needed to create a solution of a particular volume with a particular concentration, both the molecular weight
and the volume are required parameters:

>>> @UnitConversion.fixture
... def to_molarity(mass, vol, mw):
... moles = mass/mw
... return moles/vol

>>> @UnitConversion.fixture
... def to_grams(molarity, vol, mw):
... return molarity*vol*mw

>>> conv = UnitConversion('g', 'M', to_grams, to_molarity)

>>> KCl_M = Quantity('1.2 g', scale='M', params=dict(mw=74.55, vol=0.250))
>>> print(KCl_M)

(continues on next page)

7.2. Classes and Functions 79

QuantiPhy Documentation, Release 2.19

(continued from previous page)

64.386 mM
>>> print(f"{KCl_M:pg}")
1.2 g

>>> NaCl_M = Quantity('5.0 g', scale='M', params=dict(mw=58.44277, vol=0.250))
>>> print(NaCl_M)
342.22 mM
>>> print(f"{NaCl_M:pg}")
5 g

7.2.3 Constants and Unit Systems

quantiphy.add_constant(value, alias=None, unit_systems=None)
Create a new constant.

Save a quantity in such a way that it can later be recalled by name when creating new quantities.

Parameters

• value (quantity) – The value of the constant. Must be a quantity or a string that can be
directly converted to a quantity.

• alias (str) – An alias for the constant. Can be used to access the constant from as an
alternative to the name given in the value, which itself is optional. If the value has a name,
specifying this name is optional. If both are given, the constant is accessible using either
name. alias may also be a list of aliases.

• unit_systems (list or str) – Name or names of the unit systems to which the constant
should be added. If given as a string, string will be split at white space to create the list.
If a constant is associated with a unit system, it is only available when that unit system is
active. You need not limit yourself to the predefined ‘mks’ and ‘cgs’ unit systems. Giving a
name creates the corresponding unit system if it does not already exist. If unit_systems is not
given, the constant is not associated with a unit system, meaning that it is always available
regardless of which unit system is active.

Raises

• ExpectedQuantity(QuantiPhyError, ValueError) – value must be an instance of
Quantity or it must be a string that can be converted to a quantity.

• MissingName(QuantiPhyError, NameError) – alias was not specified and no name
was available from value.

The constant is saved under name if given, and under the name contained within value if available. It is not
necessary to supply both names, one is sufficient.

Example:

>>> from quantiphy import Quantity, add_constant
>>> add_constant('f_hy = 1420.405751786 MHz — Frequency of hydrogen line')
>>> print(Quantity('f_hy').render(show_label='f'))
f_hy = 1.4204 GHz — Frequency of hydrogen line

quantiphy.set_unit_system(unit_system)

Activates a unit system.

80 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

The default unit system is ‘mks’. Calling this function changes the active unit system to the one with the specified
name. Only constants associated with the active unit system or not associated with a unit system are available
for use.

Parameters
unit_system (str) – Name of the desired unit system.

Raises
UnknownUnitSystem(QuantiPhyError, KeyError) – unit_system does not correspond to a
known unit system.

Example:

>>> from quantiphy import Quantity, set_unit_system
>>> set_unit_system('cgs')
>>> print(Quantity('h').render(show_label='f'))
h = 6.6261e-27 erg-s — Plank's constant

>>> set_unit_system('mks')
>>> print(Quantity('h').render(show_label='f'))
h = 662.61e-36 J-s — Plank's constant

7.2.4 Exceptions

exception quantiphy.QuantiPhyError(*args, **kwargs)
QuantiPhy base exception.

All of the specific QuantiPhy exceptions subclass this exception.

render(template=None)
Convert exception to a string under guidance of format string.

Parameters
template (str) – This string, along with the positional and keyword arguments of the ex-
ception are passed to the Python format() function and the result is returned. template may
also be a list of strings. In this case the first string found that renders without error is used. If
template is not given, the exception is rendered with the built-in template.

exception quantiphy.ExpectedQuantity(*args, **kwargs)
The value is required to be a Quantity or a string that can be converted to a Quantity.

exception quantiphy.IncompatiblePreferences(*args, **kwargs)
Two preferences are not compatible

exception quantiphy.IncompatibleUnits(*args, **kwargs)
The units of the contribution do not match those of the underlying quantity.

exception quantiphy.InvalidNumber(*args, **kwargs)
The value given could not be converted to a number.

exception quantiphy.InvalidRecognizer(*args, **kwargs)
The assign_rec preference is expected to be a regular expression that defines one or more named fields, one of
which must be val. This exception is raised when the current value of assign_rec does not satisfy this requirement.

exception quantiphy.MissingName(*args, **kwargs)
alias was not specified and no name was available from value.

7.2. Classes and Functions 81

QuantiPhy Documentation, Release 2.19

exception quantiphy.UnknownConversion(*args, **kwargs)
The given units are not supported by the underlying class, or a unit conversion was requested and there is no
corresponding unit converter.

exception quantiphy.UnknownFormatKey(*args, **kwargs)
The label_fmt and label_fmt_full are expected to be format strings that may interpolate certain named arguments.
The valid named arguments are n for name, v for value, and d for description. This exception is raised when some
other name is used for an interpolated argument.

exception quantiphy.UnknownPreference(*args, **kwargs)
The name given for a preference is unknown.

exception quantiphy.UnknownScaleFactor(*args, **kwargs)
The input_sf preference gives the list of scale factors that should be accepted on a number. The output_sf pref-
erence gives the list of scale factors that should be used when rendering numbers. This exception is raised if
input_sf or output_sf contains an unknown scale factor.

exception quantiphy.UnknownUnitSystem(*args, **kwargs)
The name given does not correspond to a known unit system.

7.3 Examples

7.3.1 Motivating Example

QuantiPhy is a light-weight package that allows numbers to be combined with units into quantities. Quantities are very
commonly encountered when working with real-world systems when numbers are involved. And when encountered,
the numbers often use SI scale factors to make them easier to read and write. Surprisingly, most computer languages do
not support numbers in this form. This is even more surprising when you realize that this form is a very well established
international standard and has been for more than 50 years.

When working with quantities, one often has to choose between using a form that is easy for computers to read or
one that is easy for humans to read. For example, consider this table of critical frequencies needed in jitter tolerance
measurements in optical communication:

>>> table1 = """
... SDH | Rate | f1 | f2 | f3 | f4
... --------+---------------+---------+----------+---------+--------
... STM-1 | 155.52 Mb/s | 500 Hz | 6.5 kHz | 65 kHz | 1.3 MHz
... STM-4 | 622.08 Mb/s | 1 kHz | 25 kHz | 250 kHz | 5 MHz
... STM-16 | 2.48832 Gb/s | 5 kHz | 100 kHz | 1 MHz | 20 MHz
... STM-64 | 9.95328 Gb/s | 20 kHz | 400 kHz | 4 MHz | 80 MHz
... STM-256 | 39.81312 Gb/s | 80 kHz | 1.92 MHz | 16 MHz | 320 MHz
... """

This table was formatted to be easily read by humans. If it were formatted for computers, the numbers would be given
without units and in exponential notation because they have dramatically different sizes. For example, it might look
like this:

>>> table2 = """
... SDH | Rate (b/s) | f1 (Hz) | f2 (Hz) | f3 (Hz) | f4 (Hz)
... --------+---------------+---------+----------+---------+--------
... STM-1 | 1.5552e8 | 5e2 | 6.5e3 | 6.5e3 | 1.3e6
... STM-4 | 6.2208e8 | 1e3 | 2.5e3 | 2.5e5 | 5e6

