QNET
 Release 2.0.0-dev

Contents:

1 QNET 3
1.1 Features 3
1.2 Dependencies 3
1.3 Installation 4
1.4 Usage 4
2 Contributing 5
2.1 Types of Contributions 5
2.2 Get Started! 6
2.3 Branching Model 6
2.4 Testing 7
2.5 Pull Request Guidelines 7
3 Credits 9
3.1 Development Lead 9
3.2 Contributors 9
4 History 11
$4.1 \quad 1.0 .0$ 11
$4.2 \quad 2.0 .0$ 11
5 Library Structure 13
5.1 Subpackage Organization 13
5.2 Class Hierarchy 14
6 Symbolic Algebra 17
6.1 Expressions and Operations 17
6.2 Hilbert Space Algebra 19
6.3 Operator Algebra 19
6.4 State (Ket-) Algebra 22
6.5 Super-Operator Algebra 23
6.6 Circuit Algebra 24
7 Properties and Simplification of Circuit Algebraic Expressions 29
7.1 Permutation objects 31
7.2 Permutations and Concatenations 32
7.3 Feedback of a concatenation 34
7.4 Feedback of a series 36
8 The Printing System 39
8.1 Overview 39
8.2 Basic Customization 40
8.3 Printer classes 41
8.4 Customization through an INI file 41
9 API 43
9.1 qnet package 43
Python Module Index 179

CHAPTER 1

Computer algebra package for quantum mechanics and photonic quantum networks
Development of QNET happens on Github. You can read the full documentation at ReadTheDocs.

1.1 Features

- Extensible computer algebra system for quantum operators, quantum states, super operators
- Building on SymPy for scalar symbolic algebra
- Implementation of Gough and James' SLH algebra for photonic quantum circuits
- Designed for use within the Jupyter notebook
- Publication-ready, configurable rendering of mathematical formulas
- Conversion to QuTiP objects for numerical simulation

Note that version 2.0 of QNET is a major redesign. See History for details.

1.2 Dependencies

- Python version 3.5 or higher. The last version of QNET to support Python 2 is 1.4.3.
- The SymPy symbolic algebra Python package to implement symbolic 'scalar' algebra, i.e., the coefficients of state, operator or super-operator expressions can be symbolic SymPy expressions as well as pure python numbers.
- The NumPy package for numerical calculations
- Optional: QuTiP python package as an extremely useful, efficient and full featured numerical backend. Operator expressions where all symbolic scalar parameters have been replaced by numeric ones, can be converted to (sparse) numeric matrix representations, which are then used to solve for the system dynamics using the tools provided by QuTiP.
- Optional: The PyX python package for visualizing circuit expressions as box/flow diagrams. This requires a LaTeX installation on your system. On Linux/Macos and Windows TeX Live and MiKTeX are recommended, respectively.
A convenient way of obtaining Python as well as some of the packages listed here (SymPy, SciPy, NumPy) is to download Anaconda Python Distribution, which is free for academic use. A highly recommended way of working with QNET and QuTiP, or scientific python codes in general is through the excellent IPython command-line shell, or the very polished browser-based Jupyter notebook interface.

1.3 Installation

To install the latest released version of QNET, run this command in your terminal:
\$ pip install qnet
This is the preferred method to install QNET, as it will always install the most recent stable release.
If you don't have pip installed, this Python installation guide can guide you through the process.
To install the latest development version of QNET from Github.
\$ pip install git+https://github.com/mabuchilab/qnet.git@develop\#egg=qnet

1.4 Usage

To use QNET in a project:

```
import qnet
```


CHAPTER 2

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

2.1 Types of Contributions

2.1.1 Report Bugs

Report bugs at https://github.com/mabuchilab/QNET/issues.
If you are reporting a bug, please include:

- Your operating system name and version.
- Any details about your local setup that might be helpful in troubleshooting.
- Detailed steps to reproduce the bug.

2.1.2 Fix Bugs / Implement Features

Look through the GitHub issues for bugs or feature requests. Anybody is welcome to submit a pull request for open issues.

2.1.3 Write Documentation

QNET could always use more documentation, whether as part of the official QNET docs, in docstrings, or even on the web in blog posts, articles, and such.

2.1.4 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/mabuchilab/QNET/issues.

If you are proposing a feature:

- Explain in detail how it would work.
- Keep the scope as narrow as possible, to make it easier to implement.
- Remember that this is a volunteer-driven project, and that contributions are welcome :)

2.2 Get Started!

Ready to contribute? Follow Aaron Meurer's Git Workflow Notes (with mabuchilab/QNET instead of sympy / sympy)

In short,

1. Clone the repository from git@github.com:mabuchilab/QNET.git
2. Fork the repo on GitHub to your personal account.
3. Add your fork as a remote.
4. Pull in the latest changes from the develop branch.
5. Create a topic branch
6. Make your changes and commit them (testing locally)
7. Push changes to the topic branch on your remote
8. Make a pull request against the base develop branch through the Github website of your fork.

The project contains a Makefile to help with development tasts. In your checked-out clone, do
\$ make help
to see the available make targets.
It is strongly recommended that you use the conda package manager. The Makefile relies on conda to create local testing and documentation building environements (make test and make docs).

Alternatively, you may use make develop-test and make develop-docs to run the tests or generate the documentation within your active Python environment. You will have to ensure that all the necessary dependencies are installed. Also, you will not be able to test the package against all supported Python versions. You still can (and should) look at https://travis-ci.org/mabuchilab/QNET/ to check that your commits pass all tests.

2.3 Branching Model

QNET uses the git-flow branching model. That is, the develop branch takes the role of master in the Git Workflow Notes.

In order to create topic branches with git flow, after cloning the qnet repository, you should initialize it as follows:

```
$ git checkout master
$ git flow init
$ git checkout develop
```


2.4 Testing

QDYN's uses pytest for testing. The test-suite for all supported Python versions is run with

```
$ make test
```

This creates a conda environment for each supported Python version in . / . venv, installs the QDYN package and all prerequisites into that environment, and runs py.test.

In order run a specific test, you may invoke py . test manually with the appropriate options, e.g.
\$./.venv/py $36 / \mathrm{bin} / \mathrm{py} \cdot$.test $-\mathrm{s}-\mathrm{x} . /$.tests/algebra/test_abstract_algebra.py

2.5 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.
2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with a docstring, and add the feature to the list in README.rst.
3. Check https://travis-ci.org/mabuchilab/QNET/pull_requests and make sure that the tests pass for all supported Python versions.

CHAPTER 3

Credits

Hideo Mabuchi had the initial idea for a software package that could exploit the Gough-James SLH formalism to generate an overall open quantum system model for a quantum feedback network based solely on its topology and the component models in analytic form. The actual QNET package was then planned and implemented by Nikolas Tezak. In the Fall of 2015 Michael Goerz joined as a main developer.

Work on QNET was directly supported by DARPA-MTO under Award No. N66001-11-1-4106. Nikolas Tezak was also supported by a Simons Foundation Math+X fellowship as well as a Stanford Graduate Fellowship. Michael Goerz was supported in part by $\operatorname{ASD}(\mathrm{R} \mathrm{\& E})$ under their Quantum Science and Engineering Program (QSEP), and by the Army High Performance Computing Research Center (AHPCRC) (sponsored by the U.S. Army Research Laboratory under contract No. W911NF-07-2-0027). Currently, Michael Goerz is sponsored by the Army Research Laboratory under Cooperative Agreement Number W911NF-16-2-0147.

3.1 Development Lead

- Nikolas Tezak nikolas@rigetti.com
- Michael Goerz mail@michaelgoerz.net

3.2 Contributors

The following people contributed to to the development of QNET, conceptually, through bug reports, or with code commits.

- Michael Armen
- Armand Niederberger
- Joe Kerckhoff
- Dmitri Pavlichin
- Gopal Sarma
- Ryan Hamerly
- Michael Hush
- Anubhab Haldar
- Gil Tabak
- Edwin Ng
- Tatsuhiro Onodera
- Daniel Wennberg

chapter 4

History

The original 1.0 relase of QNET centered around an implementation of the Quantum Hardware Description Language (QHDL) that serves to describe a circuit topology and specification of a larger entity in terms of parametrizable subcomponents. This is strongly analogous to the specification of electric circuitry using the structural description elements of VHDL or Verilog.

Version 2.0 of QNET shifts the focus of the package to provide a broad symbolic algebra package for quantum mechanics, and the implementation of the SLH circuit algebra. Support of QHDL was removed from QNET, with the intention of re-implementing it in a separate QHDL package, that works on top of QNET. The split was made because the two aspects of the original QNET package serves two different audiences: The basic algebraic tools are will be used by theorists or for numerical models, while QHDL, the definition of circuit components, or the use of the gEDA gschem tool are primarily of interest for experimentalists. By developing these two aspects in different packages, we hope the better address the particular needs of each user group.

If you are currently using QHDL through QNET 1.0, you should not upgrade to QNET 2.0. Also, QNET 2.0 drops support for Python 2.

QNET uses Semantic Versioning.

4.1 1.0.0

- initial release

4.2 2.0.0

- major restructuring
- drop Python 2 support
- remove support for parsing the quantum-hardware-description-language (QHDL) and the circuit component library. QNET now provides only the fundamental algebraic tools. The QHDL functionality will be extended in a separate future QHDL package
- a new printing system

chapter 5

Library Structure

5.1 Subpackage Organization

QNET is organized into the sub-packages outlined in the above diagram. Each package may in turn contain several sub-modules. The arrows indicate which package imports from which other package.
Every package exports all public symbol from all of its sub-packages/-modules in a "flat" API. Thus, a user can directly import from the top-level qnet package.

In order from high-level to low-level:

qnet	Main QNET package
qnet.convert	Conversion to QuTiP and Sympy
qnet.visualization	Visualization routines, e.g.
qnet.printing	Printing system for QNET Expressions and related ob- jects
qnet.algebra	Symbolic quantum and photonic circuit (SLH) algebra
qnet.algebra.toolbox	Collection of tools to manually manipulate algebraic ex- pressions
qnet.algebra.library	Collection of algebraic objects extending core
qnet.algebra.core	The fundamental object hiearchies that constitute qNet's various algebras
qnet.algebra.pattern_matching	QNET's pattern matching engine.

See also the full modindex

5.2 Class Hierarchy

The following is an inheritance diagram of all the classes defined in QNET (this is best viewed as the full-page SVG):

chapter 6

Symbolic Algebra

6.1 Expressions and Operations

QNET includes a rich (and extensible) symbolic algebra system for quantum mechanics and circuit models. The foundation of the symbolic algebra are the Expression class and its subclass Operation.

A general algebraic expression has a tree structure. The branches of the tree are operations; their children are the operands. The leaves of the tree are scalars or "atomic" expressions, where "atomic" means not an object of type Operation (e.g., a symbol)

For example, the KetPIus operation defines the sum of Hilbert space vectors, represented as:

```
KetPlus(psi1, psi2, ..., psiN)
```

All operations follow this pattern:
Head (op1, op1, ..., opN)
where Head is a subclass of Operation and op1 . . opN are the operands, which may be other operations, scalars, or atomic Expression objects.

Note that all expressions (inluding operations) can have associated arguments. For example Ket Symbol takes label as an argument, and the Hilbert space displacement operator Displace takes a displacement amplitude as an argument. To avoid confusion between operands and arguments, operations are required to take their operands as positional arguments, and possible additional arguments as keyword arguments.

Expressions should generally not be instantiated directly, but through their create () method allowing for simplifications. This is true both for operations and atomic expressions. For example, instantiating Displace with alpha=0 results in an IdentityOperator (unlike direct instantiation, the create method of any class may or may not return an instance of the same class). For operations, the create method handles the application of algebraic rules such as associativity (translating e.g. KetPlus(psi1, KetPlus(psi2, psi3)) into KetPlus(psi1, psi2, psi3))

Many operations are associated with infix operators, e.g. a KetPlus instance is automatically created if two instances of Ket Symbol are added with +. In this case, the create () method is used automatically.

Expressions and Operations are considered immutable: any change to the expression tree (e.g. an algebraic simplification) generates a new expression.

6.1.1 Defining Operation subclasses

When extending an algebra with new operations, it is essential to define the expression rewriting ("simplification") rules that govern how new expressions are instantiated. To this end, the _simplification class attribute of an Expression subclass must be defined. This attribute contains a list of callables. Each of these callables takes three parameters (the class, the list args of positional arguments given to create () and a dictionary kwargs of keyword arguments given to create ()) and return either a tuple of new args and kwargs (which are then handed to the next callable), or an Expression (which is directly returned as the result of the call to Expression.create ()).
Callables such as as assoc(), idem(), orderby(), and filter_neutral() handle common algebraic properties such as associativity or commutativity. The match_replace() and match_replace_binary() callables are central to any more advanced simplification through pattern matching. They delegate to a list of Patterns and replacements that are defined in the _rules, respectively _binary_rules class attributes of the Expression subclass.

The pattern matching rules may temporarily extended or modified using the qnet.algebra.toolbox.core. extra_rules(), qnet.algebra.toolbox.core.extra_binary_rules(), and qnet.algebra. toolbox.core.no_rules() context managers.

6.1.2 Pattern matching

The application of patterns is central to symbolic algebra. Patterns are defined and applied using the classed and helper routines in the pattern_matching module.

