QualitativeModelFitting

Release 0.0.1

Dec 12, 2019

Contents

1	The qmf input string	3
2	Runner	7
Inc	dex	11

QualitativeModelFitting (qmf) is a package designed for validating a model against arbitrary observations. The concept stems from that of unit testing in software development. Using qmf, each part of a model is tested by statements derived from literature or in house data. These statements are encoded as a qmf input string which is used together with an antimony string as input to the qualitative_model_fitting.Runner class.

Click below for more information on usage.

CHAPTER 1

The qmf input string

qmf defines its own syntax for retrieving user input. In *qmf* this is known as an *input* or *observation* string. An input string is divided into blocks and each block has a type. For now, there are only *timeseries* blocks and an *observation* block. You can have as many *timeseries* blocks as you like, but there must only be one *observation* block.

1.1 The timeseries block

This is where you define the timeseries that you can use in later comparisons. Each timeseries block you specify requires a separate time series simulation with its own independent variables (i.e. starting conditions) and therefore the more you have, the longer the programs execution time.

The syntax of a timeseries block looks like this:

```
timeseries name {component1=amount1, component2=amount2, ...} 0, 100, 101
```

Spaces are ignored, so:

```
timeseries name {
    component1=amount1,
    component2=amount2,
    ...} start, stop, num
```

is syntactically equivalent and sometimes preferred, when a *timeseries* has lots of independent variables. The *name* argument is a handle for this timeseries and is used later within the observation block to refer to it. The final three arguments are *start*, *stop* and *num* which are the *start* and *stop* points of numerical integration and *num* how many equally spaced time points to have between them.

1.1.1 Examples

```
timeseries SInactive \{S=0\} 0, 50, 51
timeseries SActive \{S=1\} 0, 50, 51
```

These two timeseries encode the two situations where a hypothetical stimulus S is on in *SActive* or off in *SInactive*. Both timeseries will be integrated from 0 to 50 using a wrapper around tellurium and roadrunner packages.

1.2 The Observation Block

As the name suggests, this is where we define our observations. Observations can be one of several types. The simplest look like the following:

name: statement

where

- name: The name of your observation. Arbitrary.
- statement: A binary comparison instruction

The statement has the following form:

• clause operator clause

Where:

- *operator*: One of the comparison operators (>, <, >=, <=, ==, !=).
- *clause*: an entity for comparison (see below)

1.3 Clause

1.3.1 Constants and expressions

A *clause*, in analogy to part of a sentence, can have one of several forms. At its simplest, a clause can be a constant value or a numerical expression.

0 5 * 1 0 4 + 4 * 9

The usual precedent rules in math are applied correctly.

1.3.2 Model variables

More often, we want a particular model variable at a particular time:

```
model_component[timeseries_name]@t=x
```

Which will resolve to a single number representing the amount of *model_component* in condition *timeseries_name* at time *x*. For example we could do:

A[SActive]@t=0

Which returns that scalar number. Sometimes we do not want a scalar but the amount of a variable between two time points.

model_component[timeseries_name]@t=(x, y)

Which be resolved to a vector of numbers representing the amount of *model_component* in condition *timeseries_name* between the time ranges of *x* and *y*. Since a vector cannot directly be compared with a scalar, to use a range of values in a comparison we need to use a function (see below).

1.4 Functions

Functions can take two forms:

- Type1: Those which tell the Runner how to make a comparison between scalar and vector
- Type2: Those which convert vectors to scalars prior to making the comparison.

These two function types have a slightly different syntax:

Type1:

name: function(clause operator clause)

Type2:

name: function(clause) operator clause

Note: The *Type1* function type takes as argument the whole *clause operator clause* statement while the *Type2* function takes only a clause as argument.

Note: Point 2 here assumes that the first *clause* is the time interval clause and the second is a scalar.

Note: Comparing a vector with another vector (i.e. element wise) is not yet supported.

1.4.1 Type1 functions

There are two *Type1* functions: *any* and *all* which are analogous to Python's and *numpy any* and *all* functions. If you use the *all* function when comparing a vector and scalar, the function will return *True* if all of the elements in the vector meet the condition set by the operator and the other clause. The *any* function on the other hand will return True if any of the elements in the vector meet the conditions set by the operator and the other clause.

1.4.2 Type1 Function Examples

All of *A* in the *SActive* timeseries between 0 and 50 are *greater than* the amount of *A* in the *SInactive* timeseries at time 25.

all(A[SActive]@t=(0, 50) > A[SInactive]@t=25)

If A in the SActive timeseries at time 0 are greater then any of B between the bounaries of 13 and 19, return True else False

```
any(A[SActive]@t=0 > B[SActive]@t=(13, 19))
```

1.4.3 Type2 functions

Type 2 functions currently include:

- mean
- min
- max

Which are self explainatory in what they do.