(continues on next page)

82 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

(continued from previous page)

... STM-16 | 2.48832e9 | 5e3 | 1e5 | 1e6 | 2e7

... STM-64 | 9.95328e9 | 2e4 | 4e5 | 4e6 | 8e7

... STM-256 | 3.981312e10 | 8e4 | 1.92e6 | 1.6e7 | 3.2e8

... """

This contains the same information, but it is much harder for humans to read and interpret. Often the compromise of
partially scaling the numbers can be used to make the table easier to interpret:

>>> table3 = """
... SDH | Rate (Mb/s) | f1 (kHz)| f2 (kHz) | f3 (kHz)| f4 (MHz)
... --------+---------------+---------+----------+---------+---------
... STM-1 | 155.52 | 0.5 | 6.5 | 65 | 1.3
... STM-4 | 622.08 | 1 | 2.5 | 250 | 5
... STM-16 | 2488.32 | 5 | 100 | 1000 | 20
... STM-64 | 9953.28 | 20 | 400 | 4000 | 80
... STM-256 | 39813.12 | 80 | 1920 | 16000 | 320
... """

This looks cleaner, but it involves perhaps even more effort to interpret because the values are distant from their cor-
responding scaling and units, because the large and small values are oddly scaled (0.5 kHz is more naturally given as
500Hz and 39813 MHz is more naturally given as 39.8 GHz), and because each column may have a different scaling
factor. While these might seem like minor inconveniences on this table, they can become quite annoying as tables
become larger or more numerous. This problem exists with both tables and graphs. Fundamentally the issue is that
your eyes are naturally drawn to the number, but the numbers are not complete. Your eyes need to hunt further and it is
not obvious where to hunt. If not next to the number, the scaling and units for the numbers may be found in the column
headings, the axes, the labels, the title, the caption, or in the body of the text. The sheer number of places to look can
dramatically slow the interpretation of the data. This problem does not exist in the first table where each number is
complete as it includes both its scaling and its units. The eye gets the full picture on the first glance.

This last version of the table represents a very common mistake people make when presenting data. They feel that
adding units and scale factors to each number adds clutter and wastes space and so removes them from the data and
places them somewhere else. Doing so results in a data that perhaps is visually cleaner but is harder for the reader to
interpret. All these tables contain the same information, but in the second two tables the readability has been traded off
in order to make the data easier to read into a computer because in most languages there is no easy way to read numbers
that have either units or scale factors.

QuantiPhy makes it easy to read and generate numbers with units and scale factors so you do not have to choose
between human and computer readability. For example, the above tables could be read with the following code (it must
be tweaked somewhat to handle tables 2 and 3):

>>> from quantiphy import Quantity

>>> # parse the table
>>> sdh = []
>>> lines = table1.strip().split('\n')
>>> for line in lines[2:]:
... fields = line.split('|')
... name = fields[0].strip()
... rate = Quantity(fields[1])
... critical_freqs = [Quantity(f) for f in fields[2:]]
... sdh.append((name, rate, critical_freqs))

>>> # print the table in a form suitable for humans
(continues on next page)

7.3. Examples 83

QuantiPhy Documentation, Release 2.19

(continued from previous page)

>>> for name, rate, freqs in sdh:
... print('{:8s}: {:12q} {:9q} {:9q} {:9q} {:9q}'.format(name, rate, *freqs))
STM-1 : 155.52 Mb/s 500 Hz 6.5 kHz 65 kHz 1.3 MHz
STM-4 : 622.08 Mb/s 1 kHz 25 kHz 250 kHz 5 MHz
STM-16 : 2.4883 Gb/s 5 kHz 100 kHz 1 MHz 20 MHz
STM-64 : 9.9533 Gb/s 20 kHz 400 kHz 4 MHz 80 MHz
STM-256 : 39.813 Gb/s 80 kHz 1.92 MHz 16 MHz 320 MHz

>>> # print the table in a form suitable for machines
>>> for name, rate, freqs in sdh:
... print('{:8s}: {:12.4e} {:9.2e} {:9.2e} {:9.2e} {:9.2e}'.format(name, rate,␣
→˓*freqs))
STM-1 : 1.5552e+08 5e+02 6.5e+03 6.5e+04 1.3e+06
STM-4 : 6.2208e+08 1e+03 2.5e+04 2.5e+05 5e+06
STM-16 : 2.4883e+09 5e+03 1e+05 1e+06 2e+07
STM-64 : 9.9533e+09 2e+04 4e+05 4e+06 8e+07
STM-256 : 3.9813e+10 8e+04 1.92e+06 1.6e+07 3.2e+08

>>> # print the table in a compromise form
>>> for name, rate, freqs in sdh:
... print(
... '{:8s}: {:12.2f} {:9.1f} {:9.1f} {:9.1f} {:9.1f}'.format(
... name, rate.scale(1e-6), freqs[0].scale(1e-3),
... freqs[1].scale(1e-3), freqs[2].scale(1e-3), freqs[3].scale(1e-6)
...)
...)
STM-1 : 155.52 0.5 6.5 65 1.3
STM-4 : 622.08 1 25 250 5
STM-16 : 2488.32 5 100 1000 20
STM-64 : 9953.28 20 400 4000 80
STM-256 : 39813.12 80 1920 16000 320

The code reads the data and then produces three outputs. The first output shows that quantities can be displayed in easily
readable forms with their units (approximates table1). The second output shows that the values are easily accessible
for computation (approximates table2). Finally, the third output represents a compromise between being human and
machine readable (approximates table3).

Quantity is used to convert a number string, such as ‘155.52 Mb/s’ into an internal representation that includes the
value and the units: 155.52e6 and ‘b/s’. The scaling factor is properly interpreted. Once a value is converted to a
Quantity, it can be treated just like a normal float. The main difference occurs when it is time to convert it back to a
string. When doing so, the scale factor and units are included by default.

7.3.2 DRAM Prices

Here is a table that was found on the Internet that gives the number of bits of dynamic RAM a dollar would purchase
over time:

>>> bits_per_dollar = '''
... 1973 490
... 1978 2780
... 1983 16400
... 1988 91800

(continues on next page)

84 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

(continued from previous page)

... 1993 368000

... 1998 4900000

... 2003 26300000

... 2008 143000000

... 2013 833000000

... 2018 5000000000

... '''

It is pretty easy to read in the early years, but by the turn of the millennium you have to start counting the zeros by hand
to understand the number. And are those bits or bytes? Reformatting with QuantiPhy makes it much more readable:

>>> for line in bits_per_dollar.strip().split('\n'):
... year, bits = line.split()
... bits = Quantity(bits, 'b')
... print(f'{year} {bits:11.2q} {bits:11.2qB}')
1973 490 b 61.2 B
1978 2.78 kb 348 B
1983 16.4 kb 2.05 kB
1988 91.8 kb 11.5 kB
1993 368 kb 46 kB
1998 4.9 Mb 612 kB
2003 26.3 Mb 3.29 MB
2008 143 Mb 17.9 MB
2013 833 Mb 104 MB
2018 5 Gb 625 MB

Notice that bits was printed twice. The first time the formatting code included a width specification, but in the second
the desired unit of measure was specified (B), which caused the underlying value to be converted from bits to bytes.