There are two main places where pattern matching comes up:

- automatically, through match_replace() and match_replace_binary() simplifications applied inside of Expression.create().
- manually, through the simplify () function (or the Expression.simplify() method)

Since inside match_replace() and match_replace_binary(), patterns are matched against expressions that are not yet instantiated (we call these ProtoExpressions), the patterns in the _rules and _binary_rules class attributes are always constructed using the pattern_head() helper function. In contrast, patterns for simplify () are usually created through the pattern () helper function. The wC () function is used to associate Expression arguments with wildcard names.

6.1.3 Algebraic Manipulations

While QNET automatically applies a large number of rules and simplifications if expressions are instantiated through the create () method, significant value is placed on manually manipulating algebraic expressions. In fact, this is one of the design considerations that separates it from the Sympy package: The rule-based transformations are both explicit and optional, allowing to instantiate expressions exactly in the desired form, and to apply specifc manipulations. Unlink in Sympy, the (tex) form of an expressions will directly reflect the structure of the expression, and the ordering of terms can be configured by the user. Thus, a Jupyter Notebook could document a symbolic derivation in the exact form one would normally write that derivation out by hand.

Common maniupulations and symbolic algorithms are collected in qnet.algebra.toolbox.

6.2 Hilbert Space Algebra

The hilbert_space_algebra module defines a simple algebra of finite dimensional or countably infinite dimensional Hilbert spaces.

Local/primitive degrees of freedom (e.g. a single multi-level atom or a cavity mode) are described by a LocalSpace; it requires a label, and may define a basis through the basis or dimension arguments. The LocalSpace may also define custom identifiers for operators acting on that space (subclasses of LocalOperator):

```
>>> a = Destroy(hs=1)
>>> ascii((a)
'a^(1)'
>> hs1_custom = LocalSpace(1, local_identifiers={'Destroy': 'b'})
>>> b = Destroy(hs=hsl__custom)
>>> ascii(b)
' b^^(1)'
```

Instances of LocalSpace combine via a product into composite tensor product spaces are given by instances of the ProductSpace

Furthermore,

- the TrivialSpace represents a trivial ${ }^{1}$ Hilbert space $\mathcal{H}_{0} \simeq \mathbb{C}$
- the FullSpace represents a Hilbert space that includes all possible degrees of freedom.

Expressions in the operator, state, and superoperator algebra (discussed below) will all be associated with a Hilbert space. If any expressions are intended to be fed into a numerical simulation, all their associated Hilbert spaces must have a known dimension. Since all expressions are immutable, it is important to either define the all the LocalSpace instances they depend on with basis or dimension arguments first, or to later generate new expression with updated Hilbert spaces through the substitute () routine.

6.3 Operator Algebra

The operator_algebra module implements and algebra of Hilbert space operators

[^0]

Operator expressions are constructed from sums (OperatorPlus) and products (OperatorTimes) of some basic elements, most importantly local operators (subclasses of LocalOperator). This include some very common symbolic operator such as

- Harmonic oscillator mode operators a_{s}, a_{s}^{\dagger} : Destroy, Create
- σ-switching operators $\sigma_{j k}^{s}:=|j\rangle_{s}\left\langle\left. k\right|_{s}\right.$: LocalSigma
- coherent displacement operators $D_{s}(\alpha):=\exp \left(\alpha a_{s}^{\dagger}-\alpha^{*} a_{s}\right)$: Displace
- phase operators $P_{s}(\phi):=\exp \left(i \phi a_{s}^{\dagger} a_{s}\right):$ Phase
- squeezing operators $S_{s}(\eta):=\exp \left[\frac{1}{2}\left(\eta a_{s}^{\dagger^{2}}-\eta^{*} a_{s}^{2}\right)\right]$: Squeeze

Furthermore, there exist symbolic representations for constants and symbols:

- the IdentityOperator
- the Zerooperator
- an arbitrary OperatorSymbol

There are also a number of algebraic operations that act only on a single operator as their only operand. These include:

- the Hilbert space Adjoint operator X^{\dagger}
- PseudoInverse of operators X^{+}satisfying $X X^{+} X=X$ and $X^{+} X X^{+}=X^{+}$as well as $\left(X^{+} X\right)^{\dagger}=$ $X^{+} X$ and $\left(X X^{+}\right)^{\dagger}=X X^{+}$
- the kernel projection operator (NulISpaceProjector) $\mathcal{P}_{\operatorname{Ker} X}$ satisfying both $X \mathcal{P}_{\operatorname{Ker} X}=0$ and $X^{+} X=$ $1-\mathcal{P}_{\text {Ker } X}$
- Partial traces over Operators $\operatorname{Tr}_{s} X$: OperatorTrace

6.3.1 Examples

Say we want to write a function that constructs a typical Jaynes-Cummings Hamiltonian

$$
H=\Delta \sigma^{\dagger} \sigma+\Theta a^{\dagger} a+i g\left(\sigma a^{\dagger}-\sigma^{\dagger} a\right)+i \epsilon\left(a-a^{\dagger}\right)
$$

for a given set of numerical parameters:

```
>>> from sympy import I
>>> def H_JC(Delta, Theta, epsilon, g):
...
... # create Fock- and Atom local spaces
... fock = LocalSpace('fock')
... tls = LocalSpace('tls', basis=('e', 'g'))
... # create representations of a and sigma
... a = Destroy(hs=fock)
... sigma = LocalSigma('g', 'e', hs=tls)
\cdots H = (Delta * sigma.dag() * sigma # detuning from atomic
\hookrightarrowresonance
.. + Theta * a.dag() * a # detuning from cavity`
\hookrightarrowresonance
... + I * g * (sigma * a.dag() - sigma.dag() * a) # atom-mode coupling, I = ,
usqrt(-1)
.. + I * epsilon * (a - a.dag())) # external driving_
\hookrightarrowamplitude
... return H
```

Here we have allowed for a variable namespace which would come in handy if we wanted to construct an overall model that features multiple Jaynes-Cummings-type subsystems.

By using the support for symbolic sympy expressions as scalar pre-factors to operators, one can instantiate a JaynesCummings Hamiltonian with symbolic parameters:

```
>>> Delta, Theta, epsilon, g = symbols('Delta, Theta, epsilon, g', real=True)
>>> H = H_JC(Delta, Theta, epsilon, g)
>>> H
i \epsilon (-a^(fock) † + a) + \Theta a^(fock) + a + i g (a^(fock) t |ge| - a |eg|) + \Delta |ee|
>>> H.space
_fock _tls
```

Operator products between commuting operators are automatically re-arranged such that they are ordered according to their Hilbert Space:

```
>>> Create(hs=2) * Create(hs=1)
a^(1) † a^(2) †
```

There are quite a few built-in replacement rules, e.g., mode operators products are normally ordered:

```
>>> Destroy(hs=1) * Create(hs=1)
    + a^(1)+ a 
```

Or for higher powers one can use the expand () method:

```
>>> (Destroy(hs=1) * Destroy(hs=1) * Destroy(hs=1) * Create(hs=1) * Create(hs=1) **
Create(hs=1)). expand()
```


6.4 State (Ket-) Algebra

The state_algebra module implements an algebra of Hilbert space states.

By default we represent states ψ as Ket vectors $\psi \rightarrow|\psi\rangle$. However, any state can also be represented in its adjoint Bra form, since those representations are dual:

$$
\psi \leftrightarrow|\psi\rangle \leftrightarrow\langle\psi|
$$

States can be added to states of the same Hilbert space. They can be multiplied by:

- scalars, to just yield a rescaled state within the original space, resulting in ScalarTimesKet
- operators that act on some of the states degrees of freedom (but none that aren't part of the state's Hilbert space), resulting in a OperatorTimesket
- other states that have a Hilbert space corresponding to a disjoint set of degrees of freedom, resulting in a Tensorket

Furthermore,

- a Ket object can multiply a Bra of the same space from the left to yield a KetBra operator.

And conversely,

- a Bra can multiply a Ket from the left to create a (partial) inner product object BraKet. Currently, only full inner products are supported, i.e. the Ket and Bra operands need to have the same space.

There are also the following symbolic states:

- arbitrary Ketsymbols
- the Trivialket acting as the identity, and
- the ZeroKet.

6.5 Super-Operator Algebra

The super_operator_algebra contains an implementation of a superoperator algebra, i.e., operators acting on Hilbert space operator or elements of Liouville space (density matrices).

Each super-operator has an associated space property which gives the Hilbert space on which the operators the superoperator acts non-trivially are themselves acting non-trivially.

The most basic way to construct super-operators is by lifting 'normal' operators to linear pre- and post-multiplication super-operators:

```
>>> A, B, C = (OperatorSymbol(s, hs=FullSpace) for s in ("A", "B", "C"))
>>> SPre(A) * B
A B
>>> SPost(C) * B
B C
>>> (SPre(A) * SPost(C)) * B
A B C
>> (SPre(A) - SPost(A)) * B # Linear super-operator associated with A thatw
maps B --> [A,B]
A B - B A
```

The neutral elements of super-operator addition and multiplication are ZeroSuperOperator and IdentitySuperOperator, respectively.

Super operator objects can be added together in code via the infix ' + ' operator and multiplied with the infix '*' operator. They can also be added to or multiplied by scalar objects. In the first case, the scalar object is multiplied by the IdentitySuperOperator constant.

Super operators are applied to operators by multiplying an operator with superoperator from the left:

```
>>> S = SuperOperatorSymbol("S", hs=FullSpace)
>>> A = OperatorSymbol("A", hs=FullSpace)
>>> S * A
S [A]
>>> isinstance(S*A, Operator)
True
```

The result is an operator.

6.6 Circuit Algebra

In their works on networks of open quantum systems [GoughJames08], [GoughJames09] Gough and James have introduced an algebraic method to derive the Quantum Markov model for a full network of cascaded quantum systems from the reduced Markov models of its constituents. This method is implemented in the circuit_algebra module.

A general system with an equal number n of input and output channels is described by the parameter triplet $(\mathbf{S}, \mathbf{L}, H)$, where H is the effective internal Hamilton operator for the system, $\mathbf{L}=\left(L_{1}, L_{2}, \ldots, L_{n}\right)^{T}$ the coupling vector and $\mathbf{S}=\left(S_{j k}\right)_{j, k=1}^{n}$ is the scattering matrix (whose elements are themselves operators). An element L_{k} of the coupling vector is given by a system operator that describes the system's coupling to the k-th input channel. Similarly, the elements $S_{j k}$ of the scattering matrix are in general given by system operators describing the scattering between different field channels j and k.
The only conditions on the parameters are that the hamilton operator is self-adjoint and the scattering matrix is unitary:

$$
H^{*}=H \text { and } \mathbf{S}^{\dagger} \mathbf{S}=\mathbf{S S}^{\dagger}=\mathbf{1}_{n}
$$

We adhere to the conventions used by Gough and James, i.e. we write the imaginary unit is given by $i:=\sqrt{-1}$, the adjoint of an operator A is given by A^{*}, the element-wise adjoint of an operator matrix \mathbf{M} is given by \mathbf{M}^{\sharp}. Its transpose is given by \mathbf{M}^{T} and the combination of these two operations, i.e. the adjoint operator matrix is given by $\mathbf{M}^{\dagger}=\left(\mathbf{M}^{T}\right)^{\sharp}=\left(\mathbf{M}^{\sharp}\right)^{T}$.

The matrices of operators occuring in the SLH formalism are implemented in the matrix_algebra module.

6.6.1 Fundamental Circuit Operations

The basic operations of the Gough-James circuit algebra are given by:

Fig. 1: $Q_{1} \boxplus Q_{2}$

Fig. 2: $Q_{2} \triangleleft Q_{1}$

Fig. 3: $[Q]_{1 \rightarrow 4}$

In [GoughJames09], Gough and James have introduced two operations that allow the construction of quantum optical 'feedforward' networks:

1) The concatenation product describes the situation where two arbitrary systems are formally attached to each other without optical scattering between the two systems' in- and output channels

$$
\left(\mathbf{S}_{1}, \mathbf{L}_{1}, H_{1}\right) \boxplus\left(\mathbf{S}_{2}, \mathbf{L}_{2}, H_{2}\right)=\left(\left(\begin{array}{cc}
\mathbf{S}_{1} & 0 \\
0 & \mathbf{S}_{2}
\end{array}\right),\binom{\mathbf{L}_{1}}{\mathbf{L}_{1}}, H_{1}+H_{2}\right)
$$

Note however, that even without optical scattering, the two subsystems may interact directly via shared quantum degrees of freedom.
2) The series product is to be used for two systems $Q_{j}=\left(\mathbf{S}_{j}, \mathbf{L}_{j}, H_{j}\right), j=1,2$ of equal channel number n where all output channels of Q_{1} are fed into the corresponding input channels of Q_{2}

$$
\left(\mathbf{S}_{2}, \mathbf{L}_{2}, H_{2}\right) \triangleleft\left(\mathbf{S}_{1}, \mathbf{L}_{1}, H_{1}\right)=\left(\mathbf{S}_{2} \mathbf{S}_{1}, \mathbf{L}_{2}+\mathbf{S}_{2} \mathbf{L}_{1}, H_{1}+H_{2}+\Im\left\{\mathbf{L}_{2}^{\dagger} \mathbf{S}_{2} \mathbf{L}_{1}\right\}\right)
$$

