
QNET
Release 2.0.0-dev

Dec 06, 2018

Contents:

1 QNET 3
1.1 Features . 3
1.2 Dependencies . 3
1.3 Installation . 4
1.4 Usage . 4

2 Contributing 5
2.1 Types of Contributions . 5
2.2 Get Started! . 6
2.3 Branching Model . 6
2.4 Testing . 7
2.5 Pull Request Guidelines . 7

3 Credits 9
3.1 Development Lead . 9
3.2 Contributors . 9

4 History 11
4.1 1.0.0 . 11
4.2 2.0.0 . 11

5 Library Structure 13
5.1 Subpackage Organization . 13
5.2 Class Hierarchy . 14

6 Symbolic Algebra 17
6.1 Expressions and Operations . 17
6.2 Hilbert Space Algebra . 19
6.3 Operator Algebra . 19
6.4 State (Ket-) Algebra . 22
6.5 Super-Operator Algebra . 23
6.6 Circuit Algebra . 24

7 Properties and Simplification of Circuit Algebraic Expressions 29
7.1 Permutation objects . 31
7.2 Permutations and Concatenations . 32
7.3 Feedback of a concatenation . 34

i

7.4 Feedback of a series . 36

8 The Printing System 39
8.1 Overview . 39
8.2 Basic Customization . 40
8.3 Printer classes . 41
8.4 Customization through an INI file . 41

9 API 43
9.1 qnet package . 43

Python Module Index 179

ii

QNET, Release 2.0.0-dev

Contents: 1

https://github.com/mabuchilab/QNET
https://pypi.python.org/pypi/QNET
https://gitter.im/mabuchilab/QNET?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
https://travis-ci.org/mabuchilab/QNET
https://ci.appveyor.com/project/goerz/qnet
https://coveralls.io/github/mabuchilab/QNET?branch=develop
https://qnet.readthedocs.io/en/latest/?badge=latest
https://opensource.org/licenses/MIT

QNET, Release 2.0.0-dev

2 Contents:

CHAPTER 1

QNET

Computer algebra package for quantum mechanics and photonic quantum networks

Development of QNET happens on Github. You can read the full documentation at ReadTheDocs.

1.1 Features

• Extensible computer algebra system for quantum operators, quantum states, super operators

• Building on SymPy for scalar symbolic algebra

• Implementation of Gough and James’ SLH algebra for photonic quantum circuits

• Designed for use within the Jupyter notebook

• Publication-ready, configurable rendering of mathematical formulas

• Conversion to QuTiP objects for numerical simulation

Note that version 2.0 of QNET is a major redesign. See History for details.

1.2 Dependencies

• Python version 3.5 or higher. The last version of QNET to support Python 2 is 1.4.3.

• The SymPy symbolic algebra Python package to implement symbolic ‘scalar’ algebra, i.e., the coefficients
of state, operator or super-operator expressions can be symbolic SymPy expressions as well as pure python
numbers.

• The NumPy package for numerical calculations

• Optional: QuTiP python package as an extremely useful, efficient and full featured numerical backend. Operator
expressions where all symbolic scalar parameters have been replaced by numeric ones, can be converted to
(sparse) numeric matrix representations, which are then used to solve for the system dynamics using the tools
provided by QuTiP.

3

https://github.com/mabuchilab/QNET
https://pypi.python.org/pypi/QNET
https://gitter.im/mabuchilab/QNET?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
https://travis-ci.org/mabuchilab/QNET
https://ci.appveyor.com/project/goerz/qnet
https://coveralls.io/github/mabuchilab/QNET?branch=develop
https://qnet.readthedocs.io/en/latest/?badge=latest
https://opensource.org/licenses/MIT
https://github.com/mabuchilab/qnet
https://qnet.readthedocs.io/en/latest/
http://SymPy.org/
http://jupyter.org
http://code.google.com/p/qutip/
http://www.python.org
http://SymPy.org/
http://numpy.scipy.org/
http://code.google.com/p/qutip/

QNET, Release 2.0.0-dev

• Optional: The PyX python package for visualizing circuit expressions as box/flow diagrams. This requires a
LaTeX installation on your system. On Linux/Macos and Windows TeX Live and MiKTeX are recommended,
respectively.

A convenient way of obtaining Python as well as some of the packages listed here (SymPy, SciPy, NumPy) is to
download Anaconda Python Distribution, which is free for academic use. A highly recommended way of working
with QNET and QuTiP, or scientific python codes in general is through the excellent IPython command-line shell, or
the very polished browser-based Jupyter notebook interface.

1.3 Installation

To install the latest released version of QNET, run this command in your terminal:

$ pip install qnet

This is the preferred method to install QNET, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

To install the latest development version of QNET from Github.

$ pip install git+https://github.com/mabuchilab/qnet.git@develop#egg=qnet

1.4 Usage

To use QNET in a project:

import qnet

4 Chapter 1. QNET

http://pyx.sourceforge.net/
https://www.tug.org/texlive/
https://miktex.org
https://store.continuum.io/cshop/anaconda/
http://code.google.com/p/qutip/
http://ipython.org/
http://jupyter.org
https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/mabuchilab/qnet

CHAPTER 2

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

2.1 Types of Contributions

2.1.1 Report Bugs

Report bugs at https://github.com/mabuchilab/QNET/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

2.1.2 Fix Bugs / Implement Features

Look through the GitHub issues for bugs or feature requests. Anybody is welcome to submit a pull request for open
issues.

2.1.3 Write Documentation

QNET could always use more documentation, whether as part of the official QNET docs, in docstrings, or even on the
web in blog posts, articles, and such.

2.1.4 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/mabuchilab/QNET/issues.

5

https://github.com/mabuchilab/QNET/issues
https://github.com/mabuchilab/QNET/issues

QNET, Release 2.0.0-dev

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

2.2 Get Started!

Ready to contribute? Follow Aaron Meurer’s Git Workflow Notes (with mabuchilab/QNET instead of sympy/
sympy)

In short,

1. Clone the repository from git@github.com:mabuchilab/QNET.git

2. Fork the repo on GitHub to your personal account.

3. Add your fork as a remote.

4. Pull in the latest changes from the develop branch.

5. Create a topic branch

6. Make your changes and commit them (testing locally)

7. Push changes to the topic branch on your remote

8. Make a pull request against the base develop branch through the Github website of your fork.

The project contains a Makefile to help with development tasts. In your checked-out clone, do

$ make help

to see the available make targets.

It is strongly recommended that you use the conda package manager. The Makefile relies on conda to create local
testing and documentation building environements (make test and make docs).

Alternatively, you may use make develop-test and make develop-docs to run the tests or generate the
documentation within your active Python environment. You will have to ensure that all the necessary dependencies
are installed. Also, you will not be able to test the package against all supported Python versions. You still can (and
should) look at https://travis-ci.org/mabuchilab/QNET/ to check that your commits pass all tests.

2.3 Branching Model

QNET uses the git-flow branching model. That is, the develop branch takes the role of master in the Git Workflow
Notes.

In order to create topic branches with git flow, after cloning the qnet repository, you should initialize it as
follows:

$ git checkout master
$ git flow init
$ git checkout develop

6 Chapter 2. Contributing

https://www.asmeurer.com/git-workflow/
https://conda.io/docs/
https://travis-ci.org/mabuchilab/QNET/
https://github.com/nvie/gitflow#git-flow
https://www.asmeurer.com/git-workflow/
https://www.asmeurer.com/git-workflow/

QNET, Release 2.0.0-dev

2.4 Testing

QDYN’s uses pytest for testing. The test-suite for all supported Python versions is run with

$ make test

This creates a conda environment for each supported Python version in ./.venv, installs the QDYN package and all
prerequisites into that environment, and runs py.test.

In order run a specific test, you may invoke py.test manually with the appropriate options, e.g.

$./.venv/py36/bin/py.test -s -x ./tests/algebra/test_abstract_algebra.py

2.5 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. Check https://travis-ci.org/mabuchilab/QNET/pull_requests and make sure that the tests pass for all supported
Python versions.

2.4. Testing 7

https://pytest.org
https://travis-ci.org/mabuchilab/QNET/pull_requests

QNET, Release 2.0.0-dev

8 Chapter 2. Contributing

CHAPTER 3

Credits

Hideo Mabuchi had the initial idea for a software package that could exploit the Gough-James SLH formalism to
generate an overall open quantum system model for a quantum feedback network based solely on its topology and the
component models in analytic form. The actual QNET package was then planned and implemented by Nikolas Tezak.
In the Fall of 2015 Michael Goerz joined as a main developer.

Work on QNET was directly supported by DARPA-MTO under Award No. N66001-11-1-4106. Nikolas Tezak was
also supported by a Simons Foundation Math+X fellowship as well as a Stanford Graduate Fellowship. Michael Goerz
was supported in part by ASD(R&E) under their Quantum Science and Engineering Program (QSEP), and by the Army
High Performance Computing Research Center (AHPCRC) (sponsored by the U.S. Army Research Laboratory under
contract No. W911NF-07-2-0027). Currently, Michael Goerz is sponsored by the Army Research Laboratory under
Cooperative Agreement Number W911NF-16-2-0147.

3.1 Development Lead

• Nikolas Tezak <nikolas@rigetti.com>

• Michael Goerz <mail@michaelgoerz.net>

3.2 Contributors

The following people contributed to to the development of QNET, conceptually, through bug reports, or with code
commits.

• Michael Armen

• Armand Niederberger

• Joe Kerckhoff

• Dmitri Pavlichin

• Gopal Sarma

9

mailto:nikolas@rigetti.com
mailto:mail@michaelgoerz.net

QNET, Release 2.0.0-dev

• Ryan Hamerly

• Michael Hush

• Anubhab Haldar

• Gil Tabak

• Edwin Ng

• Tatsuhiro Onodera

• Daniel Wennberg

10 Chapter 3. Credits

CHAPTER 4

History

The original 1.0 relase of QNET centered around an implementation of the Quantum Hardware Description Language
(QHDL) that serves to describe a circuit topology and specification of a larger entity in terms of parametrizable
subcomponents. This is strongly analogous to the specification of electric circuitry using the structural description
elements of VHDL or Verilog.

Version 2.0 of QNET shifts the focus of the package to provide a broad symbolic algebra package for quantum
mechanics, and the implementation of the SLH circuit algebra. Support of QHDL was removed from QNET, with the
intention of re-implementing it in a separate QHDL package, that works on top of QNET. The split was made because
the two aspects of the original QNET package serves two different audiences: The basic algebraic tools are will be
used by theorists or for numerical models, while QHDL, the definition of circuit components, or the use of the gEDA
gschem tool are primarily of interest for experimentalists. By developing these two aspects in different packages, we
hope the better address the particular needs of each user group.

If you are currently using QHDL through QNET 1.0, you should not upgrade to QNET 2.0. Also, QNET 2.0 drops
support for Python 2.

QNET uses Semantic Versioning.

4.1 1.0.0

• initial release

4.2 2.0.0

• major restructuring

• drop Python 2 support

• remove support for parsing the quantum-hardware-description-language (QHDL) and the circuit component
library. QNET now provides only the fundamental algebraic tools. The QHDL functionality will be extended in
a separate future QHDL package

11

http://rsta.royalsocietypublishing.org/content/370/1979/5270.abstract
http://rsta.royalsocietypublishing.org/content/370/1979/5270.abstract
http://rsta.royalsocietypublishing.org/content/370/1979/5270.abstract
http://www.gpleda.org
https://semver.org

QNET, Release 2.0.0-dev

• a new printing system

12 Chapter 4. History

CHAPTER 5

Library Structure

5.1 Subpackage Organization

qnet

algebra

toolbox

library

core pattern_matching

utils

convert visualization printing

13

QNET, Release 2.0.0-dev

QNET is organized into the sub-packages outlined in the above diagram. Each package may in turn contain several
sub-modules. The arrows indicate which package imports from which other package.

Every package exports all public symbol from all of its sub-packages/-modules in a “flat” API. Thus, a user can directly
import from the top-level qnet package.

In order from high-level to low-level:

qnet Main QNET package
qnet.convert Conversion to QuTiP and Sympy
qnet.visualization Visualization routines, e.g.
qnet.printing Printing system for QNET Expressions and related ob-

jects
qnet.algebra Symbolic quantum and photonic circuit (SLH) algebra
qnet.algebra.toolbox Collection of tools to manually manipulate algebraic ex-

pressions
qnet.algebra.library Collection of algebraic objects extending core
qnet.algebra.core The fundamental object hiearchies that constitute

QNET’s various algebras
qnet.algebra.pattern_matching QNET’s pattern matching engine.
qnet.utils Auxiliary utilities, mostly for internal use

See also the full modindex

5.2 Class Hierarchy

The following is an inheritance diagram of all the classes defined in QNET (this is best viewed as the full-page SVG):

14 Chapter 5. Library Structure

QNET, Release 2.0.0-dev

abc

qnet.algebra.core.operator_algebra

qnet.algebra.core.exceptions

sympy.core.bas ic

sympy.core.expr

qnet.algebra.core.s tate_algebra

qnet.algebra.library.circuit_components

sympy.logic.boolalg

qnet.algebra.core.circuit_algebra

qnet.algebra.library.fock_operators

qnet.algebra.toolbox.equation

sympy.core.evalf

qnet.algebra.core.abstract_algebra

qnet.utils .indices

qnet.algebra.core.hilbert_space_algebra

qnet.algebra.core.indexed_operations

qnet.algebra.library.spin_algebra

qnet.algebra.pattern_matching

qnet.algebra.core.matrix_algebra

collections

qnet.algebra.core.abstract_quantum_algebra

qnet.algebra.core.super_operator_algebra

qnet.algebra.core.scalar_algebra

qnet.utils .s ingleton

sympy.core.symbol

ABCMeta Singleton

Adjoint

QuantumAdjoint

Bra

SuperAdjoint

Operator

Commutator

LocalOperator

KetBra

NullSpaceProjector

OperatorDerivative

OperatorIndexedSum

OperatorPlus

OperatorPlusMinusCC

OperatorSymbol

OperatorTimes

OperatorTrace

PseudoInverse

ScalarTimesOperator

SuperOperatorTimesOperator

AlgebraError BadLiouvillianError

BasisNotSetError

CannotEliminateAutomatically

IncompatibleBlockStructures

InfiniteSumError

NoConjugateMatrix

NonSquareMatrix

OverlappingSpaces

SpaceTooLargeError

UnequalSpaces

WrongCDimErrorAlgebraException

CannotConvertToSLH

CannotSimplify

CannotSymbolicallyDiagonalize

CannotVisualize

Atom

AtomicExpr

Basic

Expr

Boolean

Symbol

BasisKet

LocalKet CoherentStateKet

KetSymbol

Beamsplitter

Component

CoherentDriveCC

PhaseCC

State

KetIndexedSum

KetPlus

OperatorTimesKet

ScalarTimesKet

StateDerivative

TensorKet

BraKet

ScalarExpression

Operation

QuantumOperation

Concatenation

Feedback

IndexedSum

ProductSpace

SPost

SPre

ScalarTimesQuantumExpression

SeriesInverse

SeriesProduct

CPermutation

Circuit

CircuitSymbol

SLH

Expression

LocalSpace

Matrix

QuantumExpression

QuantumPlus

SingleQuantumOperation

QuantumTimes

ScalarPower

Create

Destroy

Displace

SpinOperator

LocalSigma

Phase

Squeeze

Eq

EvalfMixin

FockIndexIntIndex

FockLabelStrLabel

SpinIndex

HilbertSpace

IdxSym IndexOverFockSpace

IndexRangeBase

IndexOverList

IndexOverRange

QuantumIndexedSum

SymbolicLabelBase

Jminus

Jplus

Jz

ScalarIndexedSum

ScalarPlus

SuperOperatorPlus

QuantumSymbol

SuperOperatorSymbol

SpinSpace

MatchDictOrderedDict

QuantumDerivative

SuperOperator

Scalar

ScalarDerivative

SuperOperatorDerivative

ScalarTimes

SuperOperatorTimes

Pattern

ScalarTimesSuperOperator

ScalarValue

SingletonType

5.2. Class Hierarchy 15

QNET, Release 2.0.0-dev

16 Chapter 5. Library Structure

CHAPTER 6

Symbolic Algebra

6.1 Expressions and Operations

QNET includes a rich (and extensible) symbolic algebra system for quantum mechanics and circuit models. The
foundation of the symbolic algebra are the Expression class and its subclass Operation.

A general algebraic expression has a tree structure. The branches of the tree are operations; their children are the
operands. The leaves of the tree are scalars or “atomic” expressions, where “atomic” means not an object of type
Operation (e.g., a symbol)

For example, the KetPlus operation defines the sum of Hilbert space vectors, represented as:

KetPlus(psi1, psi2, ..., psiN)

All operations follow this pattern:

Head(op1, op1, ..., opN)

where Head is a subclass of Operation and op1 .. opN are the operands, which may be other operations,
scalars, or atomic Expression objects.

Note that all expressions (inluding operations) can have associated arguments. For example KetSymbol takes label
as an argument, and the Hilbert space displacement operator Displace takes a displacement amplitude as an argu-
ment. To avoid confusion between operands and arguments, operations are required to take their operands as positional
arguments, and possible additional arguments as keyword arguments.

Expressions should generally not be instantiated directly, but through their create()method allowing for simplifica-
tions. This is true both for operations and atomic expressions. For example, instantiating Displace with alpha=0
results in an IdentityOperator (unlike direct instantiation, the create method of any class may or may not re-
turn an instance of the same class). For operations, the create method handles the application of algebraic rules such
as associativity (translating e.g. KetPlus(psi1, KetPlus(psi2, psi3)) into KetPlus(psi1, psi2,
psi3))

Many operations are associated with infix operators, e.g. a KetPlus instance is automatically created if two instances
of KetSymbol are added with +. In this case, the create() method is used automatically.

17

QNET, Release 2.0.0-dev

Expressions and Operations are considered immutable: any change to the expression tree (e.g. an algebraic simplifi-
cation) generates a new expression.

6.1.1 Defining Operation subclasses

When extending an algebra with new operations, it is essential to define the expression rewriting (“simplification”)
rules that govern how new expressions are instantiated. To this end, the _simplification class attribute of an
Expression subclass must be defined. This attribute contains a list of callables. Each of these callables takes three
parameters (the class, the list args of positional arguments given to create() and a dictionary kwargs of keyword
arguments given to create()) and return either a tuple of new args and kwargs (which are then handed to the
next callable), or an Expression (which is directly returned as the result of the call to Expression.create()).

Callables such as as assoc(), idem(), orderby(), and filter_neutral() handle common algebraic
properties such as associativity or commutativity. The match_replace() and match_replace_binary()
callables are central to any more advanced simplification through pattern matching. They delegate to a list of
Patterns and replacements that are defined in the _rules, respectively _binary_rules class attributes of
the Expression subclass.

The pattern matching rules may temporarily extended or modified using the qnet.algebra.toolbox.core.
extra_rules(), qnet.algebra.toolbox.core.extra_binary_rules(), and qnet.algebra.
toolbox.core.no_rules() context managers.

6.1.2 Pattern matching

The application of patterns is central to symbolic algebra. Patterns are defined and applied using the classed and helper
routines in the pattern_matching module.

There are two main places where pattern matching comes up:

• automatically, through match_replace() and match_replace_binary() simplifications applied in-
side of Expression.create().

• manually, through the simplify() function (or the Expression.simplify() method)

Since inside match_replace() and match_replace_binary(), patterns are matched against expres-
sions that are not yet instantiated (we call these ProtoExpressions), the patterns in the _rules and
_binary_rules class attributes are always constructed using the pattern_head() helper function. In con-
trast, patterns for simplify() are usually created through the pattern() helper function. The wc() function is
used to associate Expression arguments with wildcard names.

6.1.3 Algebraic Manipulations

While QNET automatically applies a large number of rules and simplifications if expressions are instantiated through
the create()method, significant value is placed on manually manipulating algebraic expressions. In fact, this is one
of the design considerations that separates it from the Sympy package: The rule-based transformations are both explicit
and optional, allowing to instantiate expressions exactly in the desired form, and to apply specifc manipulations.
Unlink in Sympy, the (tex) form of an expressions will directly reflect the structure of the expression, and the ordering
of terms can be configured by the user. Thus, a Jupyter Notebook could document a symbolic derivation in the exact
form one would normally write that derivation out by hand.

Common maniupulations and symbolic algorithms are collected in qnet.algebra.toolbox.

18 Chapter 6. Symbolic Algebra

http://www.sympy.org/en/index.html
http://www.sympy.org/en/index.html
http://jupyter.org

QNET, Release 2.0.0-dev

6.2 Hilbert Space Algebra

The hilbert_space_algebra module defines a simple algebra of finite dimensional or countably infinite di-
mensional Hilbert spaces.

Expression

LocalSpace

Operation

HilbertSpace

ProductSpace

Local/primitive degrees of freedom (e.g. a single multi-level atom or a cavity mode) are described by a LocalSpace;
it requires a label, and may define a basis through the basis or dimension arguments. The LocalSpace may also
define custom identifiers for operators acting on that space (subclasses of LocalOperator):

>>> a = Destroy(hs=1)
>>> ascii(a)
'a^(1)'
>>> hs1_custom = LocalSpace(1, local_identifiers={'Destroy': 'b'})
>>> b = Destroy(hs=hs1_custom)
>>> ascii(b)
'b^(1)'

Instances of LocalSpace combine via a product into composite tensor product spaces are given by instances of the
ProductSpace

Furthermore,

• the TrivialSpace represents a trivial1 Hilbert space ℋ0 ≃ C

• the FullSpace represents a Hilbert space that includes all possible degrees of freedom.

Expressions in the operator, state, and superoperator algebra (discussed below) will all be associated with a Hilbert
space. If any expressions are intended to be fed into a numerical simulation, all their associated Hilbert spaces must
have a known dimension. Since all expressions are immutable, it is important to either define the all the LocalSpace
instances they depend on with basis or dimension arguments first, or to later generate new expression with updated
Hilbert spaces through the substitute() routine.

6.3 Operator Algebra

The operator_algebra module implements and algebra of Hilbert space operators

1 trivial in the sense that ℋ0 ≃ C, i.e., all states are multiples of each other and thus equivalent.

6.2. Hilbert Space Algebra 19

QNET, Release 2.0.0-dev

Adjoint

QuantumAdjoint

Operator

Commutator

LocalOperator

NullSpaceProjector

OperatorDerivative

OperatorIndexedSum

OperatorPlus

OperatorPlusMinusCC

OperatorSymbol

OperatorTimes

OperatorTrace

PseudoInverse

ScalarTimesOperator

QuantumOperation

SingleQuantumOperation

QuantumPlus

QuantumTimesExpression

Operation

QuantumExpression

IndexedSum

QuantumIndexedSum

ScalarTimesQuantumExpression

LocalSigma

QuantumDerivative

QuantumSymbol

Operator expressions are constructed from sums (OperatorPlus) and products (OperatorTimes) of some basic
elements, most importantly local operators (subclasses of LocalOperator). This include some very common
symbolic operator such as

• Harmonic oscillator mode operators 𝑎𝑠, 𝑎†𝑠: Destroy, Create

• 𝜎-switching operators 𝜎𝑠
𝑗𝑘 := |𝑗⟩𝑠 ⟨𝑘|𝑠: LocalSigma

• coherent displacement operators 𝐷𝑠(𝛼) := exp
(︀
𝛼𝑎†𝑠 − 𝛼*𝑎𝑠

)︀
: Displace

• phase operators 𝑃𝑠(𝜑) := exp
(︀
𝑖𝜑𝑎†𝑠𝑎𝑠

)︀
: Phase

• squeezing operators 𝑆𝑠(𝜂) := exp
[︁
1
2

(︁
𝜂𝑎†𝑠

2 − 𝜂*𝑎2𝑠

)︁]︁
: Squeeze

Furthermore, there exist symbolic representations for constants and symbols:

• the IdentityOperator

• the ZeroOperator

• an arbitrary OperatorSymbol

There are also a number of algebraic operations that act only on a single operator as their only operand. These include:

• the Hilbert space Adjoint operator 𝑋†

• PseudoInverse of operators 𝑋+ satisfying 𝑋𝑋+𝑋 = 𝑋 and 𝑋+𝑋𝑋+ = 𝑋+ as well as (𝑋+𝑋)† =
𝑋+𝑋 and (𝑋𝑋+)† = 𝑋𝑋+

• the kernel projection operator (NullSpaceProjector) 𝒫Ker𝑋 satisfying both 𝑋𝒫Ker𝑋 = 0 and 𝑋+𝑋 =
1 − 𝒫Ker𝑋

• Partial traces over Operators Tr𝑠𝑋: OperatorTrace

20 Chapter 6. Symbolic Algebra

QNET, Release 2.0.0-dev

6.3.1 Examples

Say we want to write a function that constructs a typical Jaynes-Cummings Hamiltonian

𝐻 = ∆𝜎†𝜎 + Θ𝑎†𝑎+ 𝑖𝑔(𝜎𝑎† − 𝜎†𝑎) + 𝑖𝜖(𝑎− 𝑎†)

for a given set of numerical parameters:

>>> from sympy import I
>>> def H_JC(Delta, Theta, epsilon, g):
...
... # create Fock- and Atom local spaces
... fock = LocalSpace('fock')
... tls = LocalSpace('tls', basis=('e', 'g'))
...
... # create representations of a and sigma
... a = Destroy(hs=fock)
... sigma = LocalSigma('g', 'e', hs=tls)
...
... H = (Delta * sigma.dag() * sigma # detuning from atomic
→˓resonance
... + Theta * a.dag() * a # detuning from cavity
→˓resonance
... + I * g * (sigma * a.dag() - sigma.dag() * a) # atom-mode coupling, I =
→˓sqrt(-1)
... + I * epsilon * (a - a.dag())) # external driving
→˓amplitude
... return H

Here we have allowed for a variable namespace which would come in handy if we wanted to construct an overall
model that features multiple Jaynes-Cummings-type subsystems.

By using the support for symbolic sympy expressions as scalar pre-factors to operators, one can instantiate a Jaynes-
Cummings Hamiltonian with symbolic parameters:

>>> Delta, Theta, epsilon, g = symbols('Delta, Theta, epsilon, g', real=True)
>>> H = H_JC(Delta, Theta, epsilon, g)
>>> H
i 𝜖 (-a^(fock)† + a) + Θ a^(fock)† a + i g (a^(fock)† |ge| - a |eg|) + Δ |ee|

>>> H.space
_fock _tls

Operator products between commuting operators are automatically re-arranged such that they are ordered according
to their Hilbert Space:

>>> Create(hs=2) * Create(hs=1)
a^(1)† a^(2)†

There are quite a few built-in replacement rules, e.g., mode operators products are normally ordered:

>>> Destroy(hs=1) * Create(hs=1)
+ a^(1)† a1

Or for higher powers one can use the expand() method:

>>> (Destroy(hs=1) * Destroy(hs=1) * Destroy(hs=1) * Create(hs=1) * Create(hs=1) *
→˓Create(hs=1)).expand()
6 + a^(1)† a^(1)† a^(1)† a1 a1 a1 + 9 a^(1)† a^(1)† a1 a1 + 18 a^(1)† a1

6.3. Operator Algebra 21

https://docs.sympy.org/latest/modules/matrices/immutablematrices.html#module-sympy

QNET, Release 2.0.0-dev

6.4 State (Ket-) Algebra

The state_algebra module implements an algebra of Hilbert space states.

BasisKet

LocalKet CoherentStateKet

KetSymbol

BraState

KetIndexedSum

KetPlus

OperatorTimesKet

ScalarTimesKet StateDerivative

TensorKet

QuantumAdjoint

BraKet

ScalarExpression

Operation

IndexedSum

KetBra

QuantumOperation

ScalarTimesQuantumExpression

Expression

QuantumExpression

QuantumIndexedSum

Operator

QuantumPlus

QuantumSymbol

Scalar

SingleQuantumOperation QuantumDerivative

QuantumTimes

By default we represent states 𝜓 as Ket vectors 𝜓 → |𝜓⟩. However, any state can also be represented in its adjoint
Bra form, since those representations are dual:

𝜓 ↔ |𝜓⟩ ↔ ⟨𝜓|

States can be added to states of the same Hilbert space. They can be multiplied by:

• scalars, to just yield a rescaled state within the original space, resulting in ScalarTimesKet

• operators that act on some of the states degrees of freedom (but none that aren’t part of the state’s Hilbert space),
resulting in a OperatorTimesKet

• other states that have a Hilbert space corresponding to a disjoint set of degrees of freedom, resulting in a
TensorKet

Furthermore,

• a Ket object can multiply a Bra of the same space from the left to yield a KetBra operator.

And conversely,

• a Bra can multiply a Ket from the left to create a (partial) inner product object BraKet. Currently, only full
inner products are supported, i.e. the Ket and Bra operands need to have the same space.

There are also the following symbolic states:

• arbitrary KetSymbols

• the TrivialKet acting as the identity, and

• the ZeroKet.

22 Chapter 6. Symbolic Algebra

QNET, Release 2.0.0-dev

6.5 Super-Operator Algebra

The super_operator_algebra contains an implementation of a superoperator algebra, i.e., operators acting on
Hilbert space operator or elements of Liouville space (density matrices).

DisjunctCommutativeHSOrder SuperCommutativeHSOrder

Expression

Operation

QuantumExpression

QuantumOperation

SPost

SPreScalarTimesQuantumExpression

SuperOperatorTimesOperatorOperator

QuantumSymbol

SuperOperator

QuantumAdjoint

SuperAdjoint

SingleQuantumOperation

QuantumDerivative

SuperOperatorDerivative

QuantumPlus

QuantumTimes

SuperOperatorPlus
SuperOperatorSymbol

SuperOperatorTimes

ScalarTimesSuperOperator

Each super-operator has an associated space property which gives the Hilbert space on which the operators the super-
operator acts non-trivially are themselves acting non-trivially.

The most basic way to construct super-operators is by lifting ‘normal’ operators to linear pre- and post-multiplication
super-operators:

>>> A, B, C = (OperatorSymbol(s, hs=FullSpace) for s in ("A", "B", "C"))
>>> SPre(A) * B
A B
>>> SPost(C) * B
B C
>>> (SPre(A) * SPost(C)) * B
A B C
>>> (SPre(A) - SPost(A)) * B # Linear super-operator associated with A that
→˓maps B --> [A,B]
A B - B A

The neutral elements of super-operator addition and multiplication are ZeroSuperOperator and
IdentitySuperOperator, respectively.

Super operator objects can be added together in code via the infix ‘+’ operator and multiplied with the infix ‘*’
operator. They can also be added to or multiplied by scalar objects. In the first case, the scalar object is multiplied by
the IdentitySuperOperator constant.

Super operators are applied to operators by multiplying an operator with superoperator from the left:

>>> S = SuperOperatorSymbol("S", hs=FullSpace)
>>> A = OperatorSymbol("A", hs=FullSpace)
>>> S * A
S[A]
>>> isinstance(S*A, Operator)
True

The result is an operator.

6.5. Super-Operator Algebra 23

QNET, Release 2.0.0-dev

6.6 Circuit Algebra

In their works on networks of open quantum systems [GoughJames08], [GoughJames09] Gough and James have intro-
duced an algebraic method to derive the Quantum Markov model for a full network of cascaded quantum systems from
the reduced Markov models of its constituents. This method is implemented in the circuit_algebra module.

CPermutation

Circuit

CircuitSymbol

Concatenation

Feedback

SLH

SeriesInverse

SeriesProduct

Expression

Operation

Component

A general system with an equal number 𝑛 of input and output channels is described by the parameter triplet (S,L, 𝐻),
where 𝐻 is the effective internal Hamilton operator for the system, L = (𝐿1, 𝐿2, . . . , 𝐿𝑛)𝑇 the coupling vector and
S = (𝑆𝑗𝑘)𝑛𝑗,𝑘=1 is the scattering matrix (whose elements are themselves operators). An element 𝐿𝑘 of the coupling
vector is given by a system operator that describes the system’s coupling to the 𝑘-th input channel. Similarly, the
elements 𝑆𝑗𝑘 of the scattering matrix are in general given by system operators describing the scattering between
different field channels 𝑗 and 𝑘.

The only conditions on the parameters are that the hamilton operator is self-adjoint and the scattering matrix is unitary:

𝐻* = 𝐻 and S†S = SS† = 1𝑛.

We adhere to the conventions used by Gough and James, i.e. we write the imaginary unit is given by 𝑖 :=
√
−1,

the adjoint of an operator 𝐴 is given by 𝐴*, the element-wise adjoint of an operator matrix M is given by M♯. Its
transpose is given by M𝑇 and the combination of these two operations, i.e. the adjoint operator matrix is given by
M† = (M𝑇)♯ = (M♯)𝑇 .

The matrices of operators occuring in the SLH formalism are implemented in the matrix_algebra module.

6.6.1 Fundamental Circuit Operations

The basic operations of the Gough-James circuit algebra are given by:

24 Chapter 6. Symbolic Algebra

QNET, Release 2.0.0-dev

Fig. 1: 𝑄1 �𝑄2

Fig. 2: 𝑄2 C𝑄1

Fig. 3: [𝑄]1→4

6.6. Circuit Algebra 25

QNET, Release 2.0.0-dev

In [GoughJames09], Gough and James have introduced two operations that allow the construction of quantum optical
‘feedforward’ networks:

1) The concatenation product describes the situation where two arbitrary systems are formally attached
to each other without optical scattering between the two systems’ in- and output channels

(S1,L1, 𝐻1)� (S2,L2, 𝐻2) =

(︂(︂
S1 0
0 S2

)︂
,

(︂
L1

L1

)︂
, 𝐻1 +𝐻2

)︂
Note however, that even without optical scattering, the two subsystems may interact directly via shared
quantum degrees of freedom.

2) The series product is to be used for two systems 𝑄𝑗 = (S𝑗 ,L𝑗 , 𝐻𝑗), 𝑗 = 1, 2 of equal channel
number 𝑛 where all output channels of 𝑄1 are fed into the corresponding input channels of 𝑄2

(S2,L2, 𝐻2)C (S1,L1, 𝐻1) =
(︁
S2S1,L2 + S2L1, 𝐻1 +𝐻2 + ℑ

{︁
L†2S2L1

}︁)︁
From their definition it can be seen that the results of applying both the series product and the concatenation prod-
uct not only yield valid circuit component triplets that obey the constraints, but they are also associative opera-
tions.footnote{For the concatenation product this is immediately clear, for the series product in can be quickly verified
by computing (𝑄1C𝑄2)C𝑄3 and 𝑄1C (𝑄2C𝑄3). To make the network operations complete in the sense that it can
also be applied for situations with optical feedback, an additional rule is required: The feedback operation describes
the case where the 𝑘-th output channel of a system with 𝑛 ≥ 2 is fed back into the 𝑙-th input channel. The result is a
component with 𝑛− 1 channels:

[(S,L, 𝐻)]𝑘→𝑙 =
(︁
S̃, L̃, �̃�

)︁
,

where the effective parameters are given by [GoughJames08]

S̃ = S[𝑘,𝑙] +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑆1𝑙

𝑆2𝑙

...
𝑆𝑘−1 𝑙

𝑆𝑘+1 𝑙

...
𝑆𝑛𝑙

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1 − 𝑆𝑘𝑙)

−1 (︀𝑆𝑘1 𝑆𝑘2 · · · 𝑆𝑘𝑙−1 𝑆𝑘𝑙+1 · · · 𝑆𝑘𝑛

)︀
,

L̃ = L[𝑘] +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑆1𝑙

𝑆2𝑙

...
𝑆𝑘−1 𝑙

𝑆𝑘+1 𝑙

...
𝑆𝑛𝑙

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1 − 𝑆𝑘𝑙)

−1𝐿𝑘,

�̃� = 𝐻 + ℑ

⎧⎨⎩
⎡⎣ 𝑛∑︁
𝑗=1

𝐿*𝑗𝑆𝑗𝑙

⎤⎦ (1 − 𝑆𝑘𝑙)
−1𝐿𝑘

⎫⎬⎭ .

Here we have written S[𝑘,𝑙] as a shorthand notation for the matrix S with the 𝑘-th row and 𝑙-th column removed and
similarly L[𝑘] is the vector L with its 𝑘-th entry removed. Moreover, it can be shown that in the case of multiple
feedback loops, the result is independent of the order in which the feedback operation is applied. Note however that
some care has to be taken with the indices of the feedback channels when permuting the feedback operation.

The possibility of treating the quantum circuits algebraically offers some valuable insights: A given full-system triplet
(S,L, 𝐻) may very well allow for different ways of decomposing it algebraically into networks of physically realistic

26 Chapter 6. Symbolic Algebra

QNET, Release 2.0.0-dev

subsystems. The algebraic treatment thus establishes a notion of dynamic equivalence between potentially very differ-
ent physical setups. Given a certain number of fundamental building blocks such as beamsplitters, phases and cavities,
from which we construct complex networks, we can investigate what kinds of composite systems can be realized. If
we also take into account the adiabatic limit theorems for QSDEs (cite Bouten2008a,Bouten2008) the set of physically
realizable systems is further expanded. Hence, the algebraic methods not only facilitate the analysis of quantum cir-
cuits, but ultimately they may very well lead to an understanding of how to construct a general system (S,L, 𝐻) from
some set of elementary systems. There already exist some investigations along these lines for the particular subclass
of linear systems (cite Nurdin2009a,Nurdin2009b) which can be thought of as a networked collection of quantum
harmonic oscillators.

6.6.2 Representation as Python objects

Python objects that are of the Circuit type have some of their operators overloaded to realize symbolic circuit
algebra operations:

>>> A = CircuitSymbol('A', cdim=2)
>>> B = CircuitSymbol('B', cdim=2)
>>> print(srepr(A << B, cache={A: 'A', B: 'B'}))
SeriesProduct(A, B)
>>> print(srepr(A + B, cache={A: 'A', B: 'B'}))
Concatenation(A, B)
>>> print(srepr(FB(A, out_port=0, in_port=1), cache={A: 'A'}))
Feedback(A, out_port=0, in_port=1)

For a thorough treatment of the circuit expression simplification rules see Properties and Simplification of Circuit
Algebraic Expressions.

6.6.3 Examples

Extending the JaynesCummings problem above to an open system by adding collapse operators 𝐿1 =
√
𝜅𝑎 and

𝐿2 =
√
𝛾𝜎.

>>> def SLH_JaynesCummings(Delta, Theta, epsilon, g, kappa, gamma, n=0):
...
... # create Fock- and Atom local spaces
... fock = LocalSpace('fock_%s' % n)
... tls = LocalSpace('tls_%s' % n, basis=('e', 'g'))
...
... # create representations of a and sigma
... a = Destroy(hs=fock)
... sigma = LocalSigma('g', 'e', hs=tls)
...
... # Trivial scattering matrix
... S = identity_matrix(2)
...
... # Collapse/Jump operators
... L1 = sqrt(kappa) * a # Decay of cavity
→˓mode through mirror
... L2 = sqrt(gamma) * sigma # Atomic decay due to
→˓spontaneous emission into outside modes.
... L = Matrix([[L1], \
... [L2]])
...
... # Hamilton operator

(continues on next page)

6.6. Circuit Algebra 27

QNET, Release 2.0.0-dev

(continued from previous page)

... H = (Delta * sigma.dag() * sigma # detuning from
→˓atomic resonance
... + Theta * a.dag() * a # detuning from
→˓cavity resonance
... + I * g * (sigma * a.dag() - sigma.dag() * a) # atom-mode coupling,
→˓I = sqrt(-1)
... + I * epsilon * (a - a.dag())) # external driving
→˓amplitude
...
... return SLH(S, L, H)

Consider now an example where we feed one Jaynes-Cummings system’s output into a second one:

>>> Delta, Theta, epsilon, g = symbols('Delta, Theta, epsilon, g', real=True)
>>> kappa, gamma = symbols('kappa, gamma')

>>> JC1 = SLH_JaynesCummings(Delta, Theta, epsilon, g, kappa, gamma, n=1)
>>> JC2 = SLH_JaynesCummings(Delta, Theta, epsilon, g, kappa, gamma, n=2)

>>> from qnet import circuit_identity as cid
>>> SYS = (JC2 + cid(1)) << CPermutation((0, 2, 1)) << (JC1 + cid(1))

The resulting system’s block diagram is:

and its overall SLH model is given by:⎛⎝⎛⎝1 0 0
0 0 1
0 1 0

⎞⎠ ,

⎛⎝
√
𝜅𝑎fockjc1

+
√
𝜅𝑎fockjc2√

𝛾𝜎
tlsjc2
g,e√

𝛾𝜎
tlsjc1
g,e

⎞⎠ ,∆Πtlsjc1
e + ∆Πtlsjc2

e + 𝚤𝑔
(︁
𝑎†fockjc1

𝜎tlsjc1
g,e − 𝑎fockjc1

𝜎tlsjc1
e,g

)︁
+ 𝚤𝑔

(︁
𝑎†fockjc2

𝜎tlsjc2
g,e − 𝑎fockjc2

𝜎tlsjc2
e,g

)︁
+

1

2
𝚤
(︁√

𝜅
√
𝜅𝑎†fockjc1

𝑎fockjc2
−

√
𝜅
√
𝜅𝑎fockjc1

𝑎†fockjc2

)︁
+ 𝚤𝜖

(︁
−𝑎†fockjc1

+ 𝑎fockjc1

)︁
+ 𝚤𝜖

(︁
−𝑎†fockjc2

+ 𝑎fockjc2

)︁
+ Θ𝑎†fockjc1

𝑎fockjc1 + Θ𝑎†fockjc2
𝑎fockjc2

⎞⎠

28 Chapter 6. Symbolic Algebra

CHAPTER 7

Properties and Simplification of Circuit Algebraic Expressions

By observing that we can define for a general system 𝑄 = (𝑆,𝐿,𝐻) its series inverse system 𝑄C−1 :=
(𝑆†,−𝑆†𝐿,−𝐻)

(𝑆,𝐿,𝐻)C (𝑆†,−𝑆†𝐿,−𝐻) = (𝑆†,−𝑆†𝐿,−𝐻)C (𝑆,𝐿,𝐻) = (I𝑛, 0, 0) =: id𝑛,

we see that the series product induces a group structure on the set of 𝑛-channel circuit components for any 𝑛 ≥ 1. It
can easily be verified that the series inverse of the basic operations is calculated as follows

(𝑄1 C𝑄2)
C−1

= 𝑄C−12 C𝑄C−11

(𝑄1 �𝑄2)
C−1

= 𝑄C−11 �𝑄C−12

([𝑄]𝑘→𝑙)
C−1

=
[︀
𝑄C−1

]︀
𝑙→𝑘

.

In the following, we denote the number of channels of any given system 𝑄 = (𝑆,𝐿,𝐻) by cdim 𝑄 := 𝑛. The most
obvious expression simplification is the associative expansion of concatenations and series:

(𝐴1 C𝐴2)C (𝐵1 C𝐵2) = 𝐴1 C𝐴2 C𝐵1 C𝐵2

(𝐶1 � 𝐶2)� (𝐷1 �𝐷2) = 𝐶1 � 𝐶2 �𝐷1 �𝐷2

A further interesting property that follows intuitively from the graphical representation
(cf.~Fig.~ref{fig:decomposition_law}) is the following tensor decomposition law

(𝐴�𝐵)C (𝐶 �𝐷) = (𝐴C 𝐶)� (𝐵 C𝐷),

which is valid for cdim 𝐴 = cdim 𝐶 and cdim 𝐵 = cdim 𝐷.

The following figures demonstrate the ambiguity of the circuit algebra:

Fig. 1: (𝐴�𝐵)C (𝐶 �𝐷)

29

QNET, Release 2.0.0-dev

Fig. 2: (𝐴C 𝐶)� (𝐵 C𝐷)

Here, a red box marks a series product and a blue box marks a concatenation. The second version expression has the
advantage of making more explicit that the overall circuit consists of two channels without direct optical scattering.

It will most often be preferable to use the RHS expression of the tensor decomposition law above as this enables
us to understand the flow of optical signals more easily from the algebraic expression. In [GoughJames09] Gough
and James denote a system that can be expressed as a concatenation as reducible. A system that cannot be further
decomposed into concatenated subsystems is accordingly called irreducible. As follows intuitively from a graphical
representation any given complex system 𝑄 = (𝑆,𝐿,𝐻) admits a decomposition into 1 ≤ 𝑁 ≤ cdim 𝑄 irreducible
subsystems 𝑄 = 𝑄1 � 𝑄2 � · · · � 𝑄𝑁 , where their channel dimensions satisfy cdim 𝑄𝑗 ≥ 1, 𝑗 = 1, 2, . . . 𝑁 and∑︀𝑁

𝑗=1 cdim 𝑄𝑗 = cdim 𝑄. While their individual parameter triplets themselves are not uniquely determinedfoot-
note{Actually the scattering matrices {𝑆𝑗} and the coupling vectors {𝐿𝑗} are uniquely determined, but the Hamil-
tonian parameters {𝐻𝑗} must only obey the constraint

∑︀𝑁
𝑗=1𝐻𝑗 = 𝐻 .}, the sequence of their channel dimensions

(cdim 𝑄1, cdim 𝑄2, . . . cdim 𝑄𝑁) =: bls 𝑄 clearly is. We denote this tuple as the block structure of 𝑄. We are now
able to generalize the decomposition law in the following way: Given two systems of 𝑛 channels with the same block
structure bls 𝐴 = bls 𝐵 = (𝑛1, ...𝑛𝑁), there exist decompositions of 𝐴 and 𝐵 such that

𝐴C𝐵 = (𝐴1 C𝐵1)� · · ·� (𝐴𝑁 C𝐵𝑁)

with cdim 𝐴𝑗 = cdim 𝐵𝑗 = 𝑛𝑗 , 𝑗 = 1, . . . 𝑁 . However, even in the case that the two block structures are not
equal, there may still exist non-trivial compatible block decompositions that at least allow a partial application of the
decomposition law. Consider the example presented in Figure (block_structures).

Fig. 3: Series ”(1, 2, 1)C (2, 1, 1)”

Fig. 4: Optimal decomposition into (3, 1)

Even in the case of a series between systems with unequal block structures, there often exists a non-trivial common
block decomposition that simplifies the overall expression.

30 Chapter 7. Properties and Simplification of Circuit Algebraic Expressions

QNET, Release 2.0.0-dev

7.1 Permutation objects

The algebraic representation of complex circuits often requires systems that only permute channels without actual
scattering. The group of permutation matrices is simply a subgroup of the unitary (operator) matrices. For any
permutation matrix 𝑃 , the system described by (𝑃, 0, 0) represents a pure permutation of the optical fields (ref fig
permutation).

Fig. 5: A graphical representation of 𝑃𝜎 where 𝜎 ≡ (4, 1, 5, 2, 3) in image tuple notation.

A permutation 𝜎 of 𝑛 elements (𝜎 ∈ Σ𝑛) is often represented in the following form
(︂

1 2 . . . 𝑛
𝜎(1) 𝜎(2) . . . 𝜎(𝑛)

)︂
, but

obviously it is also sufficient to specify the tuple of images (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)). We now define the permutation
matrix via its matrix elements

(𝑃𝜎)𝑘𝑙 = 𝛿𝑘𝜎(𝑙) = 𝛿𝜎−1(𝑘)𝑙.

Such a matrix then maps the 𝑗-th unit vector onto the 𝜎(𝑗)-th unit vector or equivalently the 𝑗-th incoming optical
channel is mapped to the 𝜎(𝑗)-th outgoing channel. In contrast to a definition often found in mathematical literature
this definition ensures that the representation matrix for a composition of permutations 𝜎2 ∘ 𝜎1 results from a product
of the individual representation matrices in the same order 𝑃𝜎2∘𝜎1 = 𝑃𝜎2𝑃𝜎1 . This can be shown directly on the order
of the matrix elements

(𝑃𝜎2∘𝜎1
)𝑘𝑙 = 𝛿𝑘(𝜎2∘𝜎1)(𝑙) =

∑︁
𝑗

𝛿𝑘𝑗𝛿𝑗(𝜎2∘𝜎1)(𝑙) =
∑︁
𝑗

𝛿𝑘𝜎2(𝑗)𝛿𝜎2(𝑗)(𝜎2∘𝜎1)(𝑙)

=
∑︁
𝑗

𝛿𝑘𝜎2(𝑗)𝛿𝜎2(𝑗)𝜎2(𝜎1(𝑙)) =
∑︁
𝑗

𝛿𝑘𝜎2(𝑗)𝛿𝑗𝜎1(𝑙) =
∑︁
𝑗

(𝑃𝜎2
)𝑘𝑗(𝑃𝜎1

)𝑗𝑙,

where the third equality corresponds simply to a reordering of the summands and the fifth equality follows from the
bijectivity of 𝜎2. In the following we will often write 𝑃𝜎 as a shorthand for (𝑃𝜎, 0, 0). Thus, our definition ensures
that we may simplify any series of permutation systems in the most intuitive way: 𝑃𝜎2

C 𝑃𝜎1
= 𝑃𝜎2∘𝜎1

. Obviously
the set of permutation systems of 𝑛 channels and the series product are a subgroup of the full system series group of 𝑛
channels. Specifically, it includes the identity id𝑛 = 𝑃𝜎id𝑛

.

From the orthogonality of the representation matrices it directly follows that 𝑃𝑇
𝜎 = 𝑃𝜎−1 For future use we also define

a concatenation between permutations

𝜎1 � 𝜎2 :=

(︂
1 2 . . . 𝑛 𝑛+ 1 𝑛+ 2 . . . 𝑛+𝑚

𝜎1(1) 𝜎1(2) . . . 𝜎1(𝑛) 𝑛+ 𝜎2(1) 𝑛+ 𝜎2(2) . . . 𝑛+ 𝜎2(𝑚)

)︂
,

which satisfies 𝑃𝜎1 � 𝑃𝜎2 = 𝑃𝜎1�𝜎2
by definition. Another helpful definition is to introduce a special set of permuta-

tions that map specific ports into each other but leave the relative order of all other ports intact:

𝜔
(𝑛)
𝑙←𝑘 :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(︃
1 . . . 𝑘 − 1 𝑘 𝑘 + 1 . . . 𝑙 − 1 𝑙 𝑙 + 1 . . . 𝑛

1 . . . 𝑘 − 1 𝑙 𝑘 . . . 𝑙 − 2 𝑙 − 1 𝑙 + 1 . . . 𝑛

)︃
for 𝑘 < 𝑙(︃

1 . . . 𝑙 − 1 𝑙 𝑙 + 1 . . . 𝑘 − 1 𝑘 𝑘 + 1 . . . 𝑛

1 . . . 𝑙 − 1 𝑙 + 1 𝑙 + 2 . . . 𝑘 𝑙 𝑘 + 1 . . . 𝑛

)︃
for 𝑘 > 𝑙

7.1. Permutation objects 31

QNET, Release 2.0.0-dev

We define the corresponding system objects as 𝑊 (𝑛)
𝑙←𝑘 := 𝑃

𝜔
(𝑛)
𝑙←𝑘

.