It is important to recognize that QuantiPhy is using decimal rather than binary scale factors. So 5 GB is 5 gigabyte
and not 5 gibibyte. In other words 5 GB represents 5×109 B and not 5×230 B. This table can be reformulated to use the
binary scale factors by changing the q format characters to b:

>>> for line in bits_per_dollar.strip().split('\n'):
... year, bits = line.split()
... bits = Quantity(bits, 'b')
... print(f'{year} {bits:11.2b} {bits:11.2bB}')
1973 490 b 61.2 B
1978 2.71 Kib 348 B
1983 16 Kib 2 KiB
1988 89.6 Kib 11.2 KiB
1993 359 Kib 44.9 KiB
1998 4.67 Mib 598 KiB
2003 25.1 Mib 3.14 MiB
2008 136 Mib 17 MiB
2013 794 Mib 99.3 MiB
2018 4.66 Gib 596 MiB

7.3. Examples 85

QuantiPhy Documentation, Release 2.19

7.3.3 Thermal Voltage Example

In this example, quantities are used to represent all of the values used to compute the thermal voltage: Vt = kT/q. It is
not terribly useful, but does demonstrate several of the features of QuantiPhy.

>>> from quantiphy import Quantity
>>> with Quantity.prefs(
... show_label = 'f',
... label_fmt = '{n} = {v}',
... label_fmt_full = '{V:<18} # {d}',
...):
... T = Quantity(300, 'T K ambient temperature')
... k = Quantity('k')
... q = Quantity('q')
... Vt = Quantity(k*T/q, f'Vt V thermal voltage at {T:q}')
... print(T, k, q, Vt, sep='\n')
T = 300 K # ambient temperature
k = 13.806e-24 J/K # Boltzmann's constant
q = 160.22e-21 C # elementary charge
Vt = 25.852 mV # thermal voltage at 300 K

The first part of this example imports Quantity and sets the show_label, label_fmt and label_fmt_full preferences
to display both the value and the description by default. label_fmt is used when the description is not present and
label_fmt_full is used when it is present. In label_fmt the {n} is replaced by the name and {v} is replaced by the value
(numeric value and units). In label_fmt_full, the {V:<18} is replaced by the expansion of label_fmt, left justified with
a field width of 18, and the {d} is replaced by the description.

The second part defines four quantities. The first is given in a very specific way to avoid the ambiguity between units
and scale factors. In this case, the temperature is given in Kelvin (K), and normally if the temperature were given as
the string ‘300 K’, the units would be confused for the scale factor. As mentioned in Ambiguity of Scale Factors and
Units the ‘K’ would be treated as a scale factor unless you took explicit steps. In this case, this issue is circumvented
by specifying the units in the model along with the name and description. The model is also used when creating Vt to
specify the name, units, and description.

The last part simply prints the four values. The show_label preference is set so that names and descriptions are printed
along with the values. In this case, since all the quantities have descriptions, label_fmt_full is used to format the output.

7.3.4 Casual Time Units

This example shows how one could allow users to enter time durations using a variety of casual units of time. QuantiPhy
only pre-defines conversions for time units that are unambiguous and commonly used in scientific computation, so that
leaves out units like months and years. However, in many situations the goal is simplicity rather than precision. In such
a situation, it is convenient to support any units a user may reasonable expect to use. In a casual setting it would be very
unusual to use SI scale factors, so there use will be prohibited to allow a greater range of units (ex. m for minutes).

This example assumes that a collection of time duration values are contained in a configuration file, in this example
represented by configuration. Normally these values would be contained in a separate file that is opened and read, but
for the sake of simplicity in the example, the ‘contents’ of the file is just given as a multiline string. The user can give
the durations using any units they like, but internally they are all converted to seconds.

>>> from quantiphy import Quantity, UnitConversion
>>> _ = UnitConversion('s', 'sec second seconds')
>>> _ = UnitConversion('s', 'm min minute minutes', 60)
>>> _ = UnitConversion('s', 'h hr hour hours', 60*60)

(continues on next page)

86 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

(continued from previous page)

>>> _ = UnitConversion('s', 'd day days', 24*60*60)
>>> _ = UnitConversion('s', 'w week weeks', 7*24*60*60)
>>> _ = UnitConversion('s', 'M month months', 30*24*60*60)
>>> _ = UnitConversion('s', 'y year years', 365*24*60*60)
>>> Quantity.set_prefs(ignore_sf=True)

>>> configuration = '''
... time_to_live = 3 months
... time_limit = 1 day
... time_out = 10m
... '''
>>> limits = Quantity.extract(configuration)

>>> for k, v in limits.items():
... print(f'{k} = {v:ps}')
time_to_live = 7776000 s
time_limit = 86400 s
time_out = 600 s

Notice that the return values from UnitConversion are captured in a variable (_) in the code above. This is not necessary.
It is done in this case to satisfy the testing framework that tests the code found in this documentation; normally the
return value is discarded.

Another example of using QuantiPhy to implement casual time units is the remind script, which reminds you to do
something after a specified amount of time has passed. You can find remind on GitHub.

7.3.5 Unicode Text Example

In this example QuantiPhy formats quantities to be embedded in text. To make the text as clean as possible, QuantiPhy
is configured to use Unicode scale factors and the Unicode narrow non-breaking space as the spacer. The non-breaking
space prevents units from being placed on a separate line from their number, making the quantity easier to read. The
plus and minus signs are also replaced by their Unicode forms.

>>> from quantiphy import Quantity
>>> import textwrap

>>> Quantity.set_prefs(
... map_sf = Quantity.map_sf_to_sci_notation,
... spacer = Quantity.narrow_non_breaking_space,
... plus = Quantity.plus_sign,
... minus = Quantity.minus_sign
...)

>>> constants = [
... Quantity('h'),
... Quantity('hbar'),
... Quantity('k'),
... Quantity('q'),
... Quantity('c'),
... Quantity('0C'),
... Quantity('eps0'),
... Quantity('mu0'),

(continues on next page)

7.3. Examples 87

https://github.com/KenKundert/remind

QuantiPhy Documentation, Release 2.19

(continued from previous page)

... Quantity('0', 'K', scale='°C', desc='Absolute zero'),

...]

>>> # generate some sentences that contain quantities
>>> sentences = [f'{q.desc.capitalize()} is {q}.' for q in constants]

>>> # combine the sentences into a left justified paragraph
>>> print(textwrap.fill(' '.join(sentences)))
Plank's constant is 662.61×1036J-s. Reduced plank's constant is
105.46×1036J-s. Boltzmann's constant is 13.806×1024J/K.
Elementary charge is 160.22×1021C. Speed of light is 299.79Mm/s.
Zero degrees celsius is 273.15K. Permittivity of free space is
8.8542pF/m. Permeability of free space is 1.2566µH/m. Absolute
zero is 273.15°C.

When rendered in your browser with a variable width font, the result looks like this:

Plank’s constant is 662.61×1036J-s. Reduced plank’s constant is 105.46×1036J-s. Boltzmann’s constant is
13.806×1024J/K. Elementary charge is 160.22×1021C. Speed of light is 299.79Mm/s. Zero degrees celsius
is 273.15K. Permittivity of free space is 8.8542pF/m. Permeability of free space is 1.2566µH/m. Absolute
zero is 273.15°C.

7.3.6 Timeit Example

A Python module that benefits from QuantiPhy is timeit, a package in the standard library that runs a code snippet a
number of times and prints the elapsed time for the test. However, from a usability perspective it has several issues. First,
it prints out the elapsed time of all the repetitions rather than dividing the elapsed time by the number of repetitions
and reporting the average time per operation. So it can quickly allow you to compare the relative speed of various
operations, but it does not directly give you a sense of the time required in absolute terms. Second, it does not label its
output, so it is not clear what is being displayed. Here is an example where timeit has been fortified with QuantiPhy
to make the output more readable. To make it more interesting, the timing results are run on QuantiPhy itself. The
results give you a feel for how much slower QuantiPhy is to both convert strings to quantities and quantities to strings
compared into the built-in float class.