From their definition it can be seen that the results of applying both the series product and the concatenation product not only yield valid circuit component triplets that obey the constraints, but they are also associative operations.footnote\{For the concatenation product this is immediately clear, for the series product in can be quickly verified by computing $\left(Q_{1} \triangleleft Q_{2}\right) \triangleleft Q_{3}$ and $Q_{1} \triangleleft\left(Q_{2} \triangleleft Q_{3}\right)$. To make the network operations complete in the sense that it can also be applied for situations with optical feedback, an additional rule is required: The feedback operation describes the case where the k-th output channel of a system with $n \geq 2$ is fed back into the l-th input channel. The result is a component with $n-1$ channels:

$$
[(\mathbf{S}, \mathbf{L}, H)]_{k \rightarrow l}=(\tilde{\mathbf{S}}, \tilde{\mathbf{L}}, \tilde{H})
$$

where the effective parameters are given by [GoughJames08]

$$
\begin{aligned}
& \tilde{\mathbf{S}}=\mathbf{S}_{[k, l]}+\left(\begin{array}{c}
S_{1 l} \\
S_{2 l} \\
\vdots \\
S_{k-1 l} \\
S_{k+1 l} \\
\vdots \\
S_{n l}
\end{array}\right)\left(1-S_{k l}\right)^{-1}\left(\begin{array}{lllllll}
S_{k 1} & S_{k 2} & \cdots & S_{k l-1} & S_{k l+1} & \cdots & S_{k n}
\end{array}\right), \\
& \tilde{\mathbf{L}}=\mathbf{L}_{[k]}+\left(\begin{array}{c}
S_{1 l} \\
S_{2 l} \\
\vdots \\
S_{k-1 l} \\
S_{k+1 l} \\
\vdots \\
S_{n l}
\end{array}\right)\left(1-S_{k l}\right)^{-1} L_{k}, \\
& \tilde{H}=H+\Im\left\{\left[\begin{array}{l}
n \\
\left.\sum_{j=1}^{n} L_{j}^{*} S_{j l}\right]
\end{array}\right]\left(1-S_{k l}\right)^{-1} L_{k}\right\} .
\end{aligned}
$$

Here we have written $\mathbf{S}_{[k, l]}$ as a shorthand notation for the matrix \mathbf{S} with the k-th row and l-th column removed and similarly $\mathbf{L}_{[k]}$ is the vector \mathbf{L} with its k-th entry removed. Moreover, it can be shown that in the case of multiple feedback loops, the result is independent of the order in which the feedback operation is applied. Note however that some care has to be taken with the indices of the feedback channels when permuting the feedback operation.

The possibility of treating the quantum circuits algebraically offers some valuable insights: A given full-system triplet $(\mathbf{S}, \mathbf{L}, H)$ may very well allow for different ways of decomposing it algebraically into networks of physically realistic
subsystems. The algebraic treatment thus establishes a notion of dynamic equivalence between potentially very different physical setups. Given a certain number of fundamental building blocks such as beamsplitters, phases and cavities, from which we construct complex networks, we can investigate what kinds of composite systems can be realized. If we also take into account the adiabatic limit theorems for QSDEs (cite Bouten2008a,Bouten2008) the set of physically realizable systems is further expanded. Hence, the algebraic methods not only facilitate the analysis of quantum circuits, but ultimately they may very well lead to an understanding of how to construct a general system $(\mathbf{S}, \mathbf{L}, H)$ from some set of elementary systems. There already exist some investigations along these lines for the particular subclass of linear systems (cite Nurdin2009a,Nurdin2009b) which can be thought of as a networked collection of quantum harmonic oscillators.

6.6.2 Representation as Python objects

Python objects that are of the Circuit type have some of their operators overloaded to realize symbolic circuit algebra operations:

```
>>> A = CircuitSymbol('A', cdim=2)
>>> B = CircuitSymbol('B', cdim=2)
>>> print(srepr(A << B, cache={A: 'A', B: 'B'}))
SeriesProduct(A, B)
>>> print(srepr(A + B, cache={A: 'A', B: 'B'}))
Concatenation(A, B)
>>> print(srepr(FB(A, out_port=0, in_port=1), cache={A: 'A'}))
Feedback(A, out_port=0, in_port=1)
```

For a thorough treatment of the circuit expression simplification rules see Properties and Simplification of Circuit Algebraic Expressions.

6.6.3 Examples

Extending the JaynesCummings problem above to an open system by adding collapse operators $L_{1}=\sqrt{\kappa} a$ and $L_{2}=\sqrt{\gamma} \sigma$.

```
>>> def SLH_JaynesCummings(Delta, Theta, epsilon, g, kappa, gamma, n=0):
..
... # create Fock- and Atom local spaces
... fock = LocalSpace('fock_%S' % n)
... tls = LocalSpace('tls_% %' % n, basis=('e', 'g'))
...
... # create representations of a and sigma
... a = Destroy(hs=fock)
... sigma = LocalSigma('g', 'e', hs=tls)
... # Trivial scattering matrix
... S = identity_matrix(2)
...
... # Collapse/Jump operators
... L1 = sqrt(kappa) * a # Decay of cavity_
mode through mirror
.. L2 = sqrt(gamma) * sigma # Atomic decay due tor
\hookrightarrowspontaneous emission into outside modes.
... L = Matrix([[L1], \
... [L2]])
..
... # Hamilton operator
```

(continued from previous page)

```
.. H = (Delta * sigma.dag() * sigma # detuning from
\hookrightarrowatomic resonance
\ldots. + Theta * a.dag() * a # detuning from
\hookrightarrowcavity resonance
... + I * g * (sigma * a.dag() - sigma.dag() * a) # atom-mode coupling, -
\hookrightarrowI=sqrt(-I)
.. + I * epsilon * (a - a.dag())) # external driving
\hookrightarrowamplitude
... return SLH(S, L, H)
```

Consider now an example where we feed one Jaynes-Cummings system's output into a second one:

```
>>> Delta, Theta, epsilon, g = symbols('Delta, Theta, epsilon, g', real=True)
>>> kappa, gamma = symbols('kappa, gamma')
>>> JC1 = SLH_JaynesCummings(Delta, Theta, epsilon, g, kappa, gamma, n=1)
>>> JC2 = SLH_JaynesCummings(Delta, Theta, epsilon, g, kappa, gamma, n=2)
>>> from qnet import circuit_identity as cid
>>> SYS = (JC2 + cid(1)) << CPermutation((0, 2, 1)) << (JC1 + cid(1))
```

The resulting system's block diagram is:

and its overall SLH model is given by:

CHAPTER 7

Properties and Simplification of Circuit Algebraic Expressions

By observing that we can define for a general system $Q=(S, L, H)$ its series inverse system $Q^{\triangleleft-1}:=$ $\left(S^{\dagger},-S^{\dagger} L,-H\right)$

$$
(S, L, H) \triangleleft\left(S^{\dagger},-S^{\dagger} L,-H\right)=\left(S^{\dagger},-S^{\dagger} L,-H\right) \triangleleft(S, L, H)=\left(\mathbb{I}_{n}, 0,0\right)=: \mathrm{id}_{n}
$$

we see that the series product induces a group structure on the set of n-channel circuit components for any $n \geq 1$. It can easily be verified that the series inverse of the basic operations is calculated as follows

$$
\begin{aligned}
\left(Q_{1} \triangleleft Q_{2}\right)^{\triangleleft-1} & =Q_{2}^{\triangleleft-1} \triangleleft Q_{1}^{\triangleleft-1} \\
\left(Q_{1} \boxplus Q_{2}\right)^{\triangleleft-1} & =Q_{1}^{\triangleleft-1} \boxplus Q_{2}^{\triangleleft-1} \\
\left([Q]_{k \rightarrow l}\right)^{\triangleleft-1} & =\left[Q^{\triangleleft-1}\right]_{l \rightarrow k} .
\end{aligned}
$$

In the following, we denote the number of channels of any given system $Q=(S, L, H)$ by cdim $Q:=n$. The most obvious expression simplification is the associative expansion of concatenations and series:

$$
\begin{aligned}
& \left(A_{1} \triangleleft A_{2}\right) \triangleleft\left(B_{1} \triangleleft B_{2}\right)=A_{1} \triangleleft A_{2} \triangleleft B_{1} \triangleleft B_{2} \\
& \left(C_{1} \boxplus C_{2}\right) \boxplus\left(D_{1} \boxplus D_{2}\right)=C_{1} \boxplus C_{2} \boxplus D_{1} \boxplus D_{2}
\end{aligned}
$$

A further interesting property that follows intuitively from the graphical representation (cf. \sim Fig. \sim ref $\{$ fig:decomposition_law \}) is the following tensor decomposition law

$$
(A \boxplus B) \triangleleft(C \boxplus D)=(A \triangleleft C) \boxplus(B \triangleleft D),
$$

which is valid for $\operatorname{cdim} A=\operatorname{cdim} C$ and $\operatorname{cdim} B=\operatorname{cdim} D$.
The following figures demonstrate the ambiguity of the circuit algebra:

Fig. 1: $(A \boxplus B) \triangleleft(C \boxplus D)$

Fig. 2: $(A \triangleleft C) \boxplus(B \triangleleft D)$

Here, a red box marks a series product and a blue box marks a concatenation. The second version expression has the advantage of making more explicit that the overall circuit consists of two channels without direct optical scattering.

It will most often be preferable to use the RHS expression of the tensor decomposition law above as this enables us to understand the flow of optical signals more easily from the algebraic expression. In [GoughJames09] Gough and James denote a system that can be expressed as a concatenation as reducible. A system that cannot be further decomposed into concatenated subsystems is accordingly called irreducible. As follows intuitively from a graphical representation any given complex system $Q=(S, L, H)$ admits a decomposition into $1 \leq N \leq \operatorname{cdim} Q$ irreducible subsystems $Q=Q_{1} \boxplus Q_{2} \boxplus \cdots \boxplus Q_{N}$, where their channel dimensions satisfy $\operatorname{cdim} Q_{j} \geq 1, j=1,2, \ldots N$ and $\sum_{j=1}^{N} \operatorname{cdim} Q_{j}=\operatorname{cdim} Q$. While their individual parameter triplets themselves are not uniquely determinedfootnote $\left\{\right.$ Actually the scattering matrices $\left\{S_{j}\right\}$ and the coupling vectors $\left\{L_{j}\right\}$ are uniquely determined, but the Hamiltonian parameters $\left\{H_{j}\right\}$ must only obey the constraint $\left.\sum_{j=1}^{N} H_{j}=H.\right\}$, the sequence of their channel dimensions $\left(\operatorname{cdim} Q_{1}, \operatorname{cdim} Q_{2}, \ldots \operatorname{cdim} Q_{N}\right)=$: bls Q clearly is. We denote this tuple as the block structure of Q. We are now able to generalize the decomposition law in the following way: Given two systems of n channels with the same block structure bls $A=\mathrm{bls} B=\left(n_{1}, \ldots n_{N}\right)$, there exist decompositions of A and B such that

$$
A \triangleleft B=\left(A_{1} \triangleleft B_{1}\right) \boxplus \cdots \boxplus\left(A_{N} \triangleleft B_{N}\right)
$$

with $\operatorname{cdim} A_{j}=\operatorname{cdim} B_{j}=n_{j}, j=1, \ldots N$. However, even in the case that the two block structures are not equal, there may still exist non-trivial compatible block decompositions that at least allow a partial application of the decomposition law. Consider the example presented in Figure (block_structures).

Fig. 3: Series " $(1,2,1) \triangleleft(2,1,1) "$

Fig. 4: Optimal decomposition into $(3,1)$
Even in the case of a series between systems with unequal block structures, there often exists a non-trivial common block decomposition that simplifies the overall expression.

7.1 Permutation objects

The algebraic representation of complex circuits often requires systems that only permute channels without actual scattering. The group of permutation matrices is simply a subgroup of the unitary (operator) matrices. For any permutation matrix P, the system described by $(P, 0,0)$ represents a pure permutation of the optical fields (ref fig permutation).