7.2 Permutations and Concatenations

Given a series 𝑃𝜎C(𝑄1�𝑄2�· · ·�𝑄𝑁) where the𝑄𝑗 are irreducible systems, we analyze in which cases it is possible
to (partially) “move the permutation through” the concatenated expression. Obviously we could just as well investigate
the opposite scenario (𝑄1�𝑄2� · · ·�𝑄𝑁)C𝑃𝜎 , but this second scenario is closely relatedfootnote{Series-Inverting
a series product expression also results in an inverted order of the operand inverses (𝑄1 C𝑄2)C−1 = 𝑄C−12 C𝑄C−11 .
Since the inverse of a permutation (concatenation) is again a permutation (concatenation), the cases are in a way “dual”
to each other.}.

Block-permuting permutations

The simples case is realized when the permutation simply permutes whole blocks intactly

Fig. 6: 𝑃𝜎 C (𝐴1 �𝐴2)

Fig. 7: (𝐴2 �𝐴1)C 𝑃𝜎

A block permuting series.

Given a block structure 𝑛 := (𝑛1, 𝑛2, . . . 𝑛𝑁) a permutation 𝜎 ∈ Σ𝑛 is said to block permute 𝑛 iff there exists a
permutation �̃� ∈ Σ𝑁 such that

𝑃𝜎 C (𝑄1 �𝑄2 � · · ·�𝑄𝑁) = (𝑃𝜎 C (𝑄1 �𝑄2 � · · ·�𝑄𝑁)C 𝑃𝜎−1)C 𝑃𝜎

= (𝑄�̃�(1) �𝑄�̃�(2) � · · ·�𝑄�̃�(𝑁))C 𝑃𝜎

Hence, the permutation 𝜎, given in image tuple notation, block permutes 𝑛 iff for all 1 ≤ 𝑗 ≤ 𝑁 and for all 0 ≤ 𝑘 < 𝑛𝑗
we have 𝜎(𝑜𝑗+𝑘) = 𝜎(𝑜𝑗)+𝑘, where we have introduced the block offsets 𝑜𝑗 := 1+

∑︀
𝑗′<𝑗 𝑛𝑗 . When these conditions

are satisfied, �̃� may be obtained by demanding that �̃�(𝑎) > �̃�(𝑏) ⇔ 𝜎(𝑜𝑎) > 𝜎(𝑜𝑏). This equivalence reduces the
computation of �̃� to sorting a list in a specific way.

Block-factorizing permutations

The next-to-simplest case is realized when a permutation 𝜎 can be decomposed 𝜎 = 𝜎b ∘ 𝜎i into a permutation
𝜎b that block permutes the block structure 𝑛 and an internal permutation 𝜎i that only permutes within each block,
i.e.~:math:sigma_{rm i} = sigma_1 boxplus sigma_2 boxplus dots boxplus sigma_N. In this case we can perform the
following simplifications

𝑃𝜎 C (𝑄1 �𝑄2 � · · ·�𝑄𝑁) = 𝑃𝜎𝑏
C [(𝑃𝜎1

C𝑄1)� (𝑃𝜎2
C𝑄2)� · · ·� (𝑃𝜎𝑁

C𝑄𝑁)] .

32 Chapter 7. Properties and Simplification of Circuit Algebraic Expressions

QNET, Release 2.0.0-dev

We see that we have reduced the problem to the above discussed case. The result is now

𝑃𝜎 C (𝑄1 � · · ·�𝑄𝑁) =
[︁
(𝑃𝜎𝜎b(1)

C𝑄𝜎b(1))� · · ·� (𝑃𝜎𝜎b(𝑁)
C𝑄𝜎b(𝑁))

]︁
C 𝑃𝜎b

.

In this case we say that 𝜎 block factorizes according to the block structure 𝑛. The following figure illustrates an
example of this case.

Fig. 8: 𝑃𝜎 C (𝐴1 �𝐴2)

Fig. 9: 𝑃𝜎𝑏
C 𝑃𝜎𝑖 C (𝐴1 �𝐴2)

Fig. 10: ((𝑃𝜎2 C𝐴2)�𝐴1)C 𝑃𝜎b

A block factorizable series.

A permutation 𝜎 block factorizes according to the block structure 𝑛 iff for all 1 ≤ 𝑗 ≤ 𝑁 we have max0≤𝑘<𝑛𝑗
𝜎(𝑜𝑗 +

𝑘) − min0≤𝑘′<𝑛𝑗 𝜎(𝑜𝑗 + 𝑘′) = 𝑛𝑗 − 1, with the block offsets defined as above. In other words, the image of a single
block is coherent in the sense that no other numbers from outside the block are mapped into the integer range spanned
by the minimal and maximal points in the block’s image. The equivalence follows from our previous result and the
bijectivity of 𝜎.

The general case

In general there exists no unique way how to split apart the action of a permutation on a block structure. However, it
is possible to define a some rules that allow us to “move as much of the permutation” as possible to the RHS of the
series. This involves the factorization 𝜎 = 𝜎x ∘ 𝜎b ∘ 𝜎i defining a specific way of constructing both 𝜎b and 𝜎i from 𝜎.
The remainder 𝜎x can then be calculated through

𝜎x := 𝜎 ∘ 𝜎−1i ∘ 𝜎−1b .

Hence, by construction, 𝜎b ∘ 𝜎i factorizes according to 𝑛 so only 𝜎x remains on the exterior LHS of the expression.

So what then are the rules according to which we construct the block permuting 𝜎b and the decomposable 𝜎i? We
wish to define 𝜎i such that the remainder 𝜎 ∘ 𝜎−1i = 𝜎x ∘ 𝜎b does not cross any two signals that are emitted from the
same block. Since by construction 𝜎b only permutes full blocks anyway this means that 𝜎x also does not cross any two
signals emitted from the same block. This completely determines 𝜎i and we can therefore calculate 𝜎 ∘𝜎−1i = 𝜎x ∘𝜎b
as well. To construct 𝜎b it is sufficient to define an total order relation on the blocks that only depends on the block
structure 𝑛 and on 𝜎 ∘ 𝜎−1i . We define the order on the blocks such that they are ordered according to their minimal

7.2. Permutations and Concatenations 33

QNET, Release 2.0.0-dev

image point under 𝜎. Since 𝜎 ∘𝜎−1i does not let any block-internal lines cross, we can thus order the blocks according
to the order of the images of the first signal 𝜎 ∘𝜎−1i (𝑜𝑗). In (ref fig general_factorization) we have illustrated this with
an example.

Fig. 11: 𝑃𝜎 C (𝐴1 �𝐴2)

Fig. 12: 𝑃𝜎x
C 𝑃𝜎b

C 𝑃𝜎i
C (𝐴1 �𝐴2)

Fig. 13: (𝑃𝜎x
C (𝑃𝜎2

C𝐴2)�𝐴1)C 𝑃𝜎b

A general series with a non-factorizable permutation. In the intermediate step we have explicitly separated 𝜎 =
𝜎x ∘ 𝜎b ∘ 𝜎i.

Finally, it is a whole different question, why we would want move part of a permutation through the concatenated
expression in this first place as the expressions usually appear to become more complicated rather than simpler. This
is, because we are currently focussing only on single series products between two systems. In a realistic case we have
many systems in series and among these there might be quite a few permutations. Here, it would seem advantageous to
reduce the total number of permutations within the series by consolidating them where possible: 𝑃𝜎2

C𝑃𝜎1
= 𝑃𝜎2∘𝜎1

.
To do this, however, we need to try to move the permutations through the full series and collect them on one side (in
our case the RHS) where they can be combined to a single permutation. Since it is not always possible to move a
permutation through a concatenation (as we have seen above), it makes sense to at some point in the simplification
process reverse the direction in which we move the permutations and instead collect them on the LHS. Together these
two strategies achieve a near perfect permutation simplification.

7.3 Feedback of a concatenation

A feedback operation on a concatenation can always be simplified in one of two ways: If the outgoing and incoming
feedback ports belong to the same irreducible subblock of the concatenation, then the feedback can be directly applied
only to that single block. For an illustrative example see the figures below:

Reduction to feedback of subblock.

If, on the other, the outgoing feedback port is on a different subblock than the incoming, the resulting circuit actually
does not contain any real feedback and we can find a way to reexpress it algebraically by means of a series product.

Reduction of feedback to series, first example

Reduction of feedback to series, second example

To discuss the case in full generality consider the feedback expression [𝐴�𝐵]𝑘→𝑙 with cdim 𝐴 = 𝑛𝐴 and cdim 𝐵 =
𝑛𝐵 and where 𝐴 and 𝐵 are not necessarily irreducible. There are four different cases to consider.

34 Chapter 7. Properties and Simplification of Circuit Algebraic Expressions

QNET, Release 2.0.0-dev

Fig. 14: [𝐴1 �𝐴2]2→3

Fig. 15: 𝐴1 � [𝐴2]1→2

Fig. 16: [𝐴1 �𝐴2]1→3

Fig. 17: 𝐴2 C𝑊
(2)
2←1 C (𝐴2 � id1)

Fig. 18: [𝐴1 �𝐴2]2→1

Fig. 19: (𝐴1 � id1)C𝐴2

7.3. Feedback of a concatenation 35

QNET, Release 2.0.0-dev

• 𝑘, 𝑙 ≤ 𝑛𝐴: In this case the simplified expression should be [𝐴]𝑘→𝑙 �𝐵

• 𝑘, 𝑙 > 𝑛𝐴: Similarly as before but now the feedback is restricted to the second operand 𝐴� [𝐵](𝑘−𝑛𝐴)→(𝑙−𝑛𝐴),
cf. Fig. (ref fig fc_irr).

• 𝑘 ≤ 𝑛𝐴 < 𝑙: This corresponds to a situation that is actually a series and can be re-expressed as (id𝑛𝐴 − 1 �

𝐵)C𝑊 (𝑛)
(𝑙−1)←𝑘 C (𝐴+ id𝑛𝐵 − 1), cf. Fig. (ref fig fc_re1).

• 𝑙 ≤ 𝑛𝐴 < 𝑘: Again, this corresponds a series but with a reversed order compared to above (𝐴 + id𝑛𝐵 − 1) C

𝑊
(𝑛)
𝑙←(𝑘−1) C (id𝑛𝐴 − 1�𝐵), cf. Fig. (ref fig fc_re2).

7.4 Feedback of a series

There are two important cases to consider for the kind of expression at either end of the series: A series starting or
ending with a permutation system or a series starting or ending with a concatenation.

Fig. 20: [𝐴3 C (𝐴1 �𝐴2)]2→1

Fig. 21: (𝐴3 C (𝐴1 � id2))C𝐴2

Reduction of series feedback with a concatenation at the RHS

Fig. 22: [𝐴3 C 𝑃𝜎]2→1

Reduction of series feedback with a permutation at the RHS

1) [𝐴C (𝐶 �𝐷)]𝑘→𝑙: We define 𝑛𝐶 = cdim 𝐶 and 𝑛𝐴 = cdim 𝐴. Without too much loss of generality,
let’s assume that 𝑙 ≤ 𝑛𝐶 (the other case is quite similar). We can then pull 𝐷 out of the feedback loop:
[𝐴C (𝐶 �𝐷)]𝑘→𝑙 −→ [𝐴C (𝐶 � id𝑛𝐷)]𝑘→𝑙 C (id𝑛𝐶 − 1�𝐷). Obviously, this operation only makes
sense if 𝐷 ̸= id𝑛𝐷. The case 𝑙 > 𝑛𝐶 is quite similar, except that we pull 𝐶 out of the feedback. See
Figure (ref fig fs_c) for an example.

2) We now consider [(𝐶 � 𝐷) C 𝐸]𝑘→𝑙 and we assume 𝑘 ≤ 𝑛𝐶 analogous to above. Provided that
𝐷 ̸= id𝑛𝐷, we can pull it out of the feedback and get (id𝑛𝐶 − 1�𝐷)C [(𝐶 � id𝑛𝐷)C 𝐸]𝑘→𝑙.

36 Chapter 7. Properties and Simplification of Circuit Algebraic Expressions

QNET, Release 2.0.0-dev

Fig. 23: [𝐴3]2→3 C 𝑃�̃�

3) [𝐴 C 𝑃𝜎]𝑘→𝑙: The case of a permutation within a feedback loop is a lot more intuitive to understand
graphically (e.g., cf. Figure ref fig fs_p). Here, however we give a thorough derivation of how a permuta-
tion can be reduced to one involving one less channel and moved outside of the feedback. First, consider
the equality [𝐴 C𝑊 (𝑛)

𝑗←𝑙]𝑘→𝑙 = [𝐴]𝑘→𝑗 which follows from the fact that 𝑊 (𝑛)
𝑗←𝑙 preserves the order of all

incoming signals except the 𝑙-th. Now, rewrite

[𝐴C 𝑃𝜎]𝑘→𝑙 = [𝐴C 𝑃𝜎 C𝑊
(𝑛)
𝑙←𝑛 C𝑊

(𝑛)
𝑛←𝑙]𝑘→𝑙

= [𝐴C 𝑃𝜎 C𝑊
(𝑛)
𝑙←𝑛]𝑘→𝑛

= [𝐴C𝑊 (𝑛)
𝜎(𝑙)←𝑛 C (𝑊

(𝑛)
𝑛←𝜎(𝑙) C 𝑃𝜎 C𝑊𝑙←𝑛)]𝑘→𝑛

Turning our attention to the bracketed expression within the feedback, we clearly see that it must be a
permutation system 𝑃𝜎′ = 𝑊

(𝑛)
𝑛←𝜎(𝑙) C 𝑃𝜎 C𝑊

(𝑛)
𝑙←𝑛 that maps 𝑛 → 𝑙 → 𝜎(𝑙) → 𝑛. We can therefore

write 𝜎′ = �̃� � 𝜎id1 or equivalently 𝑃𝜎′ = 𝑃�̃� � id1 But this means, that the series within the feedback
ends with a concatenation and from our above rules we know how to handle this:

[𝐴C 𝑃𝜎]𝑘→𝑙 = [𝐴C𝑊 (𝑛)
𝜎(𝑙)←𝑛 C (𝑃�̃� � id1)]𝑘→𝑛

= [𝐴C𝑊 (𝑛)
𝜎(𝑙)←𝑛]𝑘→𝑛 C 𝑃�̃�

= [𝐴]𝑘→𝜎(𝑙) C 𝑃�̃�,

where we know that the reduced permutation is the well-defined restriction to 𝑛 − 1 elements of 𝜎′ =(︁
𝜔
(𝑛)
𝑛←𝜎𝑙 ∘ 𝜎 ∘ 𝜔(𝑛)

𝑙←𝑛

)︁
.

4) The last case is analogous to the previous one and we will only state the results without a derivation:

[𝑃𝜎 C𝐴]𝑘→𝑙 = 𝑃�̃� C [𝐴]𝜎−1(𝑘)→𝑙,

where the reduced permutation is given by the (again well-defined) restriction of 𝜔(𝑛)
𝑛←𝑘 ∘ 𝜎 ∘ 𝜔(𝑛)

𝜎−1(𝑘)←𝑛

to 𝑛− 1 elements.

7.4. Feedback of a series 37

QNET, Release 2.0.0-dev

38 Chapter 7. Properties and Simplification of Circuit Algebraic Expressions

CHAPTER 8

The Printing System

8.1 Overview

As a computer algebra framework, QNET puts great emphasis on the appropriate display of expressions, both in the
context of a Jupyter notebook (QNETs main “graphical interface”) and in the terminal. It also provides the possibility
for you to completely customize the display.

The printing system is modeled closely after the printing system of SymPy (and directly builds on it). Unlike SymPy,
however, the display of an expression will always directly reflect the algebraic structure (summands will not be re-
ordered, for example).

In the context of a Jupyter notebook, expressions will be shown via LaTeX. In an interactive (I)Python terminal, a
unicode rendering will be used if the terminal has unicode support, with a fallback to ascii. We can force this manually
by:

>>> init_printing(repr_format='unicode')

>>> Create(hs='q_1') * CoherentStateKet(symbols('eta')**2/2, hs='q_1')
a^(q1)† |𝛼=𝜂2/2^(q1)

These textual renderings can be obtained manually through the ascii() and unicode() functions.

Unlike SymPy, the unicode rendering will not span multiple lines. Also, QNET will not rationalize the denominators
of scalar fractions by default, to match the standard notation in quantum mechanics:

>>> (BasisKet(0, hs=1) + BasisKet(1, hs=1)) / sqrt(2)
1/2 (|01 + |11)

Compare this to the default in SymPy:

>>> (symbols('a') + symbols('b')) / sqrt(2)
2(a + b)

2

39

QNET, Release 2.0.0-dev

With the default settings, the LaTeX renderer that produces the output in the Jupyter notebook uses only tex macros
that MathJax understands. You can obtain the LaTeX code through the latex() function. When generating code for
a paper or report, it is better to customize the output for better readability with a more semantic use of macros, e.g. as:

>>> print(latex((BasisKet(0, hs=1) + BasisKet(1, hs=1)) / sqrt(2), tex_use_
→˓braket=True))
\frac{1}{\sqrt{2}} \left(\Ket{0}^{(1)} + \Ket{1}^{(1)}\right)

In addition to the “mathematical” display of expressions, QNET also has functions to show the exact internal (tree)
structure of an expression, either for debugging or for designing algebraic transformations.

The srepr() function returns the most direct representation of the expression: it is a string (possibly with indentation
for the tree structure) that if evaluated results in the exact same expression.

An alternative, specifically for interactive use, is the print_tree() function. To generate a graphic representation
of the tree structure, the dotprint() function produces a graph in the DOT language.

8.2 Basic Customization

At the beginning of an interactive session or notebook, the init_printing() routine should be called. This
routine associates specific printing functions, e.g. unicode(), with the __str__ and __repr__ representation
of an expression. This is what is returned by str(expr), and by repr(expr) or as the output in an interactive
(I)Python session. The initialization also specifies the default settings for each printing function. For example, you
could suppress the display of Hilbert space labels:

>>> init_printing(show_hs_label=False, repr_format='unicode')
>>> (BasisKet(0, hs=1) + BasisKet(1, hs=1)) / sqrt(2)
1/2 (|0 + |1)

Or, in a debugging session, you could switch the default representation to use the indented srepr():

>>> init_printing(repr_format='indsrepr')
>>> (BasisKet(0, hs=1) + BasisKet(1, hs=1)) / sqrt(2)
ScalarTimesKet(

Mul(Rational(1, 2), Pow(Integer(2), Rational(1, 2))),
KetPlus(

BasisKet(
0,
hs=LocalSpace(

'1')),
BasisKet(

1,
hs=LocalSpace(

'1'))))

The settings can also be changed temporarily via the configure_printing() context manager.

Note that init_printing() should only be called once; or else it should be given the reset parameter:

>>> init_printing(repr_format='unicode', reset=True)

40 Chapter 8. The Printing System

https://www.mathjax.org

QNET, Release 2.0.0-dev

8.3 Printer classes

The printing functions ascii(), unicode(), and latex() each delegate to an internal printer object that sub-
classes qnet.printing.base.QnetBasePrinter. After initialization, the printer class is referenced at e.g.
ascii.printer.

For the ultimate control in customizing the printing system, you can implement your own subclasses of
QnetBasePrinter, which is in turn a subclass of sympy.printing.printer.Printer. Thus, the
overview of SymPy’s printing system applies.

The QNET printers conceptually extend SymPy printers in the following ways:

• QNET printers have support for caching. One reason for this is efficiency. More importantly, it allows to pass a
pre-initialized cache to force certain expressions to be represented by fixed strings, which can make expressions
considerably more readable, and aids in generating code from expressions, see the example for srepr() .

• Every printer contains a sub-printer in the _sympy_printer attribute, instantiated from the sympy_printer_cls
class attribute. Actual SymPy objects (e.g., scalar coefficients) are delegated to this sub-printer, while the
main printer handles all Expression instances. Not that the default sub-printers use classes from qnet.
printing.sympy that implement some custom printing more in line with the conventions of quantum
physics.

When init_printing() is called with direct settings as in the previous section, these will be used as global
settings, and will affect any printers (including SymPy sub-printers) that are instantiated afterwards.

The settings that are given to any printing function will be used for that specific call of the printing function only. If
you define custom classes with different or additional settings and set them up for use with the printing function (see
below), the accepted arguments to the printing functions change accordingly.

8.4 Customization through an INI file

While init_printing() can simply be called with explicit settings to configure the printing system globally (see
above), for a more advanced set up an INI-file can be used. In this case, the path to the file must be the only argument:

init_printing(inifile=<path to file>)

This allows to associate custom printer classes with the printing functions, and also define the settings settings for
those particular printers (as opposed to just global settings).

The INI file may have sections ‘global’, ‘ascii’, ‘unicode’, and ‘latex’. Parameters in the ‘global’ section are equivalent
to those could be passed to init_printing() as direct settings. That is, they set up the printing function to be
used for __str__ and __repr__, and set the global options for all printer classes.

The ‘ascii’, ‘unicode’, and ‘latex’ sections configure the respective printing functions. To link them to custom Printer
classes, you may specify printer and sympy_printer as the full path to the Printer class that should be used
for the main printer and the sub-printer for SymPy expressions. All other settings in the sections override the settings
from ‘global’ for that particular printer.

Consider the following annotated example for an INI file:

[global]
The settings in the 'global' section are for all Printer classes (both
SymPy and QNET). They are equivalent to passing them to init_printing
directly

the printing function to use for str(expr)

(continues on next page)

8.3. Printer classes 41

https://docs.sympy.org/latest/modules/printing.html#sympy.printing.printer.Printer
http://docs.sympy.org/latest/modules/printing.html#module-sympy.printing.printer

QNET, Release 2.0.0-dev

(continued from previous page)

str_format = ascii
the printing function to use for expr(expr)
repr_format = unicode
direct global settings
show_hs_label = False
sig_as_ketbra = False
note that boolean values must be specified as "True", or "False"

The three sections below associate the printing functions with particular
Printer classes, and override the global settings for those particular
printers

[ascii]
printer = qnet.printing.asciiprinter.QnetAsciiPrinter
we use the SymPy StrPrinter here, instead of the default
qnet.printing.sympy.SympyStrPrinter that is customized to not
rationalize denominators
sympy_printer = sympy.printing.str.StrPrinter
we override the the settings from the 'global' section
show_hs_label = True
sig_as_ketbra = True

[unicode]
printer = qnet.printing.unicodeprinter.QnetUnicodePrinter
sympy_printer = qnet.printing.sympy.SympyUnicodePrinter
show_hs_label = subscript
unicode_op_hats = False

[latex]
printer = qnet.printing.latexprinter.QnetLatexPrinter
sympy_printer = qnet.printing.sympy.SympyLatexPrinter
string values can be written un-escaped
tex_op_macro = \Op{{{name}}}
tex_use_braket = True
You can also include options for the sympy_printer
inv_trig_style = full

42 Chapter 8. The Printing System

CHAPTER 9

API

9.1 qnet package

Main QNET package

The qnet package exposes all of QNET’s functionality for easy interactive or programmative use.

For interactive usage, the package should be initialized as follows:

>>> import qnet
>>> qnet.init_printing()

QNET provides a “flat” API. That is, after

>>> import qnet

all submodules are directly accessible, e.g.

>>> qnet.algebra.core.operator_algebra.OperatorSymbol
<class 'qnet.algebra.core.operator_algebra.OperatorSymbol'>

Furthermore, every package exports the “public” symbols of any of its submodules/subpackages (public symbols are
those listed in __all__)

>>> (qnet.algebra.core.operator_algebra.OperatorSymbol is
... qnet.algebra.core.OperatorSymbol is qnet.algebra.OperatorSymbol is
... qnet.OperatorSymbol)
True

In an interactive context (and only there!), a star import such as

from qnet.algebra import *

may be useful.

Subpackages:

43

https://docs.python.org/3.5/tutorial/modules.html#importing-from-a-package

QNET, Release 2.0.0-dev

9.1.1 qnet.algebra package

Symbolic quantum and photonic circuit (SLH) algebra

Subpackages:

qnet.algebra.core package

The fundamental object hiearchies that constitute QNET’s various algebras

Submodules:

qnet.algebra.core.abstract_algebra module

Base classes for all Expressions and Operations.

The abstract algebra package provides the foundation for symbolic algebra of quantum objects or circuits. All sym-
bolic objects are an instance of Expression. Algebraic combinations of atomic expressions are instances of
Operation. In this way, any symbolic expression is a tree of operations, with children of each node defined through
the Operation.operands attribute, and the leaves being atomic expressions.

See Expressions and Operations for design details and usage.

Summary

Classes:

Expression Base class for all QNET Expressions
Operation Base class for “operations”

Functions:

substitute Substitute symbols or (sub-)expressions with the given
replacements and re-evalute the result

__all__: Expression, Operation, substitute

Reference

class qnet.algebra.core.abstract_algebra.Expression(*args, **kwargs)
Bases: object

Base class for all QNET Expressions

Expressions should generally be instantiated using the create() class method, which takes into account the
algebraic properties of the Expression and and applies simplifications. It also uses memoization to cache all
known (sub-)expression. This is possible because expressions are intended to be immutable. Any changes to an
expression should be made through e.g. substitute() or apply_rule(), which returns a new modified
expression.

Every expression has a well-defined list of positional and keyword arguments that uniquely determine the ex-
pression and that may be accessed through the args and kwargs property. That is,

44 Chapter 9. API

https://docs.python.org/3.6/library/functions.html#object

QNET, Release 2.0.0-dev

expr.__class__(*expr.args, **expr.kwargs)

will return and object identical to expr.

Class Attributes

• instance_caching (bool) – Flag to indicate whether the create() class method should
cache the instantiation of instances. If True, repeated calls to create() with the same
arguments return instantly, instead of re-evaluating all simplifications and rules.

• simplifications (list) – List of callable simplifications that create()will use to process its
positional and keyword arguments. Each callable must take three parameters (the class, the
list args of positional arguments given to create() and a dictionary kwargs of keyword
arguments given to create()) and return either a tuple of new args and kwargs (which
are then handed to the next callable), or an Expression (which is directly returned as
the result of the call to create()). The built-in available simplification callables are in
algebraic_properties

simplifications = []

instance_caching = True

classmethod create(*args, **kwargs)
Instantiate while applying automatic simplifications

Instead of directly instantiating cls, it is recommended to use create(), which applies simplifications
to the args and keyword arguments according to the simplifications class attribute, and returns an
appropriate object (which may or may not be an instance of the original cls).

Two simplifications of particular importance are match_replace() and
match_replace_binary() which apply rule-based simplifications.

The temporary_rules() context manager may be used to allow temporary modification of the
automatic simplifications that create() uses, in particular the rules for match_replace() and
match_replace_binary(). Inside the managed context, the simplifications class attribute
may be modified and rules can be managed with add_rule() and del_rules().

classmethod add_rule(name, pattern, replacement, attr=None)
Add an algebraic rule for create() to the class

Parameters

• name (str) – Name of the rule. This is used for debug logging to allow an analysis of
which rules where applied when creating an expression. The name can be arbitrary, but it
must be unique. Built-in rules have names 'Rxxx' where x is a digit

• pattern (Pattern) – A pattern constructed by pattern_head() to match a
ProtoExpr

• replacement (callable) – callable that takes the wildcard names defined in pattern
as keyword arguments and returns an evaluated expression.

• attr (None or str) – Name of the class attribute to which to add the rule. If None,
one of '_rules', '_binary_rules' is automatically chosen

Raises

• TypeError – if name is not a str or pattern is not a Pattern instance

• ValueError – if pattern is not set up to match a ProtoExpr; if there there is already
a rule with the same name; if replacement is not a callable or does not take all the wildcard
names in pattern as arguments

9.1. qnet package 45

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/exceptions.html#TypeError
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/exceptions.html#ValueError

QNET, Release 2.0.0-dev

• AttributeError – If invalid attr

Note: The “automatic” rules added by this method are applied before expressions are instantiated (against
a corresponding ProtoExpr). In contrast, apply_rules()/apply_rule() are applied to fully
instantiated objects.

The temporary_rules() context manager may be used to create a context in which rules may be
defined locally.

classmethod show_rules(*names, attr=None)
Print algebraic rules used by create

Print a summary of the algebraic rules with the given names, or all rules if not names a given.

Parameters

• names (str) – Names of rules to show

• attr (None or str) – Name of the class attribute from which to get the rules. Cf.
add_rule().

Raises AttributeError – If invalid attr

classmethod del_rules(*names, attr=None)
Delete algebraic rules used by create()

Remove the rules with the given names, or all rules if no names are given

Parameters

• names (str) – Names of rules to delete

• attr (None or str) – Name of the class attribute from which to delete the rules. Cf.
add_rule().

Raises

• KeyError – If any rules in names does not exist

• AttributeError – If invalid attr

classmethod rules(attr=None)
Iterable of rule names used by create()

Parameters attr (None or str) – Name of the class attribute to which to get the names.
If None, one of '_rules', '_binary_rules' is automatically chosen

args
The tuple of positional arguments for the instantiation of the Expression

kwargs
The dictionary of keyword-only arguments for the instantiation of the Expression

minimal_kwargs
A “minimal” dictionary of keyword-only arguments, i.e. a subset of kwargs that may exclude default
options

substitute(var_map)
Substitute sub-expressions

Parameters var_map (dict) – Dictionary with entries of the form {expr:
substitution}

46 Chapter 9. API

https://docs.python.org/3.6/library/exceptions.html#AttributeError
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/exceptions.html#AttributeError
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/exceptions.html#KeyError
https://docs.python.org/3.6/library/exceptions.html#AttributeError
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict

QNET, Release 2.0.0-dev

doit(classes=None, recursive=True, **kwargs)
Rewrite (sub-)expressions in a more explicit form

Return a modified expression that is more explicit than the original expression. The definition of “more
explicit” is decided by the relevant subclass, e.g. a Commutator is written out according to its definition.

Parameters

• classes (None or list) – an optional list of classes. If given, only (sub-
)expressions that an instance of one of the classes in the list will be rewritten.

• recursive (bool) – If True, also rewrite any sub-expressions of any rewritten expres-
sion. Note that doit() always recurses into sub-expressions of expressions not affected
by it.

• kwargs – Any remaining keyword arguments may be used by the doit() method of a
particular expression.

Example

Consider the following expression:

>>> from sympy import IndexedBase
>>> i = IdxSym('i'); N = symbols('N')
>>> Asym, Csym = symbols('A, C', cls=IndexedBase)
>>> A = lambda i: OperatorSymbol(StrLabel(Asym[i]), hs=0)
>>> B = OperatorSymbol('B', hs=0)
>>> C = lambda i: OperatorSymbol(StrLabel(Csym[i]), hs=0)
>>> def show(expr):
... print(unicode(expr, show_hs_label=False))
>>> expr = Sum(i, 1, 3)(Commutator(A(i), B) + C(i)) / N
>>> show(expr)
1/N (_{i=1}^{3} (C_i + [A_i, B]))

Calling doit() without parameters rewrites both the indexed sum and the commutator:

>>> show(expr.doit())
1/N (C1 + C2 + C3 + A1 B + A2 B + A3 B - B A1 - B A2 - B A3)

A non-recursive call only expands the sum, as it does not recurse into the expanded summands:

>>> show(expr.doit(recursive=False))
1/N (C1 + C2 + C3 + [A1, B] + [A2, B] + [A3, B])

We can selectively expand only the sum or only the commutator:

>>> show(expr.doit(classes=[IndexedSum]))
1/N (C1 + C2 + C3 + [A1, B] + [A2, B] + [A3, B])

>>> show(expr.doit(classes=[Commutator]))
1/N (_{i=1}^{3} (C_i - B A_i + A_i B))

Also we can pass a keyword argument that expands the sum only to the 2nd term, as documented in
Commutator.doit()

>>> show(expr.doit(classes=[IndexedSum], max_terms=2))
1/N (C1 + C2 + [A1, B] + [A2, B])

9.1. qnet package 47

https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/functions.html#bool

QNET, Release 2.0.0-dev

apply(func, *args, **kwargs)
Apply func to expression.

Equivalent to func(self, *args, **kwargs). This method exists for easy chaining:

>>> A, B, C, D = (
... OperatorSymbol(s, hs=1) for s in ('A', 'B', 'C', 'D'))
>>> expr = (
... Commutator(A * B, C * D)
... .apply(lambda expr: expr**2)
... .apply(expand_commutators_leibniz, expand_expr=False)
... .substitute({A: IdentityOperator}))

apply_rules(rules, recursive=True)
Rebuild the expression while applying a list of rules

The rules are applied against the instantiated expression, and any sub-expressions if recursive is True. Rule
application is best though of as a pattern-based substitution. This is different from the automatic rules that
create() uses (see add_rule()), which are applied before expressions are instantiated.

Parameters

• rules (list or OrderedDict) – List of rules or dictionary mapping names to
rules, where each rule is a tuple (Pattern, replacement callable), cf. apply_rule()

• recursive (bool) – If true (default), apply rules to all arguments and keyword argu-
ments of the expression. Otherwise, only the expression itself will be re-instantiated.

If rules is a dictionary, the keys (rules names) are used only for debug logging, to allow an analysis of
which rules lead to the final form of an expression.

apply_rule(pattern, replacement, recursive=True)
Apply a single rules to the expression

This is equivalent to apply_rules() with rules=[(pattern, replacement)]

Parameters

• pattern (Pattern) – A pattern containing one or more wildcards

• replacement (callable) – A callable that takes the wildcard names in pattern as
keyword arguments, and returns a replacement for any expression that pattern matches.

Example

Consider the following Heisenberg Hamiltonian:

>>> tls = SpinSpace(label='s', spin='1/2')
>>> i, j, n = symbols('i, j, n', cls=IdxSym)
>>> J = symbols('J', cls=sympy.IndexedBase)
>>> def Sig(i):
... return OperatorSymbol(
... StrLabel(sympy.Indexed('sigma', i)), hs=tls)
>>> H = - Sum(i, tls)(Sum(j, tls)(
... J[i, j] * Sig(i) * Sig(j)))
>>> unicode(H)
'- (_{i,j } J_ij 𝜎_i^(s) 𝜎_j^(s))'

We can transform this into a classical Hamiltonian by replacing the operators with scalars:

48 Chapter 9. API

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/collections.html#collections.OrderedDict
https://docs.python.org/3.6/library/functions.html#bool

QNET, Release 2.0.0-dev

>>> H_classical = H.apply_rule(
... pattern(OperatorSymbol, wc('label', head=StrLabel)),
... lambda label: label.expr * IdentityOperator)
>>> unicode(H_classical)
'- (_{i,j } J_ij 𝜎_i 𝜎_j)'

rebuild()
Recursively re-instantiate the expression

This is generally used within a managed context such as extra_rules(),
extra_binary_rules(), or no_rules().

free_symbols
Set of free SymPy symbols contained within the expression.

bound_symbols
Set of bound SymPy symbols in the expression

all_symbols
Combination of free_symbols and bound_symbols

__ne__(other)
If it is well-defined (i.e. boolean), simply return the negation of self.__eq__(other) Otherwise
return NotImplemented.

qnet.algebra.core.abstract_algebra.substitute(expr, var_map)
Substitute symbols or (sub-)expressions with the given replacements and re-evalute the result

Parameters

• expr – The expression in which to perform the substitution

• var_map (dict) – The substitution dictionary.

class qnet.algebra.core.abstract_algebra.Operation(*operands, **kwargs)
Bases: qnet.algebra.core.abstract_algebra.Expression

Base class for “operations”

Operations are Expressions that act algebraically on other expressions (their “operands”).

Operations differ from more general Expressions by the convention that the arguments of the Operator are
exactly the operands (which must be members of the algebra!) Any other parameters (non-operands) that may
be required must be given as keyword-arguments.

operands
Tuple of operands of the operation

args
Alias for operands

qnet.algebra.core.abstract_quantum_algebra module

Common algebra of “quantum” objects

Quantum objects have an associated Hilbert space, and they (at least partially) summation, products, multiplication
with a scalar, and adjoints.

The algebra defined in this module is the superset of the Hilbert space algebra of states (augmented by the tensor
product), and the C* algebras of operators and superoperators.

9.1. qnet package 49

https://docs.python.org/3.6/library/stdtypes.html#dict

QNET, Release 2.0.0-dev

Summary

Classes:

QuantumAdjoint Base class for adjoints of quantum expressions
QuantumDerivative Symbolic partial derivative
QuantumExpression Base class for expressions associated with a Hilbert

space
QuantumIndexedSum Base class for indexed sums
QuantumOperation Base class for operations on quantum expression
QuantumPlus General implementation of addition of quantum expres-

sions
QuantumSymbol Symbolic element of an algebra
QuantumTimes General implementation of product of quantum expres-

sions
ScalarTimesQuantumExpression Product of a Scalar and a QuantumExpression
SingleQuantumOperation Base class for operations on a single quantum expres-

sion

Functions:

Sum Instantiator for an arbitrary indexed sum.
ensure_local_space Ensure that the given hs is an instance of

LocalSpace.

__all__: QuantumAdjoint, QuantumDerivative, QuantumExpression,
QuantumIndexedSum, QuantumOperation, QuantumPlus, QuantumSymbol, QuantumTimes,
ScalarTimesQuantumExpression, SingleQuantumOperation, Sum

Reference

class qnet.algebra.core.abstract_quantum_algebra.QuantumExpression(*args,
**kwargs)

Bases: qnet.algebra.core.abstract_algebra.Expression

Base class for expressions associated with a Hilbert space

is_zero
Check whether the expression is equal to zero.

Specifically, this checks whether the expression is equal to the neutral element for the addition within the
algebra. This does not generally imply equality with a scalar zero:

>>> ZeroOperator.is_zero
True
>>> ZeroOperator == 0
False

space
The HilbertSpace on which the operator acts non-trivially

adjoint()
The Hermitian adjoint of the Expression

50 Chapter 9. API

QNET, Release 2.0.0-dev

dag()
Alias for adjoint()

expand()
Expand out distributively all products of sums.

Note: This does not expand out sums of scalar coefficients. You may use simplify_scalar() for
this purpose.

simplify_scalar(func=<function simplify>)
Simplify all scalar symbolic (SymPy) coefficients by appyling func to them

diff(sym, n=1, expand_simplify=True)
Differentiate by scalar parameter sym.

Parameters

• sym (Symbol) – What to differentiate by.

• n (int) – How often to differentiate

• expand_simplify (bool) – Whether to simplify the result.

Returns The n-th derivative.

series_expand(param, about, order)
Expand the expression as a truncated power series in a scalar parameter.

When expanding an expr for a parameter 𝑥 about the point 𝑥0 up to order 𝑁 , the resulting coefficients
(𝑐1, . . . , 𝑐𝑁) fulfill

expr =

𝑁∑︁
𝑛=0

𝑐𝑛(𝑥− 𝑥0)𝑛 +𝑂(𝑁 + 1)

Parameters

• param (Symbol) – Expansion parameter 𝑥

• about (Scalar) – Point 𝑥0 about which to expand

• order (int) – Maximum order 𝑁 of expansion (>= 0)

Return type tuple

Returns tuple of length order + 1, where the entries are the expansion coefficients,
(𝑐0, . . . , 𝑐𝑁).

Note: The expansion coefficients are “type-stable”, in that they share a common base class with the
original expression. In particular, this applies to “zero” coefficients:

>>> expr = KetSymbol("Psi", hs=0)
>>> t = sympy.symbols("t")
>>> assert expr.series_expand(t, 0, 1) == (expr, ZeroKet)

class qnet.algebra.core.abstract_quantum_algebra.QuantumSymbol(label,
*sym_args,
hs)

Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumExpression

Symbolic element of an algebra

9.1. qnet package 51

https://docs.sympy.org/latest/modules/core.html#sympy.core.symbol.Symbol
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.sympy.org/latest/modules/core.html#sympy.core.symbol.Symbol
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#tuple

QNET, Release 2.0.0-dev

Parameters

• label (str or SymbolicLabelBase) – Label for the symbol

• sym_args (Scalar) – optional scalar arguments. With zero sym_args, the resulting sym-
bol is a constant. With one or more sym_args, it becomes a function.

• hs (HilbertSpace, str, int, tuple) – the Hilbert space associated with the
symbol. If a str or an int, an implicit (sub-)instance of LocalSpace with a corresponding
label will be created, or, for a tuple of str or int, a ProducSpace. The type of the
implicit Hilbert space is set by :func:.init_algebra‘.

label
Label of the symbol

args
Tuple of positional arguments, consisting of the label and possible sym_args

kwargs
Dict of keyword arguments, containing only hs

sym_args
Tuple of scalar arguments of the symbol

space
The HilbertSpace on which the operator acts non-trivially

free_symbols
Set of free SymPy symbols contained within the expression.

class qnet.algebra.core.abstract_quantum_algebra.QuantumOperation(*operands,
**kwargs)

Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumExpression, qnet.
algebra.core.abstract_algebra.Operation

Base class for operations on quantum expression

These are operations on quantum expressions within the same fundamental set.

space
Hilbert space of the operation result

class qnet.algebra.core.abstract_quantum_algebra.SingleQuantumOperation(op,
**kwargs)

Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumOperation

Base class for operations on a single quantum expression

operand
The operator that the operation acts on

class qnet.algebra.core.abstract_quantum_algebra.QuantumAdjoint(op, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.SingleQuantumOperation

Base class for adjoints of quantum expressions

class qnet.algebra.core.abstract_quantum_algebra.QuantumPlus(*operands,
**kwargs)

Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumOperation

General implementation of addition of quantum expressions

order_key
alias of qnet.utils.ordering.FullCommutativeHSOrder

52 Chapter 9. API

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#tuple

QNET, Release 2.0.0-dev

class qnet.algebra.core.abstract_quantum_algebra.QuantumTimes(*operands,
**kwargs)

Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumOperation

General implementation of product of quantum expressions

order_key
alias of qnet.utils.ordering.DisjunctCommutativeHSOrder

factor_for_space(spc)
Return a tuple of two products, where the first product contains the given Hilbert space, and the second
product is disjunct from it.

class qnet.algebra.core.abstract_quantum_algebra.ScalarTimesQuantumExpression(coeff,
term)

Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumExpression, qnet.
algebra.core.abstract_algebra.Operation

Product of a Scalar and a QuantumExpression

classmethod create(coeff, term)
Instantiate while applying automatic simplifications

Instead of directly instantiating cls, it is recommended to use create(), which applies simplifications
to the args and keyword arguments according to the simplifications class attribute, and returns an
appropriate object (which may or may not be an instance of the original cls).

Two simplifications of particular importance are match_replace() and
match_replace_binary() which apply rule-based simplifications.

The temporary_rules() context manager may be used to allow temporary modification of the
automatic simplifications that create() uses, in particular the rules for match_replace() and
match_replace_binary(). Inside the managed context, the simplifications class attribute
may be modified and rules can be managed with add_rule() and del_rules().

coeff

term

free_symbols
Set of free SymPy symbols contained within the expression.

space
The HilbertSpace on which the operator acts non-trivially

class qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative(op, *,
derivs,
vals=None)

Bases: qnet.algebra.core.abstract_quantum_algebra.SingleQuantumOperation

Symbolic partial derivative

𝜕𝑛

𝜕𝑥𝑛1
1 . . . 𝜕𝑥𝑛𝑁

𝑁

𝐴(𝑥1, . . . , 𝑥𝑁); with 𝑛 =
∑︁
𝑖

𝑛𝑖

Alternatively, if vals is given, a symbolic representation of the derivative (partially) evaluated at a specific point.

𝜕𝑛

𝜕𝑥𝑛1
1 . . . 𝜕𝑥𝑛𝑁

𝑁

𝐴(𝑥1, . . . , 𝑥𝑁)

⃒⃒⃒⃒
𝑥1=𝑣1,...

Parameters

• op (QuantumExpression) – the expression 𝐴(𝑥1, . . . , 𝑥𝑁) that is being derived

9.1. qnet package 53

QNET, Release 2.0.0-dev

• derivs (dict) – a map of symbols 𝑥𝑖 to the order 𝑛𝑖 of the derivate with respect to that
symbol

• vals (dict or None) – If not None, a map of symbols 𝑥𝑖 to values 𝑣𝑖 for the point at
which the derivative should be evaluated.

Note: QuantumDerivative is intended to be instantiated only inside the _diff() method of a
QuantumExpression, for expressions that depend on scalar arguments in an unspecified way. Generally, if a
derivative can be calculated explicitly, the explicit form is preferred over the abstract QuantumDerivative.

simplifications = [<function derivative_via_diff>]

classmethod create(op, *, derivs, vals=None)
Instantiate the derivative by repeatedly calling the _diff() method of op and evaluating the result at the
given vals.

kwargs
Keyword arguments for the instantiation of the derivative

minimal_kwargs
Minimal keyword arguments for the instantiation of the derivative (excluding defaults)

evaluate_at(vals)
Evaluate the derivative at a specific point

derivs
Mapping of symbols to the order of the derivative with respect to that symbol. Keys are ordered alphanu-
merically.

syms
Set of symbols with respect to which the derivative is taken

vals
Mapping of symbols to values for which the derivative is to be evaluated. Keys are ordered alphanumeri-
cally.

free_symbols
Set of free SymPy symbols contained within the expression.

bound_symbols
Set of Sympy symbols that are eliminated by evaluation.

n
The total order of the derivative.

This is the sum of the order values in derivs

class qnet.algebra.core.abstract_quantum_algebra.QuantumIndexedSum(term,
*ranges)

Bases: qnet.algebra.core.indexed_operations.IndexedSum, qnet.algebra.core.
abstract_quantum_algebra.SingleQuantumOperation

Base class for indexed sums

space
The Hilbert space of the sum’s term

qnet.algebra.core.abstract_quantum_algebra.Sum(idx, *args, **kwargs)
Instantiator for an arbitrary indexed sum.

54 Chapter 9. API

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/constants.html#None

QNET, Release 2.0.0-dev

This returns a function that instantiates the appropriate QuantumIndexedSum subclass for a given term
expression. It is the preferred way to “manually” create indexed sum expressions, closely resembling the normal
mathematical notation for sums.

Parameters

• idx (IdxSym) – The index symbol over which the sum runs

• args – arguments that describe the values over which idx runs,

• kwargs – keyword-arguments, used in addition to args

Returns an instantiator function that takes a arbitrary term that should generally contain the idx
symbol, and returns an indexed sum over that term with the index range specified by the original
args and kwargs.

Return type callable

There is considerable flexibility to specify concise args for a variety of index ranges.

Assume the following setup:

>>> i = IdxSym('i'); j = IdxSym('j')
>>> ket_i = BasisKet(FockIndex(i), hs=0)
>>> ket_j = BasisKet(FockIndex(j), hs=0)
>>> hs0 = LocalSpace('0')

Giving i as the only argument will sum over the indices of the basis states of the Hilbert space of term:

>>> s = Sum(i)(ket_i)
>>> unicode(s)
'_{i 0} |i0'

You may also specify a Hilbert space manually:

>>> Sum(i, hs0)(ket_i) == Sum(i, hs=hs0)(ket_i) == s
True

Note that using Sum() is vastly more readable than the equivalent “manual” instantiation:

>>> s == KetIndexedSum.create(ket_i, IndexOverFockSpace(i, hs=hs0))
True

By nesting calls to Sum, you can instantiate sums running over multiple indices:

>>> unicode(Sum(i)(Sum(j)(ket_i * ket_j.dag())))
'_{i,j 0} |ij|0'

Giving two integers in addition to the index i in args, the index will run between the two values:

>>> unicode(Sum(i, 1, 10)(ket_i))
'_{i=1}^{10} |i0'
>>> Sum(i, 1, 10)(ket_i) == Sum(i, 1, to=10)(ket_i)
True

You may also include an optional step width, either as a third integer or using the step keyword argument.

>>> #unicode(Sum(i, 1, 10, step=2)(ket_i)) # TODO

Lastly, by passing a tuple or list of values, the index will run over all the elements in that tuple or list:

9.1. qnet package 55

QNET, Release 2.0.0-dev

>>> unicode(Sum(i, (1, 2, 3))(ket_i))
'_{i {1,2,3}} |i0'

qnet.algebra.core.abstract_quantum_algebra.ensure_local_space(hs, cls=<class
’qnet.algebra.core.hilbert_space_algebra.LocalSpace’>)

Ensure that the given hs is an instance of LocalSpace.

If hs an instance of str or int, it will be converted to a cls (if possible). If it already is an instace of cls, hs
will be returned unchanged.

Parameters

• hs (HilbertSpace or str or int) – The Hilbert space (or label) to convert/check

• cls (type) – The class to which an int/str label for a Hilbert space should be converted.
Must be a subclass of LocalSpace.

Raises TypeError – If hs is not a LocalSpace, str, or int.