#!/usr/bin/env python3
from timeit import timeit
from random import random, randint
from quantiphy import Quantity

preferences
trials = 100_000
Quantity.set_prefs(

prec = 2,
show_label = True,
label_fmt = '{n:>40}: {v}',
map_sf = Quantity.map_sf_to_greek

)

build the raw data, arrays of random numbers
s_numbers = []
s_quantities = []
numbers = []

(continues on next page)

88 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

(continued from previous page)

quantities = []
for i in range(trials):

mantissa = 20*random()-10
exponent = randint(-35, 35)
number = '%0.25fe%s' % (mantissa, exponent)
quantity = number + ' Hz'
s_numbers.append(number)
s_quantities.append(quantity)
numbers.append(float(number))
quantities.append(Quantity(number, 'Hz'))

define testcases
testcases = [

'[float(v) for v in s_numbers]',
'[Quantity(v) for v in s_quantities]',
'[str(v) for v in numbers]',
'[str(v) for v in quantities]',

]

run testcases and print results
print(f'For {Quantity(trials)} values ...')
for case in testcases:

elapsed = timeit(case, number=1, globals=globals())
result = Quantity(elapsed/trials, units='s/op', name=case)
print(result)

The results are:

For 100k iterations ...
[float(v) for v in s_numbers]: 638 ns/op

[Quantity(v) for v in s_quantities]: 15.3 µs/op
[str(v) for v in numbers]: 1.03 µs/op

[str(v) for v in quantities]: 28.1 µs/op

You can see that QuantiPhy is considerably slower than the float class, which you should be aware of if you are pro-
cessing large quantities of numbers.

Contrast this with the normal output from timeit:

0.05213119700783864
1.574107409993303
0.10471829099697061
2.3749650190002285

The essential information is there, but it takes longer to make sense of it.

7.3. Examples 89

QuantiPhy Documentation, Release 2.19

7.3.7 Disk Usage Example

Here is a simple example that uses QuantiPhy to clean up the output from the Linux disk usage utility. It runs the du
command, which prints out the disk usage of files and directories. The results from du are gathered and then sorted by
size and then the size and name of each item is printed.

Quantity is used to scale the filesize reported by du from KB to B. Then the list of files is sorted by size. Here we are
exploiting the fact that quantities act like floats, and so the sorting can be done with no extra effort. Finally, the ability
to render to a number with a scale factor and units is used when presenting the results.

#!/usr/bin/env python3
runs du and sorts the output while suppressing any error messages from du

from quantiphy import Quantity
from inform import display, fatal, os_error
from shlib import Run
import sys

try:
du = Run(['du', '-xd1'] + sys.argv[1:], modes='sWEO1')

files = []
for line in du.stdout.splitlines():

if line:
size, _, filename = line.partition('\t')
files += [(Quantity(size, scale=(1024, 'B')), filename)]

files.sort(key=lambda x: x[0])

for size, name in files:
display('{:8.2b} {}'.format(size, name))

except OSError as err:
fatal(os_error(err))

except KeyboardInterrupt:
display('dus: killed by user.')

And here is an example of the programs output:

460 KiB quantiphy/examples/delta-sigma
464 KiB quantiphy/examples
1.54 KiB quantiphy/doc
3.48 MiB quantiphy

90 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

7.3.8 Parameterized Simulation Example

In this example, Python is used to perform a simulation of a modulator. There are a collection of parameters that
control the simulation, which are placed at the top of the Python file as documentation. Quantity.extract() is used
to access these parameters and control the simulation. In this way, modifying the simulation parameters is easy and the
documentation is always up to date.

#!/usr/bin/env python3

r"""
Simulates a second-order modulator with the following parameter values:

Fclk = 50MHz -- clock frequency
Fin = 200kHz -- input frequency
Vin = 950mV -- input voltage amplitude (peak)
gain1 = 0.5 -- gain of first integrator
gain2 = 0.5 -- gain of second integrator
Vmax = 1V -- quantizer maximum input voltage
Vmin = -1V -- quantizer minimum input voltage
levels = 16 -- quantizer output levels
levels = 4 -- quantizer output levels
Tstop = 1/Fin "s" -- simulation stop time
Tstart = -0.5/Fin "s" -- simulation start time (points with t<0 are discarded)
vin_file = 'vin.wave' -- output data file for vin
vout_file = 'vout.wave' -- output data file for vout
dout_file = 'dout.wave' -- output data file for dout

"""
The values given above are used in the simulation, no further modification
of the code given below is required when changing these parameters.

from quantiphy import Quantity
from math import sin, tau
from inform import display, error, os_error

class Integrator:
def __init__(self, gain=1):

self.state = 0
self.gain = gain

def update(self, vin):
self.state += self.gain*vin
return self.state

class Quantizer:
def __init__(self, v_max, v_min, levels):

self.v_min = v_min
self.levels = levels
self.delta = (v_max - v_min)/(levels - 1)

def update(self, v_in):
level = (v_in - self.v_min) // self.delta
level = 0 if level < 0 else level

(continues on next page)

7.3. Examples 91

QuantiPhy Documentation, Release 2.19

(continued from previous page)

level = self.levels-1 if level >= self.levels else level
return int(level), self.delta*level + self.v_min

class Source:
def __init__(self, f_in, amp):

self.omega = tau*f_in
self.amp = amp

def update(self, t):
return self.amp*sin(self.omega*t)

read simulation parameters and load into module namespace
parameters = Quantity.extract(__doc__)
globals().update(parameters)

display the simulation parameters
display('Simulation parameters:')
for k, v in parameters.items():

try:
display(f' ', v.render(show_label='f'))

except AttributeError:
display(f' {k} = {v}')

instantiate components
integrator1 = Integrator(gain1)
integrator2 = Integrator(gain2)
quantizer = Quantizer(Vmax, Vmin, levels)
sine = Source(Fin, Vin)

run simulation
t = Tstart
dt = 1/Fclk
v_out = 0
t_stop = Tstop
try:

fvin = open(vin_file, 'w')
fvout = open(vout_file, 'w')
fdout = open(dout_file, 'w')
while t < t_stop:

v_in = sine.update(t)
v_int1 = integrator1.update(v_in - v_out)
v_int2 = integrator2.update(v_int1 - v_out)
d_out, v_out = quantizer.update(v_int2)
if (t >= 0):

print(t, v_in, file=fvin)
print(t, v_out, file=fvout)
print(t, d_out, file=fdout)

t += dt
except OSError as e:

error(os_error(e))

92 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

Notice that levels was specified twice, but the first proceeded by # causing it to be ignored.

The output of this example can be used as the input to the next. With these parameters, it produces this waveform:

7.3.9 MatPlotLib Example

In this example QuantiPhy is used to create easy to read axis labels in MatPlotLib. It uses NumPy to do a spectral
analysis of a signal and then produces an SVG version of the results using MatPlotLib.