Fig. 5: A graphical representation of P_{σ} where $\sigma \equiv(4,1,5,2,3)$ in image tuple notation.
A permutation σ of n elements $\left(\sigma \in \Sigma_{n}\right)$ is often represented in the following form $\left(\begin{array}{cccc}1 & 2 & \ldots & n \\ \sigma(1) & \sigma(2) & \ldots & \sigma(n)\end{array}\right)$, but obviously it is also sufficient to specify the tuple of images $(\sigma(1), \sigma(2), \ldots, \sigma(n))$. We now define the permutation matrix via its matrix elements

$$
\left(P_{\sigma}\right)_{k l}=\delta_{k \sigma(l)}=\delta_{\sigma^{-1}(k) l}
$$

Such a matrix then maps the j-th unit vector onto the $\sigma(j)$-th unit vector or equivalently the j-th incoming optical channel is mapped to the $\sigma(j)$-th outgoing channel. In contrast to a definition often found in mathematical literature this definition ensures that the representation matrix for a composition of permutations $\sigma_{2} \circ \sigma_{1}$ results from a product of the individual representation matrices in the same order $P_{\sigma_{2} \circ \sigma_{1}}=P_{\sigma_{2}} P_{\sigma_{1}}$. This can be shown directly on the order of the matrix elements

$$
\begin{array}{r}
\left(P_{\sigma_{2} \circ \sigma_{1}}\right)_{k l}=\delta_{k\left(\sigma_{2} \circ \sigma_{1}\right)(l)}=\sum_{j} \delta_{k j} \delta_{j\left(\sigma_{2} \circ \sigma_{1}\right)(l)}=\sum_{j} \delta_{k \sigma_{2}(j)} \delta_{\sigma_{2}(j)\left(\sigma_{2} \circ \sigma_{1}\right)(l)} \\
=\sum_{j} \delta_{k \sigma_{2}(j)} \delta_{\sigma_{2}(j) \sigma_{2}\left(\sigma_{1}(l)\right)}=\sum_{j} \delta_{k \sigma_{2}(j)} \delta_{j \sigma_{1}(l)}=\sum_{j}\left(P_{\sigma_{2}}\right)_{k j}\left(P_{\sigma_{1}}\right)_{j l}
\end{array}
$$

where the third equality corresponds simply to a reordering of the summands and the fifth equality follows from the bijectivity of σ_{2}. In the following we will often write P_{σ} as a shorthand for $\left(P_{\sigma}, 0,0\right)$. Thus, our definition ensures that we may simplify any series of permutation systems in the most intuitive way: $P_{\sigma_{2}} \triangleleft P_{\sigma_{1}}=P_{\sigma_{2} \circ \sigma_{1}}$. Obviously the set of permutation systems of n channels and the series product are a subgroup of the full system series group of n channels. Specifically, it includes the identity $\operatorname{id} n=P_{\sigma_{\mathrm{id}_{n}}}$.
From the orthogonality of the representation matrices it directly follows that $P_{\sigma}^{T}=P_{\sigma^{-1}}$ For future use we also define a concatenation between permutations

$$
\sigma_{1} \boxplus \sigma_{2}:=\left(\begin{array}{cccccccc}
1 & 2 & \ldots & n & n+1 & n+2 & \ldots & n+m \\
\sigma_{1}(1) & \sigma_{1}(2) & \ldots & \sigma_{1}(n) & n+\sigma_{2}(1) & n+\sigma_{2}(2) & \ldots & n+\sigma_{2}(m)
\end{array}\right)
$$

which satisfies $P_{\sigma_{1}} \boxplus P_{\sigma_{2}}=P_{\sigma_{1} \boxplus \sigma_{2}}$ by definition. Another helpful definition is to introduce a special set of permutations that map specific ports into each other but leave the relative order of all other ports intact:

$$
\omega_{l \leftarrow k}^{(n)}:=\left\{\begin{array}{ccccccccccc}
1 & \ldots & k-1 & k & k+1 & \ldots & l-1 & l & l+1 & \ldots & n \\
1 & \ldots & k-1 & l & k & \ldots & l-2 & l-1 & l+1 & \ldots & n \\
1 & \ldots & l-1 & l & l+1 & \ldots & k-1 & k & k+1 & \ldots & n \\
1 & \ldots & l-1 & l+1 & l+2 & \ldots & k & l & k+1 & \ldots & n
\end{array}\right) \quad \text { for } k<l
$$

We define the corresponding system objects as $W_{l \leftarrow k}^{(n)}:=P_{\omega_{l \leftarrow k}^{(n)}}$.

7.2 Permutations and Concatenations

Given a series $P_{\sigma} \triangleleft\left(Q_{1} \boxplus Q_{2} \boxplus \cdots \boxplus Q_{N}\right)$ where the Q_{j} are irreducible systems, we analyze in which cases it is possible to (partially) "move the permutation through" the concatenated expression. Obviously we could just as well investigate the opposite scenario $\left(Q_{1} \boxplus Q_{2} \boxplus \cdots \boxplus Q_{N}\right) \triangleleft P_{\sigma}$, but this second scenario is closely relatedfootnote $\{$ Series-Inverting a series product expression also results in an inverted order of the operand inverses $\left(Q_{1} \triangleleft Q_{2}\right)^{\triangleleft-1}=Q_{2}^{\triangleleft-1} \triangleleft Q_{1}^{\triangleleft-1}$. Since the inverse of a permutation (concatenation) is again a permutation (concatenation), the cases are in a way "dual" to each other. $\}$.

Block-permuting permutations

The simples case is realized when the permutation simply permutes whole blocks intactly

Fig. 6: $P_{\sigma} \triangleleft\left(A_{1} \boxplus A_{2}\right)$

Fig. 7: $\left(A_{2} \boxplus A_{1}\right) \triangleleft P_{\sigma}$
A block permuting series.
Given a block structure $n:=\left(n_{1}, n_{2}, \ldots n_{N}\right)$ a permutation $\sigma \in \Sigma_{n}$ is said to block permute n iff there exists a permutation $\tilde{\sigma} \in \Sigma_{N}$ such that

$$
\begin{aligned}
P_{\sigma} \triangleleft\left(Q_{1} \boxplus Q_{2} \boxplus \cdots \boxplus Q_{N}\right) & =\left(P_{\sigma} \triangleleft\left(Q_{1} \boxplus Q_{2} \boxplus \cdots \boxplus Q_{N}\right) \triangleleft P_{\sigma^{-1}}\right) \triangleleft P_{\sigma} \\
& =\left(Q_{\tilde{\sigma}(1)} \boxplus Q_{\tilde{\sigma}(2)} \boxplus \cdots \boxplus Q_{\tilde{\sigma}(N)}\right) \triangleleft P_{\sigma}
\end{aligned}
$$

Hence, the permutation σ, given in image tuple notation, block permutes n iff for all $1 \leq j \leq N$ and for all $0 \leq k<n_{j}$ we have $\sigma\left(o_{j}+k\right)=\sigma\left(o_{j}\right)+k$, where we have introduced the block offsets $o_{j}:=1+\sum_{j^{\prime}<j} n_{j}$. When these conditions are satisfied, $\tilde{\sigma}$ may be obtained by demanding that $\tilde{\sigma}(a)>\tilde{\sigma}(b) \Leftrightarrow \sigma\left(o_{a}\right)>\sigma\left(o_{b}\right)$. This equivalence reduces the computation of $\tilde{\sigma}$ to sorting a list in a specific way.

Block-factorizing permutations

The next-to-simplest case is realized when a permutation σ can be decomposed $\sigma=\sigma_{\mathrm{b}} \circ \sigma_{\mathrm{i}}$ into a permutation σ_{b} that block permutes the block structure n and an internal permutation σ_{i} that only permutes within each block, i.e. $:$:math:sigma_\{rmi\} = sigma_l boxplus sigma_2 boxplus dots boxplus sigma_N. In this case we can perform the following simplifications

$$
P_{\sigma} \triangleleft\left(Q_{1} \boxplus Q_{2} \boxplus \cdots \boxplus Q_{N}\right)=P_{\sigma_{b}} \triangleleft\left[\left(P_{\sigma_{1}} \triangleleft Q_{1}\right) \boxplus\left(P_{\sigma_{2}} \triangleleft Q_{2}\right) \boxplus \cdots \boxplus\left(P_{\sigma_{N}} \triangleleft Q_{N}\right)\right] .
$$

We see that we have reduced the problem to the above discussed case. The result is now

$$
P_{\sigma} \triangleleft\left(Q_{1} \boxplus \cdots \boxplus Q_{N}\right)=\left[\left(P_{\sigma_{\tilde{\sigma_{\mathrm{b}}}(1)}} \triangleleft Q_{\tilde{\sigma_{\mathrm{b}}}(1)}\right) \boxplus \cdots \boxplus\left(P_{\sigma_{\tilde{\sigma_{\mathrm{b}}}(N)}} \triangleleft Q_{\tilde{\sigma_{\mathrm{b}}}(N)}\right)\right] \triangleleft P_{\sigma_{\mathrm{b}}}
$$

In this case we say that σ block factorizes according to the block structure n. The following figure illustrates an example of this case.

Fig. 8: $P_{\sigma} \triangleleft\left(A_{1} \boxplus A_{2}\right)$

Fig. 9: $P_{\sigma_{b}} \triangleleft P_{\sigma_{i}} \triangleleft\left(A_{1} \boxplus A_{2}\right)$

Fig. 10: $\left(\left(P_{\sigma_{2}} \triangleleft A_{2}\right) \boxplus A_{1}\right) \triangleleft P_{\sigma_{\mathrm{b}}}$
A block factorizable series.
A permutation σ block factorizes according to the block structure n iff for all $1 \leq j \leq N$ we have $\max _{0 \leq k<n_{j}} \sigma\left(o_{j}+\right.$ $k)-\min _{0 \leq k^{\prime}<n_{j}} \sigma\left(o_{j}+k^{\prime}\right)=n_{j}-1$, with the block offsets defined as above. In other words, the image of a single block is coherent in the sense that no other numbers from outside the block are mapped into the integer range spanned by the minimal and maximal points in the block's image. The equivalence follows from our previous result and the bijectivity of σ.

The general case

In general there exists no unique way how to split apart the action of a permutation on a block structure. However, it is possible to define a some rules that allow us to "move as much of the permutation" as possible to the RHS of the series. This involves the factorization $\sigma=\sigma_{\mathrm{x}} \circ \sigma_{\mathrm{b}} \circ \sigma_{\mathrm{i}}$ defining a specific way of constructing both σ_{b} and σ_{i} from σ. The remainder σ_{x} can then be calculated through

$$
\sigma_{\mathrm{x}}:=\sigma \circ \sigma_{\mathrm{i}}^{-1} \circ \sigma_{\mathrm{b}}^{-1} .
$$

Hence, by construction, $\sigma_{\mathrm{b}} \circ \sigma_{\mathrm{i}}$ factorizes according to n so only σ_{x} remains on the exterior LHS of the expression.
So what then are the rules according to which we construct the block permuting σ_{b} and the decomposable σ_{i} ? We wish to define σ_{i} such that the remainder $\sigma \circ \sigma_{\mathrm{i}}^{-1}=\sigma_{\mathrm{x}} \circ \sigma_{\mathrm{b}}$ does not cross any two signals that are emitted from the same block. Since by construction σ_{b} only permutes full blocks anyway this means that σ_{x} also does not cross any two signals emitted from the same block. This completely determines σ_{i} and we can therefore calculate $\sigma \circ \sigma_{\mathrm{i}}^{-1}=\sigma_{\mathrm{x}} \circ \sigma_{\mathrm{b}}$ as well. To construct σ_{b} it is sufficient to define an total order relation on the blocks that only depends on the block structure n and on $\sigma \circ \sigma_{\mathrm{i}}^{-1}$. We define the order on the blocks such that they are ordered according to their minimal
image point under σ. Since $\sigma \circ \sigma_{\mathrm{i}}^{-1}$ does not let any block-internal lines cross, we can thus order the blocks according to the order of the images of the first signal $\sigma \circ \sigma_{\mathrm{i}}^{-1}\left(o_{j}\right)$. In (ref fig general_factorization) we have illustrated this with an example.

Fig. 11: $P_{\sigma} \triangleleft\left(A_{1} \boxplus A_{2}\right)$

Fig. 12: $P_{\sigma_{\mathrm{x}}} \triangleleft P_{\sigma_{\mathrm{b}}} \triangleleft P_{\sigma_{\mathrm{i}}} \triangleleft\left(A_{1} \boxplus A_{2}\right)$

Fig. 13: $\left(P_{\sigma_{\mathrm{x}}} \triangleleft\left(P_{\sigma_{2}} \triangleleft A_{2}\right) \boxplus A_{1}\right) \triangleleft P_{\sigma_{\mathrm{b}}}$
A general series with a non-factorizable permutation. In the intermediate step we have explicitly separated $\sigma=$ $\sigma_{\mathrm{x}} \circ \sigma_{\mathrm{b}} \circ \sigma_{\mathrm{i}}$.

Finally, it is a whole different question, why we would want move part of a permutation through the concatenated expression in this first place as the expressions usually appear to become more complicated rather than simpler. This is, because we are currently focussing only on single series products between two systems. In a realistic case we have many systems in series and among these there might be quite a few permutations. Here, it would seem advantageous to reduce the total number of permutations within the series by consolidating them where possible: $P_{\sigma_{2}} \triangleleft P_{\sigma_{1}}=P_{\sigma_{2} \circ \sigma_{1}}$. To do this, however, we need to try to move the permutations through the full series and collect them on one side (in our case the RHS) where they can be combined to a single permutation. Since it is not always possible to move a permutation through a concatenation (as we have seen above), it makes sense to at some point in the simplification process reverse the direction in which we move the permutations and instead collect them on the LHS. Together these two strategies achieve a near perfect permutation simplification.

7.3 Feedback of a concatenation

A feedback operation on a concatenation can always be simplified in one of two ways: If the outgoing and incoming feedback ports belong to the same irreducible subblock of the concatenation, then the feedback can be directly applied only to that single block. For an illustrative example see the figures below:

Reduction to feedback of subblock.
If, on the other, the outgoing feedback port is on a different subblock than the incoming, the resulting circuit actually does not contain any real feedback and we can find a way to reexpress it algebraically by means of a series product.

Reduction of feedback to series, first example
Reduction of feedback to series, second example
To discuss the case in full generality consider the feedback expression $[A \boxplus B]_{k \rightarrow l}$ with $\operatorname{cdim} A=n_{A}$ and $\operatorname{cdim} B=$ n_{B} and where A and B are not necessarily irreducible. There are four different cases to consider.