Returns original or converted hs

Return type LocalSpace

Examples

>>> srepr(ensure_local_space(0))
"LocalSpace('0')"
>>> srepr(ensure_local_space('tls'))
"LocalSpace('tls')"
>>> srepr(ensure_local_space(0, cls=LocalSpace))
"LocalSpace('0')"
>>> srepr(ensure_local_space(LocalSpace(0)))
"LocalSpace('0')"
>>> srepr(ensure_local_space(LocalSpace(0)))
"LocalSpace('0')"
>>> srepr(ensure_local_space(LocalSpace(0) * LocalSpace(1)))
Traceback (most recent call last):

...
TypeError: hs must be an instance of LocalSpace

qnet.algebra.core.algebraic_properties module

Summary

Functions:

accept_bras Accept operands that are all bras, and turn that into to
bra of the operation applied to all corresponding kets

assoc Associatively expand out nested arguments of the flat
class.

assoc_indexed Flatten nested indexed structures while pulling out pos-
sible prefactors

Continued on next page

56 Chapter 9. API

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#type
https://docs.python.org/3.6/library/exceptions.html#TypeError
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int

QNET, Release 2.0.0-dev

Table 5 – continued from previous page
basis_ket_zero_outside_hs For BasisKet.create(ind, hs) with an integer

label ind, return a ZeroKet if ind is outside of the
range of the underlying Hilbert space

check_cdims Check that all operands (ops) have equal channel dimen-
sion.

collect_scalar_summands Collect ValueScalar and ScalarExpression
summands

collect_summands Collect summands that occur multiple times into a sin-
gle summand

commutator_order Apply anti-commutative property of the commutator to
apply a standard ordering of the commutator arguments

convert_to_scalars Convert any entry in ops that is not a Scalar instance
into a ScalarValue instance

convert_to_spaces For all operands that are merely of type str or int, substi-
tute LocalSpace objects with corresponding labels: For
a string, just itself, for an int, a string version of that int.

delegate_to_method Create a simplification rule that delegates the instantia-
tion to the method mtd of the operand (if defined)

derivative_via_diff Implementation of the QuantumDerivative.
create() interface via the use of
QuantumExpression._diff().

disjunct_hs_zero Return ZeroOperator if all the operators in ops have a
disjunct Hilbert space, or an unchanged ops, kwargs oth-
erwise

empty_trivial A ProductSpace of zero Hilbert spaces should yield the
TrivialSpace

filter_cid Remove occurrences of the circuit_identity()
cid(n) for any n.

filter_neutral Remove occurrences of a neutral element from the argu-
ment/operand list, if that list has at least two elements.

idem Remove duplicate arguments and order them via the
cls’s order_key key object/function.

implied_local_space Return a simplification that converts the positional
argument arg_index from (str, int) to a subclass of
LocalSpace, as well as any keyword argument with
one of the given keys.

indexed_sum_over_const Execute an indexed sum over a term that does not de-
pend on the summation indices

indexed_sum_over_kronecker Execute sums over KroneckerDelta prefactors
match_replace Match and replace a full operand specification to a func-

tion that provides a replacement for the whole expres-
sion or raises a CannotSimplify exception.

match_replace_binary Similar to func:match_replace, but for arbitrary length
operations, such that each two pairs of subsequent
operands are matched pairwise.

orderby Re-order arguments via the class’s order_key key
object/function.

scalars_to_op Convert any scalar 𝛼 in ops into an operator $alpha iden-
tity$

9.1. qnet package 57

QNET, Release 2.0.0-dev

Reference

qnet.algebra.core.algebraic_properties.assoc(cls, ops, kwargs)
Associatively expand out nested arguments of the flat class. E.g.:

>>> class Plus(Operation):
... simplifications = [assoc,]
>>> Plus.create(1,Plus(2,3))
Plus(1, 2, 3)

qnet.algebra.core.algebraic_properties.assoc_indexed(cls, ops, kwargs)
Flatten nested indexed structures while pulling out possible prefactors

For example, for an IndexedSum:

∑︁
𝑗

(︃
𝑎
∑︁
𝑖

. . .

)︃
= 𝑎

∑︁
𝑗,𝑖

. . .

qnet.algebra.core.algebraic_properties.idem(cls, ops, kwargs)
Remove duplicate arguments and order them via the cls’s order_key key object/function. E.g.:

>>> class Set(Operation):
... order_key = lambda val: val
... simplifications = [idem,]
>>> Set.create(1,2,3,1,3)
Set(1, 2, 3)

qnet.algebra.core.algebraic_properties.orderby(cls, ops, kwargs)
Re-order arguments via the class’s order_key key object/function. Use this for commutative operations: E.g.:

>>> class Times(Operation):
... order_key = lambda val: val
... simplifications = [orderby,]
>>> Times.create(2,1)
Times(1, 2)

qnet.algebra.core.algebraic_properties.filter_neutral(cls, ops, kwargs)
Remove occurrences of a neutral element from the argument/operand list, if that list has at least two elements.
To use this, one must also specify a neutral element, which can be anything that allows for an equality check
with each argument. E.g.:

>>> class X(Operation):
... _neutral_element = 1
... simplifications = [filter_neutral,]
>>> X.create(2,1,3,1)
X(2, 3)

qnet.algebra.core.algebraic_properties.collect_summands(cls, ops, kwargs)
Collect summands that occur multiple times into a single summand

Also filters out zero-summands.

Example

58 Chapter 9. API

QNET, Release 2.0.0-dev

>>> A, B, C = (OperatorSymbol(s, hs=0) for s in ('A', 'B', 'C'))
>>> collect_summands(
... OperatorPlus, (A, B, C, ZeroOperator, 2 * A, B, -C) , {})
((3 * A^(0), 2 * B^(0)), {})
>>> collect_summands(OperatorPlus, (A, -A), {})
ZeroOperator
>>> collect_summands(OperatorPlus, (B, A, -B), {})
A^(0)

qnet.algebra.core.algebraic_properties.collect_scalar_summands(cls, ops,
kwargs)

Collect ValueScalar and ScalarExpression summands

Example

>>> srepr(collect_scalar_summands(Scalar, (1, 2, 3), {}))
'ScalarValue(6)'
>>> collect_scalar_summands(Scalar, (1, 1, -1), {})
One
>>> collect_scalar_summands(Scalar, (1, -1), {})
Zero

>>> Psi = KetSymbol("Psi", hs=0)
>>> Phi = KetSymbol("Phi", hs=0)
>>> braket = BraKet.create(Psi, Phi)

>>> collect_scalar_summands(Scalar, (1, braket, -1), {})
<Psi|Phi>^(0)
>>> collect_scalar_summands(Scalar, (1, 2 * braket, 2, 2 * braket), {})
((3, 4 * <Psi|Phi>^(0)), {})
>>> collect_scalar_summands(Scalar, (2 * braket, -braket, -braket), {})
Zero

qnet.algebra.core.algebraic_properties.match_replace(cls, ops, kwargs)
Match and replace a full operand specification to a function that provides a replacement for the whole expression
or raises a CannotSimplify exception. E.g.

First define an operation:

>>> class Invert(Operation):
... _rules = OrderedDict()
... simplifications = [match_replace,]

Then some _rules:

>>> A = wc("A")
>>> A_float = wc("A", head=float)
>>> Invert_A = pattern(Invert, A)
>>> Invert._rules.update([
... ('r1', (pattern_head(Invert_A), lambda A: A)),
... ('r2', (pattern_head(A_float), lambda A: 1./A)),
...])

Check rule application:

9.1. qnet package 59

QNET, Release 2.0.0-dev

>>> print(srepr(Invert.create("hallo"))) # matches no rule
Invert('hallo')
>>> Invert.create(Invert("hallo")) # matches first rule
'hallo'
>>> Invert.create(.2) # matches second rule
5.0

A pattern can also have the same wildcard appear twice:

>>> class X(Operation):
... _rules = {
... 'r1': (pattern_head(A, A), lambda A: A),
... }
... simplifications = [match_replace,]
>>> X.create(1,2)
X(1, 2)
>>> X.create(1,1)
1

qnet.algebra.core.algebraic_properties.match_replace_binary(cls, ops, kwargs)
Similar to func:match_replace, but for arbitrary length operations, such that each two pairs of subsequent
operands are matched pairwise.

>>> A = wc("A")
>>> class FilterDupes(Operation):
... _binary_rules = {
... 'filter_dupes': (pattern_head(A,A), lambda A: A)}
... simplifications = [match_replace_binary, assoc]
... _neutral_element = 0
>>> FilterDupes.create(1,2,3,4) # No duplicates
FilterDupes(1, 2, 3, 4)
>>> FilterDupes.create(1,2,2,3,4) # Some duplicates
FilterDupes(1, 2, 3, 4)

Note that this only works for subsequent duplicate entries:

>>> FilterDupes.create(1,2,3,2,4) # No *subsequent* duplicates
FilterDupes(1, 2, 3, 2, 4)

Any operation that uses binary reduction must be associative and define a neutral element. The binary rules
must be compatible with associativity, i.e. there is no specific order in which the rules are applied to pairs of
operands.

qnet.algebra.core.algebraic_properties.check_cdims(cls, ops, kwargs)
Check that all operands (ops) have equal channel dimension.

qnet.algebra.core.algebraic_properties.filter_cid(cls, ops, kwargs)
Remove occurrences of the circuit_identity() cid(n) for any n. Cf. filter_neutral()

qnet.algebra.core.algebraic_properties.convert_to_spaces(cls, ops, kwargs)
For all operands that are merely of type str or int, substitute LocalSpace objects with corresponding labels: For
a string, just itself, for an int, a string version of that int.

qnet.algebra.core.algebraic_properties.empty_trivial(cls, ops, kwargs)
A ProductSpace of zero Hilbert spaces should yield the TrivialSpace

qnet.algebra.core.algebraic_properties.implied_local_space(*, arg_index=None,
keys=None)

Return a simplification that converts the positional argument arg_index from (str, int) to a subclass of

60 Chapter 9. API

QNET, Release 2.0.0-dev

LocalSpace, as well as any keyword argument with one of the given keys.

The exact type of the resulting Hilbert space is determined by the default_hs_cls argument of
init_algebra().

In many cases, we have implied_local_space() (in create) in addition to a conversion in __init__,
so that match_replace() etc can rely on the relevant arguments being a HilbertSpace instance.

qnet.algebra.core.algebraic_properties.delegate_to_method(mtd)
Create a simplification rule that delegates the instantiation to the method mtd of the operand (if defined)

qnet.algebra.core.algebraic_properties.scalars_to_op(cls, ops, kwargs)
Convert any scalar 𝛼 in ops into an operator $alpha identity$

qnet.algebra.core.algebraic_properties.convert_to_scalars(cls, ops, kwargs)
Convert any entry in ops that is not a Scalar instance into a ScalarValue instance

qnet.algebra.core.algebraic_properties.disjunct_hs_zero(cls, ops, kwargs)
Return ZeroOperator if all the operators in ops have a disjunct Hilbert space, or an unchanged ops, kwargs
otherwise

qnet.algebra.core.algebraic_properties.commutator_order(cls, ops, kwargs)
Apply anti-commutative property of the commutator to apply a standard ordering of the commutator arguments

qnet.algebra.core.algebraic_properties.accept_bras(cls, ops, kwargs)
Accept operands that are all bras, and turn that into to bra of the operation applied to all corresponding kets

qnet.algebra.core.algebraic_properties.basis_ket_zero_outside_hs(cls, ops,
kwargs)

For BasisKet.create(ind, hs) with an integer label ind, return a ZeroKet if ind is outside of the
range of the underlying Hilbert space

qnet.algebra.core.algebraic_properties.indexed_sum_over_const(cls, ops, kwargs)
Execute an indexed sum over a term that does not depend on the summation indices

𝑁∑︁
𝑗=1

𝑎 = 𝑁𝑎

>>> a = symbols('a')
>>> i, j = (IdxSym(s) for s in ('i', 'j'))
>>> unicode(Sum(i, 1, 2)(a))
'2 a'
>>> unicode(Sum(j, 1, 2)(Sum(i, 1, 2)(a * i)))
'_{i=1}^{2} 2 i a'

qnet.algebra.core.algebraic_properties.indexed_sum_over_kronecker(cls, ops,
kwargs)

Execute sums over KroneckerDelta prefactors

qnet.algebra.core.algebraic_properties.derivative_via_diff(cls, ops, kwargs)
Implementation of the QuantumDerivative.create() interface via the use of
QuantumExpression._diff().

Thus, by having QuantumExpression.diff() delegate to QuantumDerivative.create(), in-
stead of QuantumExpression._diff() directly, we get automatic caching of derivatives

qnet.algebra.core.circuit_algebra module

Implementation of the SLH circuit algebra

9.1. qnet package 61

QNET, Release 2.0.0-dev

For more details see Circuit Algebra.

Summary

Classes:

CPermutation Channel permuting circuit
Circuit Base class for the circuit algebra elements
CircuitSymbol Symbolic circuit element
Component Base class for circuit components
Concatenation Concatenation of circuit elements
Feedback Feedback on a single channel of a circuit
SLH Element of the SLH algebra
SeriesInverse Symbolic series product inversion operation
SeriesProduct The series product circuit operation.

Functions:

FB Wrapper for Feedback, defaulting to last channel
circuit_identity Return the circuit identity for n channels
eval_adiabatic_limit Compute the limiting SLH model for the adiabatic ap-

proximation
extract_channel Create a CPermutation that extracts channel k
getABCD Calculate the ABCD-linearization of an SLH model
map_channels Create a CPermuation based on a dict of channel

mappings
move_drive_to_H Move coherent drives from the Lindblad operators to the

Hamiltonian.
pad_with_identity Pad a circuit by adding a n-channel identity circuit at

index k
prepare_adiabatic_limit Prepare the adiabatic elimination on an SLH object
try_adiabatic_elimination Attempt to automatically do adiabatic elimination on an

SLH object

Data:

CIdentity Single pass-through channel; neutral element of
SeriesProduct

CircuitZero Zero circuit, the neutral element of Concatenation

__all__: CIdentity , CPermutation, Circuit, CircuitSymbol, CircuitZero, Component,
Concatenation, FB, Feedback, SLH , SeriesInverse, SeriesProduct, circuit_identity ,
eval_adiabatic_limit, extract_channel, getABCD, map_channels, move_drive_to_H ,
pad_with_identity , prepare_adiabatic_limit, try_adiabatic_elimination

Reference

class qnet.algebra.core.circuit_algebra.Circuit
Bases: object

62 Chapter 9. API

https://docs.python.org/3.6/library/functions.html#object

QNET, Release 2.0.0-dev

Base class for the circuit algebra elements

cdim
The channel dimension of the circuit expression, i.e. the number of external bosonic noises/inputs that the
circuit couples to.

Return type int

block_structure
If the circuit is reducible (i.e., it can be represented as a Concatenation of individual circuit expres-
sions), this gives a tuple of cdim values of the subblocks. E.g. if A and B are irreducible and have A.cdim
= 2, B.cdim = 3

>>> A = CircuitSymbol('A', cdim=2)
>>> B = CircuitSymbol('B', cdim=3)

Then the block structure of their Concatenation is:

>>> (A + B).block_structure
(2, 3)

while

>>> A.block_structure
(2,)
>>> B.block_structure
(3,)

See also:

get_blocks() allows to actually retrieve the blocks:

>>> (A + B).get_blocks()
(A, B)

Return type tuple

index_in_block(channel_index)
Return the index a channel has within the subblock it belongs to

I.e., only for reducible circuits, this gives a result different from the argument itself.

Parameters channel_index (int) – The index of the external channel

Raises ValueError – for an invalid channel_index

Return type int

get_blocks(block_structure=None)
For a reducible circuit, get a sequence of subblocks that when concatenated again yield the original circuit.
The block structure given has to be compatible with the circuits actual block structure, i.e. it can only be
more coarse-grained.

Parameters block_structure (tuple) – The block structure according to which the sub-
blocks are generated (default = None, corresponds to the circuit’s own block structure)

Returns A tuple of subblocks that the circuit consists of.

Raises IncompatibleBlockStructures

9.1. qnet package 63

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#tuple

QNET, Release 2.0.0-dev

series_inverse()
Return the inverse object (under the series product) for a circuit

In general for any X

>>> X = CircuitSymbol('X', cdim=3)
>>> (X << X.series_inverse() == X.series_inverse() << X ==
... circuit_identity(X.cdim))
True

Return type Circuit

feedback(*, out_port=None, in_port=None)
Return a circuit with self-feedback from the output port (zero-based) out_port to the input port
in_port.

Parameters

• out_port (int or None) – The output port from which the feedback connection
leaves (zero-based, default None corresponds to the last port).

• in_port (int or None) – The input port into which the feedback connection goes
(zero-based, default None corresponds to the last port).

show()
Show the circuit expression in an IPython notebook.

render(fname=”)
Render the circuit expression and store the result in a file

Parameters fname (str) – Path to an image file to store the result in.

Returns The path to the image file

Return type str

creduce()
If the circuit is reducible, try to reduce each subcomponent once

Depending on whether the components at the next hierarchy-level are themselves reducible, successive
circuit.creduce() operations yields an increasingly fine-grained decomposition of a circuit into its
most primitive elements.

Return type Circuit

toSLH()
Return the SLH representation of a circuit. This can fail if there are un-substituted pure circuit symbols
(CircuitSymbol) left in the expression

Return type SLH

coherent_input(*input_amps)
Feed coherent input amplitudes into the circuit. E.g. For a circuit with channel dimension of two,
C.coherent_input(0,1) leads to an input amplitude of zero into the first and one into the second port.

Parameters input_amps (SCALAR_TYPES) – The coherent input amplitude for each port

Returns The circuit including the coherent inputs.

Return type Circuit

Raises WrongCDimError

64 Chapter 9. API

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str

QNET, Release 2.0.0-dev

class qnet.algebra.core.circuit_algebra.SLH(S, L, H)
Bases: qnet.algebra.core.circuit_algebra.Circuit, qnet.algebra.core.
abstract_algebra.Expression

Element of the SLH algebra

The SLH class encapsulate an open system model that is parametrized the a scattering matrix (S), a column
vector of Lindblad operators (L), and a Hamiltonian (H).

Parameters

• S (Matrix) – The scattering matrix (with in general Operator-valued elements)

• L (Matrix) – The coupling vector (with in general Operator-valued elements)

• H (Operator) – The internal Hamiltonian operator

S
Scattering matrix

L
Coupling vector

H
Hamiltonian

args
The tuple of positional arguments for the instantiation of the Expression

Ls
Lindblad operators (entries of the L vector), as a list

cdim
The circuit dimension

space
Total Hilbert space

free_symbols
Set of all symbols occcuring in S, L, or H

series_with_slh(other)
Series product with another SLH object

Parameters other (SLH) – An upstream SLH circuit.

Returns The combined system.

Return type SLH

concatenate_slh(other)
Concatenation with another SLH object

expand()
Expand out all operator expressions within S, L and H

Return a new SLH object with these expanded expressions.

simplify_scalar(func=<function simplify>)
Simplify all scalar expressions within S, L and H

Return a new SLH object with the simplified expressions.

See also: QuantumExpression.simplify_scalar()

symbolic_liouvillian()

9.1. qnet package 65

QNET, Release 2.0.0-dev

symbolic_master_equation(rho=None)
Compute the symbolic Liouvillian acting on a state rho

If no rho is given, an OperatorSymbol is created in its place. This correspnds to the RHS of the master
equation in which an average is taken over the external noise degrees of freedom.

Parameters rho (Operator) – A symbolic density matrix operator

Returns The RHS of the master equation.

Return type Operator

symbolic_heisenberg_eom(X=None, noises=None, expand_simplify=True)
Compute the symbolic Heisenberg equations of motion of a system operator X. If no X is given, an Op-
eratorSymbol is created in its place. If no noises are given, this correspnds to the ensemble-averaged
Heisenberg equation of motion.

Parameters

• X (Operator) – A system operator

• noises (Operator) – A vector of noise inputs

Returns The RHS of the Heisenberg equations of motion of X.

Return type Operator

class qnet.algebra.core.circuit_algebra.CircuitSymbol(label, *sym_args, cdim)
Bases: qnet.algebra.core.circuit_algebra.Circuit, qnet.algebra.core.
abstract_algebra.Expression

Symbolic circuit element

Parameters

• label (str) – Label for the symbol

• sym_args (Scalar) – optional scalar arguments. With zero sym_args, the resulting sym-
bol is a constant. With one or more sym_args, it becomes a function.

• cdim (int) – The circuit dimension, that is, the number of I/O lines

label

args
The tuple of positional arguments for the instantiation of the Expression

kwargs
The dictionary of keyword-only arguments for the instantiation of the Expression

sym_args
Tuple of arguments of the symbol

cdim
Dimension of circuit

class qnet.algebra.core.circuit_algebra.Component(*, label=None, **kwargs)
Bases: qnet.algebra.core.circuit_algebra.CircuitSymbol

Base class for circuit components

A circuit component is a CircuitSymbol that knows its own SLH representation. Consequently, it has a
fixed number of I/O channels (CDIM class attribute), and a fixed number of named arguments. Components
only accept keyword arguments.

66 Chapter 9. API

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int

QNET, Release 2.0.0-dev

Any subclass of Component must define all of the class attributes listed below, and the _toSLH() method
that return the SLH object for the component. Subclasses must also use the properties_for_args()
class decorator:

@partial(properties_for_args, arg_names='ARGNAMES')

Parameters

• label (str) – label for the component. Defaults to IDENTIFIER

• kwargs – values for the parameters in ARGNAMES

Class Attributes

• CDIM – the circuit dimension (number of I/O channels)

• PORTSIN – list of names for the input ports of the component

• PORTSOUT – list of names for the output ports of the component

• ARGNAMES – the name of the keyword-arguments for the components (excluding
'label')

• DEFAULTS – mapping of keyword-argument names to default values

• IDENTIFIER – the default label

Note: The port names defined in PORTSIN and PORTSOUT may be used when defining connection via
connect().

See also:

qnet.algebra.library.circuit_components for example Component subclasses.

CDIM = 0

PORTSIN = ()

PORTSOUT = ()

ARGNAMES = ()

DEFAULTS = {}

IDENTIFIER = ''

args
Empty tuple (no arguments)

See also:

sym_args is a tuple of the keyword argument values.

kwargs
An OrderedDict with the value for the label argument, as well as any name in ARGNAMES

minimal_kwargs
An OrderedDict with the keyword arguments necessary to instantiate the component.

class qnet.algebra.core.circuit_algebra.CPermutation(permutation)
Bases: qnet.algebra.core.circuit_algebra.Circuit, qnet.algebra.core.
abstract_algebra.Expression

Channel permuting circuit

9.1. qnet package 67

https://docs.python.org/3.6/library/stdtypes.html#str

QNET, Release 2.0.0-dev

This circuit expression is only a rearrangement of input and output fields. A channel permutation is given as a
tuple of image points. A permutation 𝜎 ∈ Σ𝑛 of 𝑛 elements is often represented in the following form(︂

1 2 . . . 𝑛
𝜎(1) 𝜎(2) . . . 𝜎(𝑛)

)︂
,

but obviously it is fully sufficient to specify the tuple of images (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)). We thus parametrize our
permutation circuits only in terms of the image tuple. Moreover, we will be working with zero-based indices!

A channel permutation circuit for a given permutation (represented as a python tuple of image indices) scatters
the 𝑗-th input field to the 𝜎(𝑗)-th output field.

simplifications = []

classmethod create(permutation)
Instantiate while applying automatic simplifications

Instead of directly instantiating cls, it is recommended to use create(), which applies simplifications
to the args and keyword arguments according to the simplifications class attribute, and returns an
appropriate object (which may or may not be an instance of the original cls).

Two simplifications of particular importance are match_replace() and
match_replace_binary() which apply rule-based simplifications.

The temporary_rules() context manager may be used to allow temporary modification of the
automatic simplifications that create() uses, in particular the rules for match_replace() and
match_replace_binary(). Inside the managed context, the simplifications class attribute
may be modified and rules can be managed with add_rule() and del_rules().

args
The tuple of positional arguments for the instantiation of the Expression

block_perms
If the circuit is reducible into permutations within subranges of the full range of channels, this yields a
tuple with the internal permutations for each such block.

Type tuple

permutation
The permutation image tuple.

cdim
The channel dimension of the circuit expression, i.e. the number of external bosonic noises/inputs that the
circuit couples to.

series_with_permutation(other)
Compute the series product with another channel permutation circuit

Parameters other (CPermutation) –

Returns

The composite permutation circuit (could also be the identity circuit for n channels)

Return type Circuit

qnet.algebra.core.circuit_algebra.CIdentity = CIdentity
Single pass-through channel; neutral element of SeriesProduct

qnet.algebra.core.circuit_algebra.CircuitZero = CircuitZero
Zero circuit, the neutral element of Concatenation

No ports, no internal dynamics.

68 Chapter 9. API

https://docs.python.org/3.6/library/stdtypes.html#tuple

QNET, Release 2.0.0-dev

class qnet.algebra.core.circuit_algebra.SeriesProduct(*operands, **kwargs)
Bases: qnet.algebra.core.circuit_algebra.Circuit, qnet.algebra.core.
abstract_algebra.Operation

The series product circuit operation. It can be applied to any sequence of circuit objects that have equal channel
dimension.

simplifications = [<function assoc>, <function filter_cid>, <function check_cdims>, <function match_replace_binary>]

neutral_element = CIdentity
Single pass-through channel; neutral element of SeriesProduct

cdim
The channel dimension of the circuit expression, i.e. the number of external bosonic noises/inputs that the
circuit couples to.

class qnet.algebra.core.circuit_algebra.Concatenation(*operands)
Bases: qnet.algebra.core.circuit_algebra.Circuit, qnet.algebra.core.
abstract_algebra.Operation

Concatenation of circuit elements

simplifications = [<function assoc>, <function filter_neutral>, <function match_replace_binary>]

neutral_element = CircuitZero
Zero circuit, the neutral element of Concatenation

No ports, no internal dynamics.

cdim
Circuit dimension (sum of dimensions of the operands)

class qnet.algebra.core.circuit_algebra.Feedback(circuit, *, out_port, in_port)
Bases: qnet.algebra.core.circuit_algebra.Circuit, qnet.algebra.core.
abstract_algebra.Operation

Feedback on a single channel of a circuit

The circuit feedback operation applied to a circuit of channel dimension > 1 and from an output port index to an
input port index.

Parameters

• circuit (Circuit) – The circuit that undergoes self-feedback

• out_port (int) – The output port index.

• in_port (int) – The input port index.

delegate_to_method = (<class 'qnet.algebra.core.circuit_algebra.Concatenation'>, <class 'qnet.algebra.core.circuit_algebra.SLH'>, <class 'qnet.algebra.core.circuit_algebra.CPermutation'>)

simplifications = [<function match_replace>]

kwargs
The dictionary of keyword-only arguments for the instantiation of the Expression

operand
The Circuit that undergoes feedback

out_in_pair
Tuple of zero-based feedback port indices (out_port, in_port)

cdim
Circuit dimension (one less than the circuit on which the feedback acts

9.1. qnet package 69

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int

QNET, Release 2.0.0-dev

classmethod create(circuit, *, out_port, in_port)
Instantiate while applying automatic simplifications

Instead of directly instantiating cls, it is recommended to use create(), which applies simplifications
to the args and keyword arguments according to the simplifications class attribute, and returns an
appropriate object (which may or may not be an instance of the original cls).

Two simplifications of particular importance are match_replace() and
match_replace_binary() which apply rule-based simplifications.

The temporary_rules() context manager may be used to allow temporary modification of the
automatic simplifications that create() uses, in particular the rules for match_replace() and
match_replace_binary(). Inside the managed context, the simplifications class attribute
may be modified and rules can be managed with add_rule() and del_rules().

Return type Feedback

class qnet.algebra.core.circuit_algebra.SeriesInverse(*operands, **kwargs)
Bases: qnet.algebra.core.circuit_algebra.Circuit, qnet.algebra.core.
abstract_algebra.Operation

Symbolic series product inversion operation

SeriesInverse(circuit)

One generally has

>>> C = CircuitSymbol('C', cdim=3)
>>> SeriesInverse(C) << C == circuit_identity(C.cdim)
True

and

>>> C << SeriesInverse(C) == circuit_identity(C.cdim)
True

simplifications = []

delegate_to_method = (<class 'qnet.algebra.core.circuit_algebra.SeriesProduct'>, <class 'qnet.algebra.core.circuit_algebra.Concatenation'>, <class 'qnet.algebra.core.circuit_algebra.Feedback'>, <class 'qnet.algebra.core.circuit_algebra.SLH'>, <class 'qnet.algebra.core.circuit_algebra.CPermutation'>, <class 'qnet.algebra.core.circuit_algebra.CIdentity'>)

operand
The un-inverted circuit

classmethod create(circuit)
Instantiate while applying automatic simplifications

Instead of directly instantiating cls, it is recommended to use create(), which applies simplifications
to the args and keyword arguments according to the simplifications class attribute, and returns an
appropriate object (which may or may not be an instance of the original cls).

Two simplifications of particular importance are match_replace() and
match_replace_binary() which apply rule-based simplifications.

The temporary_rules() context manager may be used to allow temporary modification of the
automatic simplifications that create() uses, in particular the rules for match_replace() and
match_replace_binary(). Inside the managed context, the simplifications class attribute
may be modified and rules can be managed with add_rule() and del_rules().

cdim
The channel dimension of the circuit expression, i.e. the number of external bosonic noises/inputs that the
circuit couples to.

70 Chapter 9. API

QNET, Release 2.0.0-dev

qnet.algebra.core.circuit_algebra.circuit_identity(n)
Return the circuit identity for n channels

Parameters n (int) – The channel dimension

Returns n-channel identity circuit

Return type Circuit

qnet.algebra.core.circuit_algebra.FB(circuit, *, out_port=None, in_port=None)
Wrapper for Feedback, defaulting to last channel

Parameters

• circuit (Circuit) – The circuit that undergoes self-feedback

• out_port (int) – The output port index, default = None –> last port

• in_port (int) – The input port index, default = None –> last port

Returns The circuit with applied feedback operation.

Return type Circuit

qnet.algebra.core.circuit_algebra.extract_channel(k, cdim)
Create a CPermutation that extracts channel k

Return a permutation circuit that maps the k-th (zero-based) input to the last output, while preserving the relative
order of all other channels.

Parameters

• k (int) – Extracted channel index

• cdim (int) – The circuit dimension (number of channels)

Returns Permutation circuit

Return type Circuit

qnet.algebra.core.circuit_algebra.map_channels(mapping, cdim)
Create a CPermuation based on a dict of channel mappings

For a given mapping in form of a dictionary, generate the channel permutating circuit that achieves the specified
mapping while leaving the relative order of all non-specified channels intact.

Parameters

• mapping (dict) – Input-output mapping of indices (zero-based) {in1:out1,
in2:out2,...}

• cdim (int) – The circuit dimension (number of channels)

Returns Circuit mapping the channels as specified

Return type CPermutation

qnet.algebra.core.circuit_algebra.pad_with_identity(circuit, k, n)
Pad a circuit by adding a n-channel identity circuit at index k

That is, a circuit of channel dimension 𝑁 is extended to one of channel dimension 𝑁 + 𝑛, where the channels
𝑘, 𝑘 + 1, . . . $k+n-1$, just pass through the system unaffected. E.g. let A, B be two single channel systems:

>>> A = CircuitSymbol('A', cdim=1)
>>> B = CircuitSymbol('B', cdim=1)
>>> print(ascii(pad_with_identity(A+B, 1, 2)))
A + cid(2) + B

9.1. qnet package 71

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/functions.html#int

QNET, Release 2.0.0-dev

This method can also be applied to irreducible systems, but in that case the result can not be decomposed as
nicely.

Parameters

• circuit (Circuit) – circuit to pad

• k (int) – The index at which to insert the circuit

• n (int) – The number of channels to pass through

Returns

An extended circuit that passes through the channels 𝑘, 𝑘 + 1, . . . , 𝑘 + 𝑛− 1

Return type Circuit

qnet.algebra.core.circuit_algebra.getABCD(slh, a0=None, doubled_up=True)
Calculate the ABCD-linearization of an SLH model

Return the A, B, C, D and (a, c) matrices that linearize an SLH model about a coherent displacement amplitude
a0.

The equations of motion and the input-output relation are then:

dX = (A X + a) dt + B dA_in dA_out = (C X + c) dt + D dA_in

where, if doubled_up == False

dX = [a_1, . . . , a_m] dA_in = [dA_1, . . . , dA_n]

or if doubled_up == True

dX = [a_1, . . . , a_m, a_1^*, . . . a_m^*] dA_in = [dA_1, . . . , dA_n, dA_1^*, . . . , dA_n^*]

Parameters

• slh – SLH object

• a0 – dictionary of coherent amplitudes {a1: a1_0, a2: a2_0, ...} with anni-
hilation mode operators as keys and (numeric or symbolic) amplitude as values.

• doubled_up – boolean, necessary for phase-sensitive / active systems

Returns

A tuple (A, B, C, D, a, c])

with

• A: coupling of modes to each other

• B: coupling of external input fields to modes

• C: coupling of internal modes to output

• D: coupling of external input fields to output fields

• a: constant coherent input vector for mode e.o.m.

• c: constant coherent input vector of scattered amplitudes contributing to the output

qnet.algebra.core.circuit_algebra.move_drive_to_H(slh, which=None, ex-
pand_simplify=True)

Move coherent drives from the Lindblad operators to the Hamiltonian.

For the given SLH model, move inhomogeneities in the Lindblad operators (resulting from the presence of a
coherent drive, see CoherentDriveCC) to the Hamiltonian.

72 Chapter 9. API

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int

QNET, Release 2.0.0-dev

This exploits the invariance of the Lindblad master equation under the transformation (cf. Breuer and Pettru-
cione, Ch 3.2.1)

𝐿𝑖 −→ 𝐿′𝑖 = 𝐿𝑖 − 𝛼𝑖 (9.1)

𝐻 −→ 𝐻 ′ = 𝐻 +
1

2𝑖

∑︁
𝑗

(𝛼𝑗𝐿
†
𝑗 − 𝛼*𝑗𝐿𝑗) (9.2)

In the context of SLH, this transformation is achieved by feeding slh into

(,−𝛼, 0)

where 𝛼 has the elements 𝛼𝑖.

Parameters

• slh (SLH) – SLH model to transform. If slh does not contain any inhomogeneities, it is
invariant under the transformation.

• which (sequence or None) – Sequence of circuit dimensions to apply the transform
to. If None, all dimensions are transformed.

• expand_simplify (bool) – if True, expand and simplify the new SLH object before
returning. This has no effect if slh does not contain any inhomogeneities.

Returns new_slh – Transformed SLH model.

Return type SLH

qnet.algebra.core.circuit_algebra.prepare_adiabatic_limit(slh, k=None)
Prepare the adiabatic elimination on an SLH object

Args: slh: The SLH object to take the limit for k: The scaling parameter $k

ightarrow infty$. The default is a

positive symbol ‘k’

Returns: tuple: The objects Y, A, B, F, G, N necessary to compute the limiting system.

qnet.algebra.core.circuit_algebra.eval_adiabatic_limit(YABFGN, Ytilde, P0)
Compute the limiting SLH model for the adiabatic approximation

Parameters

• YABFGN – The tuple (Y, A, B, F, G, N) as returned by prepare_adiabatic_limit.

• Ytilde – The pseudo-inverse of Y, satisfying Y * Ytilde = P0.

• P0 – The projector onto the null-space of Y.

Returns Limiting SLH model

Return type SLH

qnet.algebra.core.circuit_algebra.try_adiabatic_elimination(slh, k=None,
fock_trunc=6,
sub_P0=True)

Attempt to automatically do adiabatic elimination on an SLH object

This will project the Y operator onto a truncated basis with dimension specified by fock_trunc. sub_P0 controls
whether an attempt is made to replace the kernel projector P0 by an IdentityOperator.

9.1. qnet package 73

https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool

QNET, Release 2.0.0-dev

qnet.algebra.core.exceptions module

Exceptions and Errors raised by QNET

Summary

Exceptions:

AlgebraError Base class for all algebraic errors
AlgebraException Base class for all algebraic exceptions
BadLiouvillianError Raised when a Liouvillian is not of standard Lindblad

form.
BasisNotSetError Raised if the basis or a Hilbert space dimension is un-

available
CannotConvertToSLH Raised when a circuit algebra object cannot be con-

verted to SLH
CannotEliminateAutomatically Raised when attempted automatic adiabatic elimination

fails.
CannotSimplify Raised when a rule cannot further simplify an expres-

sion
CannotSymbolicallyDiagonalize Matrix cannot be diagonalized analytically.
CannotVisualize Raised when a circuit cannot be visually represented.
IncompatibleBlockStructures Raised for invalid block-decomposition
InfiniteSumError Raised when expanding a sum into an infinite number

of terms
NoConjugateMatrix Raised when entries of Matrix have no defined conju-

gate
NonSquareMatrix Raised when a Matrix fails to be square
OverlappingSpaces Raised when objects fail to be in separate Hilbert spaces.
SpaceTooLargeError Raised when objects fail to be have overlapping Hilbert

spaces.
UnequalSpaces Raised when objects fail to be in the same Hilbert space.
WrongCDimError Raised for mismatched channel number in circuit series

__all__: AlgebraError, AlgebraException, BadLiouvillianError, BasisNotSetError,
CannotConvertToSLH , CannotEliminateAutomatically , CannotSimplify ,
CannotSymbolicallyDiagonalize, CannotVisualize, IncompatibleBlockStructures,
InfiniteSumError, NoConjugateMatrix, NonSquareMatrix, OverlappingSpaces,
SpaceTooLargeError, UnequalSpaces, WrongCDimError

Reference

exception qnet.algebra.core.exceptions.AlgebraException
Bases: Exception

Base class for all algebraic exceptions

exception qnet.algebra.core.exceptions.AlgebraError
Bases: qnet.algebra.core.exceptions.AlgebraException

Base class for all algebraic errors

74 Chapter 9. API

https://docs.python.org/3.6/library/exceptions.html#Exception

QNET, Release 2.0.0-dev

exception qnet.algebra.core.exceptions.InfiniteSumError
Bases: qnet.algebra.core.exceptions.AlgebraError

Raised when expanding a sum into an infinite number of terms

exception qnet.algebra.core.exceptions.CannotSimplify
Bases: qnet.algebra.core.exceptions.AlgebraException

Raised when a rule cannot further simplify an expression

exception qnet.algebra.core.exceptions.CannotConvertToSLH
Bases: qnet.algebra.core.exceptions.AlgebraException

Raised when a circuit algebra object cannot be converted to SLH

exception qnet.algebra.core.exceptions.CannotVisualize
Bases: qnet.algebra.core.exceptions.AlgebraException

Raised when a circuit cannot be visually represented.

exception qnet.algebra.core.exceptions.WrongCDimError
Bases: qnet.algebra.core.exceptions.AlgebraError

Raised for mismatched channel number in circuit series

exception qnet.algebra.core.exceptions.IncompatibleBlockStructures
Bases: qnet.algebra.core.exceptions.AlgebraError

Raised for invalid block-decomposition

This is raised when a circuit decomposition into a block-structure is requested that is icompatible with the actual
block structure of the circuit expression.

exception qnet.algebra.core.exceptions.CannotEliminateAutomatically
Bases: qnet.algebra.core.exceptions.AlgebraError

Raised when attempted automatic adiabatic elimination fails.

exception qnet.algebra.core.exceptions.BasisNotSetError
Bases: qnet.algebra.core.exceptions.AlgebraError

Raised if the basis or a Hilbert space dimension is unavailable

exception qnet.algebra.core.exceptions.UnequalSpaces
Bases: qnet.algebra.core.exceptions.AlgebraError

Raised when objects fail to be in the same Hilbert space.

This happens for example when trying to add two states from different Hilbert spaces.

exception qnet.algebra.core.exceptions.OverlappingSpaces
Bases: qnet.algebra.core.exceptions.AlgebraError

Raised when objects fail to be in separate Hilbert spaces.

exception qnet.algebra.core.exceptions.SpaceTooLargeError
Bases: qnet.algebra.core.exceptions.AlgebraError

Raised when objects fail to be have overlapping Hilbert spaces.

exception qnet.algebra.core.exceptions.CannotSymbolicallyDiagonalize
Bases: qnet.algebra.core.exceptions.AlgebraException

Matrix cannot be diagonalized analytically.

Signals that a fallback to numerical diagonalization is required.

9.1. qnet package 75

QNET, Release 2.0.0-dev

exception qnet.algebra.core.exceptions.BadLiouvillianError
Bases: qnet.algebra.core.exceptions.AlgebraError

Raised when a Liouvillian is not of standard Lindblad form.

exception qnet.algebra.core.exceptions.NonSquareMatrix
Bases: qnet.algebra.core.exceptions.AlgebraError

Raised when a Matrix fails to be square

exception qnet.algebra.core.exceptions.NoConjugateMatrix
Bases: qnet.algebra.core.exceptions.AlgebraError

Raised when entries of Matrix have no defined conjugate

qnet.algebra.core.hilbert_space_algebra module

Core class hierarchy for Hilbert spaces

This module defines some simple classes to describe simple and composite/tensor (i.e., multiple degree of freedom)
Hilbert spaces of quantum systems.

For more details see Algebraic Manipulations.

Summary

Classes:

HilbertSpace Base class for Hilbert spaces
LocalSpace Hilbert space for a single degree of freedom.
ProductSpace Tensor product of local Hilbert spaces

Data:

FullSpace The ‘full space’, i.e.
TrivialSpace The ‘nullspace’, i.e.

__all__: FullSpace, HilbertSpace, LocalSpace, ProductSpace, TrivialSpace

Reference

class qnet.algebra.core.hilbert_space_algebra.HilbertSpace
Bases: object

Base class for Hilbert spaces

tensor(*others)
Tensor product between Hilbert spaces

remove(other)
Remove a particular factor from a tensor product space.

intersect(other)
Find the mutual tensor factors of two Hilbert spaces.

76 Chapter 9. API

https://docs.python.org/3.6/library/functions.html#object

QNET, Release 2.0.0-dev

local_factors
Return tuple of LocalSpace objects that tensored together yield this Hilbert space.

isdisjoint(other)
Check whether two Hilbert spaces are disjoint (do not have any common local factors). Note that FullSpace
is not disjoint with any other Hilbert space, while TrivialSpace is disjoint with any other HilbertSpace (even
itself)

is_tensor_factor_of(other)
Test if a space is included within a larger tensor product space. Also True if self == other.

Parameters other (HilbertSpace) – Other Hilbert space

Return type bool

is_strict_tensor_factor_of(other)
Test if a space is included within a larger tensor product space. Not True if self == other.

dimension
Full dimension of the Hilbert space.

Raises BasisNotSetError – if the Hilbert space has no defined basis

has_basis
True if the Hilbert space has a basis

basis_states
Yield an iterator over the states (State instances) that form the canonical basis of the Hilbert space

Raises BasisNotSetError – if the Hilbert space has no defined basis

basis_state(index_or_label)
Return the basis state with the given index or label.

Raises

• BasisNotSetError – if the Hilbert space has no defined basis

• IndexError – if there is no basis state with the given index

• KeyError – if there is not basis state with the given label

basis_labels
Tuple of basis labels.

Raises BasisNotSetError – if the Hilbert space has no defined basis

is_strict_subfactor_of(other)
Test whether a Hilbert space occures as a strict sub-factor in a (larger) Hilbert space

__len__()
The number of LocalSpace factors / degrees of freedom.

class qnet.algebra.core.hilbert_space_algebra.LocalSpace(label, *, basis=None,
dimension=None, lo-
cal_identifiers=None,
order_index=None)

Bases: qnet.algebra.core.hilbert_space_algebra.HilbertSpace, qnet.algebra.
core.abstract_algebra.Expression

Hilbert space for a single degree of freedom.

Parameters

• label (str or int or StrLabel) – label (subscript) of the Hilbert space

9.1. qnet package 77

https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/exceptions.html#IndexError
https://docs.python.org/3.6/library/exceptions.html#KeyError
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int

QNET, Release 2.0.0-dev

• basis (tuple or None) – Set an explicit basis for the Hilbert space (tuple of labels for
the basis states)

• dimension (int or None) – Specify the dimension 𝑛 of the Hilbert space. This im-
plies a basis numbered from 0 to 𝑛− 1.

• local_identifiers (dict) – Mapping of class names of LocalOperator sub-
classes to identifier names. Used e.g. ‘b’ instead of the default ‘a’ for the anihilation
operator. This can be a dict or a dict-compatible structure, e.g. a list/tuple of key-value
tuples.

• order_index (int or None) – An optional key that determines the preferred order of
Hilbert spaces. This also changes the order of e.g. sums or products of Operators. Hilbert
spaces will be ordered from left to right be increasing order_index; Hilbert spaces without
an explicit order_index are sorted by their label

A LocalSpace fundamentally has a Fock-space like structure, in that its basis states may be understood as an
“excitation”. The spectrum can be infinite, with levels labeled by integers 0, 1, . . . :

>>> hs = LocalSpace(label=0)

or truncated to a finite dimension:

>>> hs = LocalSpace(0, dimension=5)
>>> hs.basis_labels
('0', '1', '2', '3', '4')

For finite-dimensional (truncated) Hilbert spaces, we also allow an arbitrary alternative labeling of the canonical
basis:

>>> hs = LocalSpace('rydberg', dimension=3, basis=('g', 'e', 'r'))

args
List of arguments, consisting only of label

label
Label of the Hilbert space

has_basis
True if the Hilbert space has a basis

basis_states
Yield an iterator over the states (BasisKet instances) that form the canonical basis of the Hilbert space

Raises BasisNotSetError – if the Hilbert space has no defined basis

basis_state(index_or_label)
Return the basis state with the given index or label.

Raises

• BasisNotSetError – if the Hilbert space has no defined basis

• IndexError – if there is no basis state with the given index

• KeyError – if there is not basis state with the given label

basis_labels
Tuple of basis labels (strings).

Raises BasisNotSetError – if the Hilbert space has no defined basis

78 Chapter 9. API

https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/exceptions.html#IndexError
https://docs.python.org/3.6/library/exceptions.html#KeyError

QNET, Release 2.0.0-dev

dimension
Dimension of the Hilbert space.

Raises BasisNotSetError – if the Hilbert space has no defined basis

kwargs
The dictionary of keyword-only arguments for the instantiation of the Expression

minimal_kwargs
A “minimal” dictionary of keyword-only arguments, i.e. a subset of kwargs that may exclude default
options

remove(other)
Remove a particular factor from a tensor product space.

intersect(other)
Find the mutual tensor factors of two Hilbert spaces.

local_factors
Return tuple of LocalSpace objects that tensored together yield this Hilbert space.

is_strict_subfactor_of(other)
Test whether a Hilbert space occures as a strict sub-factor in a (larger) Hilbert space

next_basis_label_or_index(label_or_index, n=1)
Given the label or index of a basis state, return the label/index of the next basis state.

More generally, if n is given, return the n’th next basis state label/index; n may also be negative to obtain
previous basis state labels/indices.

The return type is the same as the type of label_or_index.

Parameters

• label_or_index (int or str or SymbolicLabelBase) – If int, the index
of a basis state; if str, the label of a basis state

• n (int) – The increment

Raises

• IndexError – If going beyond the last or first basis state

• ValueError – If label is not a label for any basis state in the Hilbert space

• BasisNotSetError – If the Hilbert space has no defined basis

• TypeError – if label_or_index is neither a str nor an int, nor a
SymbolicLabelBase

qnet.algebra.core.hilbert_space_algebra.TrivialSpace = TrivialSpace
The ‘nullspace’, i.e. a one dimensional Hilbert space, which is a factor space of every other Hilbert space.

This is the Hilbert space of scalars.

qnet.algebra.core.hilbert_space_algebra.FullSpace = FullSpace
The ‘full space’, i.e. a Hilbert space that includes any other Hilbert space as a tensor factor.

The FullSpace has no defined basis, any related properties will raise BasisNotSetError

class qnet.algebra.core.hilbert_space_algebra.ProductSpace(*local_spaces)
Bases: qnet.algebra.core.hilbert_space_algebra.HilbertSpace, qnet.algebra.
core.abstract_algebra.Operation

Tensor product of local Hilbert spaces

9.1. qnet package 79

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/exceptions.html#IndexError
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/exceptions.html#TypeError
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int

QNET, Release 2.0.0-dev

>>> hs1 = LocalSpace('1', basis=(0,1))
>>> hs2 = LocalSpace('2', basis=(0,1))
>>> hs = hs1 * hs2
>>> hs.basis_labels
('0,0', '0,1', '1,0', '1,1')

simplifications = [<function empty_trivial>, <function assoc>, <function convert_to_spaces>, <function idem>, <function filter_neutral>]

classmethod create(*local_spaces)
Instantiate while applying automatic simplifications

Instead of directly instantiating cls, it is recommended to use create(), which applies simplifications
to the args and keyword arguments according to the simplifications class attribute, and returns an
appropriate object (which may or may not be an instance of the original cls).

Two simplifications of particular importance are match_replace() and
match_replace_binary() which apply rule-based simplifications.

The temporary_rules() context manager may be used to allow temporary modification of the
automatic simplifications that create() uses, in particular the rules for match_replace() and
match_replace_binary(). Inside the managed context, the simplifications class attribute
may be modified and rules can be managed with add_rule() and del_rules().

has_basis
True if the all the local factors of the ProductSpace have a defined basis

basis_states
Yield an iterator over the states (TensorKet instances) that form the canonical basis of the Hilbert space

Raises BasisNotSetError – if the Hilbert space has no defined basis

basis_labels
Tuple of basis labels. Each basis label consists of the labels of the BasisKet states that factor the basis
state, separated by commas.

Raises BasisNotSetError – if the Hilbert space has no defined basis

basis_state(index_or_label)
Return the basis state with the given index or label.

Raises

• BasisNotSetError – if the Hilbert space has no defined basis

• IndexError – if there is no basis state with the given index

• KeyError – if there is not basis state with the given label

dimension
Dimension of the Hilbert space.

Raises BasisNotSetError – if the Hilbert space has no defined basis

remove(other)
Remove a particular factor from a tensor product space.

local_factors
The LocalSpace instances that make up the product

classmethod order_key(obj)
Key by which operands are sorted

intersect(other)
Find the mutual tensor factors of two Hilbert spaces.

80 Chapter 9. API

https://docs.python.org/3.6/library/exceptions.html#IndexError
https://docs.python.org/3.6/library/exceptions.html#KeyError

QNET, Release 2.0.0-dev

is_strict_subfactor_of(other)
Test if a space is included within a larger tensor product space. Not True if self == other.

qnet.algebra.core.indexed_operations module

Base classes for indexed operations (sums and products)

Summary

Classes:

IndexedSum Base class for indexed sums

__all__: IndexedSum

Reference

class qnet.algebra.core.indexed_operations.IndexedSum(term, *ranges)
Bases: qnet.algebra.core.abstract_algebra.Operation

Base class for indexed sums

term

operands
Tuple of operands of the operation

args
Alias for operands

variables
List of the dummy (index) variable symbols

See also :property:‘bound_symbols‘ for a set of the same symbols

bound_symbols
Set of bound variables, i.e. the index variable symbols

See also :property:‘variables‘ for an ordered list of the same symbols

free_symbols
Set of all free symbols

kwargs
The dictionary of keyword-only arguments for the instantiation of the Expression

terms
Iterator over the terms of the sum

Yield from the (possibly) infinite list of terms of the indexed sum, if the sum was written out explicitly.
Each yielded term in an instance of Expression

doit(classes=None, recursive=True, indices=None, max_terms=None, **kwargs)
Write out the indexed sum explicitly

If classes is None or IndexedSum is in classes, (partially) write out the indexed sum in to an explicit sum
of terms. If recursive is True, write out each of the new sum’s summands by calling its doit() method.