#!/usr/bin/env python3

import numpy as np
from numpy.fft import fft, fftfreq, fftshift
import matplotlib as mpl
mpl.use('SVG')
from matplotlib.ticker import FuncFormatter
import matplotlib.pyplot as pl
from quantiphy import Quantity
Quantity.set_prefs(map_sf=Quantity.map_sf_to_sci_notation)

read the data from delta-sigma.smpl
data = np.fromfile('delta-sigma.smpl', sep=' ')
time, wave = data.reshape((2, len(data)//2), order='F')

print out basic information about the data
(continues on next page)

7.3. Examples 93

QuantiPhy Documentation, Release 2.19

(continued from previous page)

timestep = Quantity(time[1] - time[0], name='Time step', units='s')
nonperiodicity = Quantity(wave[-1] - wave[0], name='Nonperiodicity', units='V')
points = Quantity(len(time), name='Time points')
period = Quantity(timestep * len(time), name='Period', units='s')
freq_res = Quantity(1/period, name='Frequency resolution', units='Hz')
with Quantity.prefs(show_label=True, prec=2):

print(timestep, nonperiodicity, points, period, freq_res, sep='\n')

create the window
window = np.kaiser(len(time), 11)/0.37

beta=11 corresponds to alpha=3.5 (beta = pi*alpha)
the processing gain with alpha=3.5 is 0.37

windowed = window*wave

transform the data into the frequency domain
spectrum = 2*fftshift(fft(windowed))/len(time)
freq = fftshift(fftfreq(len(wave), timestep))

define the axis formatting routines
freq_formatter = FuncFormatter(lambda v, p: str(Quantity(v, 'Hz')))
volt_formatter = FuncFormatter(lambda v, p: str(Quantity(v, 'V')))

generate graphs of the resulting spectrum
fig = pl.figure()
ax = fig.add_subplot(111)
ax.plot(freq, np.absolute(spectrum))
ax.set_yscale('log')
ax.xaxis.set_major_formatter(freq_formatter)
ax.yaxis.set_major_formatter(volt_formatter)
pl.savefig('spectrum.svg')
ax.set_xlim((0, 1e6))
ax.set_ylim((1e-7, 1))
pl.savefig('spectrum-zoomed.svg')

This script produces the following textual output:

Time step = 20 ns
Nonperiodicity = 2.3 pV
Time points = 28k
Period = 560 µs
Frequency resolution = 1.79 kHz

And the following is one of the two graphs produced:

94 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

Notice the axis labels in the generated graph. Use of QuantiPhy makes the widely scaled units compact and easy to
read.

MatPlotLib provides the EngFormatter that you can use as an alternative to QuantiPhy for formatting your axes with
SI scale factors, which also provides the format_eng function for converting floats to strings formatted with SI scale
factors and units. So if your needs are limited, as they are in this example, that is generally a good way to go. One
aspect of QuantiPhy that you might prefer is the way it handles very large or very small numbers. As the numbers
get either very large or very small EngFormatter starts by using unfamiliar scale factors (YZPEzy) and then reverts to
e-notation. QuantiPhy allows you to control whether to use unfamiliar scale factors but does not use them by default.
It also can be configured to revert to engineering scientific notation (ex: 13.806×1024 J/K) when no scale factors are
appropriate. Though not necessary for this example, that was done above with the line:

Quantity.set_prefs(map_sf=Quantity.map_sf_to_sci_notation)

7.3.10 Flicker Noise

This example represents a very typical use of QuantiPhy in a simulation script. As in the two previous examples, it
includes both extraction of simulation parameters from the script’s documentation and attractive formatting of units in
MatPlotLib graphs. It is a bit long and you cannot run it yourself as it requires access to a proprietary circuit simulator,
and as such the code is not included here. But it is an excellent example of how to use QuantiPhy in a variety of ways.
You can find the Flicker Noise code on GitHub. It produces results like the following:

7.3. Examples 95

https://matplotlib.org/examples/api/engineering_formatter.html
https://github.com/KenKundert/flicker-noise

QuantiPhy Documentation, Release 2.19

7.3.11 Cryptocurrency Example

This example displays the current price of various cryptocurrencies and the total value of a hypothetical portfolio
of currencies. QuantiPhy performs conversions from the prices of various currencies to dollars. The latest prices are
downloaded from cryptocompare.com. A summary of the prices is printed and then they are multiplied by the portfolio
holdings to find the total worth of the portfolio, which is also printed.

It demonstrates some of the features of UnitConversion.

#!/usr/bin/env python3

import requests
from inform import display, fatal, os_error, terminate
from quantiphy import Quantity, UnitConversion, InvalidNumber
Quantity.set_prefs(prec=2)

read holdings
try:

with open('holdings') as f:
lines = f.read().splitlines()

holdings = {
q.units: q for q in [

Quantity(l, ignore_sf=True) for l in lines if l
]

}
except OSError as e:

fatal(os_error(e))
except InvalidNumber as e:

fatal(e)

download latest asset prices from cryptocompare.com
currencies = dict(

fsyms = ','.join(holdings.keys()), # from symbols
tsyms = 'USD', # to symbols

)
url_args = '&'.join(f'{k}={v}' for k, v in currencies.items())
base_url = f'https://min-api.cryptocompare.com/data/pricemulti'
url = '?'.join([base_url, url_args])
try:

response = requests.get(url)
except KeyboardInterrupt:

terminate('Killed by user.)
except Exception as e:

fatal('cannot connect to cryptocompare.com.')
conversions = response.json()

define unit conversions
converters = {

sym: UnitConversion(('$', 'USD'), sym, conversions[sym]['USD'])
for sym in holdings

}

sum total holdings
total = Quantity(sum(q.scale('$') for q in holdings.values()), '$')

(continues on next page)

96 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

(continued from previous page)

show summary of holdings and conversions
for sym, q in holdings.items():

value = f'{q:>9q} = {q:<7q$} {100*q.scale("$")/total:.0f}%'
price = f'1 {sym} = {converters[sym].convert()}'
display(f'{value:<25s} ({price})')

display(f' Total = {total:q}')

This script reads a file ‘holdings’ that contains the number of tokens you hold of each of your cryptocurrencies. That
file would contain one currency per line and look like this:

10 BTC
100 ETH
100 BCH
100 ZEC
10,000 EOS
100,000 ADA

The output of the script looks like this:

10 BTC = $65.8k 30% (1 BTC = $6.58k)
100 ETH = $22.4k 10% (1 ETH = $224)
100 BCH = $51.5k 24% (1 BCH = $515)
100 ZEC = $12.7k 6% (1 ZEC = $127)
10 kEOS = $57.6k 26% (1 EOS = $5.76)
100 kADA = $8.16k 4% (1 ADA = $81.6m)

Total = $218k

If you prefer the output in fixed-point format, you can replace the last part of this code with:

show summary of holdings and conversions
for sym, q in holdings.items():

value = f'{q:>10.2p} = {q:>#11,.2p$} {100*q.scale("$")/total:,.0f}%'
price = f'1 {sym} = {converters[sym].convert():>#9,.2p}'
display(f'{value:<30s} ({price})')

display(f' Total = {total:>#11,.2p}')

If you do, the output of the script looks like this:

10 BTC = $65,847.10 30% (1 BTC = $6,584.71)
100 ETH = $22,401.00 10% (1 ETH = $224.01)
100 BCH = $51,450.00 24% (1 BCH = $514.50)
100 ZEC = $12,726.00 6% (1 ZEC = $127.26)

10000 EOS = $57,600.00 26% (1 EOS = $5.76)
100000 ADA = $8,203.00 4% (1 ADA = $0.08)

Total = $218,227.10

A more sophisticated version of cryptocurrency this example can be found on GitHub.