Fig. 14: $\left[A_{1} \boxplus A_{2}\right]_{2 \rightarrow 3}$

Fig. 15: $A_{1} \boxplus\left[A_{2}\right]_{1 \rightarrow 2}$

Fig. 16: $\left[A_{1} \boxplus A_{2}\right]_{1 \rightarrow 3}$

Fig. 17: $A_{2} \triangleleft W_{2 \leftarrow 1}^{(2)} \triangleleft\left(A_{2} \boxplus \mathrm{id}_{1}\right)$

Fig. 18: $\left[A_{1} \boxplus A_{2}\right]_{2 \rightarrow 1}$

Fig. 19: $\left(A_{1} \boxplus \mathrm{id}_{1}\right) \triangleleft A_{2}$

- $k, l \leq n_{A}$: In this case the simplified expression should be $[A]_{k \rightarrow l} \boxplus B$
- $k, l>n_{A}$: Similarly as before but now the feedback is restricted to the second operand $A \boxplus[B]_{\left(k-n_{A}\right) \rightarrow\left(l-n_{A}\right)}$, cf. Fig. (ref fig fc_irr).
- $k \leq n_{A}<l$: This corresponds to a situation that is actually a series and can be re-expressed as $\left(\mathrm{id} n_{A}-1 \boxplus\right.$ $B) \triangleleft W_{(l-1) \leftarrow k}^{(n)} \triangleleft\left(A+\mathrm{id} n_{B}-1\right)$, cf. Fig. (ref fig fc_re1).
- $l \leq n_{A}<k$: Again, this corresponds a series but with a reversed order compared to above $\left(A+\mathrm{id} n_{B}-1\right) \triangleleft$ $\overline{W_{l \leftarrow(k-1)}^{(n)}} \triangleleft\left(\mathrm{id} n_{A}-1 \boxplus B\right)$, cf. Fig. (ref fig fc_re2).

7.4 Feedback of a series

There are two important cases to consider for the kind of expression at either end of the series: A series starting or ending with a permutation system or a series starting or ending with a concatenation.

Fig. 20: $\left[A_{3} \triangleleft\left(A_{1} \boxplus A_{2}\right)\right]_{2 \rightarrow 1}$

Fig. 21: $\left(A_{3} \triangleleft\left(A_{1} \boxplus \mathrm{id}_{2}\right)\right) \triangleleft A_{2}$
Reduction of series feedback with a concatenation at the RHS

Fig. 22: $\left[A_{3} \triangleleft P_{\sigma}\right]_{2 \rightarrow 1}$
Reduction of series feedback with a permutation at the RHS

1) $[A \triangleleft(C \boxplus D)]_{k \rightarrow l}$: We define $n_{C}=\operatorname{cdim} C$ and $n_{A}=\operatorname{cdim} A$. Without too much loss of generality, let's assume that $l \leq n_{C}$ (the other case is quite similar). We can then pull D out of the feedback loop: $[A \triangleleft(C \boxplus D)]_{k \rightarrow l} \longrightarrow\left[A \triangleleft\left(C \boxplus \mathrm{id} n_{D}\right)\right]_{k \rightarrow l} \triangleleft\left(\mathrm{id} n_{C}-1 \boxplus D\right)$. Obviously, this operation only makes sense if $D \neq \operatorname{id} n_{D}$. The case $l>n_{C}$ is quite similar, except that we pull C out of the feedback. See Figure (ref fig fs_c) for an example.
2) We now consider $[(C \boxplus D) \triangleleft E]_{k \rightarrow l}$ and we assume $k \leq n_{C}$ analogous to above. Provided that $D \neq \operatorname{id} n_{D}$, we can pull it out of the feedback and get $\left(\mathrm{id} n_{C}-1 \boxplus D\right) \triangleleft\left[\left(C \boxplus \operatorname{id} n_{D}\right) \triangleleft E\right]_{k \rightarrow l}$.

Fig. 23: $\left[A_{3}\right]_{2 \rightarrow 3} \triangleleft P_{\tilde{\sigma}}$
3) $\left[A \triangleleft P_{\sigma}\right]_{k \rightarrow l}$: The case of a permutation within a feedback loop is a lot more intuitive to understand graphically (e.g., cf. Figure ref fig fs_p). Here, however we give a thorough derivation of how a permutation can be reduced to one involving one less channel and moved outside of the feedback. First, consider the equality $\left[A \triangleleft W_{j \leftarrow l}^{(n)}\right]_{k \rightarrow l}=[A]_{k \rightarrow j}$ which follows from the fact that $W_{j \leftarrow l}^{(n)}$ preserves the order of all incoming signals except the l-th. Now, rewrite

$$
\begin{aligned}
{\left[A \triangleleft P_{\sigma}\right]_{k \rightarrow l} } & =\left[A \triangleleft P_{\sigma} \triangleleft W_{l \leftarrow n}^{(n)} \triangleleft W_{n \leftarrow l}^{(n)}\right]_{k \rightarrow l} \\
& =\left[A \triangleleft P_{\sigma} \triangleleft W_{l \leftarrow n}^{(n)}\right]_{k \rightarrow n} \\
& =\left[A \triangleleft W_{\sigma(l) \leftarrow n}^{(n)} \triangleleft\left(W_{n \leftarrow \sigma(l)}^{(n)} \triangleleft P_{\sigma} \triangleleft W_{l \leftarrow n}\right)\right]_{k \rightarrow n}
\end{aligned}
$$

Turning our attention to the bracketed expression within the feedback, we clearly see that it must be a permutation system $P_{\sigma^{\prime}}=W_{n \longleftarrow \sigma(l)}^{(n)} \triangleleft P_{\sigma} \triangleleft W_{l \leftarrow n}^{(n)}$ that maps $n \rightarrow l \rightarrow \sigma(l) \rightarrow n$. We can therefore write $\sigma^{\prime}=\tilde{\sigma} \boxplus \sigma_{\mathrm{id}_{1}}$ or equivalently $P_{\sigma^{\prime}}=P_{\tilde{\sigma}} \boxplus \mathrm{id} 1$ But this means, that the series within the feedback ends with a concatenation and from our above rules we know how to handle this:

$$
\begin{aligned}
{\left[A \triangleleft P_{\sigma}\right]_{k \rightarrow l} } & =\left[A \triangleleft W_{\sigma(l) \leftarrow n}^{(n)} \triangleleft\left(P_{\tilde{\sigma}} \boxplus \mathrm{id} 1\right)\right]_{k \rightarrow n} \\
& =\left[A \triangleleft W_{\sigma(l) \leftarrow n}^{(n)}\right]_{k \rightarrow n} \triangleleft P_{\tilde{\sigma}} \\
& =[A]_{k \rightarrow \sigma(l)} \triangleleft P_{\tilde{\sigma}},
\end{aligned}
$$

where we know that the reduced permutation is the well-defined restriction to $n-1$ elements of $\sigma^{\prime}=$ $\left(\omega_{n \leftarrow \sigma l}^{(n)} \circ \sigma \circ \omega_{l \leftarrow n}^{(n)}\right)$.
4) The last case is analogous to the previous one and we will only state the results without a derivation:

$$
\left[P_{\sigma} \triangleleft A\right]_{k \rightarrow l}=P_{\tilde{\sigma}} \triangleleft[A]_{\sigma^{-1}(k) \rightarrow l},
$$

where the reduced permutation is given by the (again well-defined) restriction of $\omega_{n \leftarrow k}^{(n)} \circ \sigma \circ \omega_{\sigma^{-1}(k) \leftarrow n}^{(n)}$ to $n-1$ elements.

CHAPTER 8

The Printing System

8.1 Overview

As a computer algebra framework, QNET puts great emphasis on the appropriate display of expressions, both in the context of a Jupyter notebook (QNETs main "graphical interface") and in the terminal. It also provides the possibility for you to completely customize the display.

The printing system is modeled closely after the printing system of SymPy (and directly builds on it). Unlike SymPy, however, the display of an expression will always directly reflect the algebraic structure (summands will not be reordered, for example).

In the context of a Jupyter notebook, expressions will be shown via LaTeX. In an interactive (I)Python terminal, a unicode rendering will be used if the terminal has unicode support, with a fallback to ascii. We can force this manually by:

```
>>> init_printing(repr_format='unicode')
>>> Create(hs='q_1') * CoherentStateKet(symbols('eta')**2/2, hs='q_1')
a^(q|
```

These textual renderings can be obtained manually through the ascii() and unicode () functions.
Unlike SymPy, the unicode rendering will not span multiple lines. Also, QNET will not rationalize the denominators of scalar fractions by default, to match the standard notation in quantum mechanics:

```
>>> (BasisKet(0, hs=1) + BasisKet(1, hs=1)) / sqrt(2)
1/2 (|O O + | 1 }\mp@subsup{|}{}{1
```

Compare this to the default in SymPy:

```
>>> (symbols('a') + symbols('b')) / sqrt(2)
2(a + b)
    2
```

With the default settings, the LaTeX renderer that produces the output in the Jupyter notebook uses only tex macros that MathJax understands. You can obtain the LaTeX code through the latex () function. When generating code for a paper or report, it is better to customize the output for better readability with a more semantic use of macros, e.g. as:

```
>>> print(latex((BasisKet(0, hs=1) + BasisKet(1, hs=1)) / sqrt(2), tex_use_
\hookrightarrowbraket=True))
\frac{1}{\sqrt {2}} \left(\Ket {0}^{(1)} + \Ket {1}^{(1) }\right)
```

In addition to the "mathematical" display of expressions, QNET also has functions to show the exact internal (tree) structure of an expression, either for debugging or for designing algebraic transformations.

The srepr () function returns the most direct representation of the expression: it is a string (possibly with indentation for the tree structure) that if evaluated results in the exact same expression.

An alternative, specifically for interactive use, is the print_tree () function. To generate a graphic representation of the tree structure, the dotprint () function produces a graph in the DOT language.

8.2 Basic Customization

At the beginning of an interactive session or notebook, the init_printing() routine should be called. This routine associates specific printing functions, e.g. unicode (), with the \qquad str \qquad and \qquad repr representation of an expression. This is what is returned by str (expr), and by repr (expr) or as the output in an interactive (I)Python session. The initialization also specifies the default settings for each printing function. For example, you could suppress the display of Hilbert space labels:

```
>>> init_printing(show_hs_label=False, repr_format='unicode')
>>> (BasisKet(0, hs=1) + BasisKet(1, hs=1)) / sqrt(2)
1/2 (|0 + | 1)
```

Or, in a debugging session, you could switch the default representation to use the indented srepr ():

```
>>> init_printing(repr_format='indsrepr')
>>> (BasisKet(0, hs=1) + BasisKet(1, hs=1)) / sqrt(2)
ScalarTimesKet(
    Mul(Rational(1, 2), Pow(Integer(2), Rational(1, 2))),
    KetPlus(
        BasisKet(
            0,
            hs=LocalSpace(
                            '1')),
        BasisKet(
            1,
            hs=LocalSpace(
                    '1'))))
```

The settings can also be changed temporarily via the configure_printing() context manager.
Note that init_printing() should only be called once; or else it should be given the reset parameter:

```
>>> init_printing(repr_format='unicode', reset=True)
```


8.3 Printer classes

The printing functions ascii(), unicode(), and latex() each delegate to an internal printer object that subclasses qnet.printing.base. QnetBasePrinter. After initialization, the printer class is referenced at e.g. ascii.printer.
For the ultimate control in customizing the printing system, you can implement your own subclasses of QnetBasePrinter, which is in turn a subclass of sympy.printing.printer.Printer. Thus, the overview of SymPy's printing system applies.

The QNET printers conceptually extend SymPy printers in the following ways:

- QNET printers have support for caching. One reason for this is efficiency. More importantly, it allows to pass a pre-initialized cache to force certain expressions to be represented by fixed strings, which can make expressions considerably more readable, and aids in generating code from expressions, see the example for srepr ().
- Every printer contains a sub-printer in the _sympy_printer attribute, instantiated from the sympy_printer_cls class attribute. Actual SymPy objects (e.g., scalar coefficients) are delegated to this sub-printer, while the main printer handles all Expression instances. Not that the default sub-printers use classes from qnet. printing. sympy that implement some custom printing more in line with the conventions of quantum physics.
When init_printing() is called with direct settings as in the previous section, these will be used as global settings, and will affect any printers (including SymPy sub-printers) that are instantiated afterwards.
The settings that are given to any printing function will be used for that specific call of the printing function only. If you define custom classes with different or additional settings and set them up for use with the printing function (see below), the accepted arguments to the printing functions change accordingly.

8.4 Customization through an INI file

While init_printing() can simply be called with explicit settings to configure the printing system globally (see above), for a more advanced set up an INI-file can be used. In this case, the path to the file must be the only argument:

```
init_printing(inifile=<path to file>)
```

This allows to associate custom printer classes with the printing functions, and also define the settings settings for those particular printers (as opposed to just global settings).
The INI file may have sections 'global', 'ascii', 'unicode', and 'latex'. Parameters in the 'global' section are equivalent to those could be passed to init_printing() as direct settings. That is, they set up the printing function to be used for __str__ and __repr__, and set the global options for all printer classes.

The 'ascii', 'unicode', and 'latex' sections configure the respective printing functions. To link them to custom Printer classes, you may specify printer and sympy_printer as the full path to the Printer class that should be used for the main printer and the sub-printer for SymPy expressions. All other settings in the sections override the settings from 'global' for that particular printer.