1.4.4 Type 2 function examples

The **mean**, **maximum** or **minimum** (respectively) of A in the SActive time series between time 0 and 50 is greater than the amount of A in the SInactive time series at time 0

```
mean(A[SActive]@t=(0, 50)) > A[SInactive]@t=0
max(A[SActive]@t=(0, 50)) > A[SInactive]@t=0
min(A[SActive]@t=(0, 50)) > A[SInactive]@t=0
```

CHAPTER 2

Runner

```
class qualitative_model_fitting.Runner (ant_str, obs_str)
The manual interface into model valiation
```

This interface is intended for iteratively checking whether your model reproduces your observations. The manual_interface is ideal for iteratively modifying a model and checking whether the required observations are met by your model.

This contrasts with the automatic_interface which will modify parameters automatically until it finds a set that complies with all observations.

Usage:

First get the antimony string for the model you want to test.

```
antimony_string = '''
1
   model SimpleFeedback()
2
        compartment Cell = 1;
3
        var A in Cell;
4
        var B in Cell;
5
        var C in Cell;
6
        const S;
7
        const I;
8
9
        A = 0;
10
        B = 0;
11
        C = 0;
12
        S = 0;
13
        I = 0;
14
        BI = 0;
15
16
        k1 = 0.1;
17
        k2 = 0.1;
18
        k3 = 0.1;
19
        k4 = 0.1;
20
        k5 = 10;
21
```

(continues on next page)

(continued from previous page)

```
k6 = 0.1;
22
       k7 = 0.1;
23
       k8 = 0.1;
24
25
       R1: => A
                           ; Cell * k1*S;
26
                            ; Cell * k2*A*C;
       R2: A =>
27
       R3: => B
                            ; Cell * k3*A;
28
                          ; Cell * k4*B;
       R4: B =>
29
       R5: B + I => BI ; Cell * k5*B*I;
30
       R6: BI => B + I ; Cell * k6*BI;
31
       R7: => C
                           ; Cell * k7*B;
32
       R8: C =>
                            ; Cell * k8*C;
33
34
   end
35
   1.1.1
```

And then create an input string that defines your simulations and comparisons. There are described in more detail below.

```
input_string='''
 1
 2
     timeseries None { S=0, I=0 } 0, 100, 101
      timeseries S { S=1, I=0 } 0, 100, 101
 3
      timeseries I { S=0, I=1 } 0, 100, 101
      timeseries SI { S=1, I=1 } 0, 100, 101
 5
      observation
 6
                                          A[None]@t=0
            Obs_basics1:
                                                                                           > A[None]@t=10
 7
            Obs_basics2: A[S]@t=10
                                                                                           > A[S]@t=0
 8

      Obs_basics2:
      A[S]@t=10
      > A[

      Obs_basics3:
      A[S]@t=25
      > A[

      Obs_mean:
      mean(B[S]@t=(0, 100))
      > mean(B[SI]@t=(0, 100))

      Obs_min:
      min(B[SI]@t=(0, 100))
      > man(B[SI]@t=(0, 100))

      Obs_any:
      any(B[SI]@t=(0, 100)
      > 3)

      Obs_all:
      all(B[S]@t=(0, 100)
      < 1)</td>

                                                                                          > A[SI]@t=25
 9
                                                                                        > mean(B[SI]@t=(0, 100))
10
                                                                                        > max(B[S]@t=(0, 100))
11
12
                                                                                          > 3)
13
                                                                                        < 1)'''
14
```

Now we have a model and an input string we can use Runner.run to automatically check the validity of the statements in the input string.

>>	<pre>>>> Runner(antimony_string, input_string).run()</pre>			
	name	observation	evaluation	
0	Obs_basics1	0 > 0	False	
1	Obs_basics2	0.9779 > 0	True	
2	Obs_basics3	1.5713 > 2.4536	False	
3	Obs_mean	0.9376 > 0.1644	True	
4	Obs_max	0.3675 > 1.3467	False	
5	Obs_min	0 == 0	False	
6	Obs_any	any(TimeInterval > 3)	False	
7	Obs_all	all(TimeInterval < 1)	False	

This is the first version of *qmf* and there are a number of planned features that are not yet supported. In no particular order, these are:

Todo:

- Build in full profile type analysis using a machine learning classification model. This would allow for profiles to be compared agaist (e.g.) a hyperbolic, transient or sigmoidal curve.
- · Implement a cache system for performance improvements

- Implement the 'between' operator for implementing a rule that a component should be between x and y.
- Implement the 'almost' operator for floating point comparisons
- Implement the 'start' and 'end' operators for time intervals to abstract the need to always remember the end point of a simulation
- Allow for assigning variables to collections so we can list species that have the same rules
- Build in loops so we can do bulk validations
- Build the steady state block
- Build a dose response block
- Build the sensitivity block
- Build a plot block

Index

R

Runner (class in qualitative_model_fitting), 7