7.3. Examples 97

https://github.com/KenKundert/cryptocurrency/blob/master/cryptocurrency

QuantiPhy Documentation, Release 2.19

7.3.12 Dynamic Unit Conversions

Normally unit conversions are static, meaning that once the conversion values are set they do not change during the
life of the process. However, that need not be true if functions are used to perform the conversion. In the following
example, the current price of Bitcoin is queried from a price service and used in the conversion. The price service is
queried each time a conversion is performed, so it is always up-to-date, no longer how long the program runs.

#!/usr/bin/env python3

Bitcoin
This example demonstrates how to use UnitConversion to convert between
bitcoin and dollars at the current price.

from quantiphy import Quantity, UnitConversion
import requests

get the current bitcoin price from coingecko.com
url = 'https://api.coingecko.com/api/v3/simple/price'
params = dict(ids='bitcoin', vs_currencies='usd')
def get_btc_price():

try:
resp = requests.get(url=url, params=params)
prices = resp.json()
return prices['bitcoin']['usd']

except Exception as e:
print('error: cannot connect to coingecko.com.')

use UnitConversion from QuantiPhy to perform the conversion
bitcoin_units = ['BTC', 'btc', '', '']
satoshi_units = ['sat', 'sats', 's,']
dollar_units = ['USD', 'usd', '$']
UnitConversion(

dollar_units, bitcoin_units,
lambda b: b*get_btc_price(), lambda d: d/get_btc_price()

)
UnitConversion(satoshi_units, bitcoin_units, 1e8)
UnitConversion(

dollar_units, satoshi_units,
lambda s: s*get_btc_price()/1e8, lambda d: d/(get_btc_price()/1e8),

)

unit_btc = Quantity('1 BTC')
unit_dollar = Quantity('$1')

print(f'{unit_btc:>8,.2p} = {unit_btc:,.2p$}')
print(f'{unit_dollar:>8,.2p} = {unit_dollar:,.0psat}')

When run, the script prints something like this:

1 BTC = $46,007
$1 = 2,174 sat

98 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

7.4 Accessories

A collection utility programs have been developed that employ QuantiPhy to enhance their functionality. These utilities
are not included as part of QuantiPhy, but are available via PyPi.

7.4.1 Engineering Calculator

ec is a handy command-line calculator for engineers and scientists that employs Reverse-Polish Notation (RPN) and
allows numbers to be specified with units and SI scale factors. With RPN, the arguments are pushed onto a stack and
the operators pull the needed argument from the stack and push the result back onto the stack. For example, to compute
the effective resistance of two parallel resistors:

> ec
0: 100k 50k ||
33.333k:

And here is a fuller example that shows some of the features of ec. In this case we create initialization scripts, ~/.ecrc
and ./.ecrc, and a dedicated script, compute-zo, and use it to compute the output impedance of a simple RC circuit:

> cat ~/.ecrc
define some functions useful in phasor analysis
(2pi * "rads/s")to_omega # convert frequency in Hertz to radians/s
(mag 2pi / "Hz")to_freq # convert frequency in radians/s to Hertz
(j2pi * "rads/s")to_jomega # convert frequency in Hertz to imaginary radians/s

> cat ./.ecrc
define default values for parameters
10MHz =freq # operating frequency
1nF =Cin # input capacitance
50 =Rl # load resistance

> cat ./compute-zo
freq to_jomega # enter 10MHz and convert to radial freq.
Cin * recip # enter 1nF, multiply by and reciprocate

to compute impedance of capacitor at 10MHz
Rl || # enter 50 Ohms and compute impedance of

parallel combination
"" =Zo # apply units of and save to Zo
ph # compute the phase of impedance
Zo mag # recall complex impedance from Zo and compute its magnitude
`Zo = $0 $1 @ $freq.` # display the magnitude and phase of Zo
quit

> ec compute-zo
Zo = 15.166 -72.343 degs @ 10 MHz.

> ec 500pF =Cin compute-zo
Zo = 26.851 -57.518 degs @ 10 MHz.

It may be a bit confusing, just remember that with RPN you give the values first by pushing them on to the stack, and
then act on them. And once you get use to it, you’ll likely find it quite efficient.

The source code is available from the ec repository on GitHub, or you can install it directly with:

7.4. Accessories 99

https://github.com/KenKundert/ec
https://github.com/KenKundert/ec

QuantiPhy Documentation, Release 2.19

pip install --user engineering_calculator

7.4.2 Time-Value of Money

Time-Value of Money (TVM) is a command line program that is used to perform calculations involving interest rates.
It benefits from QuantiPhy in that it allows values to be given quite flexibly and concisely. The goal of the program is
to allow you to quickly run what-if experiments involving financial calculations. So the fact that QuantiPhy allows the
user to type 1.2M rather than 1200000 or 1.2e6 helps considerably to reach that goal. For example, when running the
program, this is what you would type to calculate the monthly payments for a mortgage:

tvm -p -250k -r 4.5 pmt

The program would respond with:

pmt = $1,266.71
pv = -$250,000.00
fv = $0.00
r = 4.5%
N = 360

The act of converting strings to numbers on the way in and converting numbers to strings on the way out is performed
by QuantiPhy.

QuantiPhy is quite flexible when it comes to converting a string to a number, so the present value can be given in any
of the following ways: -$250k, -$250,000, -$2.5e5. You can also specify the value without the currency symbol, which
is desirable as it generally confuses the shell.

The source code is available from the tvm repository on GitHub, or you can install it directly with:

pip install --user tvm

7.4.3 PSF Utils

PSF Utils is a library that allows you to read data from a Spectre PSF ASCII file. Spectre is a commercial circuit
simulator produced by Cadence Design Systems. PSF files contain signals generated by Spectre. This package also
contains two programs that are useful in their own right, but also act as demonstrators as to how to use the library. They
are list-psf and plot-psf. The first lists the available signals in a file, and the other displays them.

QuantiPhy is used by plot-psf when generating the axis labels.

The source code is available from the psf_utils repository on GitHub, or you can install it directly with:

pip install --user psf_utils

100 Chapter 7. Documentation

https://github.com/KenKundert/tvm
https://github.com/KenKundert/psf_utils
https://github.com/KenKundert/psf_utils

QuantiPhy Documentation, Release 2.19

7.4.4 Evaluate Expressions in Strings

QuantiPhy Eval is yet another calculator, this one is a Python API that allows you to evaluate expressions that contain
numbers with units and SI scale factors that are embedded in strings.

>>> from quantiphy_eval import evaluate

>>> avg_price = evaluate('($1.2M + $1.3M)/2', '$')
>>> print(avg_price)
$1.25M

The source code is available from the quantiphy_eval repository on GitHub, or you can install it directly with:

pip install --user quantiphy_eval

7.4.5 Schedule Reminders

remind is command line reminder program. At the appointed time it sends you a notification to remind you of some
of event. Such a program has no need for SI scale factors. Instead, this program uses the ability of QuantiPhy to scale
numbers based on their units to provide a user-interface that takes convenient descriptions of time intervals such as
20m or 2h.

> remind 45m remove roast from oven
Alarm scheduled for 6:36 PM, 45 minutes from now.
Message: remove roast from oven

You can specify the time as either a time-of-day or an elapsed time. You can even combine them to do simple calcula-
tions:

> remind 10am -15m meet with Jamie
Alarm scheduled for 9:45 AM, 108 minutes from now.
Message: meet with Jamie

The source code is available from the remind repository on GitHub, or you can install it directly with:

pip install --user schedule-reminder

7.4.6 RKM Codes

RKM codes are a way of writing numbers that is often used for specifying the sizes of resistors and capacitors on
schematics and on the components themselves. In RKM codes the radix is replaced by the scale factor and the units are
suppressed. Doing so results in a compact representation that is less likely to be misinterpreted if the number is poorly
rendered. For example, a 6.8K could be read as 68K if the decimal point is somehow lost. The RKM version of 6.8K
is 6K8. RKM codes are described on Wikipedia.