Consider the following annotated example for an INI file:

```
[global]
# The settings in the 'global' section are for all Printer classes (both
# SymPy and QNET). They are equivalent to passing them to init_printing
# directly
# the printing function to use for str(expr)
```

(continues on next page)

```
str_format = ascii
# the printing function to use for expr(expr)
repr_format = unicode
# direct global settings
show_hs_label = False
sig_as_ketbra = False
# note that boolean values must be specified as "True", or "False"
# The three sections below associate the printing functions with particular
# Printer classes, and override the global settings for those particular
# printers
[ascii]
printer = qnet.printing.asciiprinter.QnetAsciiPrinter
# we use the SymPy StrPrinter here, instead of the default
# qnet.printing.sympy.SympyStrPrinter that is customized to not
# rationalize denominators
sympy_printer = sympy.printing.str.StrPrinter
# we override the the settings from the 'global' section
show_hs_label = True
sig_as_ketbra = True
[unicode]
printer = qnet.printing.unicodeprinter.QnetUnicodePrinter
sympy_printer = qnet.printing.sympy.SympyUnicodePrinter
show_hs_label = subscript
unicode_op_hats = False
[latex]
printer = qnet.printing.latexprinter.QnetLatexPrinter
sympy_printer = qnet.printing.sympy.SympyLatexPrinter
# string values can be written un-escaped
tex_op_macro = \Op{{{name} }}
tex_use_braket = True
# You can also include options for the sympy_printer
inv_trig_style = full
```


CHAPTER 9

9.1 qnet package

Main QNET package

The qnet package exposes all of QNET's functionality for easy interactive or programmative use.
For interactive usage, the package should be initialized as follows:

```
>>> import qnet
>>> qnet.init_printing()
```

QNET provides a "flat" API. That is, after

```
>>> import qnet
```

all submodules are directly accessible, e.g.

```
>>> qnet.algebra.core.operator_algebra.OperatorSymbol
<class 'qnet.algebra.core.operator_algebra.OperatorSymbol'>
```

Furthermore, every package exports the "public" symbols of any of its submodules/subpackages (public symbols are those listed in \qquad all__)

```
>>> (qnet.algebra.core.operator_algebra.OperatorSymbol is
... qnet.algebra.core.OperatorSymbol is qnet.algebra.OperatorSymbol is
... qnet.OperatorSymbol)
True
```

In an interactive context (and only there!), a star import such as

```
from qnet.algebra import *
```

may be useful.
Subpackages:

9.1.1 qnet.algebra package

Symbolic quantum and photonic circuit (SLH) algebra
Subpackages:

qnet.algebra.core package

The fundamental object hiearchies that constitute QNET's various algebras
Submodules:

qnet.algebra.core.abstract_algebra module

Base classes for all Expressions and Operations.
The abstract algebra package provides the foundation for symbolic algebra of quantum objects or circuits. All symbolic objects are an instance of Expression. Algebraic combinations of atomic expressions are instances of Operation. In this way, any symbolic expression is a tree of operations, with children of each node defined through the Operation. operands attribute, and the leaves being atomic expressions.

See Expressions and Operations for design details and usage.

Summary

Classes:

Expression	Base class for all QNET Expressions
Operation	Base class for "operations"

Functions:

substitute	Substitute symbols or (sub-)expressions with the given replacements and re-evalute the result

__all__: Expression, Operation, substitute

Reference

class qnet.algebra.core.abstract_algebra.Expression(*args, **kwargs)
Bases: object
Base class for all QNET Expressions
Expressions should generally be instantiated using the create () class method, which takes into account the algebraic properties of the Expression and and applies simplifications. It also uses memoization to cache all known (sub-)expression. This is possible because expressions are intended to be immutable. Any changes to an expression should be made through e.g. substitute () or apply_rule (), which returns a new modified expression.

Every expression has a well-defined list of positional and keyword arguments that uniquely determine the expression and that may be accessed through the args and kwargs property. That is,

```
expr.__class__(*expr.args, **expr.kwargs)
```

will return and object identical to expr.

Class Attributes

- instance_caching (bool) - Flag to indicate whether the create () class method should cache the instantiation of instances. If True, repeated calls to create () with the same arguments return instantly, instead of re-evaluating all simplifications and rules.
- simplifications (list) - List of callable simplifications that create () will use to process its positional and keyword arguments. Each callable must take three parameters (the class, the list args of positional arguments given to create () and a dictionary kwargs of keyword arguments given to create ()) and return either a tuple of new args and kwargs (which are then handed to the next callable), or an Expression (which is directly returned as the result of the call to create ()). The built-in available simplification callables are in algebraic_properties
simplifications = []
instance_caching = True
classmethod create (*args, **kwargs)
Instantiate while applying automatic simplifications
Instead of directly instantiating $c l s$, it is recommended to use create (), which applies simplifications to the args and keyword arguments according to the simplifications class attribute, and returns an appropriate object (which may or may not be an instance of the original cls).
Two simplifications of particular importance are match_replace() and match_replace_binary () which apply rule-based simplifications.
The temporary_rules () context manager may be used to allow temporary modification of the automatic simplifications that create () uses, in particular the rules for match_replace () and match_replace_binary(). Inside the managed context, the simplifications class attribute may be modified and rules can be managed with add_rule () and del_rules().

classmethod add_rule (name, pattern, replacement, attr=None)

Add an algebraic rule for create () to the class

Parameters

- name (str) - Name of the rule. This is used for debug logging to allow an analysis of which rules where applied when creating an expression. The name can be arbitrary, but it must be unique. Built-in rules have names 'Rxxx' where x is a digit
- pattern (Pattern) - A pattern constructed by pattern_head() to match a ProtoExpr
- replacement (callable) - callable that takes the wildcard names defined in pattern as keyword arguments and returns an evaluated expression.
- attr (None or str) - Name of the class attribute to which to add the rule. If None, one of '_rules','_binary_rules' is automatically chosen

Raises

- TypeError - if name is not a str or pattern is not a Pattern instance
- ValueError - if pattern is not set up to match a ProtoExpr; if there there is already a rule with the same name; if replacement is not a callable or does not take all the wildcard names in pattern as arguments
- AttributeError - If invalid attr

> Note: The "automatic" rules added by this method are applied before expressions are instantiated (against a corresponding ProtoExpr). In contrast, apply_rules ()/apply_rule () are applied to fully instantiated objects.
> The temporary_rules () context manager may be used to create a context in which rules may be defined locally.

```
classmethod show_rules(*names,attr=None)
```

Print algebraic rules used by create
Print a summary of the algebraic rules with the given names, or all rules if not names a given.

Parameters

- names (str) - Names of rules to show
- attr (None or str) - Name of the class attribute from which to get the rules. Cf. add_rule().

Raises AttributeError - If invalid attr
classmethod del_rules (*names, attr=None)
Delete algebraic rules used by create ()
Remove the rules with the given names, or all rules if no names are given

Parameters

- names (str) - Names of rules to delete
- attr (None or str) - Name of the class attribute from which to delete the rules. Cf. add_rule().

Raises

- KeyError - If any rules in names does not exist
- AttributeError - If invalid attr
classmethod rules (attr=None)
Iterable of rule names used by create ()
Parameters attr (None or str) - Name of the class attribute to which to get the names.
If None, one of '_rules', '_binary_rules' is automatically chosen
args
The tuple of positional arguments for the instantiation of the Expression

kwargs

The dictionary of keyword-only arguments for the instantiation of the Expression

```
minimal_kwargs
```

A "minimal" dictionary of keyword-only arguments, i.e. a subset of kwargs that may exclude default options

```
substitute(var_map)
```

Substitute sub-expressions
Parameters var_map (dict) - Dictionary with entries of the form \{expr: substitution\}

doit (classes $=$ None, recursive $=$ True,$* *$ kwargs)

Rewrite (sub-)expressions in a more explicit form
Return a modified expression that is more explicit than the original expression. The definition of "more explicit" is decided by the relevant subclass, e.g. a Commutator is written out according to its definition.

Parameters

- classes (None or list) - an optional list of classes. If given, only (sub)expressions that an instance of one of the classes in the list will be rewritten.
- recursive ($b \circ \circ \mathrm{l}$) - If True, also rewrite any sub-expressions of any rewritten expression. Note that doit () always recurses into sub-expressions of expressions not affected by it.
- kwargs - Any remaining keyword arguments may be used by the doit () method of a particular expression.

Example

Consider the following expression:

```
>>> from sympy import IndexedBase
>>> i = IdxSym('i'); N = symbols('N')
>>> Asym, Csym = symbols('A, C', cls=IndexedBase)
>>> A = lambda i: OperatorSymbol(StrLabel(Asym[i]), hs=0)
>>> B = OperatorSymbol('B', hs=0)
>>> C = lambda i: OperatorSymbol(StrLabel(Csym[i]), hs=0)
>>> def show(expr):
... print(unicode(expr, show_hs_label=False))
>>> expr = Sum(i, 1, 3)(Commutator(A(i), B) + C(i)) / N
>>> show(expr)
1/N (_{i=1}^{3} (C_i + [A_i, B]))
```

Calling doit () without parameters rewrites both the indexed sum and the commutator:

```
>>> show(expr.doit())
1/N(C1}+\mp@subsup{C}{2}{}+\mp@subsup{C}{3}{}+\mp@subsup{A}{1}{}B+\mp@subsup{A}{2}{}B+\mp@subsup{A}{3}{}B-B\mp@subsup{A}{1}{}-B\mp@subsup{A}{2}{}-B\mp@subsup{A}{3}{}
```

A non-recursive call only expands the sum, as it does not recurse into the expanded summands:

```
>>> show(expr.doit(recursive=False))
```


We can selectively expand only the sum or only the commutator:

```
>>> show(expr.doit(classes=[IndexedSum]))
1/N (C1 + C C + C C + [A1, B] +[A A, B] + [A A, B])
>>> show(expr.doit(classes=[Commutator]))
1/N (_{i=1}^{3} (C_i - B A_i + A__i B))
```

Also we can pass a keyword argument that expands the sum only to the 2 nd term, as documented in Commutator.doit()

```
>>> show(expr.doit(classes=[IndexedSum], max_terms=2))
1/N (C1 + C C + [A1, B] + [A A, B])
```

apply (func, *args, **kwargs)
Apply func to expression.
Equivalent to func (self, *args, **kwargs). This method exists for easy chaining:

```
>>> A, B, C, D = (
... OperatorSymbol(s, hs=1) for s in ('A', 'B', 'C', 'D'))
>>> expr = (
... Commutator(A * B, C * D)
... .apply(lambda expr: expr**2)
... .apply(expand_commutators_leibniz, expand_expr=False)
... .substitute({A: IdentityOperator}))
```

apply_rules (rules, recursive=True)
Rebuild the expression while applying a list of rules
The rules are applied against the instantiated expression, and any sub-expressions if recursive is True. Rule application is best though of as a pattern-based substitution. This is different from the automatic rules that create () uses (see add_rule ()), which are applied before expressions are instantiated.

Parameters

- rules (list or OrderedDict) - List of rules or dictionary mapping names to rules, where each rule is a tuple (Pattern, replacement callable), cf. apply_rule ()
- recursive (bool) - If true (default), apply rules to all arguments and keyword arguments of the expression. Otherwise, only the expression itself will be re-instantiated.

If rules is a dictionary, the keys (rules names) are used only for debug logging, to allow an analysis of which rules lead to the final form of an expression.
apply_rule (pattern, replacement, recursive=True)
Apply a single rules to the expression
This is equivalent to apply_rules() with rules=[(pattern, replacement)]

Parameters

- pattern (Pattern) - A pattern containing one or more wildcards
- replacement (callable) - A callable that takes the wildcard names in pattern as keyword arguments, and returns a replacement for any expression that pattern matches.

Example

Consider the following Heisenberg Hamiltonian:

```
>>> tls = SpinSpace(label='s', spin='1/2')
>>> i, j, n = symbols('i, j, n', cls=IdxSym)
>>> J = symbols('J', cls=sympy.IndexedBase)
>>> def Sig(i):
... return OperatorSymbol(
... StrLabel(sympy.Indexed('sigma', i)), hs=tls)
>> H = - Sum(i, tls)(Sum(j, tls)(
... J[i, j] * Sig(i) * Sig(j)))
>>> unicode(H)
'-(_{i,j } J_ij \sigma_i^}(s) \mp@subsup{\sigma}{_}{\prime`}(s))
```

We can transform this into a classical Hamiltonian by replacing the operators with scalars:

```
>>> H_classical = H.apply_rule(
... pattern(OperatorSymbol, wc('label', head=StrLabel)),
... lambda label: label.expr * IdentityOperator)
>>> unicode(H_classical)
'- (_{i,j } J_ij \sigma_i \sigma_j)'
```

rebuild()
Recursively re-instantiate the expression
This is generally used within a managed context such as extra_rules(), extra_binary_rules(), or no_rules().

free_symbols

Set of free SymPy symbols contained within the expression.
bound_symbols
Set of bound SymPy symbols in the expression
all_symbols
Combination of free_symbols and bound_symbols
__ne__(other)
If it is well-defined (i.e. boolean), simply return the negation of self.__eq__ (other) Otherwise return NotImplemented.
qnet.algebra.core.abstract_algebra.substitute (expr, var_map)
Substitute symbols or (sub-)expressions with the given replacements and re-evalute the result

Parameters

- expr - The expression in which to perform the substitution
- var_map (dict) - The substitution dictionary.
class qnet.algebra.core.abstract_algebra. Operation (*operands, **kwargs)
Bases: qnet.algebra.core.abstract_algebra.Expression
Base class for "operations"
Operations are Expressions that act algebraically on other expressions (their "operands").
Operations differ from more general Expressions by the convention that the arguments of the Operator are exactly the operands (which must be members of the algebra!) Any other parameters (non-operands) that may be required must be given as keyword-arguments.

operands

Tuple of operands of the operation
args
Alias for operands
qnet.algebra.core.abstract_quantum_algebra module

Common algebra of "quantum" objects

Quantum objects have an associated Hilbert space, and they (at least partially) summation, products, multiplication with a scalar, and adjoints.

The algebra defined in this module is the superset of the Hilbert space algebra of states (augmented by the tensor product), and the C^{*} algebras of operators and superoperators.

