
QualitativeModelFitting
Release 0.0.1

Dec 12, 2019





Contents

1 The qmf input string 3

2 Runner 7

Index 11

i



ii



QualitativeModelFitting, Release 0.0.1

QualitativeModelFitting (qmf ) is a package designed for validating a model against arbitrary observations. The con-
cept stems from that of unit testing in software development. Using qmf, each part of a model is tested by statements
derived from literature or in house data. These statements are encoded as a qmf input string which is used together
with an antimony string as input to the qualitative_model_fitting.Runner class.

Click below for more information on usage.

Contents 1

https://tellurium.readthedocs.io/en/latest/antimony.html


QualitativeModelFitting, Release 0.0.1

2 Contents



CHAPTER 1

The qmf input string

qmf defines its own syntax for retrieving user input. In qmf this is known as an input or observation string. An input
string is divided into blocks and each block has a type. For now, there are only timeseries blocks and an observation
block. You can have as many timeseries blocks as you like, but there must only be one observation block.

1.1 The timeseries block

This is where you define the timeseries that you can use in later comparisons. Each timeseries block you specify
requires a separate time series simulation with its own independent variables (i.e. starting conditions) and therefore
the more you have, the longer the programs execurion time.

The syntax of a timeseries block looks like this:

timeseries name {component1=amount1, component2=amount2, ...} 0, 100, 101

Spaces are ignored, so:

timeseries name {
component1=amount1,
component2=amount2,
...} start, stop, num

is syntactically equivalent and sometimes preferred, when a timeseries has lots of independent variables. The name
argument is a handle for this timeseries and is used later within the observation block to refer to it. The final three
arguments are start, stop and num which are the start and stop points of numerical integration and num how many
equally spaced time points to have between them.

1.1.1 Examples

timeseries SInactive {S=0} 0, 50, 51
timeseries SActive {S=1} 0, 50, 51

3



QualitativeModelFitting, Release 0.0.1

These two timeseries encode the two situations where a hypothetical stimulus S is on in SActive or off in SInactive.
Both timeseries will be integrated from 0 to 50 using a wrapper around tellurium and roadrunner packages.

1.2 The Observation Block

As the name suggests, this is where we define our observations. Observations can be one of several types. The simplest
look like the following:

name: statement

where

• name: The name of your observation. Arbitrary.

• statement: A binary comparison instruction

The statement has the following form:

• clause operator clause

Where:

• operator: One of the comparison operators (>, <, >=, <=, ==, !=).

• clause: an entity for comparison (see below)

1.3 Clause

1.3.1 Constants and expressions

A clause, in analogy to part of a sentence, can have one of several forms. At its simplest, a clause can be a constant
value or a numerical expression.

0
5*10
4 + 4*9

The usual precedent rules in math are applied correctly.

1.3.2 Model variables

More often, we want a particular model variable at a particular time:

model_component[timeseries_name]@t=x

Which will resolve to a single number representing the amount of model_component in condition timeseries_name at
time x. For example we could do:

A[SActive]@t=0

Which returns that scalar number. Sometimes we do not want a scalar but the amount of a variable between two time
points.

4 Chapter 1. The qmf input string

https://tellurium.readthedocs.io/en/latest/
https://sys-bio.github.io/roadrunner/python_docs/index.html


QualitativeModelFitting, Release 0.0.1

model_component[timeseries_name]@t=(x, y)

Which be resolved to a vector of numbers representing the amount of model_component in condition timeseries_name
between the time ranges of x and y. Since a vector cannot directly be compared with a scalar, to use a range of values
in a comparison we need to use a function (see below).

1.4 Functions

Functions can take two forms:

• Type1: Those which tell the Runner how to make a comparison between scalar and vector

• Type2: Those which convert vectors to scalars prior to making the comparison.

These two function types have a slightly different syntax:

Type1:

name: function(clause operator clause)

Type2:

name: function(clause) operator clause

Note: The Type1 function type takes as argument the whole clause operator clause statement while the Type2 function
takes only a clause as argument.

Note: Point 2 here assumes that the first clause is the time interval clause and the second is a scalar.

Note: Comparing a vector with another vector (i.e. element wise) is not yet supported.

1.4.1 Type1 functions

There are two Type1 functions: any and all which are analogous to Python’s and numpy any and all functions. If you
use the all function when comparing a vector and scalar, the function will return True if all of the elements in the
vector meet the condition set by the operator and the other clause. The any function on the other hand will return True
if any of the elements in the vector meet the conditions set by the operator and the other clause.

1.4.2 Type1 Function Examples

All of A in the SActive timeseries between 0 and 50 are greater than the amount of A in the SInactive timeseries at
time 25.

all(A[SActive]@t=(0, 50) > A[SInactive]@t=25)

If A in the SActive timeseries at time 0 are greater then any of B between the bounaries of 13 and 19, return True else
False

1.4. Functions 5



QualitativeModelFitting, Release 0.0.1

any(A[SActive]@t=0 > B[SActive]@t=(13, 19))

1.4.3 Type2 functions

Type 2 functions currently include:

• mean

• min

• max

Which are self explainatory in what they do.