The popularity of RKM codes was fading because they address a problem that is less common today. However they
are making something of a come back as all the characters in a RKM code are either letters or digits and so they can
be embedded in a software identifier without introducing illegal characters.

>>> from rkm_codes import from_rkm, to_rkm

>>> r = from_rkm('6K8')
(continues on next page)

7.4. Accessories 101

https://github.com/KenKundert/quantiphy_eval
https://github.com/KenKundert/quantiphy_eval
https://github.com/KenKundert/remind
https://github.com/KenKundert/remind
https://en.wikipedia.org/wiki/RKM_code

QuantiPhy Documentation, Release 2.19

(continued from previous page)

>>> r
Quantity('6.8k')

>>> to_rkm(r)
'6K8'

As a practical example of the use of RKM codes, imagine wanting a program that creates pin names for an electrical
circuit based on a naming convention where the pin names must be valid identifiers (must consist only of letters, digits,
and underscores). It would take a table of pin characteristics that are used to create the names.

For example:

>>> from quantiphy import Quantity
>>> from rkm_codes import to_rkm, set_prefs as set_rkm_prefs

>>> pins = [
... dict(kind='ibias', direction='out', polarity='sink', dest='dac', value='250nA'),
... dict(kind='ibias', direction='out', polarity='src', dest='rampgen', value='2.5µA
→˓'),
... dict(kind='vref', direction='out', dest='dac', value='1.25V'),
... dict(kind='vdda', direction='in', value='2.5V'),
...]
>>> set_rkm_prefs(map_sf={}, units_to_rkm_base_code=None)

>>> for pin in pins:
... components = []
... if 'value' in pin:
... pin['VALUE'] = to_rkm(Quantity(pin['value']))
... for name in ['dest', 'kind', 'direction', 'VALUE', 'polarity']:
... if name in pin:
... components.append(pin[name])
... print('_'.join(components))
dac_ibias_out_250n_sink
rampgen_ibias_out_2u5_src
dac_vref_out_1v2
vdda_in_2v5

The source code is available from the rkm_codes repository on GitHub, or you can install it directly with:

pip install --user rkm_codes

7.5 Releases

7.5.1 Latest development release

Version: 2.19
Released: 2023-01-05

102 Chapter 7. Documentation

https://github.com/KenKundert/rkm_codes

QuantiPhy Documentation, Release 2.19

7.5.2 2.19 (2023-01-05)

• Added new standard SI scale factors (Q, R, r, q).

• Subclasses of Quantity with units now convert values to the desired units rather than allowing the units of the
class to be overridden by those of the value.

• Added scale factor conversion.

• Added quantity functions: as_real(), as_tuple(), render(), fixed(), and binary().

• Fixed rendering of full precision numbers in Quantity.fixed().

• Added preferred_units Quantity preference.

• Added “cover” option to strip_radix Quantity preference.

• Added type hints.

7.5.3 2.18 (2022-08-31)

• Support parametrized unit conversions (such as molarity).

• Allow % to act as a scale factor.

• First argument of scaling functions are now guaranteed to be quantities.

• Added UnitConversion.fixture() decorator function.

• Added UnitConversion.activate() method (allows overridden converters to be re-activated).

7.5.4 2.17 (2022-04-04)

• Refine the list of currency symbols.

• Allows currency symbols to be given before or after the underlying number.

• Allow Quantity subclasses to be used in scaling if they have units.

7.5.5 2.16 (2021-12-14)

• Add support for — as comment character and make it the default.

7.5.6 2.15 (2021-08-03)

• Updated predefined physical constants to CODATA 2018 values.

• Switched to more permissive MIT license.

• Add feet to the available length/distance unit conversions.

7.5. Releases 103

QuantiPhy Documentation, Release 2.19

7.5.7 2.14 (2021-06-18)

• Allow primary argument of Quantity.is_close() and Quantity.add() to be a string.

7.5.8 2.13 (2020-10-13)

• Allow currency symbols in compound units (ex: $/oz or lbs/$).

7.5.9 2.12 (2020-07-25)

• Bug fix release.

7.5.10 2.11 (2020-07-19)

• Dropping support for all versions of Python older than 3.5.

• Added sia form (ASCII only SI scale factors).

• Added only_e_notation argument to Quantity.all_from_conv_fmt().

• Added Quantity.reset_prefs() method.

7.5.11 2.10 (2020-03-2)

• Added negligible, tight_units, nan, and inf preferences.

• Added negligible argument to render.

• Added infinity_symbol attribute.

• Changed the return values for Quantity.is_nan() and Quantity.is_infinite().

7.5.12 2.9 (2020-01-28)

• Made Quantity.extract() more forgiving.

• Support radix and comma processing when converting strings to Quantity.

7.5.13 2.8 (2020-01-08)

• Fix nit in installer (setup.py).

104 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

7.5.14 2.7 (2019-12-17)

• Improve the ability of both Quantity.add() and Quantity.scale() to retain attributes.

• Added accept_binary preference.

• Support all preferences as class attributes.

• Allow radix and comma to be replaced by adding radix and comma preferences.

7.5.15 2.6 (2019-09-24)

• Now support Quantity arguments with Quantity.extract().

• Allow plus and minus signs to be replaced with Unicode equivalents.

7.5.16 2.5 (2019-01-16)

• Added RKM codes example.

• Added check_value = ‘strict’ to Quantity.add().

• Added backward compatibility for form argument of Quantity.render() if it is passed as unnamed argument.

• Made Quantity.extract() a bit more general.

• Reformulated exceptions.

• Added support for binary scale factors and Quantity.binary().

7.5.17 2.4 (2018-09-12)

• Fixed bug in format that resulted in several format codes ignoring width

• Follow Python convention of right-justifying numbers by default.

• Add Quantity.add() (adds a number to a quantity returning a new quantity)

• Added # alternate form of string formatting.

• Change show_si to form (argument on Quantity.set_prefs() and Quantity.render() (show_si is now
obsolete, use form=’si’ instead).

• Added concept of equivalent units for unit conversion to documentation.

• Enhance UnitConversion so that it supports nonlinear conversions.

7.5.18 2.3 (2018-03-11)

• Enhanced Quantity.extract()

– non-conforming lines are now ignored

– values may be expressions

– values need not be quantities

– can specify a quantity name distinct from dictionary name

• Enhanced the formatting capabilities.

7.5. Releases 105

QuantiPhy Documentation, Release 2.19

– added center alignment

– added p format

– added show_commas preference.

– added strip_zeros, strip_radix to Quantity.render()

– added Quantity.fixed() method

– added Quantity.format() method

– support any format specifier supported by Python for floats

7.5.19 2.2 (2017-11-22)

• Added Quantity.scale()

• Added UnitConversion.convert()

• Added strip_zeros

• Added no-op conversions (units change but value stays the same, ex: $ → USD)

7.5.20 2.1 (2017-07-30)

The primary focus of this release was on improving the documentation, though there are a few small feature enhance-
ments.

• Added support for SI standard composite units

• Added support for non-breaking space as spacer

• Removed constraint in Quantity.extract() that names must be identifiers

7.5.21 2.0 (2017-07-15)

This is a ‘coming of age’ release where the emphasis shifts from finding the right interface to providing an interface that
is stable over time. This release includes the first formal documentation and a number of new features and refinements
to the API.