Summary

Classes:

QuantumAdjoint	Base class for adjoints of quantum expressions
QuantumDerivative	Symbolic partial derivative
QuantumExpression	Base class for expressions associated with a Hilbert space
QuantumIndexedSum	Base class for indexed sums
QuantumOperation	Base class for operations on quantum expression
QuantumPlus	General implementation of addition of quantum expres- sions
QuantumSymbol	Symbolic element of an algebra
QuantumTimes	General implementation of product of quantum expres- sions
ScalarTimesQuantumExpression	Product of a Scalar and a Quantumexpression
SingleQuantumoperation	Base class for operations on a single quantum expres- sion

Functions:

Sum	Instantiator for an arbitrary indexed sum.
ensure_local_space	Ensure that the given $h s$ is an instance of LocalSpace.

```
__all___
                _:
                    QuantumAdjoint,
                        QuantumDerivative,
                            QuantumExpression,
QuantumIndexedSum, QuantumOperation, QuantumPlus, QuantumSymbol, QuantumTimes,
ScalarTimesQuantumExpression, SingleQuantumOperation, Sum
```


Reference

class qnet.algebra. core.abstract_quantum_algebra.QuantumExpression (*args,
**kwargs)
Bases: qnet.algebra.core.abstract_algebra.Expression
Base class for expressions associated with a Hilbert space

is_zero

Check whether the expression is equal to zero.
Specifically, this checks whether the expression is equal to the neutral element for the addition within the algebra. This does not generally imply equality with a scalar zero:

```
>>> ZeroOperator.is_zero
True
>>> ZeroOperator == 0
False
```

space

The HilbertSpace on which the operator acts non-trivially
adjoint()
The Hermitian adjoint of the Expression

```
dag()
```

Alias for adjoint()

expand()

Expand out distributively all products of sums.

Note: This does not expand out sums of scalar coefficients. You may use simplify_scalar() for this purpose.
simplify_scalar (func=<function simplify>)
Simplify all scalar symbolic (SymPy) coefficients by appyling func to them
diff (sym, $n=1$, expand_simplify=True)
Differentiate by scalar parameter sym.

Parameters

- sym (Symbol) - What to differentiate by.
- n (int) - How often to differentiate
- expand_simplify (bool) - Whether to simplify the result.

Returns The n-th derivative.
series_expand (param, about, order)
Expand the expression as a truncated power series in a scalar parameter.
When expanding an expr for a parameter x about the point x_{0} up to order N, the resulting coefficients $\left(c_{1}, \ldots, c_{N}\right)$ fulfill

$$
\operatorname{expr}=\sum_{n=0}^{N} c_{n}\left(x-x_{0}\right)^{n}+O(N+1)
$$

Parameters

- param (Symbol) - Expansion parameter x
- about (Scalar) - Point x_{0} about which to expand
- order (int) - Maximum order N of expansion (>= 0)

Return type tuple

Returns tuple of length order +1 , where the entries are the expansion coefficients, $\left(c_{0}, \ldots, c_{N}\right)$.

Note: The expansion coefficients are "type-stable", in that they share a common base class with the original expression. In particular, this applies to "zero" coefficients:

```
>>> expr = KetSymbol("Psi", hs=0)
>>> t = sympy.symbols("t")
>>> assert expr.series_expand(t, 0, 1) == (expr, ZeroKet)
```

class qnet.algebra.core.abstract_quantum_algebra.QuantumSymbol (label, *sym_args, hs)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumExpression
Symbolic element of an algebra

Parameters

- label (str or SymbolicLabelBase) - Label for the symbol
- sym_args (Scalar) - optional scalar arguments. With zero sym_args, the resulting symbol is a constant. With one or more sym_args, it becomes a function.
- hs (HilbertSpace, str, int, tuple) - the Hilbert space associated with the symbol. If a str or an int, an implicit (sub-)instance of LocalSpace with a corresponding label will be created, or, for a tuple of $s t r$ or $i n t$, a ProducSpace. The type of the implicit Hilbert space is set by :func:init_algebra‘.

label

Label of the symbol

args

Tuple of positional arguments, consisting of the label and possible sym_args

kwargs

Dict of keyword arguments, containing only $h s$
sym_args
Tuple of scalar arguments of the symbol
space
The HilbertSpace on which the operator acts non-trivially

free_symbols

Set of free SymPy symbols contained within the expression.
class qnet.algebra.core.abstract_quantum_algebra.QuantumOperation(*operands,
**kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.Quantumexpression, qnet. algebra.core.abstract_algebra. Operation

Base class for operations on quantum expression
These are operations on quantum expressions within the same fundamental set.
space
Hilbert space of the operation result
class qnet.algebra.core.abstract_quantum_algebra.SingleQuantumOperation (op, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra. Quantumoperation
Base class for operations on a single quantum expression
operand
The operator that the operation acts on
class qnet.algebra.core.abstract_quantum_algebra.QuantumAdjoint (op, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.SingleQuantumOperation
Base class for adjoints of quantum expressions

```
class qnet.algebra.core.abstract_quantum_algebra.QuantumPlus(*operands,
                        **kwargs)
```

Bases: qnet.algebra.core.abstract_quantum_algebra. Quantumoperation
General implementation of addition of quantum expressions

order_key

alias of qnet.utils.ordering.FullCommutativeHSOrder
class qnet.algebra. core.abstract_quantum_algebra. QuantumTimes (*operands,
**kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.Quantumoperation
General implementation of product of quantum expressions

```
order_key
```

alias of qnet.utils.ordering.DisjunctCommutativeHSOrder
factor_for_space ($s p c$)
Return a tuple of two products, where the first product contains the given Hilbert space, and the second product is disjunct from it.
class qnet.algebra.core.abstract_quantum_algebra.ScalarTimesQuantumExpression (coeff, term)
Bases: qnet.algebra.core.abstract_quantum_algebra.Quantumexpression, qnet. algebra.core.abstract_algebra.Operation

Product of a Scalar and a Quantumexpression
classmethod create (coeff, term)
Instantiate while applying automatic simplifications
Instead of directly instantiating cls, it is recommended to use create (), which applies simplifications to the args and keyword arguments according to the simplifications class attribute, and returns an appropriate object (which may or may not be an instance of the original cls).

Two simplifications of particular importance are match_replace() and match_replace_binary() which apply rule-based simplifications.

The temporary_rules () context manager may be used to allow temporary modification of the automatic simplifications that create () uses, in particular the rules for match_replace () and match_replace_binary(). Inside the managed context, the simplifications class attribute may be modified and rules can be managed with add_rule() and del_rules().

coeff

term

free_symbols

Set of free SymPy symbols contained within the expression.
space
The HilbertSpace on which the operator acts non-trivially
class qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative (op, *, derivs, vals=None)
Bases: qnet.algebra.core.abstract_quantum_algebra.SingleQuantumOperation
Symbolic partial derivative

$$
\frac{\partial^{n}}{\partial x_{1}^{n_{1}} \ldots \partial x_{N}^{n_{N}}} A\left(x_{1}, \ldots, x_{N}\right) ; \quad \text { with } \quad n=\sum_{i} n_{i}
$$

Alternatively, if vals is given, a symbolic representation of the derivative (partially) evaluated at a specific point.

$$
\left.\frac{\partial^{n}}{\partial x_{1}^{n_{1}} \ldots \partial x_{N}^{n_{N}}} A\left(x_{1}, \ldots, x_{N}\right)\right|_{x_{1}=v_{1}, \ldots}
$$

Parameters

- op (QuantumExpression) - the expression $A\left(x_{1}, \ldots, x_{N}\right)$ that is being derived
- derivs (dict) - a map of symbols x_{i} to the order n_{i} of the derivate with respect to that symbol
- vals (dict or None) - If not None, a map of symbols x_{i} to values v_{i} for the point at which the derivative should be evaluated.

```
Note: QuantumDerivative is intended to be instantiated only inside the _diff() method of a Quantumexpression, for expressions that depend on scalar arguments in an unspecified way. Generally, if a derivative can be calculated explicitly, the explicit form is preferred over the abstract QuantumDerivative.
simplifications \(=\) [<function derivative_via_diff>]
classmethod create (op, *, derivs, vals=None)
Instantiate the derivative by repeatedly calling the _diff() method of \(o p\) and evaluating the result at the given vals.
```


kwargs

Keyword arguments for the instantiation of the derivative

minimal_kwargs

Minimal keyword arguments for the instantiation of the derivative (excluding defaults)
evaluate_at (vals)
Evaluate the derivative at a specific point

derivs

Mapping of symbols to the order of the derivative with respect to that symbol. Keys are ordered alphanumerically.

syms

Set of symbols with respect to which the derivative is taken

vals

Mapping of symbols to values for which the derivative is to be evaluated. Keys are ordered alphanumerically.

free_symbols

Set of free SymPy symbols contained within the expression.

bound_symbols

Set of Sympy symbols that are eliminated by evaluation.
n
The total order of the derivative.
This is the sum of the order values in derivs
class qnet.algebra.core.abstract_quantum_algebra.QuantumIndexedSum (term,
*ranges)
Bases: qnet.algebra.core.indexed_operations.IndexedSum, qnet.algebra.core. abstract_quantum_algebra.SingleQuantumOperation
Base class for indexed sums
space
The Hilbert space of the sum's term

```
qnet.algebra.core.abstract_quantum_algebra.Sum(idx, *args, **kwargs)
```

Instantiator for an arbitrary indexed sum.

This returns a function that instantiates the appropriate QuantumIndexedSum subclass for a given term expression. It is the preferred way to "manually" create indexed sum expressions, closely resembling the normal mathematical notation for sums.

Parameters

- idx (IdxSym) - The index symbol over which the sum runs
- args - arguments that describe the values over which idx runs,
- kwargs - keyword-arguments, used in addition to args

Returns an instantiator function that takes a arbitrary term that should generally contain the idx symbol, and returns an indexed sum over that term with the index range specified by the original args and kwargs.

Return type callable
There is considerable flexibility to specify concise args for a variety of index ranges.
Assume the following setup:

```
>>> i = IdxSym('i'); j = IdxSym('j')
>>> ket_i = BasisKet(FockIndex(i), hs=0)
>>> ket_j = BasisKet(FockIndex(j), hs=0)
>>> hs0 = LocalSpace('0')
```

Giving i as the only argument will sum over the indices of the basis states of the Hilbert space of term:

```
>>> s = Sum(i)(ket_i)
>>> unicode(s)
'_{i 0} |i'',
```

You may also specify a Hilbert space manually:

```
>>> Sum(i, hs0)(ket_i) == Sum(i, hs=hs0)(ket_i) == s
True
```

Note that using Sum () is vastly more readable than the equivalent "manual" instantiation:

```
>>> s == KetIndexedSum.create(ket_i, IndexOverFockSpace(i, hs=hs0))
True
```

By nesting calls to Sum, you can instantiate sums running over multiple indices:

```
>>> unicode( Sum(i)(Sum(j)(ket_i * ket_j.dag())) )
'_{i,j o} |ij| 'r
```

Giving two integers in addition to the index i in args, the index will run between the two values:

```
>>> unicode( Sum(i, 1, 10)(ket_i) )
'__{i=1}^{10} | i'0'
>>> Sum(i, 1, 10)(ket_i) == Sum(i, 1, to=10)(ket_i)
True
```

You may also include an optional step width, either as a third integer or using the step keyword argument.

```
>>> #unicode(Sum(i, 1, 10, step=2)(ket_i) ) # TODO
```

Lastly, by passing a tuple or list of values, the index will run over all the elements in that tuple or list:

```
>>> unicode( Sum(i, (1, 2, 3)) (ket_i))
'__{i {1,2,3}} |i''
```

qnet.algebra.core.abstract_quantum_algebra.ensure_local_space (hs, cls=<class 'qnet.algebra.core.hilbert_space_algebra.
Ensure that the given $h s$ is an instance of Localspace.
If $h s$ an instance of str or int, it will be converted to a $c l s$ (if possible). If it already is an instace of $c l s, h s$ will be returned unchanged.

Parameters

- hs (HilbertSpace or str or int) - The Hilbert space (or label) to convert/check
- cls (type) - The class to which an int/str label for a Hilbert space should be converted. Must be a subclass of LocalSpace.

Raises TypeError - If $h \boldsymbol{s}$ is not a Localspace, str, or int.
Returns original or converted $h s$
Return type LocalSpace

Examples

```
>>> srepr(ensure_local_space(0))
"LocalSpace('0')"
>>> srepr(ensure_local_space('tls'))
"LocalSpace('tls')"
>>> srepr(ensure_local_space(0, cls=LocalSpace))
"LocalSpace('0')"
>>> srepr(ensure_local_space(LocalSpace(0)))
"LocalSpace('0')"
>>> srepr(ensure_local_space(LocalSpace(0)))
"LocalSpace('0')"
>>> srepr(ensure_local_space(LocalSpace(0) * LocalSpace(1)))
Traceback (most recent call last):
TypeError: hs must be an instance of LocalSpace
```


qnet.algebra.core.algebraic_properties module

Summary

Functions:

accept_bras	Accept operands that are all bras, and turn that into to bra of the operation applied to all corresponding kets
aSSOC	Associatively expand out nested arguments of the flat class.
aSSOC_indexed	Flatten nested indexed structures while pulling out pos- sible prefactors

Continued on next page

Table 5 - continued from previous page

basis_ket_zero_outside_hs	For BasisKet. create (ind, hs) with an integer label ind, return a Zeroket if ind is outside of the range of the underlying Hilbert space
check_cdims	Check that all operands (ops) have equal channel dimen- sion.
collect_scalar_summands	Collect ValueScalar and ScalarExpression summands
collect_summands	Collect summands that occur multiple times into a sin- gle summand
commutator_order	Apply anti-commutative property of the commutator to apply a standard ordering of the commutator arguments
convert_to_scalars	Convert any entry in ops that is not a Scalar instance into a ScalarValue instance
convert_to_spaces	For all operands that are merely of type str or int, substi- tute LocalSpace objects with corresponding labels: For
a string, just itself, for an int, a string version of that int.	