9.1. qnet package 81

QNET, Release 2.0.0-dev

Parameters

• classes (None or list) – see Expression.doit()

• recursive (bool) – see Expression.doit()

• indices (list) – List of IdxSym indices for which the sum should be expanded. If
indices is a subset of the indices over which the sum runs, it will be partially expanded. If
not given, expand the sum completely

• max_terms (int) – Number of terms after which to truncate the sum. This is par-
ticularly useful for infinite sums. If not given, expand all terms of the sum. Cannot be
combined with indices

• kwargs – keyword arguments for recursive calls to doit(). See Expression.
doit()

make_disjunct_indices(*others)
Return a copy with modified indices to ensure disjunct indices with others.

Each element in others may be an index symbol (IdxSym), a index-range object (IndexRangeBase)
or list of index-range objects, or an indexed operation (something with a ranges attribute)

Each index symbol is primed until it does not match any index symbol in others.

qnet.algebra.core.matrix_algebra module

Matrices of Operators

Summary

Classes:

Matrix Matrix of Expressions

Functions:

block_matrix Generate the operator matrix with quadrants
diagm Generalizes the diagonal matrix creation capabilities of

numpy.diag to Matrix objects.
hstackm Generalizes numpy.hstack to Matrix objects.
identity_matrix Generate the N-dimensional identity matrix.
permutation_matrix Return orthogonal permutation matrix for permutation

tuple
vstackm Generalizes numpy.vstack to Matrix objects.
zerosm Generalizes numpy.zeros to Matrix objects.

__all__: Matrix, block_matrix, diagm, hstackm, identity_matrix, vstackm, zerosm

Reference

class qnet.algebra.core.matrix_algebra.Matrix(m)
Bases: qnet.algebra.core.abstract_algebra.Expression

82 Chapter 9. API

https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/functions.html#int

QNET, Release 2.0.0-dev

Matrix of Expressions

Matrices of Operator expressions are required for the SLH formalism.

matrix = None

shape
The shape of the matrix (nrows, ncols)

block_structure
For square matrices this gives the block (-diagonal) structure of the matrix as a tuple of integers that sum
up to the full dimension.

Return type tuple

args
The tuple of positional arguments for the instantiation of the Expression

is_zero
Are all elements of the matrix zero?

transpose()
The transpose matrix

conjugate()
The element-wise conjugate matrix

This is defined only if all the entries in the matrix have a defined conjugate (i.e., they have a conjugate
method). This is not the case for a matrix of operators. In such a case, only an elementwise()
adjoint() would be applicable, but this is mathematically different from a complex conjugate.

Raises NoConjugateMatrix – if any entries have no conjugate method

real
Element-wise real part

Raises NoConjugateMatrix – if entries have no conjugate method and no other way to
determine the real part

Note: A mathematically equivalent way to obtain a real matrix from a complex matrix M is:

(M.conjugate() + M) / 2

However, the result may not be identical to M.real, as the latter tries to convert elements of the matrix to
real values directly, if possible, and only uses the conjugate as a fall-back

imag
Element-wise imaginary part

Raises NoConjugateMatrix – if entries have no conjugate method and no other way to
determine the imaginary part

Note: A mathematically equivalent way to obtain an imaginary matrix from a complex matrix M is:

(M.conjugate() - M) / (I * 2)

with same same caveats as real.

T
Alias for transpose()

9.1. qnet package 83

https://docs.python.org/3.6/library/stdtypes.html#tuple

QNET, Release 2.0.0-dev

adjoint()
Adjoint of the matrix

This is the transpose and the Hermitian adjoint of all elements.

dag()
Adjoint of the matrix

This is the transpose and the Hermitian adjoint of all elements.

trace()

H
Alias for adjoint()

element_wise(func, *args, **kwargs)
Apply a function to each matrix element and return the result in a new operator matrix of the same shape.

Parameters

• func (FunctionType) – A function to be applied to each element. It must take the
element as its first argument.

• args – Additional positional arguments to be passed to func

• kwargs – Additional keyword arguments to be passed to func

Returns Matrix with results of func, applied element-wise.

Return type Matrix

series_expand(param, about, order)
Expand the matrix expression as a truncated power series in a scalar parameter.

Parameters

• param (Symbol) – Expansion parameter.

• about (Scalar) – Point about which to expand.

• order (int) – Maximum order of expansion >= 0

Returns tuple of length (order+1), where the entries are the expansion coefficients.

expand()
Expand each matrix element distributively.

Returns Expanded matrix.

Return type Matrix

free_symbols
Set of free SymPy symbols contained within the expression.

space
Combined Hilbert space of all matrix elements.

simplify_scalar(func=<function simplify>)
Simplify all scalar expressions appearing in the Matrix.

qnet.algebra.core.matrix_algebra.hstackm(matrices)
Generalizes numpy.hstack to Matrix objects.

qnet.algebra.core.matrix_algebra.vstackm(matrices)
Generalizes numpy.vstack to Matrix objects.

84 Chapter 9. API

https://docs.sympy.org/latest/modules/core.html#sympy.core.symbol.Symbol
https://docs.python.org/3.6/library/functions.html#int

QNET, Release 2.0.0-dev

qnet.algebra.core.matrix_algebra.diagm(v, k=0)
Generalizes the diagonal matrix creation capabilities of numpy.diag to Matrix objects.

qnet.algebra.core.matrix_algebra.block_matrix(A, B, C, D)
Generate the operator matrix with quadrants (︂

𝐴𝐵
𝐶𝐷

)︂
Parameters

• A (Matrix) – Matrix of shape (n, m)

• B (Matrix) – Matrix of shape (n, k)

• C (Matrix) – Matrix of shape (l, m)

• D (Matrix) – Matrix of shape (l, k)

Returns The combined block matrix [[A, B], [C, D]].

Return type Matrix

qnet.algebra.core.matrix_algebra.identity_matrix(N)
Generate the N-dimensional identity matrix.

Parameters N (int) – Dimension

Returns Identity matrix in N dimensions

Return type Matrix

qnet.algebra.core.matrix_algebra.zerosm(shape, *args, **kwargs)
Generalizes numpy.zeros to Matrix objects.

qnet.algebra.core.matrix_algebra.permutation_matrix(permutation)
Return orthogonal permutation matrix for permutation tuple

Return an orthogonal permutation matrix 𝑀𝜎 for a permutation 𝜎 defined by the image tuple
(𝜎(1), 𝜎(2), . . . 𝜎(𝑛)), such that

𝑀𝜎 �⃗�𝑖 = �⃗�𝜎(𝑖)

where �⃗�𝑘 is the k-th standard basis vector. This definition ensures a composition law:

𝑀𝜎·𝜏 = 𝑀𝜎𝑀𝜏 .

The column form of 𝑀𝜎 is thus given by

𝑀 = (�⃗�𝜎(1), �⃗�𝜎(2), . . . �⃗�𝜎(𝑛)).

Parameters permutation (tuple) – A permutation image tuple (zero-based indices!)

qnet.algebra.core.operator_algebra module

This module features classes and functions to define and manipulate symbolic Operator expressions. For more details
see Operator Algebra.

For a list of all properties and methods of an operator object, see the documentation for the basic Operator class.

9.1. qnet package 85

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#tuple

QNET, Release 2.0.0-dev

Summary

Classes:

Adjoint Symbolic Adjoint of an operator
Commutator Commutator of two operators
LocalOperator Base class for “known” operators on a LocalSpace
LocalSigma Level flip operator between two levels of a

LocalSpace
NullSpaceProjector Projection operator onto the nullspace of its operand
Operator Base class for all quantum operators.
OperatorDerivative Symbolic partial derivative of an operator
OperatorIndexedSum Indexed sum over operators
OperatorPlus Sum of Operators
OperatorPlusMinusCC An operator plus or minus its complex conjugate
OperatorSymbol Symbolic operator
OperatorTimes Product of operators
OperatorTrace (Partial) trace of an operator
PseudoInverse Unevaluated pseudo-inverse 𝑋+ of an operator 𝑋
ScalarTimesOperator Product of a Scalar coefficient and an Operator

Functions:

LocalProjector A projector onto a specific level of a LocalSpace
adjoint Return the adjoint of an obj.
decompose_space Simplifies OperatorTrace expressions over tensor-

product spaces by turning it into iterated partial traces.
factor_coeff Factor out coefficients of all factors.
factor_for_trace Given a LocalSpace ls to take the partial trace over

and an operator op, factor the trace such that operators
acting on disjoint degrees of freedom are pulled out of
the trace.

get_coeffs Create a dictionary with all Operator terms of the ex-
pression (understood as a sum) as keys and their coeffi-
cients as values.

rewrite_with_operator_pm_cc Try to rewrite expr using OperatorPlusMinusCC

Data:

II IdentityOperator constant (singleton) object.
IdentityOperator IdentityOperator constant (singleton) object.
ZeroOperator ZeroOperator constant (singleton) object.

__all__: Adjoint, Commutator, II, IdentityOperator, LocalOperator, LocalProjector,
LocalSigma, NullSpaceProjector, Operator, OperatorDerivative, OperatorIndexedSum,
OperatorPlus, OperatorPlusMinusCC, OperatorSymbol, OperatorTimes, OperatorTrace,
PseudoInverse, ScalarTimesOperator, ZeroOperator, adjoint, decompose_space,
factor_coeff, factor_for_trace, get_coeffs, rewrite_with_operator_pm_cc, tr

86 Chapter 9. API

QNET, Release 2.0.0-dev

Reference

class qnet.algebra.core.operator_algebra.Operator(*args, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumExpression

Base class for all quantum operators.

pseudo_inverse()
Pseudo-inverse 𝑋+ of the operator 𝑋

It is defined via the relationship

𝑋𝑋+𝑋 = 𝑋 𝑋+𝑋𝑋+ = 𝑋+ (𝑋+𝑋)† = 𝑋+𝑋 (𝑋𝑋+)† = 𝑋𝑋+

expand_in_basis(basis_states=None, hermitian=False)
Write the operator as an expansion into all KetBras spanned by basis_states.

Parameters

• basis_states (list or None) – List of basis states (State instances) into which
to expand the operator. If None, use the operator’s space.basis_states

• hermitian (bool) – If True, assume that the operator is Hermitian and represent all
elements in the lower triangle of the expansion via OperatorPlusMinusCC. This is
meant to enhance readability

Raises BasisNotSetError – If basis_states is None and the operator’s Hilbert space has no
well-defined basis

Example

>>> hs = LocalSpace(1, basis=('g', 'e'))
>>> op = LocalSigma('g', 'e', hs=hs) + LocalSigma('e', 'g', hs=hs)
>>> print(ascii(op, sig_as_ketbra=False))
sigma_e,g^(1) + sigma_g,e^(1)
>>> print(ascii(op.expand_in_basis()))
|e><g|^(1) + |g><e|^(1)
>>> print(ascii(op.expand_in_basis(hermitian=True)))
|g><e|^(1) + c.c.

class qnet.algebra.core.operator_algebra.LocalOperator(*args, hs)
Bases: qnet.algebra.core.operator_algebra.Operator

Base class for “known” operators on a LocalSpace

All LocalOperator instances have known algebraic properties and a fixed associated identifier (symbol)
that is used when printing that operator. A custom identifier can be used through the associated LocalSpace’s
local_identifiers parameter. For example:

>>> hs1_custom = LocalSpace(1, local_identifiers={'Destroy': 'b'})
>>> b = Destroy(hs=hs1_custom)
>>> ascii(b)
'b^(1)'

Note: It is recommended that subclasses use the properties_for_args() class decorator if they define
any position arguments (via the _arg_names class attribute)

9.1. qnet package 87

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool

QNET, Release 2.0.0-dev

simplifications = [<function implied_local_space.<locals>.kwargs_to_local_space>]

space
Hilbert space of the operator (LocalSpace instance)

args
The positional arguments used for instantiating the operator

kwargs
The keyword arguments used for instantiating the operator

identifier
The identifier (symbol) that is used when printing the operator.

A custom identifier can be used through the associated LocalSpace’s local_identifiers parameter. For
example:

>>> a = Destroy(hs=1)
>>> a.identifier
'a'
>>> hs1_custom = LocalSpace(1, local_identifiers={'Destroy': 'b'})
>>> b = Destroy(hs=hs1_custom)
>>> b.identifier
'b'
>>> ascii(b)
'b^(1)'

class qnet.algebra.core.operator_algebra.OperatorSymbol(label, *sym_args, hs)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumSymbol, qnet.
algebra.core.operator_algebra.Operator

Symbolic operator

See QuantumSymbol.

qnet.algebra.core.operator_algebra.IdentityOperator = IdentityOperator
IdentityOperator constant (singleton) object.

qnet.algebra.core.operator_algebra.II = IdentityOperator
IdentityOperator constant (singleton) object.

qnet.algebra.core.operator_algebra.ZeroOperator = ZeroOperator
ZeroOperator constant (singleton) object.

class qnet.algebra.core.operator_algebra.LocalSigma(j, k, *, hs)
Bases: qnet.algebra.core.operator_algebra.LocalOperator

Level flip operator between two levels of a LocalSpace

𝜎hs
𝑗𝑘 = |𝑗⟩hs ⟨𝑘|hs

For 𝑗 = 𝑘 this becomes a projector 𝑃𝑘 onto the eigenstate 𝑘; see LocalProjector.

Parameters

• j (int or str) – The label or index identifying 𝑗

• k (int or str) – The label or index identifying 𝑘

• hs (LocalSpace or int or str) – The Hilbert space on which the operator acts.
If an int or a str, an implicit Hilbert space will be constructed as a subclass of
LocalSpace, as configured by init_algebra().

88 Chapter 9. API

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str

QNET, Release 2.0.0-dev

Note: The parameters j or k may be an integer or a string. A string refers to the label of an eigenstate in the
basis of hs, which needs to be set. An integer refers to the (zero-based) index of eigenstate of the Hilbert space.
This works if hs has an unknown dimension. Assuming the Hilbert space has a defined basis, using integer or
string labels is equivalent:

>>> hs = LocalSpace('tls', basis=('g', 'e'))
>>> LocalSigma(0, 1, hs=hs) == LocalSigma('g', 'e', hs=hs)
True

Raises ValueError – If j or k are invalid value for the given hs

Printers should represent this operator either in braket notation, or using the operator identifier

>>> LocalSigma(0, 1, hs=0).identifier
'sigma'

For j == k, an alternative (fixed) identifier may be used

>>> LocalSigma(0, 0, hs=0)._identifier_projector
'Pi'

simplifications = [<function implied_local_space.<locals>.kwargs_to_local_space>, <function match_replace>]

args
The two eigenstate labels j and k that the operator connects

index_j
Index j or (zero-based) index of the label j in the basis

index_k
Index k or (zero-based) index of the label k in the basis

raise_jk(j_incr=0, k_incr=0)
Return a new LocalSigma instance with incremented j, k, on the same Hilbert space:

𝜎hs
𝑗𝑘 → 𝜎hs

𝑗′𝑘′

This is the result of multiplying 𝜎hs
𝑗𝑘 with any raising or lowering operators.

If 𝑗′ or 𝑘′ are outside the Hilbert space hs, the result is the ZeroOperator .

Parameters

• j_incr (int) – The increment between labels 𝑗 and 𝑗′

• k_incr (int) – The increment between labels 𝑘 and 𝑘′. Both increments may be nega-
tive.

j
The j argument.

k
The k argument.

qnet.algebra.core.operator_algebra.LocalProjector(j, *, hs)
A projector onto a specific level of a LocalSpace

Parameters

9.1. qnet package 89

https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int

QNET, Release 2.0.0-dev

• j (int or str) – The label or index identifying the state onto which is projected

• hs (HilbertSpace) – The Hilbert space on which the operator acts

class qnet.algebra.core.operator_algebra.OperatorPlus(*operands, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumPlus, qnet.algebra.
core.operator_algebra.Operator

Sum of Operators

simplifications = [<function assoc>, <function scalars_to_op>, <function orderby>, <function collect_summands>, <function match_replace_binary>]

class qnet.algebra.core.operator_algebra.OperatorTimes(*operands, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumTimes, qnet.algebra.
core.operator_algebra.Operator

Product of operators

This serves both as a product within a Hilbert space as well as a tensor product.

simplifications = [<function assoc>, <function orderby>, <function filter_neutral>, <function match_replace_binary>]

class qnet.algebra.core.operator_algebra.ScalarTimesOperator(coeff, term)
Bases: qnet.algebra.core.operator_algebra.Operator, qnet.algebra.core.
abstract_quantum_algebra.ScalarTimesQuantumExpression

Product of a Scalar coefficient and an Operator

simplifications = [<function match_replace>]

static has_minus_prefactor(c)
For a scalar object c, determine whether it is prepended by a “-” sign.

class qnet.algebra.core.operator_algebra.OperatorDerivative(op, *, derivs,
vals=None)

Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative, qnet.
algebra.core.operator_algebra.Operator

Symbolic partial derivative of an operator

See QuantumDerivative.

class qnet.algebra.core.operator_algebra.Commutator(A, B)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumOperation, qnet.
algebra.core.operator_algebra.Operator

Commutator of two operators

[𝐴,𝐵] = 𝐴𝐵 −𝐴𝐵

simplifications = [<function scalars_to_op>, <function disjunct_hs_zero>, <function commutator_order>, <function match_replace>]

order_key
alias of qnet.utils.ordering.FullCommutativeHSOrder

A
Left side of the commutator

B
Left side of the commutator

doit(classes=None, recursive=True, **kwargs)
Write out commutator

90 Chapter 9. API

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str

QNET, Release 2.0.0-dev

Write out the commutator according to its definition [𝐴,𝐵] = 𝐴𝐵 −𝐴𝐵.

See Expression.doit().

class qnet.algebra.core.operator_algebra.OperatorTrace(op, *, over_space)
Bases: qnet.algebra.core.abstract_quantum_algebra.SingleQuantumOperation,
qnet.algebra.core.operator_algebra.Operator

(Partial) trace of an operator

Trace of an operator op ($Op{O}) over the degrees of freedom of a Hilbert space over_space ($mathcal{H}$):

Trℋ𝑂

Parameters

• over_space (HilbertSpace) – The degrees of freedom to trace over

• op (Operator) – The operator to take the trace of.

simplifications = [<function scalars_to_op>, <function implied_local_space.<locals>.kwargs_to_local_space>, <function match_replace>]

kwargs
The dictionary of keyword-only arguments for the instantiation of the Expression

operand
The operator that the operation acts on

space
Hilbert space of the operation result

class qnet.algebra.core.operator_algebra.Adjoint(op, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumAdjoint, qnet.
algebra.core.operator_algebra.Operator

Symbolic Adjoint of an operator

simplifications = [<function scalars_to_op>, <function delegate_to_method.<locals>._delegate_to_method>]

class qnet.algebra.core.operator_algebra.OperatorPlusMinusCC(op, *, sign=1)
Bases: qnet.algebra.core.abstract_quantum_algebra.SingleQuantumOperation,
qnet.algebra.core.operator_algebra.Operator

An operator plus or minus its complex conjugate

kwargs
The dictionary of keyword-only arguments for the instantiation of the Expression

minimal_kwargs
A “minimal” dictionary of keyword-only arguments, i.e. a subset of kwargs that may exclude default
options

doit(classes=None, recursive=True, **kwargs)
Write out the complex conjugate summand

See Expression.doit().

class qnet.algebra.core.operator_algebra.PseudoInverse(op, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.SingleQuantumOperation,
qnet.algebra.core.operator_algebra.Operator

Unevaluated pseudo-inverse 𝑋+ of an operator 𝑋

9.1. qnet package 91

QNET, Release 2.0.0-dev

It is defined via the relationship

𝑋𝑋+𝑋 = 𝑋

𝑋+𝑋𝑋+ = 𝑋+

(𝑋+𝑋)† = 𝑋+𝑋

(𝑋𝑋+)† = 𝑋𝑋+

simplifications = [<function scalars_to_op>, <function delegate_to_method.<locals>._delegate_to_method>]

class qnet.algebra.core.operator_algebra.NullSpaceProjector(op, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.SingleQuantumOperation,
qnet.algebra.core.operator_algebra.Operator

Projection operator onto the nullspace of its operand

Returns the operator 𝒫Ker𝑋 with

𝑋𝒫Ker𝑋 = 0 ⇔ 𝑋(1 − 𝒫Ker𝑋) = 𝑋

𝒫†Ker𝑋 = 𝒫Ker𝑋 = 𝒫2
Ker𝑋

simplifications = [<function scalars_to_op>, <function match_replace>]

class qnet.algebra.core.operator_algebra.OperatorIndexedSum(term, *ranges)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumIndexedSum, qnet.
algebra.core.operator_algebra.Operator

Indexed sum over operators

simplifications = [<function assoc_indexed>, <function scalars_to_op>, <function indexed_sum_over_kronecker>, <function indexed_sum_over_const>, <function match_replace>]

qnet.algebra.core.operator_algebra.factor_for_trace(ls, op)
Given a LocalSpace ls to take the partial trace over and an operator op, factor the trace such that operators
acting on disjoint degrees of freedom are pulled out of the trace. If the operator acts trivially on ls the trace
yields only a pre-factor equal to the dimension of ls. If there are LocalSigma operators among a product, the
trace’s cyclical property is used to move to sandwich the full product by LocalSigma operators:

Tr𝐴𝜎𝑗𝑘𝐵 = Tr𝜎𝑗𝑘𝐵𝐴𝜎𝑗𝑗

Parameters

• ls (HilbertSpace) – Degree of Freedom to trace over

• op (Operator) – Operator to take the trace of

Return type Operator

Returns The (partial) trace over the operator’s spc-degrees of freedom

qnet.algebra.core.operator_algebra.decompose_space(H, A)
Simplifies OperatorTrace expressions over tensor-product spaces by turning it into iterated partial traces.

Parameters

• H (ProductSpace) – The full space.

• A (Operator) –

Returns Iterative partial trace expression

Return type Operator

92 Chapter 9. API

QNET, Release 2.0.0-dev

qnet.algebra.core.operator_algebra.get_coeffs(expr, expand=False, epsilon=0.0)
Create a dictionary with all Operator terms of the expression (understood as a sum) as keys and their coefficients
as values.

The returned object is a defaultdict that return 0. if a term/key doesn’t exist.

Parameters

• expr – The operator expression to get all coefficients from.

• expand – Whether to expand the expression distributively.

• epsilon – If non-zero, drop all Operators with coefficients that have absolute value less
than epsilon.

Returns A dictionary {op1: coeff1, op2: coeff2, ...}

Return type dict

qnet.algebra.core.operator_algebra.factor_coeff(cls, ops, kwargs)
Factor out coefficients of all factors.

qnet.algebra.core.operator_algebra.adjoint(obj)
Return the adjoint of an obj.

qnet.algebra.core.operator_algebra.rewrite_with_operator_pm_cc(expr)
Try to rewrite expr using OperatorPlusMinusCC

Example

>>> A = OperatorSymbol('A', hs=1)
>>> sum = A + A.dag()
>>> sum2 = rewrite_with_operator_pm_cc(sum)
>>> print(ascii(sum2))
A^(1) + c.c.

qnet.algebra.core.scalar_algebra module

Implementation of the scalar (quantum) algebra

Summary

Classes:

Scalar Base class for Scalars
ScalarDerivative Symbolic partial derivative of a scalar
ScalarExpression Base class for scalars with non-scalar arguments
ScalarIndexedSum Indexed sum over scalars
ScalarPlus Sum of scalars
ScalarPower A scalar raised to a power
ScalarTimes Product of scalars
ScalarValue Wrapper around a numeric or symbolic value

Functions:

9.1. qnet package 93

https://docs.python.org/3.6/library/stdtypes.html#dict

QNET, Release 2.0.0-dev

KroneckerDelta Kronecker delta symbol
is_scalar Check if scalar is a Scalar or a scalar value
sqrt Square root of a Scalar or scalar value

Data:

One The neutral element with respect to scalar multiplication
Zero The neutral element with respect to scalar addition

__all__: KroneckerDelta, One, Scalar, ScalarDerivative, ScalarExpression,
ScalarIndexedSum, ScalarPlus, ScalarPower, ScalarTimes, ScalarValue, Zero, sqrt

Reference

class qnet.algebra.core.scalar_algebra.Scalar(*args, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumExpression

Base class for Scalars

space
TrivialSpace, by definition

conjugate()
Complex conjugate

real
Real part

imag
Imaginary part

class qnet.algebra.core.scalar_algebra.ScalarValue(val)
Bases: qnet.algebra.core.scalar_algebra.Scalar

Wrapper around a numeric or symbolic value

The wrapped value may be of any of the following types:

>>> for t in ScalarValue._val_types:
... print(t)
<class 'int'>
<class 'float'>
<class 'complex'>
<class 'sympy.core.basic.Basic'>
<class 'numpy.int64'>
<class 'numpy.complex128'>
<class 'numpy.float64'>

A ScalarValue behaves exactly like its wrapped value in all algebraic contexts:

>>> 5 * ScalarValue.create(2)
10

Any unknown attributes or methods will be forwarded to the wrapped value to ensure complete “duck-typing”:

94 Chapter 9. API

QNET, Release 2.0.0-dev

>>> alpha = ScalarValue(sympy.symbols('alpha', positive=True))
>>> alpha.is_positive # same as alpha.val.is_positive
True
>>> ScalarValue(5).is_positive
Traceback (most recent call last):
...

AttributeError: 'int' object has no attribute 'is_positive'

classmethod create(val)
Instatiate the ScalarValue while recognizing Zero and One.

Scalar instances as val (including ScalarExpression instances) are left unchanged. This makes
ScalarValue.create() a safe method for converting unknown objects to Scalar.

val
The wrapped scalar value

args
Tuple containing the wrapped scalar value as its only element

real
Real part

imag
Imaginary part

class qnet.algebra.core.scalar_algebra.ScalarExpression(*args, **kwargs)
Bases: qnet.algebra.core.scalar_algebra.Scalar

Base class for scalars with non-scalar arguments

For example, a BraKet is a Scalar, but has arguments that are states.

qnet.algebra.core.scalar_algebra.Zero = Zero
The neutral element with respect to scalar addition

Equivalent to the scalar value zero:

>>> Zero == 0
True

qnet.algebra.core.scalar_algebra.One = One
The neutral element with respect to scalar multiplication

Equivalent to the scalar value one:

>>> One == 1
True

class qnet.algebra.core.scalar_algebra.ScalarPlus(*operands, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumPlus, qnet.algebra.
core.scalar_algebra.Scalar

Sum of scalars

Generally, ScalarValue instances are combined directly:

>>> alpha = ScalarValue.create(sympy.symbols('alpha'))
>>> print(srepr(alpha + 1))
ScalarValue(Add(Symbol('alpha'), Integer(1)))

An unevaluated ScalarPlus remains only for ScalarExpression instaces:

9.1. qnet package 95

QNET, Release 2.0.0-dev

>>> braket = KetSymbol('Psi', hs=0).dag() * KetSymbol('Phi', hs=0)
>>> print(srepr(braket + 1, indented=True))
ScalarPlus(

One,
BraKet(

KetSymbol(
'Psi',
hs=LocalSpace(

'0')),
KetSymbol(

'Phi',
hs=LocalSpace(

'0'))))

simplifications = [<function assoc>, <function convert_to_scalars>, <function orderby>, <function collect_scalar_summands>, <function match_replace_binary>]

conjugate()
Complex conjugate of of the sum

class qnet.algebra.core.scalar_algebra.ScalarTimes(*operands, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumTimes, qnet.algebra.
core.scalar_algebra.Scalar

Product of scalars

Generally, ScalarValue instances are combined directly:

>>> alpha = ScalarValue.create(sympy.symbols('alpha'))
>>> print(srepr(alpha * 2))
ScalarValue(Mul(Integer(2), Symbol('alpha')))

An unevaluated ScalarTimes remains only for ScalarExpression instaces:

>>> braket = KetSymbol('Psi', hs=0).dag() * KetSymbol('Phi', hs=0)
>>> print(srepr(braket * 2, indented=True))
ScalarTimes(

ScalarValue(
2),

BraKet(
KetSymbol(

'Psi',
hs=LocalSpace(

'0')),
KetSymbol(

'Phi',
hs=LocalSpace(

'0'))))

simplifications = [<function assoc>, <function orderby>, <function filter_neutral>, <function match_replace_binary>]

classmethod create(*operands, **kwargs)
Instantiate the product while applying simplification rules

conjugate()
Complex conjugate of of the product

class qnet.algebra.core.scalar_algebra.ScalarIndexedSum(term, *ranges)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumIndexedSum, qnet.
algebra.core.scalar_algebra.Scalar

96 Chapter 9. API

QNET, Release 2.0.0-dev

Indexed sum over scalars

simplifications = [<function assoc_indexed>, <function indexed_sum_over_kronecker>, <function indexed_sum_over_const>, <function match_replace>]

classmethod create(term, *ranges)
Instantiate the indexed sum while applying simplification rules

conjugate()
Complex conjugate of of the indexed sum

real
Real part

imag
Imaginary part

class qnet.algebra.core.scalar_algebra.ScalarPower(b, e)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumOperation, qnet.
algebra.core.scalar_algebra.Scalar

A scalar raised to a power

Generally, ScalarValue instances are exponentiated directly:

>>> alpha = ScalarValue.create(sympy.symbols('alpha'))
>>> print(srepr(alpha**2))
ScalarValue(Pow(Symbol('alpha'), Integer(2)))

An unevaluated ScalarPower remains only for ScalarExpression instaces, see e.g. sqrt().

simplifications = [<function convert_to_scalars>, <function match_replace>]

base
The base of the exponential

exp
The exponent

class qnet.algebra.core.scalar_algebra.ScalarDerivative(op, *, derivs, vals=None)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative, qnet.
algebra.core.scalar_algebra.Scalar

Symbolic partial derivative of a scalar

See QuantumDerivative.

qnet.algebra.core.scalar_algebra.KroneckerDelta(i, j, simplify=True)
Kronecker delta symbol

Return One (i equals j)), Zero (i and j are non-symbolic an unequal), or a ScalarValue wrapping SymPy’s
KroneckerDelta.

>>> i, j = IdxSym('i'), IdxSym('j')
>>> KroneckerDelta(i, i)
One
>>> KroneckerDelta(1, 2)
Zero
>>> KroneckerDelta(i, j)
KroneckerDelta(i, j)

By default, the Kronecker delta is returned in a simplified form, e.g:

9.1. qnet package 97

https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.tensor_functions.KroneckerDelta

QNET, Release 2.0.0-dev

>>> KroneckerDelta((i+1)/2, (j+1)/2)
KroneckerDelta(i, j)

This may be suppressed by setting simplify to False:

>>> KroneckerDelta((i+1)/2, (j+1)/2, simplify=False)
KroneckerDelta(i/2 + 1/2, j/2 + 1/2)

Raises

• TypeError – if i or j is not an integer or sympy expression. There

• is no automatic sympification of i and j.

qnet.algebra.core.scalar_algebra.sqrt(scalar)
Square root of a Scalar or scalar value

This always returns a Scalar, and uses a symbolic square root if possible (i.e., for non-floats):

>>> sqrt(2)
sqrt(2)

>>> sqrt(2.0)
1.414213...

For a ScalarExpression argument, it returns a ScalarPower instance:

>>> braket = KetSymbol('Psi', hs=0).dag() * KetSymbol('Phi', hs=0)
>>> nrm = sqrt(braket * braket.dag())
>>> print(srepr(nrm, indented=True))
ScalarPower(

ScalarTimes(
BraKet(

KetSymbol(
'Phi',
hs=LocalSpace(

'0')),
KetSymbol(

'Psi',
hs=LocalSpace(

'0'))),
BraKet(

KetSymbol(
'Psi',
hs=LocalSpace(

'0')),
KetSymbol(

'Phi',
hs=LocalSpace(

'0')))),
ScalarValue(

Rational(1, 2)))

qnet.algebra.core.scalar_algebra.is_scalar(scalar)
Check if scalar is a Scalar or a scalar value

Specifically, whether scalar is an instance of Scalar or an instance of a numeric or symbolic type that could
be wrapped in ScalarValue.

98 Chapter 9. API

https://docs.python.org/3.6/library/exceptions.html#TypeError

QNET, Release 2.0.0-dev

For internal use only.

qnet.algebra.core.state_algebra module

This module implements the algebra of states in a Hilbert space

For more details see State (Ket-) Algebra.

Summary

Classes:

BasisKet Local basis state, identified by index or label
Bra The associated dual/adjoint state for any ket
BraKet The symbolic inner product between two states
CoherentStateKet Local coherent state, labeled by a complex amplitude
KetBra Outer product of two states
KetIndexedSum Indexed sum over Kets
KetPlus Sum of states
KetSymbol Symbolic state
LocalKet A state on a LocalSpace
OperatorTimesKet Product of an operator and a state.
ScalarTimesKet Product of a Scalar coefficient and a ket
State Base class for states in a Hilbert space
StateDerivative Symbolic partial derivative of a state
TensorKet A tensor product of kets

Data:

TrivialKet TrivialKet constant (singleton) object.
ZeroKet ZeroKet constant (singleton) object for the null-state.

__all__: BasisKet, Bra, BraKet, CoherentStateKet, KetBra, KetIndexedSum, KetPlus,
KetSymbol, LocalKet, OperatorTimesKet, ScalarTimesKet, State, StateDerivative,
TensorKet, TrivialKet, ZeroKet

Reference

class qnet.algebra.core.state_algebra.State(*args, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumExpression

Base class for states in a Hilbert space

isket
Whether the state represents a ket

isbra
Wether the state represents a bra (adjoint ket)

bra
The bra associated with a ket

9.1. qnet package 99

QNET, Release 2.0.0-dev

ket
The ket associated with a bra

class qnet.algebra.core.state_algebra.KetSymbol(label, *sym_args, hs)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumSymbol, qnet.
algebra.core.state_algebra.State

Symbolic state

See QuantumSymbol.

class qnet.algebra.core.state_algebra.LocalKet(*args, hs)
Bases: qnet.algebra.core.state_algebra.State

A state on a LocalSpace

This does not include operations, even if these operations only involve states acting on the same local space

space
The HilbertSpace on which the operator acts non-trivially

kwargs
The dictionary of keyword-only arguments for the instantiation of the Expression

qnet.algebra.core.state_algebra.ZeroKet = ZeroKet
ZeroKet constant (singleton) object for the null-state.

qnet.algebra.core.state_algebra.TrivialKet = TrivialKet
TrivialKet constant (singleton) object. This is the neutral element under the state tensor-product.

class qnet.algebra.core.state_algebra.BasisKet(label_or_index, *, hs)
Bases: qnet.algebra.core.state_algebra.LocalKet, qnet.algebra.core.
state_algebra.KetSymbol

Local basis state, identified by index or label

Basis kets are orthornormal, and the next() and prev() methods can be used to move between basis states.

Parameters

• label_or_index – If str, the label of the basis state (must be an element of
hs.basis_labels). If int, the (zero-based) index of the basis state. This works if hs has
an unknown dimension. For a symbolic index, label_or_index can be an instance of an
appropriate subclass of SymbolicLabelBase

• hs (LocalSpace) – The Hilbert space in which the basis is defined

Raises

• ValueError – if label_or_index is not in the Hilbert space

• TypeError – if label_or_index is not of an appropriate type

• BasisNotSetError – if label_or_index is a str but no basis is defined for hs

Note: Basis states that are instantiated via a label or via an index are equivalent:

>>> hs = LocalSpace('tls', basis=('g', 'e'))
>>> BasisKet('g', hs=hs) == BasisKet(0, hs=hs)
True
>>> print(ascii(BasisKet(0, hs=hs)))
|g>^(tls)

100 Chapter 9. API

https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/exceptions.html#TypeError

QNET, Release 2.0.0-dev

When instantiating the BasisKet via create(), an integer label outside the range of the underlying Hilbert
space results in a ZeroKet:

>>> BasisKet.create(-1, hs=0)
ZeroKet
>>> BasisKet.create(2, hs=LocalSpace('tls', dimension=2))
ZeroKet

simplifications = [<function basis_ket_zero_outside_hs>]

args
Tuple containing label_or_index as its only element.

index
The index of the state in the Hilbert space basis

>>> hs = LocalSpace('tls', basis=('g', 'e'))
>>> BasisKet('g', hs=hs).index
0
>>> BasisKet('e', hs=hs).index
1
>>> BasisKet(1, hs=hs).index
1

For a BasisKet with an indexed label, this may return a sympy expression:

>>> hs = SpinSpace('s', spin='3/2')
>>> i = symbols('i', cls=IdxSym)
>>> lbl = SpinIndex(i/2, hs)
>>> ket = BasisKet(lbl, hs=hs)
>>> ket.index

i/2 + 3/2

next(n=1)
Move up by n steps in the Hilbert space:

>>> hs = LocalSpace('tls', basis=('g', 'e'))
>>> ascii(BasisKet('g', hs=hs).next())
'|e>^(tls)'
>>> ascii(BasisKet(0, hs=hs).next())
'|e>^(tls)'

We can also go multiple steps:

>>> hs = LocalSpace('ten', dimension=10)
>>> ascii(BasisKet(0, hs=hs).next(2))
'|2>^(ten)'

An increment that leads out of the Hilbert space returns zero:

>>> BasisKet(0, hs=hs).next(10)
ZeroKet

prev(n=1)
Move down by n steps in the Hilbert space, cf. next().

9.1. qnet package 101

QNET, Release 2.0.0-dev

>>> hs = LocalSpace('3l', basis=('g', 'e', 'r'))
>>> ascii(BasisKet('r', hs=hs).prev(2))
'|g>^(3l)'
>>> BasisKet('r', hs=hs).prev(3)
ZeroKet

class qnet.algebra.core.state_algebra.CoherentStateKet(ampl, *, hs)
Bases: qnet.algebra.core.state_algebra.LocalKet

Local coherent state, labeled by a complex amplitude

Parameters

• hs (LocalSpace) – The local Hilbert space degree of freedom.

• ampl (Scalar) – The coherent displacement amplitude.

args
The tuple of positional arguments for the instantiation of the Expression

ampl

to_fock_representation(index_symbol=’n’, max_terms=None)
Return the coherent state written out as an indexed sum over Fock basis states

class qnet.algebra.core.state_algebra.KetPlus(*operands)
Bases: qnet.algebra.core.state_algebra.State, qnet.algebra.core.
abstract_quantum_algebra.QuantumPlus

Sum of states

simplifications = [<function accept_bras>, <function assoc>, <function orderby>, <function collect_summands>, <function match_replace_binary>]

order_key
alias of qnet.utils.ordering.FullCommutativeHSOrder

class qnet.algebra.core.state_algebra.TensorKet(*operands)
Bases: qnet.algebra.core.state_algebra.State, qnet.algebra.core.
abstract_quantum_algebra.QuantumTimes

A tensor product of kets

Each ket must belong to different degree of freedom (LocalSpace).

simplifications = [<function accept_bras>, <function assoc>, <function orderby>, <function filter_neutral>, <function match_replace_binary>]

order_key
alias of qnet.utils.ordering.FullCommutativeHSOrder

classmethod create(*ops)
Instantiate while applying automatic simplifications

Instead of directly instantiating cls, it is recommended to use create(), which applies simplifications
to the args and keyword arguments according to the simplifications class attribute, and returns an
appropriate object (which may or may not be an instance of the original cls).

Two simplifications of particular importance are match_replace() and
match_replace_binary() which apply rule-based simplifications.

The temporary_rules() context manager may be used to allow temporary modification of the
automatic simplifications that create() uses, in particular the rules for match_replace() and
match_replace_binary(). Inside the managed context, the simplifications class attribute
may be modified and rules can be managed with add_rule() and del_rules().

102 Chapter 9. API

QNET, Release 2.0.0-dev

class qnet.algebra.core.state_algebra.ScalarTimesKet(coeff, term)
Bases: qnet.algebra.core.state_algebra.State, qnet.algebra.core.
abstract_quantum_algebra.ScalarTimesQuantumExpression

Product of a Scalar coefficient and a ket

Parameters

• coeff (Scalar) – coefficient

• term (State) – the ket that is multiplied

simplifications = [<function match_replace>]

classmethod create(coeff, term)
Instantiate while applying automatic simplifications

Instead of directly instantiating cls, it is recommended to use create(), which applies simplifications
to the args and keyword arguments according to the simplifications class attribute, and returns an
appropriate object (which may or may not be an instance of the original cls).

Two simplifications of particular importance are match_replace() and
match_replace_binary() which apply rule-based simplifications.

The temporary_rules() context manager may be used to allow temporary modification of the
automatic simplifications that create() uses, in particular the rules for match_replace() and
match_replace_binary(). Inside the managed context, the simplifications class attribute
may be modified and rules can be managed with add_rule() and del_rules().

class qnet.algebra.core.state_algebra.OperatorTimesKet(operator, ket)
Bases: qnet.algebra.core.state_algebra.State, qnet.algebra.core.
abstract_algebra.Operation

Product of an operator and a state.

simplifications = [<function match_replace>]

space
The HilbertSpace on which the operator acts non-trivially

operator

ket
The ket associated with a bra

class qnet.algebra.core.state_algebra.StateDerivative(op, *, derivs, vals=None)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative, qnet.
algebra.core.state_algebra.State

Symbolic partial derivative of a state

See QuantumDerivative.

class qnet.algebra.core.state_algebra.Bra(ket)
Bases: qnet.algebra.core.state_algebra.State, qnet.algebra.core.
abstract_quantum_algebra.QuantumAdjoint

The associated dual/adjoint state for any ket

ket
The original State

bra
The bra associated with a ket

9.1. qnet package 103

QNET, Release 2.0.0-dev

operand
The original State

isket
False, by defintion

isbra
True, by definition

label

class qnet.algebra.core.state_algebra.BraKet(bra, ket)
Bases: qnet.algebra.core.scalar_algebra.ScalarExpression, qnet.algebra.core.
abstract_algebra.Operation

The symbolic inner product between two states

This mathermatically corresponds to:

⟨𝑏|𝑘⟩

which we define to be linear in the state 𝑘 and anti-linear in 𝑏.

Parameters

• bra (State) – The anti-linear state argument. Note that this is not a Bra instance.

• ket (State) – The linear state argument.

simplifications = [<function match_replace>]

ket
The ket of the braket

bra
The bra of the braket (Bra instance)

class qnet.algebra.core.state_algebra.KetBra(ket, bra)
Bases: qnet.algebra.core.operator_algebra.Operator, qnet.algebra.core.
abstract_algebra.Operation

Outer product of two states

Parameters

• ket (State) – The left factor in the product

• bra (State) – The right factor in the product. Note that this is not a Bra instance.

simplifications = [<function match_replace>]

ket
The left factor in the product

bra
The co-state right factor in the product

This is a Bra instance (unlike the bra given to the constructor

space
The Hilbert space of the states being multiplied

class qnet.algebra.core.state_algebra.KetIndexedSum(term, *ranges)
Bases: qnet.algebra.core.state_algebra.State, qnet.algebra.core.
abstract_quantum_algebra.QuantumIndexedSum

Indexed sum over Kets

104 Chapter 9. API

QNET, Release 2.0.0-dev

simplifications = [<function assoc_indexed>, <function indexed_sum_over_kronecker>, <function indexed_sum_over_const>, <function match_replace>]

classmethod create(term, *ranges)
Instantiate while applying automatic simplifications

Instead of directly instantiating cls, it is recommended to use create(), which applies simplifications
to the args and keyword arguments according to the simplifications class attribute, and returns an
appropriate object (which may or may not be an instance of the original cls).

Two simplifications of particular importance are match_replace() and
match_replace_binary() which apply rule-based simplifications.

The temporary_rules() context manager may be used to allow temporary modification of the
automatic simplifications that create() uses, in particular the rules for match_replace() and
match_replace_binary(). Inside the managed context, the simplifications class attribute
may be modified and rules can be managed with add_rule() and del_rules().

qnet.algebra.core.super_operator_algebra module

The specification of a quantum mechanics symbolic super-operator algebra. See Super-Operator Algebra for more
details.

Summary

Classes:

SPost Linear post-multiplication operator
SPre Linear pre-multiplication operator
ScalarTimesSuperOperator Product of a Scalar coefficient and a

SuperOperator
SuperAdjoint Adjoint of a super-operator
SuperCommutativeHSOrder Ordering class that acts like DisjunctCommuta-

tiveHSOrder, but also commutes any SPost and SPre
SuperOperator Base class for super-operators
SuperOperatorDerivative Symbolic partial derivative of a super-operator
SuperOperatorPlus A sum of super-operators
SuperOperatorSymbol Symbolic super-operator
SuperOperatorTimes Product of super-operators
SuperOperatorTimesOperator Application of a super-operator to an operator

Functions:

anti_commutator If B != None, return the anti-commutator {𝐴,𝐵},
otherwise return the super-operator {𝐴, ·}.

commutator Commutator of A and B
lindblad Return the super-operator Lindblad term of the Lindblad

operator C
liouvillian Return the Liouvillian super-operator associated with H

and Ls
liouvillian_normal_form Return a Hamilton operator H and a minimal list of col-

lapse operators Ls that generate the liouvillian L.

9.1. qnet package 105

QNET, Release 2.0.0-dev

Data:

IdentitySuperOperator Neutral element for product of super-operators
ZeroSuperOperator Neutral element for sum of super-operators

__all__: IdentitySuperOperator, SPost, SPre, ScalarTimesSuperOperator,
SuperAdjoint, SuperOperator, SuperOperatorDerivative, SuperOperatorPlus,
SuperOperatorSymbol, SuperOperatorTimes, SuperOperatorTimesOperator,
ZeroSuperOperator, anti_commutator, commutator, lindblad, liouvillian,
liouvillian_normal_form

Reference

class qnet.algebra.core.super_operator_algebra.SuperOperator(*args, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumExpression

Base class for super-operators

class qnet.algebra.core.super_operator_algebra.SuperOperatorSymbol(label,
*sym_args,
hs)

Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumSymbol, qnet.
algebra.core.super_operator_algebra.SuperOperator

Symbolic super-operator

See QuantumSymbol.

qnet.algebra.core.super_operator_algebra.IdentitySuperOperator = IdentitySuperOperator
Neutral element for product of super-operators

qnet.algebra.core.super_operator_algebra.ZeroSuperOperator = ZeroSuperOperator
Neutral element for sum of super-operators

class qnet.algebra.core.super_operator_algebra.SuperOperatorPlus(*operands,
**kwargs)

Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumPlus, qnet.algebra.
core.super_operator_algebra.SuperOperator

A sum of super-operators

simplifications = [<function assoc>, <function orderby>, <function collect_summands>, <function match_replace_binary>]

class qnet.algebra.core.super_operator_algebra.SuperCommutativeHSOrder(op,
space_order=None,
op_order=None)

Bases: qnet.utils.ordering.DisjunctCommutativeHSOrder

Ordering class that acts like DisjunctCommutativeHSOrder, but also commutes any SPost and SPre

class qnet.algebra.core.super_operator_algebra.SuperOperatorTimes(*operands,
**kwargs)

Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumTimes, qnet.algebra.
core.super_operator_algebra.SuperOperator

Product of super-operators

simplifications = [<function assoc>, <function orderby>, <function filter_neutral>, <function match_replace_binary>]

order_key
alias of SuperCommutativeHSOrder

106 Chapter 9. API

QNET, Release 2.0.0-dev

classmethod create(*ops)
Instantiate while applying automatic simplifications

Instead of directly instantiating cls, it is recommended to use create(), which applies simplifications
to the args and keyword arguments according to the simplifications class attribute, and returns an
appropriate object (which may or may not be an instance of the original cls).

Two simplifications of particular importance are match_replace() and
match_replace_binary() which apply rule-based simplifications.

The temporary_rules() context manager may be used to allow temporary modification of the
automatic simplifications that create() uses, in particular the rules for match_replace() and
match_replace_binary(). Inside the managed context, the simplifications class attribute
may be modified and rules can be managed with add_rule() and del_rules().

class qnet.algebra.core.super_operator_algebra.ScalarTimesSuperOperator(coeff,
term)

Bases: qnet.algebra.core.super_operator_algebra.SuperOperator, qnet.algebra.
core.abstract_quantum_algebra.ScalarTimesQuantumExpression

Product of a Scalar coefficient and a SuperOperator

simplifications = [<function match_replace>]

class qnet.algebra.core.super_operator_algebra.SuperAdjoint(operand)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumAdjoint, qnet.
algebra.core.super_operator_algebra.SuperOperator

Adjoint of a super-operator

The mathematical notation for this is typically

SuperAdjoint(ℒ) =: ℒ*

and for any super operator ℒ, its super-adjoint ℒ* satisfies for any pair of operators 𝑀,𝑁 :

Tr[𝑀(ℒ𝑁)] = 𝑇𝑟[(ℒ*𝑀)𝑁]

simplifications = [<function delegate_to_method.<locals>._delegate_to_method>]

class qnet.algebra.core.super_operator_algebra.SPre(*args, **kwargs)
Bases: qnet.algebra.core.super_operator_algebra.SuperOperator, qnet.algebra.
core.abstract_algebra.Operation

Linear pre-multiplication operator

Acting SPre(A) on an operator B just yields the product A * B

simplifications = [<function match_replace>]

space
The HilbertSpace on which the operator acts non-trivially

class qnet.algebra.core.super_operator_algebra.SPost(*args, **kwargs)
Bases: qnet.algebra.core.super_operator_algebra.SuperOperator, qnet.algebra.
core.abstract_algebra.Operation

Linear post-multiplication operator

Acting SPost(A) on an operator B just yields the reversed product B * A.

simplifications = [<function match_replace>]

9.1. qnet package 107

QNET, Release 2.0.0-dev

space
The HilbertSpace on which the operator acts non-trivially

class qnet.algebra.core.super_operator_algebra.SuperOperatorTimesOperator(sop,
op)

Bases: qnet.algebra.core.operator_algebra.Operator, qnet.algebra.core.
abstract_algebra.Operation

Application of a super-operator to an operator

The result of this operation is(result is an Operator

simplifications = [<function match_replace>]

space
The HilbertSpace on which the operator acts non-trivially

sop

op

class qnet.algebra.core.super_operator_algebra.SuperOperatorDerivative(op,
*,
de-
rivs,
vals=None)

Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative, qnet.
algebra.core.super_operator_algebra.SuperOperator

Symbolic partial derivative of a super-operator

See QuantumDerivative.

qnet.algebra.core.super_operator_algebra.commutator(A, B=None)
Commutator of A and B

If B != None, return the commutator [𝐴,𝐵], otherwise return the super-operator [𝐴, ·]. The super-operator
[𝐴, ·] maps any other operator B to the commutator [𝐴,𝐵] = 𝐴𝐵 −𝐵𝐴.

Parameters

• A – The first operator to form the commutator of.

• B – The second operator to form the commutator of, or None.