1.4.4 Type 2 function examples

The mean, maximum or minimum (respectively) of A in the SActive time series between time 0 and 50 is greater
than the amount of A in the SInactive time series at time 0

mean(A[SActive]@t=(0, 50)) > A[SInactive]@t=0
max(A[SActive]@t=(0, 50)) > A[SInactive]@t=0
min(A[SActive]@t=(0, 50)) > A[SInactive]@t=0

6 Chapter 1. The qmf input string



CHAPTER 2

Runner

class qualitative_model_fitting.Runner(ant_str, obs_str)
The manual interface into model valiation

This interface is intended for iteratively checking whether your model reproduces your observations. The
manual_interface is ideal for iteratively modifying a model and checking whether the required obser-
vations are met by your model.

This contrasts with the automatic_interface which will modify parameters automatically until it finds a
set that complies with all observations.

Usage:

First get the antimony string for the model you want to test.

1 antimony_string = '''
2 model SimpleFeedback()
3 compartment Cell = 1;
4 var A in Cell;
5 var B in Cell;
6 var C in Cell;
7 const S;
8 const I;
9

10 A = 0;
11 B = 0;
12 C = 0;
13 S = 0;
14 I = 0;
15 BI = 0;
16

17 k1 = 0.1;
18 k2 = 0.1;
19 k3 = 0.1;
20 k4 = 0.1;
21 k5 = 10;

(continues on next page)

7



QualitativeModelFitting, Release 0.0.1

(continued from previous page)

22 k6 = 0.1;
23 k7 = 0.1;
24 k8 = 0.1;
25

26 R1: => A ; Cell * k1*S;
27 R2: A => ; Cell * k2*A*C;
28 R3: => B ; Cell * k3*A;
29 R4: B => ; Cell * k4*B;
30 R5: B + I => BI ; Cell * k5*B*I;
31 R6: BI => B + I ; Cell * k6*BI;
32 R7: => C ; Cell * k7*B;
33 R8: C => ; Cell * k8*C;
34 end
35 '''

And then create an input string that defines your simulations and comparisons. There are described in more
detail below.

1 input_string='''
2 timeseries None { S=0, I=0 } 0, 100, 101
3 timeseries S { S=1, I=0 } 0, 100, 101
4 timeseries I { S=0, I=1 } 0, 100, 101
5 timeseries SI { S=1, I=1 } 0, 100, 101
6 observation
7 Obs_basics1: A[None]@t=0 > A[None]@t=10
8 Obs_basics2: A[S]@t=10 > A[S]@t=0
9 Obs_basics3: A[S]@t=25 > A[SI]@t=25

10 Obs_mean: mean(B[S]@t=(0, 100)) > mean(B[SI]@t=(0, 100))
11 Obs_max: max(B[SI]@t=(0, 100)) > max(B[S]@t=(0, 100))
12 Obs_min: min(B[SI]@t=(0, 100)) == 0
13 Obs_any: any(B[SI]@t=(0, 100) > 3)
14 Obs_all: all(B[S]@t=(0, 100) < 1)'''

Now we have a model and an input string we can use Runner.run to automatically check the validity of the
statements in the input string.

>>> Runner(antimony_string, input_string).run()
name observation evaluation

0 Obs_basics1 0 > 0 False
1 Obs_basics2 0.9779 > 0 True
2 Obs_basics3 1.5713 > 2.4536 False
3 Obs_mean 0.9376 > 0.1644 True
4 Obs_max 0.3675 > 1.3467 False
5 Obs_min 0 == 0 False
6 Obs_any any(TimeInterval > 3) False
7 Obs_all all(TimeInterval < 1) False

This is the first version of qmf and there are a number of planned features that are not yet supported. In no particular
order, these are:

Todo:

• Build in full profile type analysis using a machine learning classification model. This would allow for profiles
to be compared agaist (e.g.) a hyperbolic, transient or sigmoidal curve.

• Implement a cache system for performance improvements

8 Chapter 2. Runner



QualitativeModelFitting, Release 0.0.1

• Implement the ‘between’ operator for implementing a rule that a component should be between x and y.

• Implement the ‘almost’ operator for floating point comparisons

• Implement the ‘start’ and ‘end’ operators for time intervals to abstract the need to always remember the end
point of a simulation

• Allow for assigning variables to collections so we can list species that have the same rules

• Build in loops so we can do bulk validations

• Build the steady state block

• Build a dose response block

• Build the sensitivity block

• Build a plot block

9



QualitativeModelFitting, Release 0.0.1

10 Chapter 2. Runner



Index

R
Runner (class in qualitative_model_fitting), 7

11


	The qmf input string
	Runner
	Index