• Created formal documentation

• Enhanced label_fmt to accept {V}

• Allow quantity to be passed as value to Quantity

• Replaced Quantity.add_to_namespace with Quantity.extract()

• Raise NameError rather than AssertionError for unknown preferences

• Added Quantity.all_from_conv_fmt() and Quantity.all_from_si_fmt()

• Change assign_rec to support more formats

• Changed Constant() to add_constant()

• Changed the way preferences are implemented

• Changed name of preference methods: set_preferences → set_prefs, get_preference → get_pref

• Added Quantity.prefs() (preferences context manager)

106 Chapter 7. Documentation

QuantiPhy Documentation, Release 2.19

• Split label_fmt preference into two: label_fmt and label_fmt_full

• Added show_desc preference

• Allow show_label to be either ‘a’ or ‘f’ as well True or False

• Renamed strip_dp option to strip_radix

• Added number_fmt option

7.5.22 1.3 (2017-03-19)

• Reworked constants

• Added unit systems for physical constants

7.5.23 1.2 (2017-02-24)

• Allow digits after decimal point to be optional

• Support underscores in numbers

• Allow options to be monkey-patched on to Quantity objects

• Add strip_dp option

• Fix some issues in full precision mode

• Ranamed some options, arguments and methods

7.5.24 1.1 (2016-11-27)

• Added known_units preference.

• Added get_preference class method.

7.5.25 1.0 (2016-11-26)

• Initial production release.

• genindex

7.5. Releases 107

QuantiPhy Documentation, Release 2.19

108 Chapter 7. Documentation

INDEX

Symbols
(Plank's constant), 32
0 (permittivity of free space), 32
0 (permeability of free space), 32
0C (0 Celsius), 32

A
accessories, 98
activate() (quantiphy.UnitConversion method), 77
add() (quantiphy.Quantity method), 59
add_constant() (in module quantiphy), 80
all_from_conv_fmt() (quantiphy.Quantity class

method), 60
all_from_si_fmt() (quantiphy.Quantity class

method), 60
ambiguity of scale factors and units, 32
as_real() (in module quantiphy), 76
as_tuple() (in module quantiphy), 76
as_tuple() (quantiphy.Quantity method), 61

B
binary() (in module quantiphy), 77
binary() (quantiphy.Quantity method), 61

C
c (speed of light), 32
clear_all() (quantiphy.UnitConversion class method),

77
constants, 32
convert() (quantiphy.UnitConversion method), 78

D
dB, 21, 27, 44

E
Engineering Calculator (ec) package, 99
eps0 (permittivity of free space), 32
equivalence, 52
exceptions, 54
ExpectedQuantity, 81
extract() (quantiphy.Quantity class method), 62

extracting quantities from text, 49

F
fixed() (in module quantiphy), 77
fixed() (quantiphy.Quantity method), 64
fixture() (quantiphy.UnitConversion static method), 78
Flicker Noise, 95
format() (quantiphy.Quantity method), 65

G
get_pref() (quantiphy.Quantity class method), 66

H
h (Plank's constant), 32

I
IncompatiblePreferences, 81
IncompatibleUnits, 81
infinity, 54
InvalidNumber, 81
InvalidRecognizer, 81
is_close() (quantiphy.Quantity method), 66
is_infinite() (quantiphy.Quantity method), 67
is_nan() (quantiphy.Quantity method), 67

K
k (Boltzmann's constant), 32
Kelvin/kilo ambiguity, 32

L
localization, 46
logarithmic units, 44

M
map_sf_to_greek() (quantiphy.Quantity static

method), 67
map_sf_to_sci_notation() (quantiphy.Quantity

static method), 68
matplotlib, 93
meter/milli ambiguity, 32
MissingName, 81

109

QuantiPhy Documentation, Release 2.19

mu0 (permeability of free space), 32

N
negligible, 53
not a number, 54

P
parametrized unit conversions, 39
physical constants, 32
preferences, 42
prefs() (quantiphy.Quantity class method), 68
PSF Utils package, 100

Q
q (elementary charge), 32
QuantiPhy Eval package, 100
QuantiPhyError, 81
Quantity (class in quantiphy), 57

R
Remind package, 101
render() (in module quantiphy), 76
render() (quantiphy.QuantiPhyError method), 81
render() (quantiphy.Quantity method), 68
reset_prefs() (quantiphy.Quantity class method), 70
RKM codes, 101

S
scale factor conversions, 40
scale() (quantiphy.Quantity method), 70
set_prefs() (quantiphy.Quantity class method), 71
set_unit_system() (in module quantiphy), 80

T
tabular data, 47
Time-Value of Money (tvm) package, 100
translating quantities in text, 52

U
unit conversions, 37
UnitConversion (class in quantiphy), 77
UnknownConversion, 81
UnknownFormatKey, 82
UnknownPreference, 82
UnknownScaleFactor, 82
UnknownUnitSystem, 82

Z
Z0 (characteristic impedance of free space), 32

110 Index

	What?
	Why?
	Features
	Alternatives
	Quick Start
	Issues
	Documentation
	Users’ Guide
	Overview
	Quantities
	Specifying Quantities
	The first argument: the value
	The second argument: the model
	The remaining arguments
	Quantity attributes

	Scaling When Creating a Quantity
	Creating a Quantity by Scaling an Existing Quantity
	Creating a Quantity by Adding to an Existing Quantity
	Accessing Quantity Values
	Scaling When Rendering a Quantity
	String Formatting
	Specifying the format
	Examples
	Scaling while formatting

	Ambiguity of Scale Factors and Units
	Subclassing Quantity
	Scaling with Subclasses
	Scaling Upon Subclass Creation

	Unit Converters
	Parametrized Unit Converters

	Scale Factor Conversions
	Quantity Functions
	Physical Constants
	Preferences
	Localization
	Formatting Tabular Data
	Extract Quantities
	Translating Quantities
	Equivalence
	Negligible Values
	Exceptional Values
	Exceptions

	Classes and Functions
	Quantities
	Quantity Functions

	Unit Conversion
	Constants and Unit Systems
	Exceptions

	Examples
	Motivating Example
	DRAM Prices
	Thermal Voltage Example
	Casual Time Units
	Unicode Text Example
	Timeit Example
	Disk Usage Example
	Parameterized Simulation Example
	MatPlotLib Example
	Flicker Noise
	Cryptocurrency Example
	Dynamic Unit Conversions

	Accessories
	Engineering Calculator
	Time-Value of Money
	PSF Utils
	Evaluate Expressions in Strings
	Schedule Reminders
	RKM Codes

	Releases
	Latest development release
	2.19 (2023-01-05)
	2.18 (2022-08-31)
	2.17 (2022-04-04)
	2.16 (2021-12-14)
	2.15 (2021-08-03)
	2.14 (2021-06-18)
	2.13 (2020-10-13)
	2.12 (2020-07-25)
	2.11 (2020-07-19)
	2.10 (2020-03-2)
	2.9 (2020-01-28)
	2.8 (2020-01-08)
	2.7 (2019-12-17)
	2.6 (2019-09-24)
	2.5 (2019-01-16)
	2.4 (2018-09-12)
	2.3 (2018-03-11)
	2.2 (2017-11-22)
	2.1 (2017-07-30)
	2.0 (2017-07-15)
	1.3 (2017-03-19)
	1.2 (2017-02-24)
	1.1 (2016-11-27)
	1.0 (2016-11-26)

	Index