Returns The linear superoperator [𝐴, ·]

Return type SuperOperator

qnet.algebra.core.super_operator_algebra.anti_commutator(A, B=None)
If B != None, return the anti-commutator {𝐴,𝐵}, otherwise return the super-operator {𝐴, ·}. The super-
operator {𝐴, ·} maps any other operator B to the anti-commutator {𝐴,𝐵} = 𝐴𝐵 +𝐵𝐴.

Parameters

• A – The first operator to form all anti-commutators of.

• B – The second operator to form the anti-commutator of, or None.

Returns The linear superoperator [𝐴, ·]

Return type SuperOperator

qnet.algebra.core.super_operator_algebra.lindblad(C)
Return the super-operator Lindblad term of the Lindblad operator C

108 Chapter 9. API

QNET, Release 2.0.0-dev

Return SPre(C) * SPost(C.adjoint()) - (1/2) * santi_commutator(C.
adjoint()*C). These are the super-operators 𝒟[𝐶] that form the collapse terms of a Master-Equation.
Applied to an operator 𝑋 they yield

𝒟[𝐶]𝑋 = 𝐶𝑋𝐶† − 1

2
(𝐶†𝐶𝑋 +𝑋𝐶†𝐶)

Parameters C (Operator) – The associated collapse operator

Returns The Lindblad collapse generator.

Return type SuperOperator

qnet.algebra.core.super_operator_algebra.liouvillian(H, Ls=None)
Return the Liouvillian super-operator associated with H and Ls

The Liouvillian ℒ generates the Markovian-dynamics of a system via the Master equation:

�̇� = ℒ𝜌 = −𝑖[𝐻, 𝜌] +

𝑛∑︁
𝑗=1

𝒟[𝐿𝑗]𝜌

Parameters

• H (Operator) – The associated Hamilton operator

• Ls (sequence or Matrix) – A sequence of Lindblad operators.

Returns The Liouvillian super-operator.

Return type SuperOperator

qnet.algebra.core.super_operator_algebra.liouvillian_normal_form(L, sym-
bolic=False)

Return a Hamilton operator H and a minimal list of collapse operators Ls that generate the liouvillian L.

A Liouvillian defined by a hermitian Hamilton operator 𝐻 and a vector of collapse operators L =
(𝐿1, 𝐿2, . . . 𝐿𝑛)𝑇 is invariant under the following two operations:

(𝐻,L) ↦→
(︂
𝐻 +

1

2𝑖

(︀
w†L− L†w

)︀
,L + w

)︂
(𝐻,L) ↦→ (𝐻,UL)

where w is just a vector of complex numbers and U is a complex unitary matrix. It turns out that for quantum
optical circuit models the set of collapse operators is often linearly dependent. This routine tries to find a
representation of the Liouvillian in terms of a Hamilton operator H with as few non-zero collapse operators Ls
as possible. Consider the following example, which results from a two-port linear cavity with a coherent input
into the first port:

>>> kappa_1, kappa_2 = sympy.symbols('kappa_1, kappa_2', positive = True)
>>> Delta = sympy.symbols('Delta', real = True)
>>> alpha = sympy.symbols('alpha')
>>> H = (Delta * Create(hs=1) * Destroy(hs=1) +
... (sqrt(kappa_1) / (2 * I)) *
... (alpha * Create(hs=1) - alpha.conjugate() * Destroy(hs=1)))
>>> Ls = [sqrt(kappa_1) * Destroy(hs=1) + alpha,
... sqrt(kappa_2) * Destroy(hs=1)]
>>> LL = liouvillian(H, Ls)
>>> Hnf, Lsnf = liouvillian_normal_form(LL)
>>> print(ascii(Hnf))
-I*alpha*sqrt(kappa_1) * a^(1)H + I*sqrt(kappa_1)*conjugate(alpha) * a^(1) +
→˓Delta * a^(1)H * a^(1)

(continues on next page)

9.1. qnet package 109

QNET, Release 2.0.0-dev

(continued from previous page)

>>> len(Lsnf)
1
>>> print(ascii(Lsnf[0]))
sqrt(kappa_1 + kappa_2) * a^(1)

In terms of the ensemble dynamics this final system is equivalent. Note that this function will only work for
proper Liouvillians.

Parameters L (SuperOperator) – The Liouvillian

Returns (H, Ls)

Return type tuple

Raises BadLiouvillianError

Summary

__all__ Exceptions:

AlgebraError Base class for all algebraic errors
AlgebraException Base class for all algebraic exceptions
BadLiouvillianError Raised when a Liouvillian is not of standard Lindblad form.
BasisNotSetError Raised if the basis or a Hilbert space dimension is unavailable
CannotConvertToSLH Raised when a circuit algebra object cannot be converted to SLH
CannotEliminateAutomatically Raised when attempted automatic adiabatic elimination fails.
CannotSimplify Raised when a rule cannot further simplify an expression
CannotSymbolicallyDiagonalize Matrix cannot be diagonalized analytically.
CannotVisualize Raised when a circuit cannot be visually represented.
IncompatibleBlockStructures Raised for invalid block-decomposition
InfiniteSumError Raised when expanding a sum into an infinite number of terms
NoConjugateMatrix Raised when entries of Matrix have no defined conjugate
NonSquareMatrix Raised when a Matrix fails to be square
OverlappingSpaces Raised when objects fail to be in separate Hilbert spaces.
SpaceTooLargeError Raised when objects fail to be have overlapping Hilbert spaces.
UnequalSpaces Raised when objects fail to be in the same Hilbert space.
WrongCDimError Raised for mismatched channel number in circuit series

__all__ Classes:

Adjoint Symbolic Adjoint of an operator
BasisKet Local basis state, identified by index or label
Bra The associated dual/adjoint state for any ket
BraKet The symbolic inner product between two states
CPermutation Channel permuting circuit
Circuit Base class for the circuit algebra elements
CircuitSymbol Symbolic circuit element
CoherentStateKet Local coherent state, labeled by a complex amplitude
Commutator Commutator of two operators
Component Base class for circuit components
Concatenation Concatenation of circuit elements

Continued on next page

110 Chapter 9. API

https://docs.python.org/3.6/library/stdtypes.html#tuple

QNET, Release 2.0.0-dev

Table 26 – continued from previous page
Expression Base class for all QNET Expressions
Feedback Feedback on a single channel of a circuit
HilbertSpace Base class for Hilbert spaces
IndexedSum Base class for indexed sums
KetBra Outer product of two states
KetIndexedSum Indexed sum over Kets
KetPlus Sum of states
KetSymbol Symbolic state
LocalKet A state on a LocalSpace
LocalOperator Base class for “known” operators on a LocalSpace
LocalSigma Level flip operator between two levels of a LocalSpace
LocalSpace Hilbert space for a single degree of freedom.
Matrix Matrix of Expressions
NullSpaceProjector Projection operator onto the nullspace of its operand
Operation Base class for “operations”
Operator Base class for all quantum operators.
OperatorDerivative Symbolic partial derivative of an operator
OperatorIndexedSum Indexed sum over operators
OperatorPlus Sum of Operators
OperatorPlusMinusCC An operator plus or minus its complex conjugate
OperatorSymbol Symbolic operator
OperatorTimes Product of operators
OperatorTimesKet Product of an operator and a state.
OperatorTrace (Partial) trace of an operator
ProductSpace Tensor product of local Hilbert spaces
PseudoInverse Unevaluated pseudo-inverse 𝑋+ of an operator 𝑋
QuantumAdjoint Base class for adjoints of quantum expressions
QuantumDerivative Symbolic partial derivative
QuantumExpression Base class for expressions associated with a Hilbert space
QuantumIndexedSum Base class for indexed sums
QuantumOperation Base class for operations on quantum expression
QuantumPlus General implementation of addition of quantum expressions
QuantumSymbol Symbolic element of an algebra
QuantumTimes General implementation of product of quantum expressions
SLH Element of the SLH algebra
SPost Linear post-multiplication operator
SPre Linear pre-multiplication operator
Scalar Base class for Scalars
ScalarDerivative Symbolic partial derivative of a scalar
ScalarExpression Base class for scalars with non-scalar arguments
ScalarIndexedSum Indexed sum over scalars
ScalarPlus Sum of scalars
ScalarPower A scalar raised to a power
ScalarTimes Product of scalars
ScalarTimesKet Product of a Scalar coefficient and a ket
ScalarTimesOperator Product of a Scalar coefficient and an Operator
ScalarTimesQuantumExpression Product of a Scalar and a QuantumExpression
ScalarTimesSuperOperator Product of a Scalar coefficient and a SuperOperator
ScalarValue Wrapper around a numeric or symbolic value
SeriesInverse Symbolic series product inversion operation

Continued on next page

9.1. qnet package 111

QNET, Release 2.0.0-dev

Table 26 – continued from previous page
SeriesProduct The series product circuit operation.
SingleQuantumOperation Base class for operations on a single quantum expression
State Base class for states in a Hilbert space
StateDerivative Symbolic partial derivative of a state
SuperAdjoint Adjoint of a super-operator
SuperOperator Base class for super-operators
SuperOperatorDerivative Symbolic partial derivative of a super-operator
SuperOperatorPlus A sum of super-operators
SuperOperatorSymbol Symbolic super-operator
SuperOperatorTimes Product of super-operators
SuperOperatorTimesOperator Application of a super-operator to an operator
TensorKet A tensor product of kets

__all__ Functions:

FB Wrapper for Feedback, defaulting to last channel
KroneckerDelta Kronecker delta symbol
LocalProjector A projector onto a specific level of a LocalSpace
Sum Instantiator for an arbitrary indexed sum.
adjoint Return the adjoint of an obj.
anti_commutator If B != None, return the anti-commutator {𝐴,𝐵}, otherwise return the super-operator {𝐴, ·}.
block_matrix Generate the operator matrix with quadrants
circuit_identity Return the circuit identity for n channels
commutator Commutator of A and B
decompose_space Simplifies OperatorTrace expressions over tensor-product spaces by turning it into iterated partial traces.
diagm Generalizes the diagonal matrix creation capabilities of numpy.diag to Matrix objects.
eval_adiabatic_limit Compute the limiting SLH model for the adiabatic approximation
extract_channel Create a CPermutation that extracts channel k
factor_coeff Factor out coefficients of all factors.
factor_for_trace Given a LocalSpace ls to take the partial trace over and an operator op, factor the trace such that operators acting on disjoint degrees of freedom are pulled out of the trace.If the operator acts trivially on ls the trace yields only a pre-factor equal to the dimension of ls.If there are LocalSigma operators among a product, the trace’s cyclical property is used to move to sandwich the full product by LocalSigma operators:.
getABCD Calculate the ABCD-linearization of an SLH model
get_coeffs Create a dictionary with all Operator terms of the expression (understood as a sum) as keys and their coefficients as values.
hstackm Generalizes numpy.hstack to Matrix objects.
identity_matrix Generate the N-dimensional identity matrix.
lindblad Return the super-operator Lindblad term of the Lindblad operator C
liouvillian Return the Liouvillian super-operator associated with H and Ls
liouvillian_normal_form Return a Hamilton operator H and a minimal list of collapse operators Ls that generate the liouvillian L.
map_channels Create a CPermuation based on a dict of channel mappings
move_drive_to_H Move coherent drives from the Lindblad operators to the Hamiltonian.
pad_with_identity Pad a circuit by adding a n-channel identity circuit at index k
prepare_adiabatic_limit Prepare the adiabatic elimination on an SLH object
rewrite_with_operator_pm_cc Try to rewrite expr using OperatorPlusMinusCC
sqrt Square root of a Scalar or scalar value
substitute Substitute symbols or (sub-)expressions with the given replacements and re-evalute the result
try_adiabatic_elimination Attempt to automatically do adiabatic elimination on an SLH object
vstackm Generalizes numpy.vstack to Matrix objects.
zerosm Generalizes numpy.zeros to Matrix objects.

__all__ Data:

112 Chapter 9. API

QNET, Release 2.0.0-dev

CIdentity Single pass-through channel; neutral element of SeriesProduct
CircuitZero Zero circuit, the neutral element of Concatenation
FullSpace The ‘full space’, i.e.
II IdentityOperator constant (singleton) object.
IdentityOperator IdentityOperator constant (singleton) object.
IdentitySuperOperator Neutral element for product of super-operators
One The neutral element with respect to scalar multiplication
TrivialKet TrivialKet constant (singleton) object.
TrivialSpace The ‘nullspace’, i.e.
Zero The neutral element with respect to scalar addition
ZeroKet ZeroKet constant (singleton) object for the null-state.
ZeroOperator ZeroOperator constant (singleton) object.
ZeroSuperOperator Neutral element for sum of super-operators
tr Instantiate while applying automatic simplifications

qnet.algebra.library package

Collection of algebraic objects extending core

Submodules:

qnet.algebra.library.circuit_components module

Collection of essential circuit components

Summary

Classes:

Beamsplitter Infinite bandwidth beamsplitter component.
CoherentDriveCC Coherent displacement of the input field
PhaseCC Coherent phase shift cicuit component

__all__: Beamsplitter, CoherentDriveCC, PhaseCC

Reference

class qnet.algebra.library.circuit_components.CoherentDriveCC(*, label=None,
**kwargs)

Bases: qnet.algebra.core.circuit_algebra.Component

Coherent displacement of the input field

Typically, the input field is the, displaced by a complex amplitude 𝛼. This component serves as the model of an
ideal laser source without internal non-classical internal dynamics.

The coherent drive is represented as an inhomogeneous Lindblad operator 𝐿 = 𝛼, with a trivial Hamiltonian
and scattering matrix. For a complete circuit with coherent drives, the inhomogeneous Lindblad operators can
be transformed to driving terms in the total network Hamiltonian through move_drive_to_H().

Parameters

9.1. qnet package 113

QNET, Release 2.0.0-dev

• label – label for the component.

• displacement – the coherent displacement amplitude. Defaults to a complex symbol
‘alpha’

CDIM = 1
circuit dimension

PORTSIN = ('in',)

PORTSOUT = ('out',)

ARGNAMES = ('displacement',)

DEFAULTS = {'displacement': alpha}

IDENTIFIER = 'W'

displacement
The displacement argument.

class qnet.algebra.library.circuit_components.PhaseCC(*, label=None, **kwargs)
Bases: qnet.algebra.core.circuit_algebra.Component

Coherent phase shift cicuit component

The field passing through obtains a phase factor 𝑒𝑖𝜑 for a real-valued phase 𝜑. The component has no dynamics,
i.e. a trivial Hamiltonian and Lindblad operators

Parameters

• label – label for the component.

• phase – the phase. Defaults to a real symbol ‘phi’

CDIM = 1

PORTSIN = ('in',)

PORTSOUT = ('out',)

ARGNAMES = ('phase',)

DEFAULTS = {'phase': phi}

IDENTIFIER = 'Phase'

phase
The phase argument.

class qnet.algebra.library.circuit_components.Beamsplitter(*, label=None,
**kwargs)

Bases: qnet.algebra.core.circuit_algebra.Component

Infinite bandwidth beamsplitter component.

It is a pure scattering component, i.e. it’s internal dynamics are not modeled explicitly (trivial Hamiltonian and
Lindblad operators). The single real parameter is the mixing_angle for the two signals.

𝑆 =

(︂
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

)︂
The beamsplitter uses the following labeled input/output channels:

114 Chapter 9. API

QNET, Release 2.0.0-dev

1:vac

0:in v 0:tr
>/ >

1:rf
v

That is, output channel 0 is the transmission of input channel 0 (“in”), and output channel 1 is the reflection of
input channel 0; vice versa for the secondary input channel 1 (“vac”: often connected to a vacuum mode). For
𝜃 = 0, the beam splitter results in full transmission, and full reflection for 𝜃 = 𝜋/2.

Parameters

• label – label for the beamsplitter.

• mixing_angle – the angle that determines the ratio of transmission and reflection de-
faults to 𝜋/4, corresponding to a 50-50-beamsplitter. It is recommended to use a sympy
expression for the mixing angle.

Note: We use a real-valued, but asymmetric scattering matrix. A common alternative convention for the
beamsplitter is the symmetric scattering matrix

𝑆 =

(︂
cos 𝜃 𝑖 sin 𝜃
𝑖 sin 𝜃 cos 𝜃

)︂
To achieve the symmetric beamsplitter (or any general beamsplitter), the Beamsplitter component can be
combined with one or more appropriate PhaseCC components.

CDIM = 2
circuit dimension

PORTSIN = ('in', 'vac')

PORTSOUT = ('tr', 'rf')

ARGNAMES = ('mixing_angle',)

DEFAULTS = {'mixing_angle': pi/4}

IDENTIFIER = 'BS'

mixing_angle
The mixing_angle argument.

qnet.algebra.library.fock_operators module

Collection of operators that act on a bosonic Fock space

Summary

Classes:

Create Bosonic creation operator
Destroy Bosonic annihilation operator

Continued on next page

9.1. qnet package 115

QNET, Release 2.0.0-dev

Table 29 – continued from previous page
Displace Unitary coherent displacement operator
Phase Unitary “phase” operator
Squeeze Unitary squeezing operator

__all__: Create, Destroy , Displace, Phase, Squeeze

Reference

class qnet.algebra.library.fock_operators.Destroy(*, hs)
Bases: qnet.algebra.core.operator_algebra.LocalOperator

Bosonic annihilation operator

It obeys the bosonic commutation relation:

>>> Destroy(hs=1) * Create(hs=1) - Create(hs=1) * Destroy(hs=1)
IdentityOperator
>>> Destroy(hs=1) * Create(hs=2) - Create(hs=2) * Destroy(hs=1)
ZeroOperator

identifier
The identifier (symbol) that is used when printing the annihilation operator. This is identical to the
identifier of Create. A custom identifier for both Destroy and Create can be set through the lo-
cal_identifiers parameter of the associated Hilbert space:

>>> hs_custom = LocalSpace(0, local_identifiers={'Destroy': 'b'})
>>> Create(hs=hs_custom).identifier
'b'
>>> Destroy(hs=hs_custom).identifier
'b'

class qnet.algebra.library.fock_operators.Create(*, hs)
Bases: qnet.algebra.core.operator_algebra.LocalOperator

Bosonic creation operator

This is the adjoint of Destroy .

identifier
The identifier (symbols) that is used when printing the creation operator. This is identical to the identifier
of Destroy

class qnet.algebra.library.fock_operators.Phase(*args, hs)
Bases: qnet.algebra.core.operator_algebra.LocalOperator

Unitary “phase” operator

𝑃hs(𝜑) = exp
(︁
𝑖𝜑𝑎†hs𝑎hs

)︁
where 𝑎hs is the annihilation operator acting on the LocalSpace hs.

Parameters

• phase (Scalar) – the phase 𝜑

• hs (HilbertSpace or int or str) – The Hilbert space on which the operator acts

Printers should represent this operator with the default identifier:

116 Chapter 9. API

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str

QNET, Release 2.0.0-dev

>>> Phase._identifier
'Phase'

A custom identifier may be define using hs’s local_identifiers argument.

simplifications = [<function implied_local_space.<locals>.kwargs_to_local_space>, <function match_replace>]

phase
The phase argument, as a Scalar instance.

class qnet.algebra.library.fock_operators.Displace(*args, hs)
Bases: qnet.algebra.core.operator_algebra.LocalOperator

Unitary coherent displacement operator

𝐷hs(𝛼) = exp
(︁
𝛼𝑎†hs − 𝛼*𝑎hs

)︁
where 𝑎hs is the annihilation operator acting on the LocalSpace hs.

Parameters

• displacement (Scalar) – the displacement amplitude 𝛼

• hs (HilbertSpace or int or str) – The Hilbert space on which the operator acts

Printers should represent this operator with the default identifier:

>>> Displace._identifier
'D'

A custom identifier may be define using hs’s local_identifiers argument.

simplifications = [<function implied_local_space.<locals>.kwargs_to_local_space>, <function match_replace>]

displacement
The displacement argument, as a Scalar instance.

class qnet.algebra.library.fock_operators.Squeeze(*args, hs)
Bases: qnet.algebra.core.operator_algebra.LocalOperator

Unitary squeezing operator

𝑆hs(𝜂) = exp

(︂
𝜂

2
𝑎†hs

2
− 𝜂*

2
𝑎hs

2

)︂
where 𝑎hs is the annihilation operator acting on the LocalSpace hs.

Parameters

• squeezing_factor (Scalar) – the squeezing factor 𝜂

• hs (HilbertSpace or int or str) – The Hilbert space on which the operator acts

Printers should represent this operator with the default identifier:

>>> Squeeze._identifier
'Squeeze'

A custom identifier may be define using hs’s local_identifiers argument.

simplifications = [<function implied_local_space.<locals>.kwargs_to_local_space>, <function match_replace>]

squeezing_factor
The squeezing_factor argument, as a Scalar instance.

9.1. qnet package 117

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str

QNET, Release 2.0.0-dev

qnet.algebra.library.pauli_matrices module

Constructors for Pauli-Matrix operators on any two levels of a system

Summary

Functions:

PauliX Pauli-type X-operator
PauliY Pauli-type Y-operator
PauliZ Pauli-type Z-operator

__all__: PauliX , PauliY , PauliZ

Reference

qnet.algebra.library.pauli_matrices.PauliX(local_space, states=None)
Pauli-type X-operator

�̂�𝑥 =

(︂
0 1
1 0

)︂
on an arbitrary two-level system.

Parameters

• local_space (str or int or LocalSpace) – Associated Hilbert space. If str
or int, a LocalSpace with a matching label will be created.

• states (None or tuple[int or str]) – The labels for the basis states for the two
levels on which the operator acts. If None, the two lowest levels are used.

Returns Local X-operator as a linear combination of LocalSigma

Return type Operator

qnet.algebra.library.pauli_matrices.PauliY(local_space, states=None)
Pauli-type Y-operator

�̂�𝑥 =

(︂
0 −𝑖
𝑖 0

)︂
on an arbitrary two-level system.

See PauliX()

qnet.algebra.library.pauli_matrices.PauliZ(local_space, states=None)
Pauli-type Z-operator

�̂�𝑥 =

(︂
1 0
0 −1

)︂
on an arbitrary two-level system.

See PauliX()

118 Chapter 9. API

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str

QNET, Release 2.0.0-dev

qnet.algebra.library.spin_algebra module

Definitions for an algebra on spin (angular momentum) Hilbert spaces, both for integer and half-integer spin

Summary

Classes:

Jminus Lowering operator on a spin space
Jplus Raising operator of a spin space
Jz Spin (angular momentum) operator in z-direction
SpinOperator Base class for operators in a spin space
SpinSpace A Hilbert space for an integer or half-integer spin sys-

tem

Functions:

Jmjmcoeff Eigenvalue of the 𝐽− (Jminus) operator
Jpjmcoeff Eigenvalue of the 𝐽+ (Jplus) operator
Jzjmcoeff Eigenvalue of the 𝐽𝑧 (Jz) operator
SpinBasisKet Constructor for a BasisKet for a SpinSpace

__all__: Jminus, Jplus, Jz, SpinBasisKet, SpinOperator, SpinSpace

Reference

class qnet.algebra.library.spin_algebra.SpinSpace(label, *, spin, basis=None,
local_identifiers=None, or-
der_index=None)

Bases: qnet.algebra.core.hilbert_space_algebra.LocalSpace

A Hilbert space for an integer or half-integer spin system

For a given spin 𝑁 , the resulting Hilbert space has dimension 2𝑁 + 1 with levels labeled from −𝑁 to +𝑁 (as
strings)

For an integer spin:

>>> hs = SpinSpace(label=0, spin=1)
>>> hs.dimension
3
>>> hs.basis_labels
('-1', '0', '+1')

For a half-integer spin:

>>> hs = SpinSpace(label=0, spin=sympy.Rational(3, 2))
>>> hs.spin
3/2
>>> hs.dimension
4
>>> hs.basis_labels
('-3/2', '-1/2', '+1/2', '+3/2')

9.1. qnet package 119

QNET, Release 2.0.0-dev

For convenience, you may also give spin as a tuple or a string:

>>> hs = SpinSpace(label=0, spin=(3, 2))
>>> assert hs == SpinSpace(label=0, spin=sympy.Rational(3, 2))
>>> hs = SpinSpace(label=0, spin='3/2')
>>> assert hs == SpinSpace(label=0, spin=(3, 2))

You may use custom labels, e.g.:

>>> hs = SpinSpace(label='s', spin='1/2', basis=('-', '+'))
>>> hs.basis_labels
('-', '+')

The labels “up” and “down” are recognized and printed as the appropritate arrow symbols:

>>> hs = SpinSpace(label='s', spin='1/2', basis=('down', 'up'))
>>> unicode(BasisKet('up', hs=hs))
'|↑'
>>> unicode(BasisKet('down', hs=hs))
'|↓'

Raises ValueError – if spin is not an integer or half-integer greater than zero

next_basis_label_or_index(label_or_index, n=1)
Given the label or index of a basis state, return the label the next basis state.

More generally, if n is given, return the n’th next basis state label/index; n may also be negative to obtain
previous basis state labels. Returns a str label if label_or_index is a str or int, or a SpinIndex if
label_or_index is a SpinIndex.

Parameters

• label_or_index (int or str or SpinIndex) – If int, the zero-based index of
a basis state; if str, the label of a basis state

• n (int) – The increment

Raises

• IndexError – If going beyond the last or first basis state

• ValueError – If label is not a label for any basis state in the Hilbert space

• BasisNotSetError – If the Hilbert space has no defined basis

• TypeError – if label_or_index is neither a str nor an int, nor a SpinIndex

Note: This differs from its super-method only by never returning an integer index (which is not accepted
when instantiating a BasisKet for a SpinSpace)

spin
The spin-number associated with the SpinSpace

This can be a SymPy integer or a half-integer.

Return type Rational

multiplicity
The multiplicity of the Hilbert space, 2𝑆 + 1.

This is equivalent to the dimension:

120 Chapter 9. API

https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/exceptions.html#IndexError
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/exceptions.html#TypeError
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.sympy.org/latest/modules/core.html#sympy.core.numbers.Rational

QNET, Release 2.0.0-dev

>>> hs = SpinSpace('s', spin=sympy.Rational(3, 2))
>>> hs.multiplicity == 4 == hs.dimension
True

Return type int

qnet.algebra.library.spin_algebra.SpinBasisKet(*numer_denom, hs)
Constructor for a BasisKet for a SpinSpace

For a half-integer spin system:

>>> hs = SpinSpace('s', spin=(3, 2))
>>> assert SpinBasisKet(1, 2, hs=hs) == BasisKet("+1/2", hs=hs)

For an integer spin system:

>>> hs = SpinSpace('s', spin=1)
>>> assert SpinBasisKet(1, hs=hs) == BasisKet("+1", hs=hs)

Note that BasisKet(1, hs=hs) with an integer index (which would hypothetically refer to
BasisKet("0", hs=hs) is not allowed for spin systems:

>>> BasisKet(1, hs=hs)
Traceback (most recent call last):

...
TypeError: label_or_index must be an instance of one of str, SpinIndex; not int

Raises

• TypeError – if hs is not a SpinSpace or the wrong number of positional arguments is
given

• ValueError – if any of the positional arguments are out range for the given hs

class qnet.algebra.library.spin_algebra.SpinOperator(*args, hs)
Bases: qnet.algebra.core.operator_algebra.LocalOperator

Base class for operators in a spin space

class qnet.algebra.library.spin_algebra.Jz(*, hs)
Bases: qnet.algebra.library.spin_algebra.SpinOperator

Spin (angular momentum) operator in z-direction

𝐽𝑧 is the 𝑧 component of a general spin operator acting on a particular SpinSpace hs of freedom with well
defined spin quantum number 𝑠. It is Hermitian:

>>> hs = SpinSpace(1, spin=(1, 2))
>>> print(ascii(Jz(hs=hs).adjoint()))
J_z^(1)

Jz, Jplus and Jminus satisfy the angular momentum commutator algebra:

>>> print(ascii((Jz(hs=hs) * Jplus(hs=hs) -
... Jplus(hs=hs)*Jz(hs=hs)).expand()))
J_+^(1)

>>> print(ascii((Jz(hs=hs) * Jminus(hs=hs) -

(continues on next page)

9.1. qnet package 121

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/exceptions.html#TypeError
https://docs.python.org/3.6/library/exceptions.html#ValueError

QNET, Release 2.0.0-dev

(continued from previous page)

... Jminus(hs=hs)*Jz(hs=hs)).expand()))
-J_-^(1)

>>> print(ascii((Jplus(hs=hs) * Jminus(hs=hs)
... - Jminus(hs=hs)*Jplus(hs=hs)).expand()))
2 * J_z^(1)
>>> Jplus(hs=hs).dag() == Jminus(hs=hs)
True
>>> Jminus(hs=hs).dag() == Jplus(hs=hs)
True

Printers should represent this operator with the default identifier:

>>> Jz._identifier
'J_z'

A custom identifier may be define using hs’s local_identifiers argument.

class qnet.algebra.library.spin_algebra.Jplus(*, hs)
Bases: qnet.algebra.library.spin_algebra.SpinOperator

Raising operator of a spin space

𝐽+ = 𝐽𝑥 + 𝑖𝐽𝑦 is the raising ladder operator of a general spin operator acting on a particular SpinSpace hs
with well defined spin quantum number 𝑠. It’s adjoint is the lowering operator:

>>> hs = SpinSpace(1, spin=(1, 2))
>>> print(ascii(Jplus(hs=hs).adjoint()))
J_-^(1)

Jz, Jplus and Jminus satisfy that angular momentum commutator algebra, see Jz

Printers should represent this operator with the default identifier:

>>> Jplus._identifier
'J_+'

A custom identifier may be define using hs’s local_identifiers argument.

class qnet.algebra.library.spin_algebra.Jminus(*, hs)
Bases: qnet.algebra.library.spin_algebra.SpinOperator

Lowering operator on a spin space

𝐽− = 𝐽𝑥 − 𝑖𝐽𝑦 is the lowering ladder operator of a general spin operator acting on a particular SpinSpace hs
with well defined spin quantum number 𝑠. It’s adjoint is the raising operator:

>>> hs = SpinSpace(1, spin=(1, 2))
>>> print(ascii(Jminus(hs=hs).adjoint()))
J_+^(1)

Jz, Jplus and Jminus satisfy that angular momentum commutator algebra, see Jz.

Printers should represent this operator with the default identifier:

>>> Jminus._identifier
'J_-'

A custom identifier may be define using hs’s local_identifiers argument.

122 Chapter 9. API

QNET, Release 2.0.0-dev

qnet.algebra.library.spin_algebra.Jpjmcoeff(ls, m, shift=False)
Eigenvalue of the 𝐽+ (Jplus) operator

𝐽+𝑠,𝑚 =
√︀
𝑠(𝑠+ 1) −𝑚(𝑚+ 1)𝑠,𝑚

where the multiplicity 𝑠 is implied by the size of the Hilbert space ls: there are 2𝑠 + 1 eigenstates with 𝑚 =
−𝑠,−𝑠+ 1, . . . , 𝑠.

Parameters

• ls (LocalSpace) – The Hilbert space in which the 𝐽+ operator acts.

• m (str or int) – If str, the label of the basis state of hs to which the operator is applied.
If integer together with shift=True, the zero-based index of the basis state. Otherwise,
directly the quantum number 𝑚.

• shift (bool) – If True for a integer value of m, treat m as the zero-based index of the
basis state (i.e., shift m down by 𝑠 to obtain the quantum number m)

Return type Expr

qnet.algebra.library.spin_algebra.Jzjmcoeff(ls, m, shift)
Eigenvalue of the 𝐽𝑧 (Jz) operator

𝐽𝑧𝑠,𝑚 = 𝑚𝑠,𝑚

See also Jpjmcoeff().

Return type Expr

qnet.algebra.library.spin_algebra.Jmjmcoeff(ls, m, shift)
Eigenvalue of the 𝐽− (Jminus) operator

𝐽−𝑠,𝑚 =
√︀
𝑠(𝑠+ 1) −𝑚(𝑚− 1)𝑠,𝑚

See also Jpjmcoeff().

Return type Expr

Summary

__all__ Classes:

Beamsplitter Infinite bandwidth beamsplitter component.
CoherentDriveCC Coherent displacement of the input field
Create Bosonic creation operator
Destroy Bosonic annihilation operator
Displace Unitary coherent displacement operator
Jminus Lowering operator on a spin space
Jplus Raising operator of a spin space
Jz Spin (angular momentum) operator in z-direction
Phase Unitary “phase” operator
PhaseCC Coherent phase shift cicuit component
SpinOperator Base class for operators in a spin space
SpinSpace A Hilbert space for an integer or half-integer spin system
Squeeze Unitary squeezing operator

__all__ Functions:

9.1. qnet package 123

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.sympy.org/latest/modules/core.html#sympy.core.expr.Expr
https://docs.sympy.org/latest/modules/core.html#sympy.core.expr.Expr
https://docs.sympy.org/latest/modules/core.html#sympy.core.expr.Expr

QNET, Release 2.0.0-dev

PauliX Pauli-type X-operator
PauliY Pauli-type Y-operator
PauliZ Pauli-type Z-operator
SpinBasisKet Constructor for a BasisKet for a SpinSpace

qnet.algebra.pattern_matching package

QNET’s pattern matching engine.

Patterns may be constructed by either instantiating a Pattern instance directly, or (preferred) by calling the
pattern(), pattern_head(), or wc() helper routines.

The pattern may then be matched against an expression using match_pattern(). The result of a match is a
MatchDict object, which evaluates to True or False in a boolean context to indicate the success or failure of the
match (or alternatively, through the success attribute). The MatchDict object also maps any wildcard names to the
expression that the corresponding wildcard Pattern matches.

Summary

__all__ Classes:

MatchDict Result of a Pattern.match()
Pattern Pattern for matching an expression

Private Classes:

ProtoExpr Object representing an un-instantiated Expression

__all__ Functions:

match_pattern Recursively match expr with the given expr_or_pattern
pattern ‘Flat’ constructor for the Pattern class
pattern_head Constructor for a Pattern matching a ProtoExpr
wc Constructor for a wildcard-Pattern

Reference

class qnet.algebra.pattern_matching.MatchDict(*args)
Bases: collections.OrderedDict

Result of a Pattern.match()

Dictionary of wildcard names to expressions. Once the value for a key is set, attempting to set it again with
a different value raises a KeyError. The attribute merge_lists may be set to modify this behavior for values
that are lists: If it is set to a value different from zero, two lists that are set via the same key are merged. If
merge_lists is negative, the new values are appended to the existing values; if it is positive, the new values are
prepended.

In a boolean context, a MatchDict always evaluates as True (even if empty, unlike a normal dictionary), unless
the success attribute is explicitly set to False (which a failed Pattern.match() should do)

124 Chapter 9. API

https://docs.python.org/3.6/library/collections.html#collections.OrderedDict
https://docs.python.org/3.6/library/exceptions.html#KeyError

QNET, Release 2.0.0-dev

Attributes

• success (bool) – Value of the MatchDict object in a boolean context: bool(match)
== match.success

• reason (str) – If success is False, string explaining why the match failed

• merge_lists (int) – Code that indicates how to combine multiple values that are lists

update(*others)
Update dict with entries from other

If other has an attribute success=False and reason, those attributes are copied as well

class qnet.algebra.pattern_matching.Pattern(head=None, args=None, kwargs=None,
*, mode=1, wc_name=None, condi-
tions=None)

Bases: object

Pattern for matching an expression

Parameters

• head (type or None) – The type (or tuple of types) of the expression that can be
matched. If None, any type of Expression matches

• args (list or None) – List or tuple of positional arguments of the matched Expression
(cf. Expression.args). Each element is an expression (to be matched exactly) or another
Pattern instance (matched recursively). If None, no arguments are checked

• kwargs (dict or None) – Dictionary of keyword arguments of the expression (cf. Ex-
pression.kwargs). As for args, each value is an expression or Pattern instance.

• mode (int) – If the pattern is used to match the arguments of an expression, code to in-
dicate how many arguments the Pattern can consume: Pattern.single, Pattern.one_or_more,
Pattern.zero_or_more

• wc_name (str or None) – If pattern matches an expression, key in the resulting
MatchDict for the expression. If None, the match will not be recorded in the result

• conditions (list of callables, or None) – If not None, a list of callables
that take expr and return a boolean value. If the return value is False, the pattern is deter-
mined not to match expr.

Note: For (sub-)patterns that occur nested in the args attribute of another pattern, only the first or last sub-
pattern may have a mode other than Pattern.single. This also implies that only one of the args may have a
mode other than Pattern.single. This restrictions ensures that patterns can be matched without backtracking,
thus guaranteeing numerical efficiency.

Example

Consider the following nested circuit expression:

>>> C1 = CircuitSymbol('C1', cdim=3)
>>> C2 = CircuitSymbol('C2', cdim=3)
>>> C3 = CircuitSymbol('C3', cdim=3)
>>> C4 = CircuitSymbol('C4', cdim=3)
>>> perm1 = CPermutation((2, 1, 0))
>>> perm2 = CPermutation((0, 2, 1))

(continues on next page)

9.1. qnet package 125

https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/functions.html#type
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/constants.html#None

QNET, Release 2.0.0-dev

(continued from previous page)

>>> concat_expr = Concatenation(
... (C1 << C2 << perm1),
... (C3 << C4 << perm2))

We may match this with the following pattern:

>>> conditions = [lambda c: c.cdim == 3,
... lambda c: c.label[0] == 'C']
>>> A__Circuit = wc("A__", head=CircuitSymbol,
... conditions=conditions)
>>> C__Circuit = wc("C__", head=CircuitSymbol,
... conditions=conditions)
>>> B_CPermutation = wc("B", head=CPermutation)
>>> D_CPermutation = wc("D", head=CPermutation)
>>> pattern_concat = pattern(
... Concatenation,
... pattern(SeriesProduct, A__Circuit, B_CPermutation),
... pattern(SeriesProduct, C__Circuit, D_CPermutation))
>>> m = pattern_concat.match(concat_expr)

The match returns the following dictionary:

>>> result = {'A': [C1, C2], 'B': perm1, 'C': [C3, C4], 'D': perm2}
>>> assert m == result

single = 1

one_or_more = 2

zero_or_more = 3

extended_arg_patterns()
Iterator over patterns for positional arguments to be matched

This yields the elements of args, extended by their mode value

match(expr)
Match the given expression (recursively)

Returns a MatchDict instance that maps any wildcard names to the expressions that the correspond-
ing wildcard pattern matches. For (sub-)pattern that have a mode attribute other than Pattern.single, the
wildcard name is mapped to a list of all matched expression.

If the match is successful, the resulting MatchDict instance will evaluate to True in a boolean context.
If the match is not successful, it will evaluate as False, and the reason for failure is available in the reason
attribute of the MatchDict object.

Return type MatchDict

findall(expr)
list of all matching (sub-)expressions in expr

See also:

finditer() yields the matches (MatchDict instances) for the matched expressions.

finditer(expr)
Return an iterator over all matches in expr

Iterate over all MatchDict results of matches for any matching (sub-)expressions in expr. The order of
the matches conforms to the equivalent matched expressions returned by findall().

126 Chapter 9. API

QNET, Release 2.0.0-dev

wc_names
Set of all wildcard names occurring in the pattern

qnet.algebra.pattern_matching.pattern(head, *args, mode=1, wc_name=None, condi-
tions=None, **kwargs)

‘Flat’ constructor for the Pattern class

Positional and keyword arguments are mapped into args and kwargs, respectively. Useful for defining rules that
match an instantiated Expression with specific arguments

Return type Pattern

qnet.algebra.pattern_matching.pattern_head(*args, conditions=None, wc_name=None,
**kwargs)

Constructor for a Pattern matching a ProtoExpr

The patterns associated with _rules and _binary_rules of an Expression subclass, or those passed to
Expression.add_rule(), must be instantiated through this routine. The function does not allow to set a
wildcard name (wc_name must not be given / be None)

Return type Pattern

qnet.algebra.pattern_matching.wc(name_mode=’_’, head=None, args=None, kwargs=None, *,
conditions=None)

Constructor for a wildcard-Pattern

Helper function to create a Pattern object with an emphasis on wildcard patterns, if we don’t care about the
arguments of the matched expressions (otherwise, use pattern())

Parameters

• name_mode (str) – Combined wc_name and mode for Pattern constructor argument.
See below for syntax

• head (type, or None) – See Pattern

• args (list or None) – See Pattern

• kwargs (dict or None) – See Pattern

• conditions (list or None) – See Pattern

The name_mode argument uses trailing underscored to indicate the mode:

• A -> Pattern(wc_name="A", mode=Pattern.single, ...)

• A_ -> Pattern(wc_name="A", mode=Pattern.single, ...)

• B__ -> Pattern(wc_name="B", mode=Pattern.one_or_more, ...)

• B___ -> Pattern(wc_name="C", mode=Pattern.zero_or_more, ...)

Return type Pattern

class qnet.algebra.pattern_matching.ProtoExpr(args, kwargs, cls=None)
Bases: collections.abc.Sequence

Object representing an un-instantiated Expression

A ProtoExpr may be matched by a Pattern created via pattern_head(). This is used in
Expression.create(): before an expression is instantiated, a ProtoExpr is constructed with the po-
sitional and keyword arguments passed to create(). Then, this ProtoExpr is matched against all the
automatic rules create() knows about.

Parameters

9.1. qnet package 127

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#type
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/collections.abc.html#collections.abc.Sequence

QNET, Release 2.0.0-dev

• args (list) – positional arguments that would be used in the instantiation of the Expres-
sion

• kwargs (dict) – keyword arguments. Will we converted to an OrderedDict

• cls (class or None) – The class of the Expression that will ultimately be instantiated.

The combined values of args and kwargs are accessible as a (mutable) sequence.

instantiate(cls=None)
Return an instantiated Expression as cls.create(*self.args, **self.kwargs)

Parameters

• cls (class) – The class of the instantiated expression. If not

• self.cls will be used. (given,) –

classmethod from_expr(expr)
Instantiate proto-expression from the given Expression

qnet.algebra.pattern_matching.match_pattern(expr_or_pattern, expr)
Recursively match expr with the given expr_or_pattern

Parameters

• expr_or_pattern (object) – either a direct expression (equal to expr for a successful
match), or an instance of Pattern.

• expr (object) – the expression to be matched

Return type MatchDict

qnet.algebra.toolbox package

Collection of tools to manually manipulate algebraic expressions

Submodules:

qnet.algebra.toolbox.circuit_manipulation module

Summary

Functions:

connect Connect a list of components according to a list of con-
nections.

__all__: connect

Reference

qnet.algebra.toolbox.circuit_manipulation.connect(components, connections,
force_SLH=False, ex-
pand_simplify=True)

Connect a list of components according to a list of connections.

Parameters

128 Chapter 9. API

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/collections.html#collections.OrderedDict
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/functions.html#object

QNET, Release 2.0.0-dev

• components (list) – List of Circuit instances

• connections (list) – List of pairs ((c1, port1), (c2, port2)) where c1
and c2 are elements of components (or the index of the element in components), and port1
and port2 are the indices (or port names) of the ports of the two components that should
be connected

• force_SLH (bool) – If True, convert the result to an SLH object

• expand_simplify (bool) – If the result is an SLH object, expand and simplify the
circuit after each feedback connection is added

Example

>>> A = CircuitSymbol('A', cdim=2)
>>> B = CircuitSymbol('B', cdim=2)
>>> BS = Beamsplitter()
>>> circuit = connect(
... components=[A, B, BS],
... connections=[
... ((A, 0), (BS, 'in')),
... ((BS, 'tr'), (B, 0)),
... ((A, 1), (B, 1))])
>>> print(unicode(circuit).replace('cid(1)', '1'))
(B 1) Perm(0, 2, 1) (BS(𝜋/4) 1) Perm(0, 2, 1) (A 1)

The above example corresponds to the circuit diagram:

> > >
A BS(𝜋/4) B

> > >

Raises ValueError – if connections includes any invalid entries

Note: The list of components may contain duplicate entries, but in this case you must use a positional index
in connections to refer to any duplicate component. Alternatively, use unique components by defining different
labels.

qnet.algebra.toolbox.commutator_manipulation module

Summary

Functions:

expand_commutators_leibniz Recursively expand commutators in expr according to
the Leibniz rule.

__all__: expand_commutators_leibniz

9.1. qnet package 129

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/exceptions.html#ValueError

QNET, Release 2.0.0-dev

Reference

qnet.algebra.toolbox.commutator_manipulation.expand_commutators_leibniz(expr,
ex-
pand_expr=True)

Recursively expand commutators in expr according to the Leibniz rule.

[𝐴𝐵,𝐶] = 𝐴[𝐵,𝐶] + [𝐴,𝐶]𝐵

[𝐴,𝐵𝐶] = [𝐴,𝐵]𝐶 +𝐵[𝐴,𝐶]

If expand_expr is True, expand products of sums in expr, as well as in the result.

qnet.algebra.toolbox.core module

Summary

Functions:

no_instance_caching Temporarily disable instance caching in create()
symbols The symbols() function from SymPy
temporary_instance_cache Use a temporary cache for instances in create()
temporary_rules Allow temporary modification of rules for create()

__all__: no_instance_caching, symbols, temporary_instance_cache, temporary_rules

Reference

qnet.algebra.toolbox.core.no_instance_caching()
Temporarily disable instance caching in create()

Within the managed context, create() will not use any caching, for any class.

qnet.algebra.toolbox.core.temporary_instance_cache(*classes)
Use a temporary cache for instances in create()

The instance cache used by create() for any of the given classes will be cleared upon entering the managed
context, and restored on leaving it. That is, no cached instances from outside of the managed context will be
used within the managed context, and vice versa

qnet.algebra.toolbox.core.temporary_rules(*classes, clear=False)
Allow temporary modification of rules for create()

For every one of the given classes, protect the rules (processed by match_replace() or
match_replace_binary()) associated with that class from modification beyond the managed context.
Implies temporary_instance_cache(). If clear is given as True, all existing rules are temporarily
cleared from the given classes on entering the managed context.

Within the managed context, add_rule() may be used for any class in classes to define local rules, or
del_rules() to disable specific existing rules (assuming clear is False). Upon leaving the managed con-
text all original rules will be restored, removing any local rules.

The classes’ simplifications attribute is also protected from permanent modification. Locally modifying
simplifications should be done with care, but allows complete control over the creation of expressions.

130 Chapter 9. API

https://docs.sympy.org/latest/modules/core.html#sympy.core.symbol.symbols

QNET, Release 2.0.0-dev

qnet.algebra.toolbox.core.symbols(names, **args)
The symbols() function from SymPy

This can be used to generate QNET symbols as well:

>>> A, B, C = symbols('A B C', cls=OperatorSymbol, hs=0)
>>> srepr(A)
"OperatorSymbol('A', hs=LocalSpace('0'))"
>>> C1, C2 = symbols('C_1:3', cls=CircuitSymbol, cdim=2)
>>> srepr(C1)
"CircuitSymbol('C_1', cdim=2)"

Basically, the cls keyword argument can be any instantiator, i.e. a class or callable that receives a symbol name
as the single positional argument. Any keyword arguments not handled by symbols() directly (see sympy.
core.symbol.symbols() documentation) is passed on to the instantiator. Obviously, this is extremely
flexible.

Note: symbol() does not pass positional arguments to the instantiator. Two possible workarounds to create
symbols with e.g. a scalar argument are:

>>> t = symbols('t', positive=True)
>>> A_t, B_t = symbols(
... 'A B', cls=lambda s: OperatorSymbol(s, t, hs=0))
>>> srepr(A_t, cache={t: 't'})
"OperatorSymbol('A', t, hs=LocalSpace('0'))"
>>> A_t, B_t = (OperatorSymbol(s, t, hs=0) for s in ('A', 'B'))
>>> srepr(B_t, cache={t: 't'})
"OperatorSymbol('B', t, hs=LocalSpace('0'))"

qnet.algebra.toolbox.equation module

Tools for working with equations

Summary

Classes:

Eq Symbolic equation

__all__: Eq

Reference

class qnet.algebra.toolbox.equation.Eq(lhs, rhs, tag=None, _prev_lhs=None,
_prev_rhs=None, _prev_tags=None)

Bases: object

Symbolic equation

This class keeps track of the lhs and rhs of an equation across arbitrary manipulations

Parameters

9.1. qnet package 131

https://docs.sympy.org/latest/modules/core.html#sympy.core.symbol.symbols
https://docs.sympy.org/latest/modules/core.html#sympy.core.symbol.symbols
https://docs.sympy.org/latest/modules/core.html#sympy.core.symbol.symbols
https://docs.python.org/3.6/library/functions.html#object

QNET, Release 2.0.0-dev

• lhs (Expression) – the left-hand-side of the equation

• rhs (Expression) – the right-hand-side of the equation

• tag (None or str) – a tag (equation number) to be shown when printing the equation

Example

>>> 𝜔, E0 = sympy.symbols('omega, E_0')
>>> hbar = sympy.symbols('hbar', positive=True)
>>> H_0, H_1 = (OperatorSymbol(s, hs=0) for s in ('H_0', 'H_1'))
>>> H = OperatorSymbol('H', hs=0)
>>> mu = OperatorSymbol('mu', hs=0)
>>> eq0 = Eq(H_0, 𝜔 * Create(hs=0) * Destroy(hs=0) + E0, tag='0')
>>> print(unicode(eq0, show_hs_label=False))
H0 = E0 + 𝜔 a^† a (0)
>>> eq1 = Eq(H_1, mu + E0, tag='1')
>>> print(unicode(eq1, show_hs_label=False))
H1 = E0 + 𝜇 (1)
>>> eq = (
... (eq0 + eq1).set_tag('2')
... .apply_to_rhs(lambda expr: expr - 2*E0, cont=True)
... .apply(lambda expr: expr * hbar, cont=True)
... .apply_mtd_to_lhs(
... 'substitute', var_map={H_0 + H_1: H}, cont=True)
... .apply(lambda expr: expr**2, cont=True)
... .apply_mtd_to_rhs('substitute', var_map={mu: 0}, cont=True)
... .apply_mtd_to_rhs('expand', cont=True, tag='')
...)
>>> print(unicode(eq, show_hs_label=False))

H0 + H1 = 2 E0 + 𝜇 + 𝜔 a^† a (2)
= 𝜇 + 𝜔 a^† a

h (H0 + H1) = h (𝜇 + 𝜔 a^† a)
h H = h (𝜇 + 𝜔 a^† a)

h2 H H = h2 (𝜇 + 𝜔 a^† a) (𝜇 + 𝜔 a^† a)
= h2 𝜔2 a^† (+ a^† a) a
= h2 𝜔2 a^† a^† a a + h2 𝜔2 a^† a ()

>>> (eq
... .apply_mtd_to_lhs('substitute', eq.as_dict)
... .verify().is_zero)
True

lhs
The left-hand-side of the equation

rhs
The right-hand-side of the equation

tag
A tag (equation number) to be shown when printing the equation, or None

set_tag(tag)
Return a copy of the equation with a new tag

as_dict
Mapping of the lhs to the rhs

This allows to plug an equation into another expression via substitute().

132 Chapter 9. API

https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str

QNET, Release 2.0.0-dev

apply(func, *args, cont=False, tag=None, **kwargs)
Apply func to both sides of the equation

Returns a new equation where the left-hand-side and right-hand side are replaced by the application of
func:

lhs=func(lhs, *args, **kwargs)
rhs=func(rhs, *args, **kwargs)

If cont=True, the resulting equation will keep a history of its previous state (resulting in multiple lines
of equations when printed, as in the main example above).

The resulting equation with have the given tag.

apply_to_lhs(func, *args, cont=False, tag=None, **kwargs)
Apply func to lhs of equation only

Like apply(), but modifying only the left-hand-side.

apply_to_rhs(func, *args, cont=False, tag=None, **kwargs)
Apply func to rhs of equation only

Like apply(), but modifying only the right-hand-side.

apply_mtd(mtd, *args, cont=False, tag=None, **kwargs)
Call the method mtd on both sides of the equation

That is, the left-hand-side and right-hand-side are replaced by:

lhs=lhs.<mtd>(*args, **kwargs)
rhs=rhs.<mtd>(*args, **kwargs)

The cont and tag parameters are as in apply().

apply_mtd_to_lhs(mtd, *args, cont=False, tag=None, **kwargs)
Call the method mtd on the lhs of the equation only.

Like apply_mtd(), but modifying only the left-hand-side.

apply_mtd_to_rhs(mtd, *args, cont=False, tag=None, **kwargs)
Call the method mtd on the rhs of the equation

Like apply_mtd(), but modifying only the right-hand-side.

substitute(var_map, cont=False, tag=None)
Substitute sub-expressions both on the lhs and rhs

Parameters var_map (dict) – Dictionary with entries of the form {expr:
substitution}

verify(func=None, *args, **kwargs)
Subtract the rhs from the lhs of the equation

Before the substraction, each side is expanded and any scalars are simplified. If given, func with the
positional arguments args and keyword-arguments kwargs is applied to the result before returning it.

You may complete the verification by checking the is_zero attribute of the returned expression.

copy()
Return a copy of the equation

free_symbols
Set of free SymPy symbols contained within the equation.

9.1. qnet package 133

https://docs.python.org/3.6/library/stdtypes.html#dict

QNET, Release 2.0.0-dev

bound_symbols
Set of bound SymPy symbols contained within the equation.

all_symbols
Combination of free_symbols and bound_symbols

Summary

__all__ Classes:

Eq Symbolic equation

__all__ Functions:

connect Connect a list of components according to a list of connections.
expand_commutators_leibniz Recursively expand commutators in expr according to the Leibniz rule.
no_instance_caching Temporarily disable instance caching in create()
symbols The symbols() function from SymPy
temporary_instance_cache Use a temporary cache for instances in create()
temporary_rules Allow temporary modification of rules for create()

Summary

__all__ Exceptions:

AlgebraError Base class for all algebraic errors
AlgebraException Base class for all algebraic exceptions
BadLiouvillianError Raised when a Liouvillian is not of standard Lindblad form.
BasisNotSetError Raised if the basis or a Hilbert space dimension is unavailable
CannotConvertToSLH Raised when a circuit algebra object cannot be converted to SLH
CannotEliminateAutomatically Raised when attempted automatic adiabatic elimination fails.
CannotSimplify Raised when a rule cannot further simplify an expression
CannotSymbolicallyDiagonalize Matrix cannot be diagonalized analytically.
CannotVisualize Raised when a circuit cannot be visually represented.
IncompatibleBlockStructures Raised for invalid block-decomposition
InfiniteSumError Raised when expanding a sum into an infinite number of terms
NoConjugateMatrix Raised when entries of Matrix have no defined conjugate
NonSquareMatrix Raised when a Matrix fails to be square
OverlappingSpaces Raised when objects fail to be in separate Hilbert spaces.
SpaceTooLargeError Raised when objects fail to be have overlapping Hilbert spaces.
UnequalSpaces Raised when objects fail to be in the same Hilbert space.
WrongCDimError Raised for mismatched channel number in circuit series

__all__ Classes:

Adjoint Symbolic Adjoint of an operator
BasisKet Local basis state, identified by index or label
Beamsplitter Infinite bandwidth beamsplitter component.
Bra The associated dual/adjoint state for any ket

Continued on next page

134 Chapter 9. API

https://docs.sympy.org/latest/modules/core.html#sympy.core.symbol.symbols

QNET, Release 2.0.0-dev

Table 37 – continued from previous page
BraKet The symbolic inner product between two states
CPermutation Channel permuting circuit
Circuit Base class for the circuit algebra elements
CircuitSymbol Symbolic circuit element
CoherentDriveCC Coherent displacement of the input field
CoherentStateKet Local coherent state, labeled by a complex amplitude
Commutator Commutator of two operators
Component Base class for circuit components
Concatenation Concatenation of circuit elements
Create Bosonic creation operator
Destroy Bosonic annihilation operator
Displace Unitary coherent displacement operator
Eq Symbolic equation
Expression Base class for all QNET Expressions
Feedback Feedback on a single channel of a circuit
HilbertSpace Base class for Hilbert spaces
IndexedSum Base class for indexed sums
Jminus Lowering operator on a spin space
Jplus Raising operator of a spin space
Jz Spin (angular momentum) operator in z-direction
KetBra Outer product of two states
KetIndexedSum Indexed sum over Kets
KetPlus Sum of states
KetSymbol Symbolic state
LocalKet A state on a LocalSpace
LocalOperator Base class for “known” operators on a LocalSpace
LocalSigma Level flip operator between two levels of a LocalSpace
LocalSpace Hilbert space for a single degree of freedom.
MatchDict Result of a Pattern.match()
Matrix Matrix of Expressions
NullSpaceProjector Projection operator onto the nullspace of its operand
Operation Base class for “operations”
Operator Base class for all quantum operators.
OperatorDerivative Symbolic partial derivative of an operator
OperatorIndexedSum Indexed sum over operators
OperatorPlus Sum of Operators
OperatorPlusMinusCC An operator plus or minus its complex conjugate
OperatorSymbol Symbolic operator
OperatorTimes Product of operators
OperatorTimesKet Product of an operator and a state.
OperatorTrace (Partial) trace of an operator
Pattern Pattern for matching an expression
Phase Unitary “phase” operator
PhaseCC Coherent phase shift cicuit component
ProductSpace Tensor product of local Hilbert spaces
PseudoInverse Unevaluated pseudo-inverse 𝑋+ of an operator 𝑋
QuantumAdjoint Base class for adjoints of quantum expressions
QuantumDerivative Symbolic partial derivative
QuantumExpression Base class for expressions associated with a Hilbert space
QuantumIndexedSum Base class for indexed sums

Continued on next page

9.1. qnet package 135

QNET, Release 2.0.0-dev

Table 37 – continued from previous page
QuantumOperation Base class for operations on quantum expression
QuantumPlus General implementation of addition of quantum expressions
QuantumSymbol Symbolic element of an algebra
QuantumTimes General implementation of product of quantum expressions
SLH Element of the SLH algebra
SPost Linear post-multiplication operator
SPre Linear pre-multiplication operator
Scalar Base class for Scalars
ScalarDerivative Symbolic partial derivative of a scalar
ScalarExpression Base class for scalars with non-scalar arguments
ScalarIndexedSum Indexed sum over scalars
ScalarPlus Sum of scalars
ScalarPower A scalar raised to a power
ScalarTimes Product of scalars
ScalarTimesKet Product of a Scalar coefficient and a ket
ScalarTimesOperator Product of a Scalar coefficient and an Operator
ScalarTimesQuantumExpression Product of a Scalar and a QuantumExpression
ScalarTimesSuperOperator Product of a Scalar coefficient and a SuperOperator
ScalarValue Wrapper around a numeric or symbolic value
SeriesInverse Symbolic series product inversion operation
SeriesProduct The series product circuit operation.
SingleQuantumOperation Base class for operations on a single quantum expression
SpinOperator Base class for operators in a spin space
SpinSpace A Hilbert space for an integer or half-integer spin system
Squeeze Unitary squeezing operator
State Base class for states in a Hilbert space
StateDerivative Symbolic partial derivative of a state
SuperAdjoint Adjoint of a super-operator
SuperOperator Base class for super-operators
SuperOperatorDerivative Symbolic partial derivative of a super-operator
SuperOperatorPlus A sum of super-operators
SuperOperatorSymbol Symbolic super-operator
SuperOperatorTimes Product of super-operators
SuperOperatorTimesOperator Application of a super-operator to an operator
TensorKet A tensor product of kets

__all__ Functions:

FB Wrapper for Feedback, defaulting to last channel
KroneckerDelta Kronecker delta symbol
LocalProjector A projector onto a specific level of a LocalSpace
PauliX Pauli-type X-operator
PauliY Pauli-type Y-operator
PauliZ Pauli-type Z-operator
SpinBasisKet Constructor for a BasisKet for a SpinSpace
Sum Instantiator for an arbitrary indexed sum.
adjoint Return the adjoint of an obj.
anti_commutator If B != None, return the anti-commutator {𝐴,𝐵}, otherwise return the super-operator {𝐴, ·}.
block_matrix Generate the operator matrix with quadrants
circuit_identity Return the circuit identity for n channels

Continued on next page

136 Chapter 9. API

QNET, Release 2.0.0-dev

Table 38 – continued from previous page
commutator Commutator of A and B
connect Connect a list of components according to a list of connections.
decompose_space Simplifies OperatorTrace expressions over tensor-product spaces by turning it into iterated partial traces.
diagm Generalizes the diagonal matrix creation capabilities of numpy.diag to Matrix objects.
eval_adiabatic_limit Compute the limiting SLH model for the adiabatic approximation
expand_commutators_leibniz Recursively expand commutators in expr according to the Leibniz rule.
extract_channel Create a CPermutation that extracts channel k
factor_coeff Factor out coefficients of all factors.
factor_for_trace Given a LocalSpace ls to take the partial trace over and an operator op, factor the trace such that operators acting on disjoint degrees of freedom are pulled out of the trace.If the operator acts trivially on ls the trace yields only a pre-factor equal to the dimension of ls.If there are LocalSigma operators among a product, the trace’s cyclical property is used to move to sandwich the full product by LocalSigma operators:.
getABCD Calculate the ABCD-linearization of an SLH model
get_coeffs Create a dictionary with all Operator terms of the expression (understood as a sum) as keys and their coefficients as values.
hstackm Generalizes numpy.hstack to Matrix objects.
identity_matrix Generate the N-dimensional identity matrix.
init_algebra Initialize the algebra system
lindblad Return the super-operator Lindblad term of the Lindblad operator C
liouvillian Return the Liouvillian super-operator associated with H and Ls
liouvillian_normal_form Return a Hamilton operator H and a minimal list of collapse operators Ls that generate the liouvillian L.
map_channels Create a CPermuation based on a dict of channel mappings
match_pattern Recursively match expr with the given expr_or_pattern
move_drive_to_H Move coherent drives from the Lindblad operators to the Hamiltonian.
no_instance_caching Temporarily disable instance caching in create()
pad_with_identity Pad a circuit by adding a n-channel identity circuit at index k
pattern ‘Flat’ constructor for the Pattern class
pattern_head Constructor for a Pattern matching a ProtoExpr
prepare_adiabatic_limit Prepare the adiabatic elimination on an SLH object
rewrite_with_operator_pm_cc Try to rewrite expr using OperatorPlusMinusCC
sqrt Square root of a Scalar or scalar value
substitute Substitute symbols or (sub-)expressions with the given replacements and re-evalute the result
symbols The symbols() function from SymPy
temporary_instance_cache Use a temporary cache for instances in create()
temporary_rules Allow temporary modification of rules for create()
try_adiabatic_elimination Attempt to automatically do adiabatic elimination on an SLH object
vstackm Generalizes numpy.vstack to Matrix objects.
wc Constructor for a wildcard-Pattern
zerosm Generalizes numpy.zeros to Matrix objects.

__all__ Data:

9.1. qnet package 137

https://docs.sympy.org/latest/modules/core.html#sympy.core.symbol.symbols

QNET, Release 2.0.0-dev

CIdentity Single pass-through channel; neutral element of SeriesProduct
CircuitZero Zero circuit, the neutral element of Concatenation
FullSpace The ‘full space’, i.e.
II IdentityOperator constant (singleton) object.
IdentityOperator IdentityOperator constant (singleton) object.
IdentitySuperOperator Neutral element for product of super-operators
One The neutral element with respect to scalar multiplication
TrivialKet TrivialKet constant (singleton) object.
TrivialSpace The ‘nullspace’, i.e.
Zero The neutral element with respect to scalar addition
ZeroKet ZeroKet constant (singleton) object for the null-state.
ZeroOperator ZeroOperator constant (singleton) object.
ZeroSuperOperator Neutral element for sum of super-operators
tr Instantiate while applying automatic simplifications

Reference

qnet.algebra.init_algebra(*, default_hs_cls=’LocalSpace’)
Initialize the algebra system

Parameters default_hs_cls (str) – The name of the LocalSpace subclass that should be
used when implicitly creating Hilbert spaces, e.g. in OperatorSymbol

9.1.2 qnet.convert package

Conversion to QuTiP and Sympy

Submodules:

qnet.convert.to_qutip module

Conversion of QNET expressions to qutip objects.

Summary

Functions:

SLH_to_qutip Generate and return QuTiP representation matrices for
the Hamiltonian and the collapse operators.

convert_to_qutip Convert a QNET expression to a qutip object

__all__: SLH_to_qutip, convert_to_qutip

Reference

qnet.convert.to_qutip.convert_to_qutip(expr, full_space=None, mapping=None)
Convert a QNET expression to a qutip object

Parameters

138 Chapter 9. API

https://docs.python.org/3.6/library/stdtypes.html#str

QNET, Release 2.0.0-dev

• expr – a QNET expression

• full_space (HilbertSpace) – The Hilbert space in which expr is defined. If not
given, expr.space is used. The Hilbert space must have a well-defined basis.

• mapping (dict) – A mapping of any (sub-)expression to either a quip.Qobj directly, or
to a callable that will convert the expression into a qutip.Qobj. Useful for e.g. supplying
objects for symbols

Raises ValueError – if expr is not in full_space, or if expr cannot be converted.

qnet.convert.to_qutip.SLH_to_qutip(slh, full_space=None, time_symbol=None, con-
vert_as=’pyfunc’)

Generate and return QuTiP representation matrices for the Hamiltonian and the collapse operators. Any inho-
mogeneities in the Lindblad operators (resulting from coherent drives) will be moved into the Hamiltonian, cf.
move_drive_to_H().

Parameters

• slh (SLH) – The SLH object from which to generate the qutip data

• full_space (HilbertSpace or None) – The Hilbert space in which to represent
the operators. If None, the space of shl will be used

• time_symbol (sympy.Symbol or None) – The symbol (if any) expressing time depen-
dence (usually ‘t’)

• convert_as (str) – How to express time dependencies to qutip. Must be ‘pyfunc’ or
‘str’

Returns tuple (H, [L1, L2, ...]) as numerical qutip.Qobj representations, where H and
each L may be a nested list to express time dependence, e.g. H = [H0, [H1, eps_t]],
where H0 and H1 are of type qutip.Qobj, and eps_t is either a string (convert_as='str')
or a function (convert_as='pyfunc')

Raises AlgebraError – If the Hilbert space (slh.space or full_space) is invalid for numerical
conversion

qnet.convert.to_sympy_matrix module

Conversion of QNET expressions to sympy matrices. For small Hilbert spaces, this facilitates some analytic treat-
ments, such as decomposition into a basis.

Summary

Functions:

SympyCreate Creation operator for a Hilbert space of dimension n, as
an instance of sympy.Matrix

basis_state n x 1 sympy.Matrix representing the i’th eigenstate of
an n-dimensional Hilbert space (i >= 0)

convert_to_sympy_matrix Convert a QNET expression to an explicit n x n in-
stance of sympy.Matrix, where n is the dimension of
full_space.

__all__: convert_to_sympy_matrix

9.1. qnet package 139

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#str

QNET, Release 2.0.0-dev

Reference

qnet.convert.to_sympy_matrix.basis_state(i, n)
n x 1 sympy.Matrix representing the i’th eigenstate of an n-dimensional Hilbert space (i >= 0)

qnet.convert.to_sympy_matrix.SympyCreate(n)
Creation operator for a Hilbert space of dimension n, as an instance of sympy.Matrix

qnet.convert.to_sympy_matrix.convert_to_sympy_matrix(expr, full_space=None)
Convert a QNET expression to an explicit n x n instance of sympy.Matrix, where n is the dimension of
full_space. The entries of the matrix may contain symbols.

Parameters

• expr – a QNET expression

• full_space (qnet.algebra.hilbert_space_algebra.HilbertSpace) –
The Hilbert space in which expr is defined. If not given, expr.space is used. The Hilbert
space must have a well-defined basis.

Raises

• qnet.algebra.hilbert_space_algebra.BasisNotSetError – if full_space
does not have a defined basis

• ValueError – if expr is not in full_space, or if expr cannot be converted.

Summary

__all__ Functions:

SLH_to_qutip Generate and return QuTiP representation matrices for the Hamiltonian and the col-
lapse operators.

convert_to_qutip Convert a QNET expression to a qutip object
convert_to_sympy_matrixConvert a QNET expression to an explicit n x n instance of sympy.Matrix, where n

is the dimension of full_space.

9.1.3 qnet.printing package

Printing system for QNET Expressions and related objects

Submodules:

qnet.printing.asciiprinter module

ASCII Printer

Summary

Classes:

QnetAsciiDefaultPrinter Printer for an ASCII representation that accepts no set-
tings.

Continued on next page

140 Chapter 9. API

https://docs.python.org/3.6/library/exceptions.html#ValueError

QNET, Release 2.0.0-dev

Table 41 – continued from previous page
QnetAsciiPrinter Printer for a string (ASCII) representation.

Reference

class qnet.printing.asciiprinter.QnetAsciiPrinter(cache=None, settings=None)
Bases: qnet.printing.base.QnetBasePrinter

Printer for a string (ASCII) representation.

Attributes

• _parenth_left (str) – String to use for a left parenthesis (e.g. ‘left(‘ in LaTeX). Used by
_split_op()

• _parenth_left (str) – String to use for a right parenthesis

• _dagger_sym (str) – Symbol that indicates the complex conjugate of an operator. Used by
_split_op()

• _tensor_sym (str) – Symbol to use for tensor products. Used by _render_hs_label().

sympy_printer_cls
alias of qnet.printing.sympy.SympyStrPrinter

printmethod = '_ascii'

parenthesize(expr, level, *args, strict=False, **kwargs)
Render expr and wrap the result in parentheses if the precedence of expr is below the given level (or at the
given level if strict is True. Extra args and kwargs are passed to the internal doit renderer

class qnet.printing.asciiprinter.QnetAsciiDefaultPrinter
Bases: qnet.printing.asciiprinter.QnetAsciiPrinter

Printer for an ASCII representation that accepts no settings. This can be used internally when a well-defined,
static representation is needed (e.g. as a sort key)

qnet.printing.base module

Provides the base class for Printers

Summary

Classes:

QnetBasePrinter Base class for all QNET expression printers

Reference

class qnet.printing.base.QnetBasePrinter(cache=None, settings=None)
Bases: sympy.printing.printer.Printer

Base class for all QNET expression printers

Parameters

9.1. qnet package 141

https://docs.sympy.org/latest/modules/printing.html#sympy.printing.printer.Printer

QNET, Release 2.0.0-dev

• cache (dict or None) – A dict that maps expressions to strings. It may be given during
istantiation to use pre-defined strings for specific expressions. The cache will be updated as
the printer is used.

• settings (dict or None) – A dict of settings.

Class Attributes

• sympy_printer_cls (type) – The class that will be instantiated to print Sympy expressions

• _default_settings (dict) – The default value of all settings. Note only settings for which
there are defaults defined here are accepted when instantiating the printer

• printmethod (None or str) – Name of a method that expressions may define to print theme-
selves.

Attributes

• cache (dict) – Dictionary where the results of any call to doprint() is stored. When
doprint() is called for an expression that is already in cache, the result from the cache
is returned.

• _sympy_printer (sympy.printing.printer.Printer) – The printer instance that will be used to
print any Sympy expression.

• _allow_caching (bool) – A flag that may be set to completely disable caching

• _print_level (int) – The recursion depth of doprint() (>= 1 inside any of the _print*
methods)

Raises TypeError – If any key in settings is not defined in the _default_settings of the printer,
respectively the sympy_printer_cls.

sympy_printer_cls
alias of qnet.printing.sympy.SympyStrPrinter

printmethod = None

emptyPrinter(expr)
Fallback method for expressions that neither know how to print themeselves, nor for which the printer has
a suitable _print* method

doprint(expr, *args, **kwargs)
Returns printer’s representation for expr (as a string)

The representation is obtained by the following methods:

1. from the cache

2. If expr is a Sympy object, delegate to the doprint() method of _sympy_printer

3. Let the expr print itself if has the printmethod

4. Take the best fitting _print_* method of the printer

5. As fallback, delegate to emptyPrinter()

Any extra args or kwargs are passed to the internal _print method.

qnet.printing.dot module

DOT printer for Expressions.

This module provides the dotprint() function that generates a DOT diagram for a given expression. For example:

142 Chapter 9. API

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/exceptions.html#TypeError
https://docs.sympy.org/latest/modules/printing.html#sympy.printing.printer.Printer.doprint
http://www.graphviz.org
http://www.graphviz.org

QNET, Release 2.0.0-dev

>>> A = OperatorSymbol("A", hs=1)
>>> B = OperatorSymbol("B", hs=1)
>>> expr = 2 * (A + B)
>>> with configure_printing(str_format='unicode'):
... dot = dotprint(expr)
>>> dot.strip() == r'''
... digraph{
...
... # Graph style
... "ordering"="out"
... "rankdir"="TD"
...
... #########
... # Nodes #
... #########
...
... "node_(0, 0)" ["label"="ScalarTimesOperator"];
... "node_(1, 0)" ["label"="2"];
... "node_(1, 1)" ["label"="OperatorPlus"];
... "node_(2, 0)" ["label"="A1"];
... "node_(2, 1)" ["label"="B1"];
...
... #########
... # Edges #
... #########
...
... "node_(0, 0)" -> "node_(1, 0)"
... "node_(0, 0)" -> "node_(1, 1)"
... "node_(1, 1)" -> "node_(2, 0)"
... "node_(1, 1)" -> "node_(2, 1)"
... }'''.strip()
True

The dot commandline program renders the code into an image:

The various options of dotprint() allow for arbitrary customization of the graph’s structural and visual properties.

Summary

Functions:

dotprint Return the DOT (graph) description of an Expression
tree as a string

expr_labelfunc Factory for function labelfunc(expr,
is_leaf)

Reference

qnet.printing.dot.expr_labelfunc(leaf_renderer=<class ’str’>, fallback=<class ’str’>)
Factory for function labelfunc(expr, is_leaf)

It has the following behavior:

9.1. qnet package 143

http://www.graphviz.org

QNET, Release 2.0.0-dev

• If is_leaf is True, return leaf_renderer(expr).

• Otherwise,

– if expr is an Expression, return a custom string similar to srepr(), but with an ellipsis for args

– otherwise, return fallback(expr)

qnet.printing.dot.dotprint(expr, styles=None, maxdepth=None, repeat=True, label-
func=<function expr_labelfunc.<locals>._labelfunc>, idfunc=None,
get_children=<function _op_children>, **kwargs)

Return the DOT (graph) description of an Expression tree as a string

Parameters

• expr (object) – The expression to render into a graph. Typically an instance of
Expression, but with appropriate get_children, labelfunc, and id_func, this could be any
tree-like object

• styles (list or None) – A list of tuples (expr_filter, style_dict) where
expr_filter is a callable and style_dict is a list of DOT node properties that should
be used when rendering a node for which expr_filter(expr) return True.

• maxdepth (int or None) – The maximum depth of the resulting tree (any node at
maxdepth will be drawn as a leaf)

• repeat (bool) – By default, if identical sub-expressions occur in multiple locations (as
identified by idfunc, they will be repeated in the graph. If repeat=False is given, each
unique (sub-)expression is only drawn once. The resulting graph may no longer be a proper
tree, as recurring expressions will have multiple parents.

• labelfunc (callable) – A function that receives expr and a boolean is_leaf
and returns the label of the corresponding node in the graph. Defaults to
expr_labelfunc(str, str).

• idfunc (callable or None) – A function that returns the ID of the node representing
a given expression. Expressions for which idfunc returns identical results are considered
identical if repeat is False. The default value None uses a function that is appropriate to a
single standalone DOT file. If this is insufficient, something like hash or str would make
a good idfunc.

• get_children (callable) – A function that return a list of sub-expressions (the chil-
dren of expr). Defaults to the operands of an Operation (thus, anything that is not an
Operation is a leaf)

• kwargs – All further keyword arguments set custom DOT graph attributes

Returns a multiline str representing a graph in the DOT language

Return type str

Notes

The node styles are additive. For example, consider the following custom styles:

styles = [
(lambda expr: isinstance(expr, SCALAR_TYPES),

{'color': 'blue', 'shape': 'box', 'fontsize': 12}),
(lambda expr: isinstance(expr, Expression),

{'color': 'red', 'shape': 'box', 'fontsize': 12}),

(continues on next page)

144 Chapter 9. API

http://www.graphviz.org
https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/constants.html#None
http://www.graphviz.org
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/constants.html#None
http://www.graphviz.org
http://www.graphviz.org
https://docs.python.org/3.6/library/stdtypes.html#str

QNET, Release 2.0.0-dev

(continued from previous page)

(lambda expr: isinstance(expr, Operation),
{'color': 'black', 'shape': 'ellipse'})]

For Operations (which are a subclass of Expression) the color and shape are overwritten, while the fontsize 12
is inherited.

Keyword arguments are directly translated into graph styles. For example, in order to produce a horizontal
instead of vertical graph, use dotprint(..., rankdir='LR').

See also:

sympy.printing.dot.dotprint() provides an equivalent function for SymPy expressions.

qnet.printing.latexprinter module

Routines for rendering expressions to LaTeX

Summary

Classes:

QnetLatexPrinter Printer for a LaTeX representation.

Functions:

render_latex_sub_super Assemble a string from the primary name and the given
sub- and superscripts.

Reference

class qnet.printing.latexprinter.QnetLatexPrinter(cache=None, settings=None)
Bases: qnet.printing.asciiprinter.QnetAsciiPrinter

Printer for a LaTeX representation.

See qnet.printing.latex() for documentation of settings.

sympy_printer_cls
alias of qnet.printing.sympy.SympyLatexPrinter

printmethod = '_latex'

qnet.printing.latexprinter.render_latex_sub_super(name, subs=None, supers=None,
translate_symbols=True, sep=’, ’)

Assemble a string from the primary name and the given sub- and superscripts:

>>> render_latex_sub_super(name='alpha', subs=['mu', 'nu'], supers=[2])
'\\alpha_{\\mu,\\nu}^{2}'

>>> render_latex_sub_super(
... name='alpha', subs=['1', '2'], supers=['(1)'], sep='')
'\\alpha_{12}^{(1)}'

9.1. qnet package 145

https://docs.sympy.org/latest/modules/printing.html#sympy.printing.dot.dotprint

QNET, Release 2.0.0-dev

Parameters

• name (str) – the string without the subscript/superscript

• subs (list or None) – list of subscripts

• supers (list or None) – list of superscripts

• translate_symbols (bool) – If True, try to translate (Greek) symbols in name, ‘subs,
and supers to unicode

• sep (str) – Separator to use if there are multiple subscripts/superscripts

qnet.printing.sreprprinter module

Provides printers for a full-structured representation

Summary

Classes:

IndentedSReprPrinter Printer for rendering an expression in such a way that
the resulting string can be evaluated in an appropri-
ate context to re-instantiate an identical object, us-
ing nested indentation (implementing srepr(expr,
indented=True)

IndentedSympyReprPrinter Indented repr printer for Sympy objects
QnetSReprPrinter Printer for a string (ASCII) representation.

Reference

class qnet.printing.sreprprinter.QnetSReprPrinter(cache=None, settings=None)
Bases: qnet.printing.base.QnetBasePrinter

Printer for a string (ASCII) representation.

sympy_printer_cls
alias of qnet.printing.sympy.SympyReprPrinter

emptyPrinter(expr)
Fallback printer

class qnet.printing.sreprprinter.IndentedSympyReprPrinter(settings=None)
Bases: qnet.printing.sympy.SympyReprPrinter

Indented repr printer for Sympy objects

doprint(expr)
Returns printer’s representation for expr (as a string)

class qnet.printing.sreprprinter.IndentedSReprPrinter(cache=None, settings=None)
Bases: qnet.printing.base.QnetBasePrinter

Printer for rendering an expression in such a way that the resulting string can be evaluated in an appro-
priate context to re-instantiate an identical object, using nested indentation (implementing srepr(expr,
indented=True)

146 Chapter 9. API

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str

QNET, Release 2.0.0-dev

sympy_printer_cls
alias of IndentedSympyReprPrinter

emptyPrinter(expr)
Fallback printer

qnet.printing.sympy module

Custom Printers for Sympy expressions

These classes are used by default by the QNET printing systems as sub-printers for SymPy objects (e.g. for symbolic
coefficients). They fix some issues with SymPy’s builtin printers:

• factors like 1√
2

occur very commonly in quantum mechanics, and it is standard notation to write them as such.

SymPy insists on rationalizing denominators, using
√
2
2 instead. Our custom printers restore the canonical form.

Note that internally, Sympy still uses the rationalized structure; but in any case, Sympy makes no guarantees
between the algebraic structure of an expression and how it is printed.

• Symbols (especially greek letters) are extremely common, and it’s much more readable if the string rep-
resentation of an expression uses unicode for these. SymPy supports unicode “pretty-printing” (sympy.
printing.pretty.pretty.pretty_print()) only in “2D”, where expressions are rendered as mul-
tiline unicode strings. While this is fine for interactive display, it does not work so well for a simple str. The
SympyUnicodePrinter solves this by producing simple strings with unicode symbols.

• Some algebraic structures such as factorials, complex-conjugates and indexed symbols have sub-optimal ren-
dering in sympy.printing.str.StrPrinter

• QNET contains some custom subclasses of SymPy objects (e.g. IdxSym) that the default printers don’t know
how to deal with (respectively, render incorrectly!)

Summary

Classes:

SympyLatexPrinter Variation of sympy LatexPrinter that derationalizes de-
nominators

SympyReprPrinter Representation printer with support for IdxSym
SympyStrPrinter Variation of sympy StrPrinter that derationalizes de-

nominators.
SympyUnicodePrinter Printer that represents SymPy expressions as (single-

line) unicode strings.

Functions:

derationalize_denom Try to de-rationalize the denominator of the given ex-
pression.

Reference

qnet.printing.sympy.derationalize_denom(expr)
Try to de-rationalize the denominator of the given expression.

The purpose is to allow to reconstruct e.g. 1/sqrt(2) from sqrt(2)/2.

9.1. qnet package 147

https://docs.sympy.org/latest/modules/printing.html#sympy.printing.pretty.pretty.pretty_print
https://docs.sympy.org/latest/modules/printing.html#sympy.printing.pretty.pretty.pretty_print
https://docs.sympy.org/latest/modules/printing.html#sympy.printing.str.StrPrinter

QNET, Release 2.0.0-dev

Specifically, this matches expr against the following pattern:

Mul(..., Rational(n, d), Pow(d, Rational(1, 2)), ...)

and returns a tuple (numerator, denom_sq, post_factor), where numerator and denom_sq
are n and d in the above pattern (of type int), respectively, and post_factor is the product of the remaining
factors (... in expr). The result will fulfill the following identity:

(numerator / sqrt(denom_sq)) * post_factor == expr

If expr does not follow the appropriate pattern, a ValueError is raised.

class qnet.printing.sympy.SympyStrPrinter(settings=None)
Bases: sympy.printing.str.StrPrinter

Variation of sympy StrPrinter that derationalizes denominators.

Additionally, it contains the following modifications:

• Support for IdxSym

• Rendering of sympy.tensor.indexed.Indexed as subscripts

• Rendering of sympy.functions.combinatorial.factorials.factorial as !

• Option conjg_style to configure how complex conjugates are rendered: 'func' renders it as
``conjugate(...), and 'star' uses an exponentiated asterisk

printmethod = '_sympystr'

class qnet.printing.sympy.SympyLatexPrinter(settings=None)
Bases: sympy.printing.latex.LatexPrinter

Variation of sympy LatexPrinter that derationalizes denominators

Additionally, it contains the following modifications:

• Support for IdxSym

• A setting conjg_style that allows to specify how complex conjugate are rendered: 'overline' (the
default) draws a line over the number, ‘star’ uses an exponentiated asterisk, and ‘func’ renders a a
conjugate function

printmethod = '_latex'

class qnet.printing.sympy.SympyUnicodePrinter(settings=None)
Bases: qnet.printing.sympy.SympyStrPrinter

Printer that represents SymPy expressions as (single-line) unicode strings.

This is a mixture of StrPrinter and sympy.printing.pretty.pretty.PrettyPrinter (minus
the 2D printing), with the same extensions as SympyStrPrinter

printmethod = '_sympystr'

class qnet.printing.sympy.SympyReprPrinter(settings=None)
Bases: sympy.printing.repr.ReprPrinter

Representation printer with support for IdxSym

qnet.printing.treeprinting module

Tree printer for Expressions

148 Chapter 9. API

https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.sympy.org/latest/modules/printing.html#sympy.printing.str.StrPrinter
https://docs.sympy.org/latest/modules/tensor/indexed.html#sympy.tensor.indexed.Indexed
https://docs.sympy.org/latest/modules/functions/combinatorial.html#sympy.functions.combinatorial.factorials.factorial
https://docs.sympy.org/latest/modules/printing.html#sympy.printing.latex.LatexPrinter
https://docs.sympy.org/latest/modules/printing.html#sympy.printing.pretty.pretty.PrettyPrinter
https://docs.sympy.org/latest/modules/printing.html#sympy.printing.repr.ReprPrinter

QNET, Release 2.0.0-dev

This is mainly for interactive use.

Summary

Functions:

print_tree Print a tree representation of the structure of expr
tree Give the output of tree as a multiline string, using line

drawings to visualize the hierarchy of expressions (sim-
ilar to the tree unix command line program for show-
ing directory trees)

Reference

qnet.printing.treeprinting.print_tree(expr, attr=’operands’, padding=”, ex-
clude_type=None, depth=None, unicode=True,
srepr_leaves=False, _last=False, _root=True,
_level=0, _print=True)

Print a tree representation of the structure of expr

Parameters

• expr (Expression) – expression to render

• attr (str) – The attribute from which to get the children of expr

• padding (str) – Whitespace by which the entire tree is idented

• exclude_type (type) – Type (or list of types) which should never be expanded recur-
sively

• depth (int or None) – Maximum depth of the tree to be printed

• unicode (bool) – If True, use unicode line-drawing symbols for the tree, and print ex-
pressions in a unicode representation. If False, use an ASCII approximation.

• srepr_leaves (bool) – Whether or not to render leaves with srepr, instead of
ascii/unicode

See also:

tree() return the result as a string, instead of printing it

qnet.printing.treeprinting.tree(expr, **kwargs)
Give the output of tree as a multiline string, using line drawings to visualize the hierarchy of expressions (similar
to the tree unix command line program for showing directory trees)

See also:

qnet.printing.srepr() with indented=True produces a similar tree-like rendering of the given ex-
pression that can be re-evaluated to the original expression.

qnet.printing.unicodeprinter module

Unicode Printer

9.1. qnet package 149

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#type
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool

QNET, Release 2.0.0-dev

Summary

Classes:

QnetUnicodePrinter Printer for a string (Unicode) representation.
SubSupFmt A format string that divides into a name, subscript, and

superscript
SubSupFmtNoUni SubSupFmt with default unicode_sub_super=False

Reference

class qnet.printing.unicodeprinter.SubSupFmt(name, sub=None, sup=None, uni-
code_sub_super=True)

Bases: object

A format string that divides into a name, subscript, and superscript

>>> fmt = SubSupFmt('{name}', sub='({i},{j})', sup='({sup})')
>>> fmt.format(name='alpha', i='mu', j='nu', sup=1)
'𝛼_(𝜇,𝜈)^(1)'
>>> fmt = SubSupFmt('{name}', sub='{sub}', sup='({sup})')
>>> fmt.format(name='alpha', sub='1', sup=1)
'𝛼1

1'

format(**kwargs)
Format and combine the name, subscript, and superscript

class qnet.printing.unicodeprinter.SubSupFmtNoUni(name, sub=None, sup=None, uni-
code_sub_super=False)

Bases: qnet.printing.unicodeprinter.SubSupFmt

SubSupFmt with default unicode_sub_super=False

class qnet.printing.unicodeprinter.QnetUnicodePrinter(cache=None, settings=None)
Bases: qnet.printing.asciiprinter.QnetAsciiPrinter

Printer for a string (Unicode) representation.

sympy_printer_cls
alias of qnet.printing.sympy.SympyUnicodePrinter

printmethod = '_unicode'

Summary

__all__ Functions:

150 Chapter 9. API

https://docs.python.org/3.6/library/functions.html#object

QNET, Release 2.0.0-dev

ascii Return an ASCII representation of the given object / expression
configure_printingContext manager for temporarily changing the printing system.
dotprint Return the ‘DOT‘_ (graph) description of an Expression tree as a string
init_printingInitialize the printing system.
latex Return a LaTeX representation of the given object / expression
print_tree Print a tree representation of the structure of expr
srepr Render the given expression into a string that can be evaluated in an appropriate context to re-

instantiate an identical expression.
tex Alias for latex()
tree Give the output of tree as a multiline string, using line drawings to visualize the hierarchy of

expressions (similar to the tree unix command line program for showing directory trees)
unicode Return a unicode representation of the given object / expression

Reference

qnet.printing.init_printing(*, reset=False, init_sympy=True, **kwargs)
Initialize the printing system.

This determines the behavior of the ascii(), unicode(), and latex() functions, as well as the __str__
and __repr__ of any Expression.

The routine may be called in one of two forms. First,

init_printing(
str_format=<str_fmt>, repr_format=<repr_fmt>,
caching=<use_caching>, **settings)

provides a simplified, “manual” setup with the following parameters.

Parameters

• str_format (str) – Format for __str__ representation of an Expression. One
of ‘ascii’, ‘unicode’, ‘latex’, ‘srepr’, ‘indsrepr’ (“indented srepr”), or ‘tree’. The string
representation will be affected by the settings for the corresponding print routine, e.g.
unicode() for str_format='unicode'

• repr_format (str) – Like str_format, but for __repr__. This is what gets displayed
in an interactive (I)Python session.

• caching (bool) – By default, the printing functions (ascii(), unicode(),
latex()) cache their result for any expression and sub-expression. This is both for ef-
ficiency and to give the ability to to supply custom strings for subexpression by pass-
ing a cache parameter to the printing functions. Initializing the printing system with
caching=False disables this possibility.

• settings – Any setting understood by any of the printing routines.

Second,

init_printing(inifile=<path_to_file>)

allows for more detailed settings through a config file, see the notes on using an INI file.

If str_format or repr_format are not given, they will be set to ‘unicode’ if the current terminal is known to
support an UTF8 (accordig to sys.stdout.encoding), and ‘ascii’ otherwise.

Generally, init_printing() should be called only once at the beginning of a script or notebook. If it is
called multiple times, any settings accumulate. To avoid this and to reset the printing system to the defaults,

9.1. qnet package 151

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#bool

QNET, Release 2.0.0-dev

you may pass reset=True. In a Jupyter notebook, expressions are rendered graphically via LaTeX, using the
settings as they affect the latex() printer.

The sympy.init_printing() routine is called automatically, unless init_sympy is given as False.

See also:

configure_printing() allows to temporarily change the printing system from what was configured in
init_printing().

qnet.printing.configure_printing(**kwargs)
Context manager for temporarily changing the printing system.

This takes the same parameters as init_printing()

Example

>>> A = OperatorSymbol('A', hs=1); B = OperatorSymbol('B', hs=1)
>>> with configure_printing(show_hs_label=False):
... print(ascii(A + B))
A + B
>>> print(ascii(A + B))
A^(1) + B^(1)

qnet.printing.ascii(expr, cache=None, **settings)
Return an ASCII representation of the given object / expression

Parameters

• expr – Expression to print

• cache (dict or None) – dictionary to use for caching

• show_hs_label (bool or str) – Whether to a label for the Hilbert space of expr.
By default (show_hs_label=True), the label is shown as a superscript. It can be
shown as a subscript with show_hs_label='subscript' or suppressed entirely
(show_hs_label=False)

• sig_as_ketbra (bool) – Whether to render instances of LocalSigma as a ket-bra
(default), or as an operator symbol

Examples

>>> A = OperatorSymbol('A', hs=1); B = OperatorSymbol('B', hs=1)
>>> ascii(A + B)
'A^(1) + B^(1)'
>>> ascii(A + B, cache={A: 'A', B: 'B'})
'A + B'
>>> ascii(A + B, show_hs_label='subscript')
'A_(1) + B_(1)'
>>> ascii(A + B, show_hs_label=False)
'A + B'
>>> ascii(LocalSigma(0, 1, hs=1))
'|0><1|^(1)'
>>> ascii(LocalSigma(0, 1, hs=1), sig_as_ketbra=False)
'sigma_0,1^(1)'

Note that the accepted parameters and their default values may be changed through init_printing() or
configure_printing()

152 Chapter 9. API

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#bool

QNET, Release 2.0.0-dev

qnet.printing.unicode(expr, cache=None, **settings)
Return a unicode representation of the given object / expression

Parameters

• expr – Expression to print

• cache (dict or None) – dictionary to use for caching

• show_hs_label (bool or str) – Whether to a label for the Hilbert space of expr.
By default (show_hs_label=True), the label is shown as a superscript. It can be
shown as a subscript with show_hs_label='subscript' or suppressed entirely
(show_hs_label=False)

• sig_as_ketbra (bool) – Whether to render instances of LocalSigma as a ket-bra
(default), or as an operator symbol

• unicode_sub_super (bool) – Whether to try to use unicode symbols for sub- or su-
perscripts if possible

• unicode_op_hats (bool) – Whether to draw unicode hats on single-letter operator
symbols

Examples

>>> A = OperatorSymbol('A', hs=1); B = OperatorSymbol('B', hs=1)
>>> unicode(A + B)
'A1 + B1'
>>> unicode(A + B, cache={A: 'A', B: 'B'})
'A + B'
>>> unicode(A + B, show_hs_label='subscript')
'A1 + B1'
>>> unicode(A + B, show_hs_label=False)
'A + B'
>>> unicode(LocalSigma(0, 1, hs=1))
'|01|1'
>>> unicode(LocalSigma(0, 1, hs=1), sig_as_ketbra=False)
'𝜎_0,1^(1)'
>>> unicode(A + B, unicode_sub_super=False)
'A^(1) + B^(1)'
>>> unicode(A + B, unicode_op_hats=False)
'A1 + B1'

Note that the accepted parameters and their default values may be changed through init_printing() or
configure_printing()

qnet.printing.latex(expr, cache=None, **settings)
Return a LaTeX representation of the given object / expression

Parameters

• expr – Expression to print

• cache (dict or None) – dictionary to use for caching

• show_hs_label (bool or str) – Whether to a label for the Hilbert space of expr.
By default (show_hs_label=True), the label is shown as a superscript. It can be
shown as a subscript with show_hs_label='subscript' or suppressed entirely
(show_hs_label=False)

9.1. qnet package 153

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str

QNET, Release 2.0.0-dev

• tex_op_macro (str) – macro to use for formatting operator symbols. Must accept
‘name’ as a format key.

• tex_textop_macro (str) – macro to use for formatting multi-letter operator names.

• tex_sop_macro (str) – macro to use for formattign super-operator symbols

• tex_textsop_macro (str) – macro to use for formatting multi-letter super-operator
names

• tex_identity_sym (str) – macro for the identity symbol

• tex_use_braket (bool) – If True, use macros from the braket package. Note that this
will not automatically render in IPython Notebooks, but it is recommended when generating
latex for a document.

• tex_frac_for_spin_labels (bool) – Whether to use ‘frac’ when printing basis
state labels for spin Hilbert spaces

Examples

>>> A = OperatorSymbol('A', hs=1); B = OperatorSymbol('B', hs=1)
>>> latex(A + B)
'\\hat{A}^{(1)} + \\hat{B}^{(1)}'
>>> latex(A + B, cache={A: 'A', B: 'B'})
'A + B'
>>> latex(A + B, show_hs_label='subscript')
'\\hat{A}_{(1)} + \\hat{B}_{(1)}'
>>> latex(A + B, show_hs_label=False)
'\\hat{A} + \\hat{B}'
>>> latex(LocalSigma(0, 1, hs=1))
'\\left\\lvert 0 \\middle\\rangle\\!\\middle\\langle 1 \\right\\rvert^{(1)}'
>>> latex(LocalSigma(0, 1, hs=1), sig_as_ketbra=False)
'\\hat{\\sigma}_{0,1}^{(1)}'
>>> latex(A + B, tex_op_macro=r'\Op{{{name}}}')
'\\Op{A}^{(1)} + \\Op{B}^{(1)}'
>>> CNOT = OperatorSymbol('CNOT', hs=1)
>>> latex(CNOT)
'\\text{CNOT}^{(1)}'
>>> latex(CNOT, tex_textop_macro=r'\Op{{{name}}}')
'\\Op{CNOT}^{(1)}'

>>> A = SuperOperatorSymbol('A', hs=1)
>>> latex(A)
'\\mathrm{A}^{(1)}'
>>> latex(A, tex_sop_macro=r'\SOp{{{name}}}')
'\\SOp{A}^{(1)}'
>>> Lindbladian = SuperOperatorSymbol('Lindbladian', hs=1)
>>> latex(Lindbladian)
'\\mathrm{Lindbladian}^{(1)}'
>>> latex(Lindbladian, tex_textsop_macro=r'\SOp{{{name}}}')
'\\SOp{Lindbladian}^{(1)}'

>>> latex(IdentityOperator)
'\\mathbb{1}'
>>> latex(IdentityOperator, tex_identity_sym=r'\identity')
'\\identity'

(continues on next page)

154 Chapter 9. API

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#bool
https://ctan.org/tex-archive/macros/latex/contrib/braket
https://docs.python.org/3.6/library/functions.html#bool

QNET, Release 2.0.0-dev

(continued from previous page)

>>> latex(LocalSigma(0, 1, hs=1), tex_use_braket=True)
'\\Ket{0}\\!\\Bra{1}^{(1)}'

>>> spin = SpinSpace('s', spin=(1, 2))
>>> up = SpinBasisKet(1, 2, hs=spin)
>>> latex(up)
'\\left\\lvert +1/2 \\right\\rangle^{(s)}'
>>> latex(up, tex_frac_for_spin_labels=True)
'\\left\\lvert +\\frac{1}{2} \\right\\rangle^{(s)}'

Note that the accepted parameters and their default values may be changed through init_printing() or
configure_printing()

qnet.printing.tex(expr, cache=None, **settings)
Alias for latex()

qnet.printing.srepr(expr, indented=False, cache=None)
Render the given expression into a string that can be evaluated in an appropriate context to re-instantiate an
identical expression. If indented is False (default), the resulting string is a single line. Otherwise, the result is a
multiline string, and each positional and keyword argument of each Expression is on a separate line, recursively
indented to produce a tree-like output. The cache may be used to generate more readable expressions.

Example

>>> hs = LocalSpace('1')
>>> A = OperatorSymbol('A', hs=hs); B = OperatorSymbol('B', hs=hs)
>>> expr = A + B
>>> srepr(expr)
"OperatorPlus(OperatorSymbol('A', hs=LocalSpace('1')), OperatorSymbol('B',
→˓hs=LocalSpace('1')))"
>>> eval(srepr(expr)) == expr
True
>>> srepr(expr, cache={hs:'hs'})
"OperatorPlus(OperatorSymbol('A', hs=hs), OperatorSymbol('B', hs=hs))"
>>> eval(srepr(expr, cache={hs:'hs'})) == expr
True
>>> print(srepr(expr, indented=True))
OperatorPlus(

OperatorSymbol(
'A',
hs=LocalSpace(

'1')),
OperatorSymbol(

'B',
hs=LocalSpace(

'1')))
>>> eval(srepr(expr, indented=True)) == expr
True

See also:

print_tree(), respectively qnet.printing.tree.tree(), produces an output similar to the in-
dented srepr(), for interactive use. Their result cannot be evaluated and the exact output depends on
init_printing().

dotprint() provides a way to graphically explore the tree structure of an expression.

9.1. qnet package 155

QNET, Release 2.0.0-dev

9.1.4 qnet.utils package

Auxiliary utilities, mostly for internal use

Submodules:

qnet.utils.check_rules module

Utilities for algebraic rules

Summary

Functions:

check_rules_dict Verify the rules that classes may use for the _rules or
_binary_rules class attribute.

Reference

qnet.utils.check_rules.check_rules_dict(rules)
Verify the rules that classes may use for the _rules or _binary_rules class attribute.

Specifically, rules must be a OrderedDict-compatible object (list of key-value tuples, dict,
OrderedDict) that maps a rule name (str) to a rule. Each rule consists of a Pattern and a replaceent
callable. The Pattern must be set up to match a ProtoExpr. That is, the Pattern should be constructed through
the pattern_head() routine.

Raises

• TypeError – If rules is not compatible with OrderedDict, the keys in rules are not
strings, or rule is not a tuple of (Pattern, callable)

• ValueError – If the head-attribute of each Pattern is not an instance of ProtoExpr, or
if there are duplicate keys in rules

Returns OrderedDict of rules

qnet.utils.containers module

Tools for working with data structures built from native containers.

Summary

Functions:

nested_tuple Recursively transform a container structure to a nested
tuple.

sorted_if_possible Create a sorted list of elements of an iterable if they are
orderable.

156 Chapter 9. API

https://docs.python.org/3.6/library/collections.html#collections.OrderedDict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/collections.html#collections.OrderedDict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/exceptions.html#TypeError
https://docs.python.org/3.6/library/collections.html#collections.OrderedDict
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/collections.html#collections.OrderedDict

QNET, Release 2.0.0-dev

Reference

qnet.utils.containers.sorted_if_possible(iterable, **kwargs)
Create a sorted list of elements of an iterable if they are orderable.

See sorted for details on optional arguments to customize the sorting.

Parameters

• iterable (Iterable) – Iterable returning a finite number of elements to sort.

• kwargs – Keyword arguments are passed on to sorted.

Returns List of elements, sorted if orderable, otherwise kept in the order of iteration.

Return type list

qnet.utils.containers.nested_tuple(container)
Recursively transform a container structure to a nested tuple.

The function understands container types inheriting from the selected abstract base classes in collections.abc,
and performs the following replacements: Mapping

tuple of key-value pair tuple‘s. The order is preserved in the case of an ‘OrderedDict, otherwise the
key-value pairs are sorted if orderable and otherwise kept in the order of iteration.

Sequence tuple containing the same elements in unchanged order.

Container and Iterable and Sized (equivalent to Collection in python >= 3.6) tuple containing the same ele-
ments in sorted order if orderable and otherwise kept in the order of iteration.

The function recurses into these container types to perform the same replacement, and leaves objects of other
types untouched.

The returned container is hashable if and only if all the values contained in the original data structure are
hashable.

Parameters container – Data structure to transform into a nested tuple.

Returns Nested tuple containing the same data as container.

Return type tuple

qnet.utils.indices module

Summary

Classes:

FockIndex Symbolic index labeling a basis state in a
LocalSpace

FockLabel Symbolic label that evaluates to the label of a basis state
IdxSym Index symbol in an indexed sum or product
IndexOverFockSpace Index range over the integer indices of a LocalSpace

basis
IndexOverList Index over a list of explicit values
IndexOverRange Index over the inclusive range between two integers
IndexRangeBase Base class for index ranges

Continued on next page

9.1. qnet package 157

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#tuple

QNET, Release 2.0.0-dev

Table 53 – continued from previous page
IntIndex A symbolic label that evaluates to an integer
SpinIndex Symbolic label for a spin degree of freedom
StrLabel Symbolic label that evaluates to a string
SymbolicLabelBase Base class for symbolic labels

Functions:

product Cartesian product akin to itertools.product(),
but accepting generator functions

yield_from_ranges

__all__: FockIndex, FockLabel, IdxSym, IndexOverFockSpace, IndexOverList,
IndexOverRange, IntIndex, SpinIndex, StrLabel

Reference

qnet.utils.indices.product(*generators, repeat=1)
Cartesian product akin to itertools.product(), but accepting generator functions

Unlike itertools.product() this function does not convert the input iterables into tuples. Thus, it can
handle large or infinite inputs. As a drawback, however, it only works with “restartable” iterables (something
that iter() can repeatably turn into an iterator, or a generator function (but not the generator iterator that is
returned by that generator function)

Parameters

• generators – list of restartable iterators or generator functions

• repeat – number of times generators should be repeated

Adapted from https://stackoverflow.com/q/12093364/

qnet.utils.indices.yield_from_ranges(ranges)

class qnet.utils.indices.IdxSym
Bases: sympy.core.symbol.Symbol

Index symbol in an indexed sum or product

Parameters

• name (str) – The label for the symbol. It must be a simple Latin or Greek letter, possibly
with a subscript, e.g. 'i', 'mu', 'gamma_A'

• primed (int) – Number of prime marks (‘) associated with the symbol

Notes

The symbol can be used in arbitrary algebraic (sympy) expressions:

>>> sympy.sqrt(IdxSym('n') + 1)
sqrt(n + 1)

By default, the symbol is assumed to represent an integer. If this is not the case, you can instantiate explicitly as
a non-integer:

158 Chapter 9. API

https://docs.python.org/3.6/library/itertools.html#itertools.product
https://docs.python.org/3.6/library/itertools.html#itertools.product
https://docs.python.org/3.6/library/itertools.html#itertools.product
https://docs.python.org/3.6/library/functions.html#iter
https://stackoverflow.com/q/12093364/
https://docs.sympy.org/latest/modules/core.html#sympy.core.symbol.Symbol
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int

QNET, Release 2.0.0-dev

>>> IdxSym('i').is_integer
True
>>> IdxSym('i', integer=False).is_integer
False

You may also declare the symbol as positive:

>>> IdxSym('i').is_positive
>>> IdxSym('i', positive=True).is_positive
True

The primed parameter is used to automatically create distinguishable indices in products of sums, or more
generally if the same index occurs in an expression with potentially differnt values:

>>> ascii(IdxSym('i', primed=2))
"i''"
>>> IdxSym('i') == IdxSym('i', primed=1)
False

It should not be used when creating indices “by hand”

Raises

• ValueError – if name is not a simple symbol label, or if primed < 0

• TypeError – if name is not a string

is_finite = True

is_Symbol = True

is_symbol = True

is_Atom = True

primed

incr_primed(incr=1)
Return a copy of the index with an incremented primed

prime
equivalent to inc_primed() with incr=1

default_assumptions = {'finite': True, 'infinite': False}

is_infinite = False

class qnet.utils.indices.SymbolicLabelBase(expr)
Bases: object

Base class for symbolic labels

A symbolic label is a SymPy expression that contains one or more IdxSym, and can be rendered into an integer
or string label by substituting integer values for each IdxSym.

See IntIndex for an example.

substitute(var_map)
Substitute in the expression describing the label.

If the result of the substitution no longer contains any IdxSym, this returns a “rendered” label.

free_symbols
Free symbols in the expression describing the label

9.1. qnet package 159

https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/exceptions.html#TypeError
https://docs.python.org/3.6/library/functions.html#object

QNET, Release 2.0.0-dev

class qnet.utils.indices.IntIndex(expr)
Bases: qnet.utils.indices.SymbolicLabelBase

A symbolic label that evaluates to an integer

The label can be rendered via substitute():

>>> i, j = symbols('i, j', cls=IdxSym)
>>> idx = IntIndex(i+j)
>>> idx.substitute({i: 1, j:1})
2

An “incomplete” substitution (anything that still leaves a IdxSym in the label expression) will result in another
IntIndex instance:

>>> idx.substitute({i: 1})
IntIndex(Add(IdxSym('j', integer=True), Integer(1)))

class qnet.utils.indices.FockIndex(expr)
Bases: qnet.utils.indices.IntIndex

Symbolic index labeling a basis state in a LocalSpace

fock_index

class qnet.utils.indices.StrLabel(expr)
Bases: qnet.utils.indices.SymbolicLabelBase

Symbolic label that evaluates to a string

Example

>>> i = symbols('i', cls=IdxSym)
>>> A = symbols('A', cls=sympy.IndexedBase)
>>> lbl = StrLabel(A[i])
>>> lbl.substitute({i: 1})
'A_1'

class qnet.utils.indices.FockLabel(expr, hs)
Bases: qnet.utils.indices.StrLabel

Symbolic label that evaluates to the label of a basis state

This evaluates first to an index, and then to the label for the basis state of the Hilbert space for that index:

>>> hs = LocalSpace('tls', basis=('g', 'e'))
>>> i = symbols('i', cls=IdxSym)
>>> lbl = FockLabel(i, hs=hs)
>>> lbl.substitute({i: 0})
'g'

fock_index

substitute(var_map)
Substitute in the expression describing the label.

If the result of the substitution no longer contains any IdxSym, this returns a “rendered” label.

class qnet.utils.indices.SpinIndex(expr, hs)
Bases: qnet.utils.indices.StrLabel

160 Chapter 9. API

QNET, Release 2.0.0-dev

Symbolic label for a spin degree of freedom

This evaluates to a string representation of an integer or half-integer. For values of e.g. 1, -1, 1/2, -1/2, the
rendered resulting string is “+1”, “-1”, “+1/2”, “-1/2”, respectively (in agreement with the convention for the
basis labels in a spin degree of freedom)

>>> i = symbols('i', cls=IdxSym)
>>> hs = SpinSpace('s', spin='1/2')
>>> lbl = SpinIndex(i/2, hs)
>>> lbl.substitute({i: 1})
'+1/2'

Rendering an expression that is not integer or half-integer valued results in a ValueError.

fock_index

substitute(var_map)
Substitute in the expression describing the label.

If the result of the substitution no longer contains any IdxSym, this returns a “rendered” label.

class qnet.utils.indices.IndexRangeBase(index_symbol)
Bases: object

Base class for index ranges

Index ranges occur in indexed sums or products.

iter()

substitute(var_map)

piecewise_one(expr)
Value of 1 for all index values in the range, 0 otherwise

A Piecewise object that is 1 for any value of expr in the range of possible index values, and 0 otherwise.

class qnet.utils.indices.IndexOverList(index_symbol, values)
Bases: qnet.utils.indices.IndexRangeBase

Index over a list of explicit values

Parameters

• index_symbol (IdxSym) – The symbol iterating over the value

• values (list) – List of values for the index

iter()

substitute(var_map)

piecewise_one(expr)
Value of 1 for all index values in the range, 0 otherwise

A Piecewise object that is 1 for any value of expr in the range of possible index values, and 0 otherwise.

class qnet.utils.indices.IndexOverRange(index_symbol, start_from, to, step=1)
Bases: qnet.utils.indices.IndexRangeBase

Index over the inclusive range between two integers

Parameters

• index_symbol (IdxSym) – The symbol iterating over the range

• start_from (int) – Starting value for the index

9.1. qnet package 161

https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/functions.html#object
https://docs.sympy.org/latest/modules/functions/elementary.html#sympy.functions.elementary.piecewise.Piecewise
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.sympy.org/latest/modules/functions/elementary.html#sympy.functions.elementary.piecewise.Piecewise
https://docs.python.org/3.6/library/functions.html#int

QNET, Release 2.0.0-dev

• to (int) – End value of the index

• step (int) – Step width by which index increases

iter()

range

substitute(var_map)

piecewise_one(expr)
Value of 1 for all index values in the range, 0 otherwise

A Piecewise object that is 1 for any value of expr in the range of possible index values, and 0 otherwise.

class qnet.utils.indices.IndexOverFockSpace(index_symbol, hs)
Bases: qnet.utils.indices.IndexRangeBase

Index range over the integer indices of a LocalSpace basis

Parameters

• index_symbol (IdxSym) – The symbol iterating over the range

• hs (LocalSpace) – Hilbert space over whose basis to iterate

iter()

substitute(var_map)

piecewise_one(expr)
Value of 1 for all index values in the range, 0 otherwise

A Piecewise object that is 1 for any value of expr in the range of possible index values, and 0 otherwise.

qnet.utils.ordering module

The ordering package implements the default canonical ordering for sums and products of operators, states, and
superoperators.

To the extent that commutativity rules allow this, the ordering defined here groups objects of the same Hilbert space to-
gether, and orders these groups in the same order that the Hilbert spaces occur in a ProductSpace (lexicographically/by
order_index/by complexity). Objects within the same Hilbert space (again, assuming they commute) are ordered by
the KeyTuple value that expr_order_key returns for each object. Note that expr_order_key defers to the object’s _or-
der_key property, if available. This property should be defined for all QNET Expressions, generally ordering objects
according to their type, then their label (if any), then their pre-factor then any other properties.

We assume that quantum operations have either full commutativity (sums, or products of states), or commutativity of
objects only in different Hilbert spaces (e.g. products of operators). The former is handled by FullCommutativeHSOr-
der, the latter by DisjunctCommutativeHSOrder. Theses classes serve as the order_key for sums and products (e.g.
OperatorPlus and similar classes)

A user may implement a custom ordering by subclassing (or replacing) FullCommutativeHSOrder and/or Disjunct-
CommutativeHSOrder, and assigning their replacements to all the desired algebraic classes.

Summary

Classes:

162 Chapter 9. API

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.sympy.org/latest/modules/functions/elementary.html#sympy.functions.elementary.piecewise.Piecewise
https://docs.sympy.org/latest/modules/functions/elementary.html#sympy.functions.elementary.piecewise.Piecewise

QNET, Release 2.0.0-dev

DisjunctCommutativeHSOrder Auxiliary class that generates the correct pseudo-order
relation for operator products.

FullCommutativeHSOrder Auxiliary class that generates the correct pseudo-order
relation for operator sums.

KeyTuple A tuple that allows for ordering, facilitating the default
ordering of Operations.

Functions:

expr_order_key A default order key for arbitrary expressions

Reference

class qnet.utils.ordering.KeyTuple
Bases: tuple

A tuple that allows for ordering, facilitating the default ordering of Operations. It differs from a normal tuple in
that it falls back to string comparison if any elements are not directly comparable

qnet.utils.ordering.expr_order_key(expr)
A default order key for arbitrary expressions

class qnet.utils.ordering.DisjunctCommutativeHSOrder(op, space_order=None,
op_order=None)

Bases: object

Auxiliary class that generates the correct pseudo-order relation for operator products. Only operators acting on
disjoint Hilbert spaces are commuted to reflect the order the local factors have in the total Hilbert space. I.e.,
sorted(factors, key=DisjunctCommutativeHSOrder) achieves this ordering.

class qnet.utils.ordering.FullCommutativeHSOrder(op, space_order=None,
op_order=None)

Bases: object

Auxiliary class that generates the correct pseudo-order relation for operator sums. Operators are first ordered
by their Hilbert space, then by their order-key; sorted(factors, key=FullCommutativeHSOrder)
achieves this ordering.

qnet.utils.permutations module

Summary

Exceptions:

BadPermutationError Can be raised to signal that a permutation does not pass
the :py:func:check_permutation test.

Functions:

block_perm_and_perms_within_blocks Decompose a permutation into a block permutation and
into permutations acting within each block.

Continued on next page

9.1. qnet package 163

https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/functions.html#object

QNET, Release 2.0.0-dev

Table 58 – continued from previous page
check_permutation Verify that a tuple of permutation image points

(sigma(1), sigma(2), ..., sigma(n)) is
a valid permutation, i.e.

compose_permutations Find the composite permutation
concatenate_permutations Concatenate two permutations:
full_block_perm Extend a permutation of blocks to a permutation for the

internal signals of all blocks.
invert_permutation Compute the image tuple of the inverse permutation.
permutation_from_block_permutations Reverse operation to

permutation_to_block_permutations()
Compute the concatenation of permutations

permutation_from_disjoint_cycles Reconstruct a permutation image tuple from a list of dis-
joint cycles :param cycles: sequence of disjoint cycles
:type cycles: list or tuple :param offset: Offset to sub-
tract from the resulting permutation image points :type
offset: int :return: permutation image tuple :rtype: tuple

permutation_to_block_permutations If possible, decompose a permutation into a sequence of
permutations each acting on individual ranges of the full
range of indices.

permutation_to_disjoint_cycles Any permutation sigma can be represented as a product
of cycles.

permute Apply a permutation sigma({j}) to an arbitrary se-
quence.

Reference

exception qnet.utils.permutations.BadPermutationError
Bases: ValueError

Can be raised to signal that a permutation does not pass the :py:func:check_permutation test.

qnet.utils.permutations.check_permutation(permutation)
Verify that a tuple of permutation image points (sigma(1), sigma(2), ..., sigma(n)) is a valid
permutation, i.e. each number from 0 and n-1 occurs exactly once. I.e. the following set-equality must hold:

{sigma(1), sigma(2), ..., sigma(n)} == {0, 1, 2, ... n-1}

Parameters permutation (tuple) – Tuple of permutation image points

Return type bool

qnet.utils.permutations.invert_permutation(permutation)
Compute the image tuple of the inverse permutation.

Parameters permutation – A valid (cf. :py:func:check_permutation) permutation.

Returns The inverse permutation tuple

Return type tuple

qnet.utils.permutations.permutation_to_disjoint_cycles(permutation)
Any permutation sigma can be represented as a product of cycles. A cycle (c_1, .. c_n) is a closed sequence of
indices such that

sigma(c_1) == c_2, sigma(c_2) == sigma^2(c_1)== c_3, . . . , sigma(c_(n-1)) == c_n, sigma(c_n) ==
c_1

164 Chapter 9. API

https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#tuple

QNET, Release 2.0.0-dev

Any single length-n cycle admits n equivalent representations in correspondence with which element one defines
as c_1.

(0,1,2) == (1,2,0) == (2,0,1)

A decomposition into disjoint cycles can be made unique, by requiring that the cycles are sorted by their smallest
element, which is also the left-most element of each cycle. Note that permutations generated by disjoint cycles
commute. E.g.,

(1, 0, 3, 2) == ((1,0),(3,2)) –> ((0,1),(2,3)) normal form

Parameters permutation (tuple) – A valid permutation image tuple

Returns A list of disjoint cycles, that when comb

Return type list

Raise BadPermutationError

qnet.utils.permutations.permutation_from_disjoint_cycles(cycles, offset=0)
Reconstruct a permutation image tuple from a list of disjoint cycles :param cycles: sequence of disjoint cycles
:type cycles: list or tuple :param offset: Offset to subtract from the resulting permutation image points :type
offset: int :return: permutation image tuple :rtype: tuple

qnet.utils.permutations.permutation_to_block_permutations(permutation)
If possible, decompose a permutation into a sequence of permutations each acting on individual ranges of the
full range of indices. E.g.

(1,2,0,3,5,4) --> (1,2,0) [+] (0,2,1)

Parameters permutation (tuple) – A valid permutation image tuple s = (s_0,...s_n)
with n > 0

Returns A list of permutation tuples [t = (t_0,...,t_n1), u = (u_0,...,u_n2),.
.., z = (z_0,...,z_nm)] such that s = t [+] u [+] ... [+] z

Return type list of tuples

Raise ValueError

qnet.utils.permutations.permutation_from_block_permutations(permutations)
Reverse operation to permutation_to_block_permutations() Compute the concatenation of per-
mutations

(1,2,0) [+] (0,2,1) --> (1,2,0,3,5,4)

Parameters permutations (list of tuples) – A list of permutation tuples [t = (t_0,
...,t_n1), u = (u_0,...,u_n2),..., z = (z_0,...,z_nm)]

Returns permutation image tuple s = t [+] u [+] ... [+] z

Return type tuple

qnet.utils.permutations.compose_permutations(alpha, beta)
Find the composite permutation

𝜎 := 𝛼 · 𝛽
⇔ 𝜎(𝑗) = 𝛼 (𝛽(𝑗))

Parameters

• a – first permutation image tuple

9.1. qnet package 165

https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#tuple

QNET, Release 2.0.0-dev

• beta (tuple) – second permutation image tuple

Returns permutation image tuple of the composition.

Return type tuple

qnet.utils.permutations.concatenate_permutations(a, b)

Concatenate two permutations: s = a [+] b

Parameters

• a (tuple) – first permutation image tuple

• b (tuple) – second permutation image tuple

Returns permutation image tuple of the concatenation.

Return type tuple

qnet.utils.permutations.permute(sequence, permutation)
Apply a permutation sigma({j}) to an arbitrary sequence.

Parameters

• sequence – Any finite length sequence [l_1,l_2,...l_n]. If it is a list, tuple or str,
the return type will be the same.

• permutation (tuple) – permutation image tuple

Returns The permuted sequence [l_sigma(1), l_sigma(2), ..., l_sigma(n)]

Raise BadPermutationError or ValueError

qnet.utils.permutations.full_block_perm(block_permutation, block_structure)
Extend a permutation of blocks to a permutation for the internal signals of all blocks. E.g., say we have two
blocks of sizes (‘block structure’) (2, 3), then a block permutation that switches the blocks would be given
by the image tuple (1,0). However, to get a permutation of all 2+3 = 5 channels that realizes that block
permutation we would need (2, 3, 4, 0, 1)

Parameters

• block_permutation (tuple) – permutation image tuple of block indices

• block_structure (tuple) – The block channel dimensions, block structure

Returns A single permutation for all channels of all blocks.

Return type tuple

qnet.utils.permutations.block_perm_and_perms_within_blocks(permutation,
block_structure)

Decompose a permutation into a block permutation and into permutations acting within each block.

Parameters

• permutation (tuple) – The overall permutation to be factored.

• block_structure (tuple) – The channel dimensions of the blocks

Returns (block_permutation, permutations_within_blocks) Where
block_permutations is an image tuple for a permutation of the block indices and
permutations_within_blocks is a list of image tuples for the permutations of the
channels within each block

Return type tuple

166 Chapter 9. API

https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#tuple

QNET, Release 2.0.0-dev

qnet.utils.properties_for_args module

Class decorator for adding properties for arguments

Summary

Functions:

properties_for_args For a class with an attribute arg_names containing a list
of names, add a property for every name in that list.

Reference

qnet.utils.properties_for_args.properties_for_args(cls, arg_names=’_arg_names’)
For a class with an attribute arg_names containing a list of names, add a property for every name in that list.

It is assumed that there is an instance attribute self._<arg_name>, which is returned by the arg_name
property. The decorator also adds a class attribute _has_properties_for_args that may be used to
ensure that a class is decorated.

qnet.utils.singleton module

Constant algebraic objects are best implemented as singletons (i.e., they only exist as a single object). This module
provides the means to declare singletons:

• The Singleton metaclass ensures that every class based on it produces the same object every time it is
instantiated

• The singleton_object() class decorator converts a singleton class definition into the actual singleton
object

Singletons in QNET should use both of these.

Note: In order for the Sphinx autodoc extension to correctly recognize singletons, a custom documenter will have to
be registered. The Sphinx conf.py file must contain the following:

from sphinx.ext.autodoc import DataDocumenter

class SingletonDocumenter(DataDocumenter):
directivetype = 'data'
objtype = 'singleton'
priority = 20

@classmethod
def can_document_member(cls, member, membername, isattr, parent):

return isinstance(member, qnet.utils.singleton.SingletonType)

def setup(app):
... (other hook settings)
app.add_autodocumenter(SingletonDocumenter)

9.1. qnet package 167

QNET, Release 2.0.0-dev

Summary

Classes:

Singleton Metaclass for singletons

Functions:

singleton_object Class decorator that transforms (and replaces) a class
definition (which must have a Singleton metaclass) with
the actual singleton object.

Data:

SingletonType A dummy type that may be used to check whether an
object is a Singleton.

__all__: Singleton, SingletonType, singleton_object

Reference

qnet.utils.singleton.singleton_object(cls)
Class decorator that transforms (and replaces) a class definition (which must have a Singleton metaclass) with
the actual singleton object. Ensures that the resulting object can still be “instantiated” (i.e., called), returning the
same object. Also ensures the object can be pickled, is hashable, and has the correct string representation (the
name of the singleton)

If the class defines a _hash_val class attribute, the hash of the singleton will be the hash of that value, and the
singleton will compare equal to that value. Otherwise, the singleton will have a unique hash and compare equal
only to itself.

class qnet.utils.singleton.Singleton
Bases: abc.ABCMeta

Metaclass for singletons

Any instantiation of a singleton class yields the exact same object, e.g.:

>>> class MyClass(metaclass=Singleton):
... pass
>>> a = MyClass()
>>> b = MyClass()
>>> a is b
True

You can check that an object is a singleton using:

>>> isinstance(a, SingletonType)
True

qnet.utils.singleton.SingletonType = <class 'qnet.utils.singleton.SingletonType'>
A dummy type that may be used to check whether an object is a Singleton:

168 Chapter 9. API

https://docs.python.org/3.6/library/abc.html#abc.ABCMeta

QNET, Release 2.0.0-dev

isinstance(obj, SingletonType)

qnet.utils.testing module

Collection of routines needed for testing. This includes proto-fixtures, i.e. routines that should be imported and then
turned into a fixture with the pytest.fixture decorator.

See <https://pytest.org/latest/fixture.html>

Summary

Classes:

QnetAsciiTestPrinter A Printer subclass for testing

Functions:

check_idempotent_create Check that an expression is ‘idempotent’
datadir Proto-fixture responsible for searching a folder with the

same name of test module and, if available, moving all
contents to a temporary directory so tests can use them
freely.

Reference

class qnet.utils.testing.QnetAsciiTestPrinter(cache=None, settings=None)
Bases: qnet.printing.asciiprinter.QnetAsciiPrinter

A Printer subclass for testing

qnet.utils.testing.datadir(tmpdir, request)
Proto-fixture responsible for searching a folder with the same name of test module and, if available, moving all
contents to a temporary directory so tests can use them freely.

In any test, import the datadir routine and turn it into a fixture:

>>> import pytest
>>> import qnet.utils.testing
>>> datadir = pytest.fixture(qnet.utils.testing.datadir)

qnet.utils.testing.check_idempotent_create(expr)
Check that an expression is ‘idempotent’

qnet.utils.unicode module

Utils for working with unicode strings

Summary

Functions:

9.1. qnet package 169

https://pytest.org/latest/fixture.html

QNET, Release 2.0.0-dev

grapheme_len Number of graphemes in text
ljust Left-justify text to a total of width
rjust Right-justify text for a total of width graphemes

Reference

qnet.utils.unicode.grapheme_len(text)
Number of graphemes in text

This is the length of the text when printed::

>>> s = 'A'
>>> len(s)
2
>>> grapheme_len(s)
1

qnet.utils.unicode.ljust(text, width, fillchar=’ ’)
Left-justify text to a total of width

The width is based on graphemes:

>>> s = 'A'
>>> s.ljust(2)
'A'
>>> ljust(s, 2)
'A '

qnet.utils.unicode.rjust(text, width, fillchar=’ ’)
Right-justify text for a total of width graphemes

The width is based on graphemes:

>>> s = 'A'
>>> s.rjust(2)
'A'
>>> rjust(s, 2)
' A'

Summary

__all__ Classes:

FockIndex Symbolic index labeling a basis state in a LocalSpace
FockLabel Symbolic label that evaluates to the label of a basis state
IdxSym Index symbol in an indexed sum or product
IndexOverFockSpace Index range over the integer indices of a LocalSpace basis
IndexOverList Index over a list of explicit values
IndexOverRange Index over the inclusive range between two integers
IntIndex A symbolic label that evaluates to an integer
Singleton Metaclass for singletons
SpinIndex Symbolic label for a spin degree of freedom
StrLabel Symbolic label that evaluates to a string

170 Chapter 9. API

QNET, Release 2.0.0-dev

__all__ Functions:

singleton_objectClass decorator that transforms (and replaces) a class definition (which must have a Singleton
metaclass) with the actual singleton object.

__all__ Data:

SingletonType A dummy type that may be used to check whether an object is a Singleton:

9.1.5 qnet.visualization package

Visualization routines, e.g. circuit diagrams.

Submodules:

qnet.visualization.circuit_pyx module

Circuit visualization via the pyx package

This requires a working LaTeX installation.

Summary

Functions:

draw_circuit Generate a graphic representation of circuit and store
them in a file.

draw_circuit_canvas Generate a PyX graphical representation of a circuit ex-
pression object.

__all__: draw_circuit, draw_circuit_canvas

Reference

qnet.visualization.circuit_pyx.draw_circuit_canvas(circuit, hunit=4, vunit=-1.0,
rhmargin=0.1, rvmargin=0.2,
rpermutation_length=0.4,
draw_boxes=True, permuta-
tion_arrows=False)

Generate a PyX graphical representation of a circuit expression object.

Parameters

• circuit (ca.Circuit) – The circuit expression

• hunit (float) – The horizontal length unit, default = HUNIT

• vunit (float) – The vertical length unit, default = VUNIT

• rhmargin (float) – relative horizontal margin, default = RHMARGIN

• rvmargin (float) – relative vertical margin, default = RVMARGIN

9.1. qnet package 171

https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float

QNET, Release 2.0.0-dev

• rpermutation_length (float) – the relative length of a permutation circuit, default
= RPLENGTH

• draw_boxes (bool) – Whether to draw indicator boxes to denote subexpressions (Con-
catenation, SeriesProduct, etc.), default = True

• permutation_arrows (bool) – Whether to draw arrows within the permutation visu-
alization, default = False

Returns A PyX canvas object that can be further manipulated or printed to an output image.

Return type pyx.canvas.canvas

qnet.visualization.circuit_pyx.draw_circuit(circuit, filename, direction=’lr’, hu-
nit=4, vunit=-1.0, rhmargin=0.1, rv-
margin=0.2, rpermutation_length=0.4,
draw_boxes=True, permuta-
tion_arrows=False)

Generate a graphic representation of circuit and store them in a file. The graphics format is determined from the
file extension.

Parameters

• circuit (ca.Circuit) – The circuit expression

• filename (str) – A filepath to store the output image under. The file name suffix deter-
mines the output graphics format

• direction – The horizontal direction of laying out series products. One of 'lr' and
'rl'. This option overrides a negative value for hunit, default = 'lr'

• hunit (float) – The horizontal length unit, default = HUNIT

• vunit (float) – The vertical length unit, default = VUNIT

• rhmargin (float) – relative horizontal margin, default = RHMARGIN

• rvmargin (float) – relative vertical margin, default = RVMARGIN

• rpermutation_length (float) – the relative length of a permutation circuit, default
= RPLENGTH

• draw_boxes (bool) – Whether to draw indicator boxes to denote subexpressions (Con-
catenation, SeriesProduct, etc.), default = True

• permutation_arrows (bool) – Whether to draw arrows within the permutation visu-
alization, default = False

Returns True if printing was successful, False if not.

Return type bool

Summary

__all__ Functions:

draw_circuit Generate a graphic representation of circuit and store them in a file.
draw_circuit_canvas Generate a PyX graphical representation of a circuit expression object.

172 Chapter 9. API

https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool

QNET, Release 2.0.0-dev

9.1.6 Summary

__all__ Exceptions:

AlgebraError Base class for all algebraic errors
AlgebraException Base class for all algebraic exceptions
BadLiouvillianError Raised when a Liouvillian is not of standard Lindblad form.
BasisNotSetError Raised if the basis or a Hilbert space dimension is unavailable
CannotConvertToSLH Raised when a circuit algebra object cannot be converted to SLH
CannotEliminateAutomatically Raised when attempted automatic adiabatic elimination fails.
CannotSimplify Raised when a rule cannot further simplify an expression
CannotSymbolicallyDiagonalize Matrix cannot be diagonalized analytically.
CannotVisualize Raised when a circuit cannot be visually represented.
IncompatibleBlockStructures Raised for invalid block-decomposition
InfiniteSumError Raised when expanding a sum into an infinite number of terms
NoConjugateMatrix Raised when entries of Matrix have no defined conjugate
NonSquareMatrix Raised when a Matrix fails to be square
OverlappingSpaces Raised when objects fail to be in separate Hilbert spaces.
SpaceTooLargeError Raised when objects fail to be have overlapping Hilbert spaces.
UnequalSpaces Raised when objects fail to be in the same Hilbert space.
WrongCDimError Raised for mismatched channel number in circuit series

__all__ Classes:

Adjoint Symbolic Adjoint of an operator
BasisKet Local basis state, identified by index or label
Beamsplitter Infinite bandwidth beamsplitter component.
Bra The associated dual/adjoint state for any ket
BraKet The symbolic inner product between two states
CPermutation Channel permuting circuit
Circuit Base class for the circuit algebra elements
CircuitSymbol Symbolic circuit element
CoherentDriveCC Coherent displacement of the input field
CoherentStateKet Local coherent state, labeled by a complex amplitude
Commutator Commutator of two operators
Component Base class for circuit components
Concatenation Concatenation of circuit elements
Create Bosonic creation operator
Destroy Bosonic annihilation operator
Displace Unitary coherent displacement operator
Eq Symbolic equation
Expression Base class for all QNET Expressions
Feedback Feedback on a single channel of a circuit
FockIndex Symbolic index labeling a basis state in a LocalSpace
FockLabel Symbolic label that evaluates to the label of a basis state
HilbertSpace Base class for Hilbert spaces
IdxSym Index symbol in an indexed sum or product
IndexOverFockSpace Index range over the integer indices of a LocalSpace basis
IndexOverList Index over a list of explicit values
IndexOverRange Index over the inclusive range between two integers
IndexedSum Base class for indexed sums

Continued on next page

9.1. qnet package 173

QNET, Release 2.0.0-dev

Table 67 – continued from previous page
IntIndex A symbolic label that evaluates to an integer
Jminus Lowering operator on a spin space
Jplus Raising operator of a spin space
Jz Spin (angular momentum) operator in z-direction
KetBra Outer product of two states
KetIndexedSum Indexed sum over Kets
KetPlus Sum of states
KetSymbol Symbolic state
LocalKet A state on a LocalSpace
LocalOperator Base class for “known” operators on a LocalSpace
LocalSigma Level flip operator between two levels of a LocalSpace
LocalSpace Hilbert space for a single degree of freedom.
MatchDict Result of a Pattern.match()
Matrix Matrix of Expressions
NullSpaceProjector Projection operator onto the nullspace of its operand
Operation Base class for “operations”
Operator Base class for all quantum operators.
OperatorDerivative Symbolic partial derivative of an operator
OperatorIndexedSum Indexed sum over operators
OperatorPlus Sum of Operators
OperatorPlusMinusCC An operator plus or minus its complex conjugate
OperatorSymbol Symbolic operator
OperatorTimes Product of operators
OperatorTimesKet Product of an operator and a state.
OperatorTrace (Partial) trace of an operator
Pattern Pattern for matching an expression
Phase Unitary “phase” operator
PhaseCC Coherent phase shift cicuit component
ProductSpace Tensor product of local Hilbert spaces
PseudoInverse Unevaluated pseudo-inverse 𝑋+ of an operator 𝑋
QuantumAdjoint Base class for adjoints of quantum expressions
QuantumDerivative Symbolic partial derivative
QuantumExpression Base class for expressions associated with a Hilbert space
QuantumIndexedSum Base class for indexed sums
QuantumOperation Base class for operations on quantum expression
QuantumPlus General implementation of addition of quantum expressions
QuantumSymbol Symbolic element of an algebra
QuantumTimes General implementation of product of quantum expressions
SLH Element of the SLH algebra
SPost Linear post-multiplication operator
SPre Linear pre-multiplication operator
Scalar Base class for Scalars
ScalarDerivative Symbolic partial derivative of a scalar
ScalarExpression Base class for scalars with non-scalar arguments
ScalarIndexedSum Indexed sum over scalars
ScalarPlus Sum of scalars
ScalarPower A scalar raised to a power
ScalarTimes Product of scalars
ScalarTimesKet Product of a Scalar coefficient and a ket
ScalarTimesOperator Product of a Scalar coefficient and an Operator

Continued on next page

174 Chapter 9. API

QNET, Release 2.0.0-dev

Table 67 – continued from previous page
ScalarTimesQuantumExpression Product of a Scalar and a QuantumExpression
ScalarTimesSuperOperator Product of a Scalar coefficient and a SuperOperator
ScalarValue Wrapper around a numeric or symbolic value
SeriesInverse Symbolic series product inversion operation
SeriesProduct The series product circuit operation.
SingleQuantumOperation Base class for operations on a single quantum expression
Singleton Metaclass for singletons
SpinIndex Symbolic label for a spin degree of freedom
SpinOperator Base class for operators in a spin space
SpinSpace A Hilbert space for an integer or half-integer spin system
Squeeze Unitary squeezing operator
State Base class for states in a Hilbert space
StateDerivative Symbolic partial derivative of a state
StrLabel Symbolic label that evaluates to a string
SuperAdjoint Adjoint of a super-operator
SuperOperator Base class for super-operators
SuperOperatorDerivative Symbolic partial derivative of a super-operator
SuperOperatorPlus A sum of super-operators
SuperOperatorSymbol Symbolic super-operator
SuperOperatorTimes Product of super-operators
SuperOperatorTimesOperator Application of a super-operator to an operator
TensorKet A tensor product of kets

__all__ Functions:

FB Wrapper for Feedback, defaulting to last channel
KroneckerDelta Kronecker delta symbol
LocalProjector A projector onto a specific level of a LocalSpace
PauliX Pauli-type X-operator
PauliY Pauli-type Y-operator
PauliZ Pauli-type Z-operator
SLH_to_qutip Generate and return QuTiP representation matrices for the Hamiltonian and the collapse operators.
SpinBasisKet Constructor for a BasisKet for a SpinSpace
Sum Instantiator for an arbitrary indexed sum.
adjoint Return the adjoint of an obj.
anti_commutator If B != None, return the anti-commutator {𝐴,𝐵}, otherwise return the super-operator {𝐴, ·}.
ascii Return an ASCII representation of the given object / expression
block_matrix Generate the operator matrix with quadrants
circuit_identity Return the circuit identity for n channels
commutator Commutator of A and B
configure_printing Context manager for temporarily changing the printing system.
connect Connect a list of components according to a list of connections.
convert_to_qutip Convert a QNET expression to a qutip object
convert_to_sympy_matrix Convert a QNET expression to an explicit n x n instance of sympy.Matrix, where n is the dimension of full_space.
decompose_space Simplifies OperatorTrace expressions over tensor-product spaces by turning it into iterated partial traces.
diagm Generalizes the diagonal matrix creation capabilities of numpy.diag to Matrix objects.
dotprint Return the ‘DOT‘_ (graph) description of an Expression tree as a string
draw_circuit Generate a graphic representation of circuit and store them in a file.
draw_circuit_canvas Generate a PyX graphical representation of a circuit expression object.
eval_adiabatic_limit Compute the limiting SLH model for the adiabatic approximation

Continued on next page

9.1. qnet package 175

QNET, Release 2.0.0-dev

Table 68 – continued from previous page
expand_commutators_leibniz Recursively expand commutators in expr according to the Leibniz rule.
extract_channel Create a CPermutation that extracts channel k
factor_coeff Factor out coefficients of all factors.
factor_for_trace Given a LocalSpace ls to take the partial trace over and an operator op, factor the trace such that operators acting on disjoint degrees of freedom are pulled out of the trace.If the operator acts trivially on ls the trace yields only a pre-factor equal to the dimension of ls.If there are LocalSigma operators among a product, the trace’s cyclical property is used to move to sandwich the full product by LocalSigma operators:.
getABCD Calculate the ABCD-linearization of an SLH model
get_coeffs Create a dictionary with all Operator terms of the expression (understood as a sum) as keys and their coefficients as values.
hstackm Generalizes numpy.hstack to Matrix objects.
identity_matrix Generate the N-dimensional identity matrix.
init_algebra Initialize the algebra system
init_printing Initialize the printing system.
latex Return a LaTeX representation of the given object / expression
lindblad Return the super-operator Lindblad term of the Lindblad operator C
liouvillian Return the Liouvillian super-operator associated with H and Ls
liouvillian_normal_form Return a Hamilton operator H and a minimal list of collapse operators Ls that generate the liouvillian L.
map_channels Create a CPermuation based on a dict of channel mappings
match_pattern Recursively match expr with the given expr_or_pattern
move_drive_to_H Move coherent drives from the Lindblad operators to the Hamiltonian.
no_instance_caching Temporarily disable instance caching in create()
pad_with_identity Pad a circuit by adding a n-channel identity circuit at index k
pattern ‘Flat’ constructor for the Pattern class
pattern_head Constructor for a Pattern matching a ProtoExpr
prepare_adiabatic_limit Prepare the adiabatic elimination on an SLH object
print_tree Print a tree representation of the structure of expr
rewrite_with_operator_pm_cc Try to rewrite expr using OperatorPlusMinusCC
singleton_object Class decorator that transforms (and replaces) a class definition (which must have a Singleton metaclass) with the actual singleton object.
sqrt Square root of a Scalar or scalar value
srepr Render the given expression into a string that can be evaluated in an appropriate context to re-instantiate an identical expression.
substitute Substitute symbols or (sub-)expressions with the given replacements and re-evalute the result
symbols The symbols() function from SymPy
temporary_instance_cache Use a temporary cache for instances in create()
temporary_rules Allow temporary modification of rules for create()
tex Alias for latex()
tree Give the output of tree as a multiline string, using line drawings to visualize the hierarchy of expressions (similar to the tree unix command line program for showing directory trees)
try_adiabatic_elimination Attempt to automatically do adiabatic elimination on an SLH object
unicode Return a unicode representation of the given object / expression
vstackm Generalizes numpy.vstack to Matrix objects.
wc Constructor for a wildcard-Pattern
zerosm Generalizes numpy.zeros to Matrix objects.

__all__ Data:

176 Chapter 9. API

https://docs.sympy.org/latest/modules/core.html#sympy.core.symbol.symbols

QNET, Release 2.0.0-dev

CIdentity Single pass-through channel; neutral element of SeriesProduct
CircuitZero Zero circuit, the neutral element of Concatenation
FullSpace The ‘full space’, i.e.
II IdentityOperator constant (singleton) object.
IdentityOperator IdentityOperator constant (singleton) object.
IdentitySuperOperator Neutral element for product of super-operators
One The neutral element with respect to scalar multiplication
SingletonType A dummy type that may be used to check whether an object is a Singleton:
TrivialKet TrivialKet constant (singleton) object.
TrivialSpace The ‘nullspace’, i.e.
Zero The neutral element with respect to scalar addition
ZeroKet ZeroKet constant (singleton) object for the null-state.
ZeroOperator ZeroOperator constant (singleton) object.
ZeroSuperOperator Neutral element for sum of super-operators
tr Instantiate while applying automatic simplifications

9.1. qnet package 177

QNET, Release 2.0.0-dev

178 Chapter 9. API

Python Module Index

q
qnet, 43
qnet.algebra, 44
qnet.algebra.core, 44
qnet.algebra.core.abstract_algebra, 44
qnet.algebra.core.abstract_quantum_algebra,

49
qnet.algebra.core.algebraic_properties,

56
qnet.algebra.core.circuit_algebra, 61
qnet.algebra.core.exceptions, 74
qnet.algebra.core.hilbert_space_algebra,

76
qnet.algebra.core.indexed_operations,

81
qnet.algebra.core.matrix_algebra, 82
qnet.algebra.core.operator_algebra, 85
qnet.algebra.core.scalar_algebra, 93
qnet.algebra.core.state_algebra, 99
qnet.algebra.core.super_operator_algebra,

105
qnet.algebra.library, 113
qnet.algebra.library.circuit_components,

113
qnet.algebra.library.fock_operators, 115
qnet.algebra.library.pauli_matrices, 118
qnet.algebra.library.spin_algebra, 119
qnet.algebra.pattern_matching, 124
qnet.algebra.toolbox, 128
qnet.algebra.toolbox.circuit_manipulation,

128
qnet.algebra.toolbox.commutator_manipulation,

129
qnet.algebra.toolbox.core, 130
qnet.algebra.toolbox.equation, 131
qnet.convert, 138
qnet.convert.to_qutip, 138
qnet.convert.to_sympy_matrix, 139
qnet.printing, 140

qnet.printing.asciiprinter, 140
qnet.printing.base, 141
qnet.printing.dot, 142
qnet.printing.latexprinter, 145
qnet.printing.sreprprinter, 146
qnet.printing.sympy, 147
qnet.printing.treeprinting, 148
qnet.printing.unicodeprinter, 149
qnet.utils, 156
qnet.utils.check_rules, 156
qnet.utils.containers, 156
qnet.utils.indices, 157
qnet.utils.ordering, 162
qnet.utils.permutations, 163
qnet.utils.properties_for_args, 167
qnet.utils.singleton, 167
qnet.utils.testing, 169
qnet.utils.unicode, 169
qnet.visualization, 171
qnet.visualization.circuit_pyx, 171

179

QNET, Release 2.0.0-dev

180 Python Module Index

Index

Symbols
__len__() (qnet.algebra.core.hilbert_space_algebra.HilbertSpace

method), 77
__ne__() (qnet.algebra.core.abstract_algebra.Expression

method), 49

A
A (qnet.algebra.core.operator_algebra.Commutator at-

tribute), 90
accept_bras() (in module

qnet.algebra.core.algebraic_properties),
61

add_rule() (qnet.algebra.core.abstract_algebra.Expression
class method), 45

Adjoint (class in qnet.algebra.core.operator_algebra),
91

adjoint() (in module
qnet.algebra.core.operator_algebra), 93

adjoint() (qnet.algebra.core.abstract_quantum_algebra.QuantumExpression
method), 50

adjoint() (qnet.algebra.core.matrix_algebra.Matrix
method), 84

AlgebraError, 74
AlgebraException, 74
all_symbols (qnet.algebra.core.abstract_algebra.Expression

attribute), 49
all_symbols (qnet.algebra.toolbox.equation.Eq at-

tribute), 134
ampl (qnet.algebra.core.state_algebra.CoherentStateKet

attribute), 102
anti_commutator() (in module

qnet.algebra.core.super_operator_algebra),
108

apply() (qnet.algebra.core.abstract_algebra.Expression
method), 47

apply() (qnet.algebra.toolbox.equation.Eq method),
132

apply_mtd() (qnet.algebra.toolbox.equation.Eq
method), 133

apply_mtd_to_lhs()
(qnet.algebra.toolbox.equation.Eq method),
133

apply_mtd_to_rhs()
(qnet.algebra.toolbox.equation.Eq method),
133

apply_rule() (qnet.algebra.core.abstract_algebra.Expression
method), 48

apply_rules() (qnet.algebra.core.abstract_algebra.Expression
method), 48

apply_to_lhs() (qnet.algebra.toolbox.equation.Eq
method), 133

apply_to_rhs() (qnet.algebra.toolbox.equation.Eq
method), 133

ARGNAMES (qnet.algebra.core.circuit_algebra.Component
attribute), 67

ARGNAMES (qnet.algebra.library.circuit_components.Beamsplitter
attribute), 115

ARGNAMES (qnet.algebra.library.circuit_components.CoherentDriveCC
attribute), 114

ARGNAMES (qnet.algebra.library.circuit_components.PhaseCC
attribute), 114

args (qnet.algebra.core.abstract_algebra.Expression
attribute), 46

args (qnet.algebra.core.abstract_algebra.Operation at-
tribute), 49

args (qnet.algebra.core.abstract_quantum_algebra.QuantumSymbol
attribute), 52

args (qnet.algebra.core.circuit_algebra.CircuitSymbol
attribute), 66

args (qnet.algebra.core.circuit_algebra.Component at-
tribute), 67

args (qnet.algebra.core.circuit_algebra.CPermutation
attribute), 68

args (qnet.algebra.core.circuit_algebra.SLH attribute),
65

args (qnet.algebra.core.hilbert_space_algebra.LocalSpace
attribute), 78

args (qnet.algebra.core.indexed_operations.IndexedSum
attribute), 81

181

QNET, Release 2.0.0-dev

args (qnet.algebra.core.matrix_algebra.Matrix at-
tribute), 83

args (qnet.algebra.core.operator_algebra.LocalOperator
attribute), 88

args (qnet.algebra.core.operator_algebra.LocalSigma
attribute), 89

args (qnet.algebra.core.scalar_algebra.ScalarValue at-
tribute), 95

args (qnet.algebra.core.state_algebra.BasisKet at-
tribute), 101

args (qnet.algebra.core.state_algebra.CoherentStateKet
attribute), 102

as_dict (qnet.algebra.toolbox.equation.Eq attribute),
132

ascii() (in module qnet.printing), 152
assoc() (in module

qnet.algebra.core.algebraic_properties),
58

assoc_indexed() (in module
qnet.algebra.core.algebraic_properties),
58

B
B (qnet.algebra.core.operator_algebra.Commutator at-

tribute), 90
BadLiouvillianError, 75
BadPermutationError, 164
base (qnet.algebra.core.scalar_algebra.ScalarPower at-

tribute), 97
basis_ket_zero_outside_hs() (in module

qnet.algebra.core.algebraic_properties), 61
basis_labels (qnet.algebra.core.hilbert_space_algebra.HilbertSpace

attribute), 77
basis_labels (qnet.algebra.core.hilbert_space_algebra.LocalSpace

attribute), 78
basis_labels (qnet.algebra.core.hilbert_space_algebra.ProductSpace

attribute), 80
basis_state() (in module

qnet.convert.to_sympy_matrix), 140
basis_state() (qnet.algebra.core.hilbert_space_algebra.HilbertSpace

method), 77
basis_state() (qnet.algebra.core.hilbert_space_algebra.LocalSpace

method), 78
basis_state() (qnet.algebra.core.hilbert_space_algebra.ProductSpace

method), 80
basis_states (qnet.algebra.core.hilbert_space_algebra.HilbertSpace

attribute), 77
basis_states (qnet.algebra.core.hilbert_space_algebra.LocalSpace

attribute), 78
basis_states (qnet.algebra.core.hilbert_space_algebra.ProductSpace

attribute), 80
BasisKet (class in qnet.algebra.core.state_algebra),

100
BasisNotSetError, 75

Beamsplitter (class in
qnet.algebra.library.circuit_components),
114

block_matrix() (in module
qnet.algebra.core.matrix_algebra), 85

block_perm_and_perms_within_blocks() (in
module qnet.utils.permutations), 166

block_perms (qnet.algebra.core.circuit_algebra.CPermutation
attribute), 68

block_structure (qnet.algebra.core.circuit_algebra.Circuit
attribute), 63

block_structure (qnet.algebra.core.matrix_algebra.Matrix
attribute), 83

bound_symbols (qnet.algebra.core.abstract_algebra.Expression
attribute), 49

bound_symbols (qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative
attribute), 54

bound_symbols (qnet.algebra.core.indexed_operations.IndexedSum
attribute), 81

bound_symbols (qnet.algebra.toolbox.equation.Eq
attribute), 133

Bra (class in qnet.algebra.core.state_algebra), 103
bra (qnet.algebra.core.state_algebra.Bra attribute), 103
bra (qnet.algebra.core.state_algebra.BraKet attribute),

104
bra (qnet.algebra.core.state_algebra.KetBra attribute),

104
bra (qnet.algebra.core.state_algebra.State attribute), 99
BraKet (class in qnet.algebra.core.state_algebra), 104

C
CannotConvertToSLH, 75
CannotEliminateAutomatically, 75
CannotSimplify, 75
CannotSymbolicallyDiagonalize, 75
CannotVisualize, 75
cdim (qnet.algebra.core.circuit_algebra.Circuit at-

tribute), 63
cdim (qnet.algebra.core.circuit_algebra.CircuitSymbol

attribute), 66
CDIM (qnet.algebra.core.circuit_algebra.Component at-

tribute), 67
cdim (qnet.algebra.core.circuit_algebra.Concatenation

attribute), 69
cdim (qnet.algebra.core.circuit_algebra.CPermutation

attribute), 68
cdim (qnet.algebra.core.circuit_algebra.Feedback at-

tribute), 69
cdim (qnet.algebra.core.circuit_algebra.SeriesInverse

attribute), 70
cdim (qnet.algebra.core.circuit_algebra.SeriesProduct

attribute), 69
cdim (qnet.algebra.core.circuit_algebra.SLH attribute),

65

182 Index

QNET, Release 2.0.0-dev

CDIM (qnet.algebra.library.circuit_components.Beamsplitter
attribute), 115

CDIM (qnet.algebra.library.circuit_components.CoherentDriveCC
attribute), 114

CDIM (qnet.algebra.library.circuit_components.PhaseCC
attribute), 114

check_cdims() (in module
qnet.algebra.core.algebraic_properties),
60

check_idempotent_create() (in module
qnet.utils.testing), 169

check_permutation() (in module
qnet.utils.permutations), 164

check_rules_dict() (in module
qnet.utils.check_rules), 156

CIdentity (in module
qnet.algebra.core.circuit_algebra), 68

Circuit (class in qnet.algebra.core.circuit_algebra),
62

circuit_identity() (in module
qnet.algebra.core.circuit_algebra), 70

CircuitSymbol (class in
qnet.algebra.core.circuit_algebra), 66

CircuitZero (in module
qnet.algebra.core.circuit_algebra), 68

coeff (qnet.algebra.core.abstract_quantum_algebra.ScalarTimesQuantumExpression
attribute), 53

coherent_input() (qnet.algebra.core.circuit_algebra.Circuit
method), 64

CoherentDriveCC (class in
qnet.algebra.library.circuit_components),
113

CoherentStateKet (class in
qnet.algebra.core.state_algebra), 102

collect_scalar_summands() (in module
qnet.algebra.core.algebraic_properties),
59

collect_summands() (in module
qnet.algebra.core.algebraic_properties),
58

Commutator (class in
qnet.algebra.core.operator_algebra), 90

commutator() (in module
qnet.algebra.core.super_operator_algebra),
108

commutator_order() (in module
qnet.algebra.core.algebraic_properties),
61

Component (class in
qnet.algebra.core.circuit_algebra), 66

compose_permutations() (in module
qnet.utils.permutations), 165

concatenate_permutations() (in module
qnet.utils.permutations), 166

concatenate_slh()
(qnet.algebra.core.circuit_algebra.SLH
method), 65

Concatenation (class in
qnet.algebra.core.circuit_algebra), 69

Concatenation.neutral_element (in module
qnet.algebra.core.circuit_algebra), 69

configure_printing() (in module qnet.printing),
152

conjugate() (qnet.algebra.core.matrix_algebra.Matrix
method), 83

conjugate() (qnet.algebra.core.scalar_algebra.Scalar
method), 94

conjugate() (qnet.algebra.core.scalar_algebra.ScalarIndexedSum
method), 97

conjugate() (qnet.algebra.core.scalar_algebra.ScalarPlus
method), 96

conjugate() (qnet.algebra.core.scalar_algebra.ScalarTimes
method), 96

connect() (in module
qnet.algebra.toolbox.circuit_manipulation),
128

convert_to_qutip() (in module
qnet.convert.to_qutip), 138

convert_to_scalars() (in module
qnet.algebra.core.algebraic_properties),
61

convert_to_spaces() (in module
qnet.algebra.core.algebraic_properties),
60

convert_to_sympy_matrix() (in module
qnet.convert.to_sympy_matrix), 140

copy() (qnet.algebra.toolbox.equation.Eq method),
133

CPermutation (class in
qnet.algebra.core.circuit_algebra), 67

Create (class in qnet.algebra.library.fock_operators),
116

create() (qnet.algebra.core.abstract_algebra.Expression
class method), 45

create() (qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative
class method), 54

create() (qnet.algebra.core.abstract_quantum_algebra.ScalarTimesQuantumExpression
class method), 53

create() (qnet.algebra.core.circuit_algebra.CPermutation
class method), 68

create() (qnet.algebra.core.circuit_algebra.Feedback
class method), 69

create() (qnet.algebra.core.circuit_algebra.SeriesInverse
class method), 70

create() (qnet.algebra.core.hilbert_space_algebra.ProductSpace
class method), 80

create() (qnet.algebra.core.scalar_algebra.ScalarIndexedSum
class method), 97

Index 183

QNET, Release 2.0.0-dev

create() (qnet.algebra.core.scalar_algebra.ScalarTimes
class method), 96

create() (qnet.algebra.core.scalar_algebra.ScalarValue
class method), 95

create() (qnet.algebra.core.state_algebra.KetIndexedSum
class method), 105

create() (qnet.algebra.core.state_algebra.ScalarTimesKet
class method), 103

create() (qnet.algebra.core.state_algebra.TensorKet
class method), 102

create() (qnet.algebra.core.super_operator_algebra.SuperOperatorTimes
class method), 106

creduce() (qnet.algebra.core.circuit_algebra.Circuit
method), 64

D
dag() (qnet.algebra.core.abstract_quantum_algebra.QuantumExpression

method), 50
dag() (qnet.algebra.core.matrix_algebra.Matrix

method), 84
datadir() (in module qnet.utils.testing), 169
decompose_space() (in module

qnet.algebra.core.operator_algebra), 92
default_assumptions (qnet.utils.indices.IdxSym

attribute), 159
DEFAULTS (qnet.algebra.core.circuit_algebra.Component

attribute), 67
DEFAULTS (qnet.algebra.library.circuit_components.Beamsplitter

attribute), 115
DEFAULTS (qnet.algebra.library.circuit_components.CoherentDriveCC

attribute), 114
DEFAULTS (qnet.algebra.library.circuit_components.PhaseCC

attribute), 114
del_rules() (qnet.algebra.core.abstract_algebra.Expression

class method), 46
delegate_to_method

(qnet.algebra.core.circuit_algebra.Feedback
attribute), 69

delegate_to_method
(qnet.algebra.core.circuit_algebra.SeriesInverse
attribute), 70

delegate_to_method() (in module
qnet.algebra.core.algebraic_properties),
61

derationalize_denom() (in module
qnet.printing.sympy), 147

derivative_via_diff() (in module
qnet.algebra.core.algebraic_properties),
61

derivs (qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative
attribute), 54

Destroy (class in qnet.algebra.library.fock_operators),
116

diagm() (in module qnet.algebra.core.matrix_algebra),
84

diff() (qnet.algebra.core.abstract_quantum_algebra.QuantumExpression
method), 51

dimension (qnet.algebra.core.hilbert_space_algebra.HilbertSpace
attribute), 77

dimension (qnet.algebra.core.hilbert_space_algebra.LocalSpace
attribute), 78

dimension (qnet.algebra.core.hilbert_space_algebra.ProductSpace
attribute), 80

disjunct_hs_zero() (in module
qnet.algebra.core.algebraic_properties),
61

DisjunctCommutativeHSOrder (class in
qnet.utils.ordering), 163

Displace (class in qnet.algebra.library.fock_operators),
117

displacement (qnet.algebra.library.circuit_components.CoherentDriveCC
attribute), 114

displacement (qnet.algebra.library.fock_operators.Displace
attribute), 117

doit() (qnet.algebra.core.abstract_algebra.Expression
method), 46

doit() (qnet.algebra.core.indexed_operations.IndexedSum
method), 81

doit() (qnet.algebra.core.operator_algebra.Commutator
method), 90

doit() (qnet.algebra.core.operator_algebra.OperatorPlusMinusCC
method), 91

doprint() (qnet.printing.base.QnetBasePrinter
method), 142

doprint() (qnet.printing.sreprprinter.IndentedSympyReprPrinter
method), 146

dotprint() (in module qnet.printing.dot), 144
draw_circuit() (in module

qnet.visualization.circuit_pyx), 172
draw_circuit_canvas() (in module

qnet.visualization.circuit_pyx), 171

E
element_wise() (qnet.algebra.core.matrix_algebra.Matrix

method), 84
empty_trivial() (in module

qnet.algebra.core.algebraic_properties),
60

emptyPrinter() (qnet.printing.base.QnetBasePrinter
method), 142

emptyPrinter() (qnet.printing.sreprprinter.IndentedSReprPrinter
method), 147

emptyPrinter() (qnet.printing.sreprprinter.QnetSReprPrinter
method), 146

ensure_local_space() (in module
qnet.algebra.core.abstract_quantum_algebra),
56

184 Index

QNET, Release 2.0.0-dev

Eq (class in qnet.algebra.toolbox.equation), 131
eval_adiabatic_limit() (in module

qnet.algebra.core.circuit_algebra), 73
evaluate_at() (qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative

method), 54
exp (qnet.algebra.core.scalar_algebra.ScalarPower at-

tribute), 97
expand() (qnet.algebra.core.abstract_quantum_algebra.QuantumExpression

method), 51
expand() (qnet.algebra.core.circuit_algebra.SLH

method), 65
expand() (qnet.algebra.core.matrix_algebra.Matrix

method), 84
expand_commutators_leibniz() (in module

qnet.algebra.toolbox.commutator_manipulation),
130

expand_in_basis()
(qnet.algebra.core.operator_algebra.Operator
method), 87

expr_labelfunc() (in module qnet.printing.dot),
143

expr_order_key() (in module qnet.utils.ordering),
163

Expression (class in
qnet.algebra.core.abstract_algebra), 44

extended_arg_patterns()
(qnet.algebra.pattern_matching.Pattern
method), 126

extract_channel() (in module
qnet.algebra.core.circuit_algebra), 71

F
factor_coeff() (in module

qnet.algebra.core.operator_algebra), 93
factor_for_space()

(qnet.algebra.core.abstract_quantum_algebra.QuantumTimes
method), 53

factor_for_trace() (in module
qnet.algebra.core.operator_algebra), 92

FB() (in module qnet.algebra.core.circuit_algebra), 71
Feedback (class in qnet.algebra.core.circuit_algebra),

69
feedback() (qnet.algebra.core.circuit_algebra.Circuit

method), 64
filter_cid() (in module

qnet.algebra.core.algebraic_properties),
60

filter_neutral() (in module
qnet.algebra.core.algebraic_properties),
58

findall() (qnet.algebra.pattern_matching.Pattern
method), 126

finditer() (qnet.algebra.pattern_matching.Pattern
method), 126

fock_index (qnet.utils.indices.FockIndex attribute),
160

fock_index (qnet.utils.indices.FockLabel attribute),
160

fock_index (qnet.utils.indices.SpinIndex attribute),
161

FockIndex (class in qnet.utils.indices), 160
FockLabel (class in qnet.utils.indices), 160
format() (qnet.printing.unicodeprinter.SubSupFmt

method), 150
free_symbols (qnet.algebra.core.abstract_algebra.Expression

attribute), 49
free_symbols (qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative

attribute), 54
free_symbols (qnet.algebra.core.abstract_quantum_algebra.QuantumSymbol

attribute), 52
free_symbols (qnet.algebra.core.abstract_quantum_algebra.ScalarTimesQuantumExpression

attribute), 53
free_symbols (qnet.algebra.core.circuit_algebra.SLH

attribute), 65
free_symbols (qnet.algebra.core.indexed_operations.IndexedSum

attribute), 81
free_symbols (qnet.algebra.core.matrix_algebra.Matrix

attribute), 84
free_symbols (qnet.algebra.toolbox.equation.Eq at-

tribute), 133
free_symbols (qnet.utils.indices.SymbolicLabelBase

attribute), 159
from_expr() (qnet.algebra.pattern_matching.ProtoExpr

class method), 128
full_block_perm() (in module

qnet.utils.permutations), 166
FullCommutativeHSOrder (class in

qnet.utils.ordering), 163
FullSpace (in module

qnet.algebra.core.hilbert_space_algebra),
79

G
get_blocks() (qnet.algebra.core.circuit_algebra.Circuit

method), 63
get_coeffs() (in module

qnet.algebra.core.operator_algebra), 92
getABCD() (in module

qnet.algebra.core.circuit_algebra), 72
grapheme_len() (in module qnet.utils.unicode), 170

H
H (qnet.algebra.core.circuit_algebra.SLH attribute), 65
H (qnet.algebra.core.matrix_algebra.Matrix attribute), 84
has_basis (qnet.algebra.core.hilbert_space_algebra.HilbertSpace

attribute), 77
has_basis (qnet.algebra.core.hilbert_space_algebra.LocalSpace

attribute), 78

Index 185

QNET, Release 2.0.0-dev

has_basis (qnet.algebra.core.hilbert_space_algebra.ProductSpace
attribute), 80

has_minus_prefactor()
(qnet.algebra.core.operator_algebra.ScalarTimesOperator
static method), 90

HilbertSpace (class in
qnet.algebra.core.hilbert_space_algebra),
76

hstackm() (in module
qnet.algebra.core.matrix_algebra), 84

I
idem() (in module qnet.algebra.core.algebraic_properties),

58
IDENTIFIER (qnet.algebra.core.circuit_algebra.Component

attribute), 67
identifier (qnet.algebra.core.operator_algebra.LocalOperator

attribute), 88
IDENTIFIER (qnet.algebra.library.circuit_components.Beamsplitter

attribute), 115
IDENTIFIER (qnet.algebra.library.circuit_components.CoherentDriveCC

attribute), 114
IDENTIFIER (qnet.algebra.library.circuit_components.PhaseCC

attribute), 114
identifier (qnet.algebra.library.fock_operators.Create

attribute), 116
identifier (qnet.algebra.library.fock_operators.Destroy

attribute), 116
identity_matrix() (in module

qnet.algebra.core.matrix_algebra), 85
IdentityOperator (in module

qnet.algebra.core.operator_algebra), 88
IdentitySuperOperator (in module

qnet.algebra.core.super_operator_algebra),
106

IdxSym (class in qnet.utils.indices), 158
II (in module qnet.algebra.core.operator_algebra), 88
imag (qnet.algebra.core.matrix_algebra.Matrix at-

tribute), 83
imag (qnet.algebra.core.scalar_algebra.Scalar at-

tribute), 94
imag (qnet.algebra.core.scalar_algebra.ScalarIndexedSum

attribute), 97
imag (qnet.algebra.core.scalar_algebra.ScalarValue at-

tribute), 95
implied_local_space() (in module

qnet.algebra.core.algebraic_properties),
60

IncompatibleBlockStructures, 75
incr_primed() (qnet.utils.indices.IdxSym method),

159
IndentedSReprPrinter (class in

qnet.printing.sreprprinter), 146

IndentedSympyReprPrinter (class in
qnet.printing.sreprprinter), 146

index (qnet.algebra.core.state_algebra.BasisKet
attribute), 101

index_in_block() (qnet.algebra.core.circuit_algebra.Circuit
method), 63

index_j (qnet.algebra.core.operator_algebra.LocalSigma
attribute), 89

index_k (qnet.algebra.core.operator_algebra.LocalSigma
attribute), 89

indexed_sum_over_const() (in module
qnet.algebra.core.algebraic_properties),
61

indexed_sum_over_kronecker() (in module
qnet.algebra.core.algebraic_properties), 61

IndexedSum (class in
qnet.algebra.core.indexed_operations), 81

IndexOverFockSpace (class in qnet.utils.indices),
162

IndexOverList (class in qnet.utils.indices), 161
IndexOverRange (class in qnet.utils.indices), 161
IndexRangeBase (class in qnet.utils.indices), 161
InfiniteSumError, 74
init_algebra() (in module qnet.algebra), 138
init_printing() (in module qnet.printing), 151
instance_caching (qnet.algebra.core.abstract_algebra.Expression

attribute), 45
instantiate() (qnet.algebra.pattern_matching.ProtoExpr

method), 128
intersect() (qnet.algebra.core.hilbert_space_algebra.HilbertSpace

method), 76
intersect() (qnet.algebra.core.hilbert_space_algebra.LocalSpace

method), 79
intersect() (qnet.algebra.core.hilbert_space_algebra.ProductSpace

method), 80
IntIndex (class in qnet.utils.indices), 159
invert_permutation() (in module

qnet.utils.permutations), 164
is_Atom (qnet.utils.indices.IdxSym attribute), 159
is_finite (qnet.utils.indices.IdxSym attribute), 159
is_infinite (qnet.utils.indices.IdxSym attribute),

159
is_scalar() (in module

qnet.algebra.core.scalar_algebra), 98
is_strict_subfactor_of()

(qnet.algebra.core.hilbert_space_algebra.HilbertSpace
method), 77

is_strict_subfactor_of()
(qnet.algebra.core.hilbert_space_algebra.LocalSpace
method), 79

is_strict_subfactor_of()
(qnet.algebra.core.hilbert_space_algebra.ProductSpace
method), 80

is_strict_tensor_factor_of()

186 Index

QNET, Release 2.0.0-dev

(qnet.algebra.core.hilbert_space_algebra.HilbertSpace
method), 77

is_Symbol (qnet.utils.indices.IdxSym attribute), 159
is_symbol (qnet.utils.indices.IdxSym attribute), 159
is_tensor_factor_of()

(qnet.algebra.core.hilbert_space_algebra.HilbertSpace
method), 77

is_zero (qnet.algebra.core.abstract_quantum_algebra.QuantumExpression
attribute), 50

is_zero (qnet.algebra.core.matrix_algebra.Matrix at-
tribute), 83

isbra (qnet.algebra.core.state_algebra.Bra attribute),
104

isbra (qnet.algebra.core.state_algebra.State attribute),
99

isdisjoint() (qnet.algebra.core.hilbert_space_algebra.HilbertSpace
method), 77

isket (qnet.algebra.core.state_algebra.Bra attribute),
104

isket (qnet.algebra.core.state_algebra.State attribute),
99

iter() (qnet.utils.indices.IndexOverFockSpace
method), 162

iter() (qnet.utils.indices.IndexOverList method), 161
iter() (qnet.utils.indices.IndexOverRange method),

162
iter() (qnet.utils.indices.IndexRangeBase method),

161

J
j (qnet.algebra.core.operator_algebra.LocalSigma at-

tribute), 89
Jminus (class in qnet.algebra.library.spin_algebra),

122
Jmjmcoeff() (in module

qnet.algebra.library.spin_algebra), 123
Jpjmcoeff() (in module

qnet.algebra.library.spin_algebra), 122
Jplus (class in qnet.algebra.library.spin_algebra), 122
Jz (class in qnet.algebra.library.spin_algebra), 121
Jzjmcoeff() (in module

qnet.algebra.library.spin_algebra), 123

K
k (qnet.algebra.core.operator_algebra.LocalSigma at-

tribute), 89
ket (qnet.algebra.core.state_algebra.Bra attribute), 103
ket (qnet.algebra.core.state_algebra.BraKet attribute),

104
ket (qnet.algebra.core.state_algebra.KetBra attribute),

104
ket (qnet.algebra.core.state_algebra.OperatorTimesKet

attribute), 103
ket (qnet.algebra.core.state_algebra.State attribute), 99

KetBra (class in qnet.algebra.core.state_algebra), 104
KetIndexedSum (class in

qnet.algebra.core.state_algebra), 104
KetPlus (class in qnet.algebra.core.state_algebra), 102
KetSymbol (class in qnet.algebra.core.state_algebra),

100
KeyTuple (class in qnet.utils.ordering), 163
KroneckerDelta() (in module

qnet.algebra.core.scalar_algebra), 97
kwargs (qnet.algebra.core.abstract_algebra.Expression

attribute), 46
kwargs (qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative

attribute), 54
kwargs (qnet.algebra.core.abstract_quantum_algebra.QuantumSymbol

attribute), 52
kwargs (qnet.algebra.core.circuit_algebra.CircuitSymbol

attribute), 66
kwargs (qnet.algebra.core.circuit_algebra.Component

attribute), 67
kwargs (qnet.algebra.core.circuit_algebra.Feedback at-

tribute), 69
kwargs (qnet.algebra.core.hilbert_space_algebra.LocalSpace

attribute), 79
kwargs (qnet.algebra.core.indexed_operations.IndexedSum

attribute), 81
kwargs (qnet.algebra.core.operator_algebra.LocalOperator

attribute), 88
kwargs (qnet.algebra.core.operator_algebra.OperatorPlusMinusCC

attribute), 91
kwargs (qnet.algebra.core.operator_algebra.OperatorTrace

attribute), 91
kwargs (qnet.algebra.core.state_algebra.LocalKet at-

tribute), 100

L
L (qnet.algebra.core.circuit_algebra.SLH attribute), 65
label (qnet.algebra.core.abstract_quantum_algebra.QuantumSymbol

attribute), 52
label (qnet.algebra.core.circuit_algebra.CircuitSymbol

attribute), 66
label (qnet.algebra.core.hilbert_space_algebra.LocalSpace

attribute), 78
label (qnet.algebra.core.state_algebra.Bra attribute),

104
latex() (in module qnet.printing), 153
lhs (qnet.algebra.toolbox.equation.Eq attribute), 132
lindblad() (in module

qnet.algebra.core.super_operator_algebra),
108

liouvillian() (in module
qnet.algebra.core.super_operator_algebra),
109

liouvillian_normal_form() (in module
qnet.algebra.core.super_operator_algebra),

Index 187

QNET, Release 2.0.0-dev

109
ljust() (in module qnet.utils.unicode), 170
local_factors (qnet.algebra.core.hilbert_space_algebra.HilbertSpace

attribute), 76
local_factors (qnet.algebra.core.hilbert_space_algebra.LocalSpace

attribute), 79
local_factors (qnet.algebra.core.hilbert_space_algebra.ProductSpace

attribute), 80
LocalKet (class in qnet.algebra.core.state_algebra),

100
LocalOperator (class in

qnet.algebra.core.operator_algebra), 87
LocalProjector() (in module

qnet.algebra.core.operator_algebra), 89
LocalSigma (class in

qnet.algebra.core.operator_algebra), 88
LocalSpace (class in

qnet.algebra.core.hilbert_space_algebra),
77

Ls (qnet.algebra.core.circuit_algebra.SLH attribute), 65

M
make_disjunct_indices()

(qnet.algebra.core.indexed_operations.IndexedSum
method), 82

map_channels() (in module
qnet.algebra.core.circuit_algebra), 71

match() (qnet.algebra.pattern_matching.Pattern
method), 126

match_pattern() (in module
qnet.algebra.pattern_matching), 128

match_replace() (in module
qnet.algebra.core.algebraic_properties),
59

match_replace_binary() (in module
qnet.algebra.core.algebraic_properties),
60

MatchDict (class in qnet.algebra.pattern_matching),
124

Matrix (class in qnet.algebra.core.matrix_algebra), 82
matrix (qnet.algebra.core.matrix_algebra.Matrix at-

tribute), 83
minimal_kwargs (qnet.algebra.core.abstract_algebra.Expression

attribute), 46
minimal_kwargs (qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative

attribute), 54
minimal_kwargs (qnet.algebra.core.circuit_algebra.Component

attribute), 67
minimal_kwargs (qnet.algebra.core.hilbert_space_algebra.LocalSpace

attribute), 79
minimal_kwargs (qnet.algebra.core.operator_algebra.OperatorPlusMinusCC

attribute), 91
mixing_angle (qnet.algebra.library.circuit_components.Beamsplitter

attribute), 115

move_drive_to_H() (in module
qnet.algebra.core.circuit_algebra), 72

multiplicity (qnet.algebra.library.spin_algebra.SpinSpace
attribute), 120

N
n (qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative

attribute), 54
nested_tuple() (in module qnet.utils.containers),

157
next() (qnet.algebra.core.state_algebra.BasisKet

method), 101
next_basis_label_or_index()

(qnet.algebra.core.hilbert_space_algebra.LocalSpace
method), 79

next_basis_label_or_index()
(qnet.algebra.library.spin_algebra.SpinSpace
method), 120

no_instance_caching() (in module
qnet.algebra.toolbox.core), 130

NoConjugateMatrix, 76
NonSquareMatrix, 76
NullSpaceProjector (class in

qnet.algebra.core.operator_algebra), 92

O
One (in module qnet.algebra.core.scalar_algebra), 95
one_or_more (qnet.algebra.pattern_matching.Pattern

attribute), 126
op (qnet.algebra.core.super_operator_algebra.SuperOperatorTimesOperator

attribute), 108
operand (qnet.algebra.core.abstract_quantum_algebra.SingleQuantumOperation

attribute), 52
operand (qnet.algebra.core.circuit_algebra.Feedback

attribute), 69
operand (qnet.algebra.core.circuit_algebra.SeriesInverse

attribute), 70
operand (qnet.algebra.core.operator_algebra.OperatorTrace

attribute), 91
operand (qnet.algebra.core.state_algebra.Bra at-

tribute), 103
operands (qnet.algebra.core.abstract_algebra.Operation

attribute), 49
operands (qnet.algebra.core.indexed_operations.IndexedSum

attribute), 81
Operation (class in

qnet.algebra.core.abstract_algebra), 49
Operator (class in qnet.algebra.core.operator_algebra),

87
operator (qnet.algebra.core.state_algebra.OperatorTimesKet

attribute), 103
OperatorDerivative (class in

qnet.algebra.core.operator_algebra), 90

188 Index

QNET, Release 2.0.0-dev

OperatorIndexedSum (class in
qnet.algebra.core.operator_algebra), 92

OperatorPlus (class in
qnet.algebra.core.operator_algebra), 90

OperatorPlusMinusCC (class in
qnet.algebra.core.operator_algebra), 91

OperatorSymbol (class in
qnet.algebra.core.operator_algebra), 88

OperatorTimes (class in
qnet.algebra.core.operator_algebra), 90

OperatorTimesKet (class in
qnet.algebra.core.state_algebra), 103

OperatorTrace (class in
qnet.algebra.core.operator_algebra), 91

order_key (qnet.algebra.core.abstract_quantum_algebra.QuantumPlus
attribute), 52

order_key (qnet.algebra.core.abstract_quantum_algebra.QuantumTimes
attribute), 53

order_key (qnet.algebra.core.operator_algebra.Commutator
attribute), 90

order_key (qnet.algebra.core.state_algebra.KetPlus
attribute), 102

order_key (qnet.algebra.core.state_algebra.TensorKet
attribute), 102

order_key (qnet.algebra.core.super_operator_algebra.SuperOperatorTimes
attribute), 106

order_key() (qnet.algebra.core.hilbert_space_algebra.ProductSpace
class method), 80

orderby() (in module
qnet.algebra.core.algebraic_properties),
58

out_in_pair (qnet.algebra.core.circuit_algebra.Feedback
attribute), 69

OverlappingSpaces, 75

P
pad_with_identity() (in module

qnet.algebra.core.circuit_algebra), 71
parenthesize() (qnet.printing.asciiprinter.QnetAsciiPrinter

method), 141
Pattern (class in qnet.algebra.pattern_matching), 125
pattern() (in module

qnet.algebra.pattern_matching), 127
pattern_head() (in module

qnet.algebra.pattern_matching), 127
PauliX() (in module

qnet.algebra.library.pauli_matrices), 118
PauliY() (in module

qnet.algebra.library.pauli_matrices), 118
PauliZ() (in module

qnet.algebra.library.pauli_matrices), 118
permutation (qnet.algebra.core.circuit_algebra.CPermutation

attribute), 68

permutation_from_block_permutations()
(in module qnet.utils.permutations), 165

permutation_from_disjoint_cycles() (in
module qnet.utils.permutations), 165

permutation_matrix() (in module
qnet.algebra.core.matrix_algebra), 85

permutation_to_block_permutations() (in
module qnet.utils.permutations), 165

permutation_to_disjoint_cycles() (in mod-
ule qnet.utils.permutations), 164

permute() (in module qnet.utils.permutations), 166
Phase (class in qnet.algebra.library.fock_operators),

116
phase (qnet.algebra.library.circuit_components.PhaseCC

attribute), 114
phase (qnet.algebra.library.fock_operators.Phase at-

tribute), 117
PhaseCC (class in qnet.algebra.library.circuit_components),

114
piecewise_one() (qnet.utils.indices.IndexOverFockSpace

method), 162
piecewise_one() (qnet.utils.indices.IndexOverList

method), 161
piecewise_one() (qnet.utils.indices.IndexOverRange

method), 162
piecewise_one() (qnet.utils.indices.IndexRangeBase

method), 161
PORTSIN (qnet.algebra.core.circuit_algebra.Component

attribute), 67
PORTSIN (qnet.algebra.library.circuit_components.Beamsplitter

attribute), 115
PORTSIN (qnet.algebra.library.circuit_components.CoherentDriveCC

attribute), 114
PORTSIN (qnet.algebra.library.circuit_components.PhaseCC

attribute), 114
PORTSOUT (qnet.algebra.core.circuit_algebra.Component

attribute), 67
PORTSOUT (qnet.algebra.library.circuit_components.Beamsplitter

attribute), 115
PORTSOUT (qnet.algebra.library.circuit_components.CoherentDriveCC

attribute), 114
PORTSOUT (qnet.algebra.library.circuit_components.PhaseCC

attribute), 114
prepare_adiabatic_limit() (in module

qnet.algebra.core.circuit_algebra), 73
prev() (qnet.algebra.core.state_algebra.BasisKet

method), 101
prime (qnet.utils.indices.IdxSym attribute), 159
primed (qnet.utils.indices.IdxSym attribute), 159
print_tree() (in module qnet.printing.treeprinting),

149
printmethod (qnet.printing.asciiprinter.QnetAsciiPrinter

attribute), 141
printmethod (qnet.printing.base.QnetBasePrinter at-

Index 189

QNET, Release 2.0.0-dev

tribute), 142
printmethod (qnet.printing.latexprinter.QnetLatexPrinter

attribute), 145
printmethod (qnet.printing.sympy.SympyLatexPrinter

attribute), 148
printmethod (qnet.printing.sympy.SympyStrPrinter

attribute), 148
printmethod (qnet.printing.sympy.SympyUnicodePrinter

attribute), 148
printmethod (qnet.printing.unicodeprinter.QnetUnicodePrinter

attribute), 150
product() (in module qnet.utils.indices), 158
ProductSpace (class in

qnet.algebra.core.hilbert_space_algebra),
79

properties_for_args() (in module
qnet.utils.properties_for_args), 167

ProtoExpr (class in qnet.algebra.pattern_matching),
127

pseudo_inverse() (qnet.algebra.core.operator_algebra.Operator
method), 87

PseudoInverse (class in
qnet.algebra.core.operator_algebra), 91

Q
qnet (module), 43
qnet.algebra (module), 44
qnet.algebra.core (module), 44
qnet.algebra.core.abstract_algebra (mod-

ule), 44
qnet.algebra.core.abstract_quantum_algebra

(module), 49
qnet.algebra.core.algebraic_properties

(module), 56
qnet.algebra.core.circuit_algebra (mod-

ule), 61
qnet.algebra.core.exceptions (module), 74
qnet.algebra.core.hilbert_space_algebra

(module), 76
qnet.algebra.core.indexed_operations

(module), 81
qnet.algebra.core.matrix_algebra (mod-

ule), 82
qnet.algebra.core.operator_algebra (mod-

ule), 85
qnet.algebra.core.scalar_algebra (mod-

ule), 93
qnet.algebra.core.state_algebra (module),

99
qnet.algebra.core.super_operator_algebra

(module), 105
qnet.algebra.library (module), 113
qnet.algebra.library.circuit_components

(module), 113

qnet.algebra.library.fock_operators
(module), 115

qnet.algebra.library.pauli_matrices
(module), 118

qnet.algebra.library.spin_algebra (mod-
ule), 119

qnet.algebra.pattern_matching (module),
124

qnet.algebra.toolbox (module), 128
qnet.algebra.toolbox.circuit_manipulation

(module), 128
qnet.algebra.toolbox.commutator_manipulation

(module), 129
qnet.algebra.toolbox.core (module), 130
qnet.algebra.toolbox.equation (module),

131
qnet.convert (module), 138
qnet.convert.to_qutip (module), 138
qnet.convert.to_sympy_matrix (module), 139
qnet.printing (module), 140
qnet.printing.asciiprinter (module), 140
qnet.printing.base (module), 141
qnet.printing.dot (module), 142
qnet.printing.latexprinter (module), 145
qnet.printing.sreprprinter (module), 146
qnet.printing.sympy (module), 147
qnet.printing.treeprinting (module), 148
qnet.printing.unicodeprinter (module), 149
qnet.utils (module), 156
qnet.utils.check_rules (module), 156
qnet.utils.containers (module), 156
qnet.utils.indices (module), 157
qnet.utils.ordering (module), 162
qnet.utils.permutations (module), 163
qnet.utils.properties_for_args (module),

167
qnet.utils.singleton (module), 167
qnet.utils.testing (module), 169
qnet.utils.unicode (module), 169
qnet.visualization (module), 171
qnet.visualization.circuit_pyx (module),

171
QnetAsciiDefaultPrinter (class in

qnet.printing.asciiprinter), 141
QnetAsciiPrinter (class in

qnet.printing.asciiprinter), 141
QnetAsciiTestPrinter (class in qnet.utils.testing),

169
QnetBasePrinter (class in qnet.printing.base), 141
QnetLatexPrinter (class in

qnet.printing.latexprinter), 145
QnetSReprPrinter (class in

qnet.printing.sreprprinter), 146

190 Index

QNET, Release 2.0.0-dev

QnetUnicodePrinter (class in
qnet.printing.unicodeprinter), 150

QuantumAdjoint (class in
qnet.algebra.core.abstract_quantum_algebra),
52

QuantumDerivative (class in
qnet.algebra.core.abstract_quantum_algebra),
53

QuantumExpression (class in
qnet.algebra.core.abstract_quantum_algebra),
50

QuantumIndexedSum (class in
qnet.algebra.core.abstract_quantum_algebra),
54

QuantumOperation (class in
qnet.algebra.core.abstract_quantum_algebra),
52

QuantumPlus (class in
qnet.algebra.core.abstract_quantum_algebra),
52

QuantumSymbol (class in
qnet.algebra.core.abstract_quantum_algebra),
51

QuantumTimes (class in
qnet.algebra.core.abstract_quantum_algebra),
52

R
raise_jk() (qnet.algebra.core.operator_algebra.LocalSigma

method), 89
range (qnet.utils.indices.IndexOverRange attribute),

162
real (qnet.algebra.core.matrix_algebra.Matrix at-

tribute), 83
real (qnet.algebra.core.scalar_algebra.Scalar at-

tribute), 94
real (qnet.algebra.core.scalar_algebra.ScalarIndexedSum

attribute), 97
real (qnet.algebra.core.scalar_algebra.ScalarValue at-

tribute), 95
rebuild() (qnet.algebra.core.abstract_algebra.Expression

method), 49
remove() (qnet.algebra.core.hilbert_space_algebra.HilbertSpace

method), 76
remove() (qnet.algebra.core.hilbert_space_algebra.LocalSpace

method), 79
remove() (qnet.algebra.core.hilbert_space_algebra.ProductSpace

method), 80
render() (qnet.algebra.core.circuit_algebra.Circuit

method), 64
render_latex_sub_super() (in module

qnet.printing.latexprinter), 145
rewrite_with_operator_pm_cc() (in module

qnet.algebra.core.operator_algebra), 93

rhs (qnet.algebra.toolbox.equation.Eq attribute), 132
rjust() (in module qnet.utils.unicode), 170
rules() (qnet.algebra.core.abstract_algebra.Expression

class method), 46

S
S (qnet.algebra.core.circuit_algebra.SLH attribute), 65
Scalar (class in qnet.algebra.core.scalar_algebra), 94
ScalarDerivative (class in

qnet.algebra.core.scalar_algebra), 97
ScalarExpression (class in

qnet.algebra.core.scalar_algebra), 95
ScalarIndexedSum (class in

qnet.algebra.core.scalar_algebra), 96
ScalarPlus (class in

qnet.algebra.core.scalar_algebra), 95
ScalarPower (class in

qnet.algebra.core.scalar_algebra), 97
scalars_to_op() (in module

qnet.algebra.core.algebraic_properties),
61

ScalarTimes (class in
qnet.algebra.core.scalar_algebra), 96

ScalarTimesKet (class in
qnet.algebra.core.state_algebra), 102

ScalarTimesOperator (class in
qnet.algebra.core.operator_algebra), 90

ScalarTimesQuantumExpression (class in
qnet.algebra.core.abstract_quantum_algebra),
53

ScalarTimesSuperOperator (class in
qnet.algebra.core.super_operator_algebra),
107

ScalarValue (class in
qnet.algebra.core.scalar_algebra), 94

series_expand() (qnet.algebra.core.abstract_quantum_algebra.QuantumExpression
method), 51

series_expand() (qnet.algebra.core.matrix_algebra.Matrix
method), 84

series_inverse() (qnet.algebra.core.circuit_algebra.Circuit
method), 63

series_with_permutation()
(qnet.algebra.core.circuit_algebra.CPermutation
method), 68

series_with_slh()
(qnet.algebra.core.circuit_algebra.SLH
method), 65

SeriesInverse (class in
qnet.algebra.core.circuit_algebra), 70

SeriesProduct (class in
qnet.algebra.core.circuit_algebra), 68

SeriesProduct.neutral_element (in module
qnet.algebra.core.circuit_algebra), 69

Index 191

QNET, Release 2.0.0-dev

set_tag() (qnet.algebra.toolbox.equation.Eq
method), 132

shape (qnet.algebra.core.matrix_algebra.Matrix at-
tribute), 83

show() (qnet.algebra.core.circuit_algebra.Circuit
method), 64

show_rules() (qnet.algebra.core.abstract_algebra.Expression
class method), 46

simplifications (qnet.algebra.core.abstract_algebra.Expression
attribute), 45

simplifications (qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative
attribute), 54

simplifications (qnet.algebra.core.circuit_algebra.Concatenation
attribute), 69

simplifications (qnet.algebra.core.circuit_algebra.CPermutation
attribute), 68

simplifications (qnet.algebra.core.circuit_algebra.Feedback
attribute), 69

simplifications (qnet.algebra.core.circuit_algebra.SeriesInverse
attribute), 70

simplifications (qnet.algebra.core.circuit_algebra.SeriesProduct
attribute), 69

simplifications (qnet.algebra.core.hilbert_space_algebra.ProductSpace
attribute), 80

simplifications (qnet.algebra.core.operator_algebra.Adjoint
attribute), 91

simplifications (qnet.algebra.core.operator_algebra.Commutator
attribute), 90

simplifications (qnet.algebra.core.operator_algebra.LocalOperator
attribute), 87

simplifications (qnet.algebra.core.operator_algebra.LocalSigma
attribute), 89

simplifications (qnet.algebra.core.operator_algebra.NullSpaceProjector
attribute), 92

simplifications (qnet.algebra.core.operator_algebra.OperatorIndexedSum
attribute), 92

simplifications (qnet.algebra.core.operator_algebra.OperatorPlus
attribute), 90

simplifications (qnet.algebra.core.operator_algebra.OperatorTimes
attribute), 90

simplifications (qnet.algebra.core.operator_algebra.OperatorTrace
attribute), 91

simplifications (qnet.algebra.core.operator_algebra.PseudoInverse
attribute), 92

simplifications (qnet.algebra.core.operator_algebra.ScalarTimesOperator
attribute), 90

simplifications (qnet.algebra.core.scalar_algebra.ScalarIndexedSum
attribute), 97

simplifications (qnet.algebra.core.scalar_algebra.ScalarPlus
attribute), 96

simplifications (qnet.algebra.core.scalar_algebra.ScalarPower
attribute), 97

simplifications (qnet.algebra.core.scalar_algebra.ScalarTimes
attribute), 96

simplifications (qnet.algebra.core.state_algebra.BasisKet
attribute), 101

simplifications (qnet.algebra.core.state_algebra.BraKet
attribute), 104

simplifications (qnet.algebra.core.state_algebra.KetBra
attribute), 104

simplifications (qnet.algebra.core.state_algebra.KetIndexedSum
attribute), 104

simplifications (qnet.algebra.core.state_algebra.KetPlus
attribute), 102

simplifications (qnet.algebra.core.state_algebra.OperatorTimesKet
attribute), 103

simplifications (qnet.algebra.core.state_algebra.ScalarTimesKet
attribute), 103

simplifications (qnet.algebra.core.state_algebra.TensorKet
attribute), 102

simplifications (qnet.algebra.core.super_operator_algebra.ScalarTimesSuperOperator
attribute), 107

simplifications (qnet.algebra.core.super_operator_algebra.SPost
attribute), 107

simplifications (qnet.algebra.core.super_operator_algebra.SPre
attribute), 107

simplifications (qnet.algebra.core.super_operator_algebra.SuperAdjoint
attribute), 107

simplifications (qnet.algebra.core.super_operator_algebra.SuperOperatorPlus
attribute), 106

simplifications (qnet.algebra.core.super_operator_algebra.SuperOperatorTimes
attribute), 106

simplifications (qnet.algebra.core.super_operator_algebra.SuperOperatorTimesOperator
attribute), 108

simplifications (qnet.algebra.library.fock_operators.Displace
attribute), 117

simplifications (qnet.algebra.library.fock_operators.Phase
attribute), 117

simplifications (qnet.algebra.library.fock_operators.Squeeze
attribute), 117

simplify_scalar()
(qnet.algebra.core.abstract_quantum_algebra.QuantumExpression
method), 51

simplify_scalar()
(qnet.algebra.core.circuit_algebra.SLH
method), 65

simplify_scalar()
(qnet.algebra.core.matrix_algebra.Matrix
method), 84

single (qnet.algebra.pattern_matching.Pattern at-
tribute), 126

SingleQuantumOperation (class in
qnet.algebra.core.abstract_quantum_algebra),
52

Singleton (class in qnet.utils.singleton), 168
singleton_object() (in module

qnet.utils.singleton), 168
SingletonType (in module qnet.utils.singleton), 168

192 Index

QNET, Release 2.0.0-dev

SLH (class in qnet.algebra.core.circuit_algebra), 64
SLH_to_qutip() (in module qnet.convert.to_qutip),

139
sop (qnet.algebra.core.super_operator_algebra.SuperOperatorTimesOperator

attribute), 108
sorted_if_possible() (in module

qnet.utils.containers), 157
space (qnet.algebra.core.abstract_quantum_algebra.QuantumExpression

attribute), 50
space (qnet.algebra.core.abstract_quantum_algebra.QuantumIndexedSum

attribute), 54
space (qnet.algebra.core.abstract_quantum_algebra.QuantumOperation

attribute), 52
space (qnet.algebra.core.abstract_quantum_algebra.QuantumSymbol

attribute), 52
space (qnet.algebra.core.abstract_quantum_algebra.ScalarTimesQuantumExpression

attribute), 53
space (qnet.algebra.core.circuit_algebra.SLH at-

tribute), 65
space (qnet.algebra.core.matrix_algebra.Matrix at-

tribute), 84
space (qnet.algebra.core.operator_algebra.LocalOperator

attribute), 88
space (qnet.algebra.core.operator_algebra.OperatorTrace

attribute), 91
space (qnet.algebra.core.scalar_algebra.Scalar at-

tribute), 94
space (qnet.algebra.core.state_algebra.KetBra at-

tribute), 104
space (qnet.algebra.core.state_algebra.LocalKet

attribute), 100
space (qnet.algebra.core.state_algebra.OperatorTimesKet

attribute), 103
space (qnet.algebra.core.super_operator_algebra.SPost

attribute), 107
space (qnet.algebra.core.super_operator_algebra.SPre

attribute), 107
space (qnet.algebra.core.super_operator_algebra.SuperOperatorTimesOperator

attribute), 108
SpaceTooLargeError, 75
spin (qnet.algebra.library.spin_algebra.SpinSpace at-

tribute), 120
SpinBasisKet() (in module

qnet.algebra.library.spin_algebra), 121
SpinIndex (class in qnet.utils.indices), 160
SpinOperator (class in

qnet.algebra.library.spin_algebra), 121
SpinSpace (class in

qnet.algebra.library.spin_algebra), 119
SPost (class in qnet.algebra.core.super_operator_algebra),

107
SPre (class in qnet.algebra.core.super_operator_algebra),

107
sqrt() (in module qnet.algebra.core.scalar_algebra),

98
Squeeze (class in qnet.algebra.library.fock_operators),

117
squeezing_factor (qnet.algebra.library.fock_operators.Squeeze

attribute), 117
srepr() (in module qnet.printing), 155
State (class in qnet.algebra.core.state_algebra), 99
StateDerivative (class in

qnet.algebra.core.state_algebra), 103
StrLabel (class in qnet.utils.indices), 160
substitute() (in module

qnet.algebra.core.abstract_algebra), 49
substitute() (qnet.algebra.core.abstract_algebra.Expression

method), 46
substitute() (qnet.algebra.toolbox.equation.Eq

method), 133
substitute() (qnet.utils.indices.FockLabel method),

160
substitute() (qnet.utils.indices.IndexOverFockSpace

method), 162
substitute() (qnet.utils.indices.IndexOverList

method), 161
substitute() (qnet.utils.indices.IndexOverRange

method), 162
substitute() (qnet.utils.indices.IndexRangeBase

method), 161
substitute() (qnet.utils.indices.SpinIndex method),

161
substitute() (qnet.utils.indices.SymbolicLabelBase

method), 159
SubSupFmt (class in qnet.printing.unicodeprinter), 150
SubSupFmtNoUni (class in

qnet.printing.unicodeprinter), 150
Sum() (in module qnet.algebra.core.abstract_quantum_algebra),

54
SuperAdjoint (class in

qnet.algebra.core.super_operator_algebra),
107

SuperCommutativeHSOrder (class in
qnet.algebra.core.super_operator_algebra),
106

SuperOperator (class in
qnet.algebra.core.super_operator_algebra),
106

SuperOperatorDerivative (class in
qnet.algebra.core.super_operator_algebra),
108

SuperOperatorPlus (class in
qnet.algebra.core.super_operator_algebra),
106

SuperOperatorSymbol (class in
qnet.algebra.core.super_operator_algebra),
106

SuperOperatorTimes (class in

Index 193

QNET, Release 2.0.0-dev

qnet.algebra.core.super_operator_algebra),
106

SuperOperatorTimesOperator (class in
qnet.algebra.core.super_operator_algebra),
108

sym_args (qnet.algebra.core.abstract_quantum_algebra.QuantumSymbol
attribute), 52

sym_args (qnet.algebra.core.circuit_algebra.CircuitSymbol
attribute), 66

symbolic_heisenberg_eom()
(qnet.algebra.core.circuit_algebra.SLH
method), 66

symbolic_liouvillian()
(qnet.algebra.core.circuit_algebra.SLH
method), 65

symbolic_master_equation()
(qnet.algebra.core.circuit_algebra.SLH
method), 65

SymbolicLabelBase (class in qnet.utils.indices), 159
symbols() (in module qnet.algebra.toolbox.core), 130
sympy_printer_cls

(qnet.printing.asciiprinter.QnetAsciiPrinter
attribute), 141

sympy_printer_cls
(qnet.printing.base.QnetBasePrinter attribute),
142

sympy_printer_cls
(qnet.printing.latexprinter.QnetLatexPrinter
attribute), 145

sympy_printer_cls
(qnet.printing.sreprprinter.IndentedSReprPrinter
attribute), 146

sympy_printer_cls
(qnet.printing.sreprprinter.QnetSReprPrinter
attribute), 146

sympy_printer_cls
(qnet.printing.unicodeprinter.QnetUnicodePrinter
attribute), 150

SympyCreate() (in module
qnet.convert.to_sympy_matrix), 140

SympyLatexPrinter (class in qnet.printing.sympy),
148

SympyReprPrinter (class in qnet.printing.sympy),
148

SympyStrPrinter (class in qnet.printing.sympy), 148
SympyUnicodePrinter (class in

qnet.printing.sympy), 148
syms (qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative

attribute), 54

T
T (qnet.algebra.core.matrix_algebra.Matrix attribute), 83
tag (qnet.algebra.toolbox.equation.Eq attribute), 132

temporary_instance_cache() (in module
qnet.algebra.toolbox.core), 130

temporary_rules() (in module
qnet.algebra.toolbox.core), 130

tensor() (qnet.algebra.core.hilbert_space_algebra.HilbertSpace
method), 76

TensorKet (class in qnet.algebra.core.state_algebra),
102

term (qnet.algebra.core.abstract_quantum_algebra.ScalarTimesQuantumExpression
attribute), 53

term (qnet.algebra.core.indexed_operations.IndexedSum
attribute), 81

terms (qnet.algebra.core.indexed_operations.IndexedSum
attribute), 81

tex() (in module qnet.printing), 155
to_fock_representation()

(qnet.algebra.core.state_algebra.CoherentStateKet
method), 102

toSLH() (qnet.algebra.core.circuit_algebra.Circuit
method), 64

trace() (qnet.algebra.core.matrix_algebra.Matrix
method), 84

transpose() (qnet.algebra.core.matrix_algebra.Matrix
method), 83

tree() (in module qnet.printing.treeprinting), 149
TrivialKet (in module

qnet.algebra.core.state_algebra), 100
TrivialSpace (in module

qnet.algebra.core.hilbert_space_algebra),
79

try_adiabatic_elimination() (in module
qnet.algebra.core.circuit_algebra), 73

U
UnequalSpaces, 75
unicode() (in module qnet.printing), 153
update() (qnet.algebra.pattern_matching.MatchDict

method), 125

V
val (qnet.algebra.core.scalar_algebra.ScalarValue at-

tribute), 95
vals (qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative

attribute), 54
variables (qnet.algebra.core.indexed_operations.IndexedSum

attribute), 81
verify() (qnet.algebra.toolbox.equation.Eq method),

133
vstackm() (in module

qnet.algebra.core.matrix_algebra), 84

W
wc() (in module qnet.algebra.pattern_matching), 127

194 Index

QNET, Release 2.0.0-dev

wc_names (qnet.algebra.pattern_matching.Pattern at-
tribute), 126

WrongCDimError, 75

Y
yield_from_ranges() (in module

qnet.utils.indices), 158

Z
Zero (in module qnet.algebra.core.scalar_algebra), 95
zero_or_more (qnet.algebra.pattern_matching.Pattern

attribute), 126
ZeroKet (in module qnet.algebra.core.state_algebra),

100
ZeroOperator (in module

qnet.algebra.core.operator_algebra), 88
zerosm() (in module

qnet.algebra.core.matrix_algebra), 85
ZeroSuperOperator (in module

qnet.algebra.core.super_operator_algebra),
106

Index 195

	QNET
	Features
	Dependencies
	Installation
	Usage

	Contributing
	Types of Contributions
	Get Started!
	Branching Model
	Testing
	Pull Request Guidelines

	Credits
	Development Lead
	Contributors

	History
	1.0.0
	2.0.0

	Library Structure
	Subpackage Organization
	Class Hierarchy

	Symbolic Algebra
	Expressions and Operations
	Hilbert Space Algebra
	Operator Algebra
	State (Ket-) Algebra
	Super-Operator Algebra
	Circuit Algebra

	Properties and Simplification of Circuit Algebraic Expressions
	Permutation objects
	Permutations and Concatenations
	Feedback of a concatenation
	Feedback of a series

	The Printing System
	Overview
	Basic Customization
	Printer classes
	Customization through an INI file

	API
	qnet package

	Python Module Index