Reference

qnet.algebra.core.algebraic_properties.assoc (cls, ops, kwargs)
Associatively expand out nested arguments of the flat class. E.g.:

```
>>> class Plus(Operation):
... simplifications = [assoc, ]
>>> Plus.create(1,Plus(2,3))
Plus(1, 2, 3)
```

qnet.algebra.core.algebraic_properties.assoc_indexed (cls, ops, kwargs)
Flatten nested indexed structures while pulling out possible prefactors
For example, for an IndexedSum:

$$
\sum_{j}\left(a \sum_{i} \cdots\right)=a \sum_{j, i} \cdots
$$

qnet.algebra.core.algebraic_properties.idem (cls, ops, kwargs)
Remove duplicate arguments and order them via the cls's order_key key object/function. E.g.:

```
>>> class Set(Operation):
... order_key = lambda val: val
... simplifications = [idem, ]
>>> Set.create(1,2,3,1,3)
Set (1, 2, 3)
```

qnet.algebra.core.algebraic_properties.orderby (cls, ops, kwargs)
Re-order arguments via the class's order_key key object/function. Use this for commutative operations: E.g.:

```
>>> class Times(Operation):
... order_key = lambda val: val
... simplifications = [orderby, ]
>>> Times.create (2,1)
Times(1, 2)
```

qnet.algebra.core.algebraic_properties.filter_neutral (cls, ops, kwargs)
Remove occurrences of a neutral element from the argument/operand list, if that list has at least two elements. To use this, one must also specify a neutral element, which can be anything that allows for an equality check with each argument. E.g.:

```
>>> class X(Operation):
... _neutral_element = 1
... simplifications = [filter_neutral, ]
>>> X.create (2,1,3,1)
X(2, 3)
```

qnet.algebra.core.algebraic_properties.collect_summands (cls, ops, kwargs)
Collect summands that occur multiple times into a single summand
Also filters out zero-summands.

Example

```
>>> A, B, C = (OperatorSymbol(s, hs=0) for s in ('A', 'B', 'C'))
>>> collect_summands(
... OperatorPlus, (A, B, C, ZeroOperator, 2 * A, B, -C) , {})
((3 * A^(0), 2 * B^(0)), {})
>>> collect_summands(OperatorPlus, (A, -A), {})
ZeroOperator
>>> collect_summands(OperatorPlus, (B, A, -B), {})
A^(0)
```

qnet.algebra.core.algebraic_properties.collect_scalar_summands (cls, ops,
Collect ValueScalar and ScalarExpression summands

Collect ValueScalar and ScalarExpression summands

Example

```
>>> srepr(collect_scalar_summands(Scalar, (1, 2, 3), {}))
'ScalarValue(6)'
>>> collect_scalar_summands(Scalar, (1, 1, -1), {})
One
>>> collect_scalar_summands(Scalar, (1, -1), {})
Zero
```

```
>>> Psi = KetSymbol("Psi", hs=0)
>>> Phi = KetSymbol("Phi", hs=0)
>>> braket = BraKet.create(Psi, Phi)
```

```
>>> collect_scalar_summands(Scalar, (1, braket, -1), {})
<Psi|Phi>^(0)
>>> collect_scalar_summands(Scalar, (1, 2 * braket, 2, 2 * braket), {})
((3, 4 * <Psi|Phi>^(0)), {})
>>> collect_scalar_summands(Scalar, (2 * braket, -braket, -braket), {})
Zero
```

qnet.algebra.core.algebraic_properties.match_replace (cls, ops, kwargs)
Match and replace a full operand specification to a function that provides a replacement for the whole expression or raises a Cannot Simplify exception. E.g.

First define an operation:

```
>>> class Invert(Operation):
... _rules = OrderedDict()
... simplifications = [match_replace, ]
```

Then some _rules:

```
>>> A = wc("A")
>>> A_float = wc("A", head=float)
>>> Invert_A = pattern(Invert, A)
>>> Invert._rules.update([
... ('r1', (pattern_head(Invert_A), lambda A: A)),
... ('r2', (pattern_head(A_float), lambda A: 1./A)),
... ])
```

Check rule application:

```
>>> print(srepr(Invert.create("hallo"))) # matches no rule
Invert('hallo')
>>> Invert.create(Invert("hallo")) # matches first rule
'hallo'
>>> Invert.create(.2) # matches second rule
5.0
```

A pattern can also have the same wildcard appear twice:

```
>>> class X(Operation):
... _rules = {
... 'r1': (pattern_head(A, A), lambda A: A),
... }
    simplifications = [match_replace, ]
>>> X.create (1,2)
X(1, 2)
>>> X.create(1,1)
1
```

qnet.algebra.core.algebraic_properties.match_replace_binary (cls, ops, kwargs)
Similar to func:match_replace, but for arbitrary length operations, such that each two pairs of subsequent operands are matched pairwise.

```
>>> A = wc("A")
>>> class FilterDupes(Operation) :
... _binary_rules = {
... 'filter_dupes': (pattern_head(A,A), lambda A: A)}
... simplifications = [match_replace_binary, assoc]
... _neutral_element = 0
>>> FilterDupes.create(1,2,3,4) # No duplicates
FilterDupes(1, 2, 3, 4)
>>> FilterDupes.create(1,2,2,3,4) # Some duplicates
FilterDupes(1, 2, 3, 4)
```

Note that this only works for subsequent duplicate entries:

```
>>> FilterDupes.create(1,2,3,2,4)
# No *subsequent* duplicates
FilterDupes(1, 2, 3, 2, 4)
```

Any operation that uses binary reduction must be associative and define a neutral element. The binary rules must be compatible with associativity, i.e. there is no specific order in which the rules are applied to pairs of operands.

```
qnet.algebra.core.algebraic_properties.check_cdims(cls,ops,kwargs)
```

Check that all operands (ops) have equal channel dimension.

```
qnet.algebra.core.algebraic_properties.filter_cid(cls,ops, kwargs)
```

Remove occurrences of the circuit_identity() cid(n) for any n. Cf. filter_neutral()
qnet.algebra.core.algebraic_properties.convert_to_spaces (cls,ops, kwargs)
For all operands that are merely of type str or int, substitute LocalSpace objects with corresponding labels: For a string, just itself, for an int, a string version of that int.

```
qnet.algebra.core.algebraic_properties.empty_trivial (cls,ops, kwargs)
```

A ProductSpace of zero Hilbert spaces should yield the TrivialSpace

```
qnet.algebra.core.algebraic_properties.implied_local_space(*, arg_index=None,
                                    keys=None)
```

Return a simplification that converts the positional argument arg_index from (str, int) to a subclass of

LocalSpace, as well as any keyword argument with one of the given keys.
The exact type of the resulting Hilbert space is determined by the default_hs_cls argument of init_algebra().
In many cases, we have implied_local_space () (in create) in addition to a conversion in __init__
\qquad , so that match_replace () etc can rely on the relevant arguments being a Hilbertspace instance.

```
qnet.algebra.core.algebraic_properties.delegate_to_method (mtd)
```

Create a simplification rule that delegates the instantiation to the method $m t d$ of the operand (if defined)

```
qnet.algebra.core.algebraic_properties.scalars_to_op(cls,ops,kwargs)
```

Convert any scalar α in ops into an operator \$alpha identity\$

```
qnet.algebra.core.algebraic_properties.convert_to_scalars(cls,ops, kwargs)
```

Convert any entry in ops that is not a Scalar instance into a ScalarValue instance

```
qnet.algebra.core.algebraic_properties.disjunct_hs_zero (cls,ops, kwargs)
```

Return ZeroOperator if all the operators in ops have a disjunct Hilbert space, or an unchanged ops, kwargs otherwise
qnet.algebra.core.algebraic_properties.commutator_order (cls, ops, kwargs)
Apply anti-commutative property of the commutator to apply a standard ordering of the commutator arguments

```
qnet.algebra.core.algebraic_properties.accept_bras (cls,ops, kwargs)
```

Accept operands that are all bras, and turn that into to bra of the operation applied to all corresponding kets

```
qnet.algebra.core.algebraic_properties.basis_ket_zero_outside_hs(cls, ops,
                                    kwargs)
```

For Basisket.create (ind, hs) with an integer label ind, return a Zeroket if ind is outside of the range of the underlying Hilbert space

```
qnet.algebra.core.algebraic_properties.indexed_sum_over_const (cls,ops, kwargs)
```

Execute an indexed sum over a term that does not depend on the summation indices

$$
\sum_{j=1}^{N} a=N a
$$

```
>>> a = symbols('a')
>>> i, j = (IdxSym(s) for s in ('i', 'j'))
>>> unicode(Sum(i, 1, 2)(a))
'2 a'
>>> unicode(Sum(j, 1, 2)(Sum(i, 1, 2)(a * i)))
'_{i=1}^{2} 2 i a'
```

qnet.algebra.core.algebraic_properties.indexed_sum_over_kronecker(cls, ops,
kwargs)

Execute sums over KroneckerDelta prefactors
qnet.algebra. core.algebraic_properties.derivative_via_diff (cls, ops, $k w a r g s$) Implementation of the QuantumDerivative.create() interface via the use of QuantumExpression._diff().

Thus, by having QuantumExpression.diff() delegate to QuantumDerivative.create(), instead of QuantumExpression._diff() directly, we get automatic caching of derivatives

qnet.algebra.core.circuit_algebra module

Implementation of the SLH circuit algebra

For more details see Circuit Algebra.

Summary

Classes:

CPermutation	Channel permuting circuit
Circuit	Base class for the circuit algebra elements
CircuitSymbol	Symbolic circuit element
Component	Base class for circuit components
Concatenation	Concatenation of circuit elements
Feedback	Feedback on a single channel of a circuit
SLH	Element of the SLH algebra
SeriesInverse	Symbolic series product inversion operation
SeriesProduct	The series product circuit operation.

Functions:

FB	Wrapper for Feedback, defaulting to last channel
circuit_identity	Return the circuit identity for n channels
eval_adiabatic_limit	Compute the limiting SLH model for the adiabatic ap- proximation
extract_channel	Create a CPermutation that extracts channel k
getABCD	Calculate the ABCD-linearization of an SLH model
map_channels	Create a CPermuation based on a dict of channel mappings
move_drive_to_H	Move coherent drives from the Lindblad operators to the
Had_with_identity	Pad a circuit by adding a n-channel identity circuit at index k
prepare_adiabatic_limit	Prepare the adiabatic elimination on an SLH object
try_adiabatic_elimination	Attempt to automatically do adiabatic elimination on an

Data:

CIdentity	Single pass-through channel; neutral element of SeriesProduct
Circuitzero Zerocircuit, the neutral element of Concatenation	
Coll_: CIdentity, CPermutation, Circuit, CircuitSymbol, Circuitzero, Component,	
eval_adiabatic_limit, extract_channel, getABCD, map_channels, move_drive_to_H,	
pad_with_identity, prepare_adiabatic_limit, try_adiabatic_elimination	

Reference

```
class qnet.algebra.core.circuit_algebra.Circuit
    Bases: object
```

Base class for the circuit algebra elements

cdim

The channel dimension of the circuit expression, i.e. the number of external bosonic noises/inputs that the circuit couples to.

Return type int
block_structure
If the circuit is reducible (i.e., it can be represented as a Concatenation of individual circuit expressions), this gives a tuple of cdim values of the subblocks. E.g. if A and B are irreducible and have A.cdim $=2$, B.cdim $=3$

```
>>> A = CircuitSymbol('A', cdim=2)
>>> B = CircuitSymbol('B', cdim=3)
```

Then the block structure of their Concatenation is:

```
>>> (A + B).block_structure
(2, 3)
```

while

```
>>> A.block_structure
(2,)
>>> B.block_structure
(3,)
```


See also:

get_blocks () allows to actually retrieve the blocks:

```
>>> (A + B).get_blocks()
(A, B)
```


Return type tuple

index_in_block (channel_index)
Return the index a channel has within the subblock it belongs to
I.e., only for reducible circuits, this gives a result different from the argument itself.

Parameters channel_index (int) - The index of the external channel
Raises ValueError - for an invalid channel_index
Return type int
get_blocks (block_structure=None)
For a reducible circuit, get a sequence of subblocks that when concatenated again yield the original circuit. The block structure given has to be compatible with the circuits actual block structure, i.e. it can only be more coarse-grained.

Parameters block_structure (tuple) - The block structure according to which the subblocks are generated (default = None, corresponds to the circuit's own block structure)
Returns A tuple of subblocks that the circuit consists of.
Raises IncompatibleBlockStructures

series_inverse()

Return the inverse object (under the series product) for a circuit
In general for any X

```
>>> X = CircuitSymbol('X', cdim=3)
>>> (X << X.series_inverse() == X.series_inverse() << X ==
... circuit_identity(X.cdim))
True
```


Return type Circuit

feedback (*, out_port=None, in_port=None)
Return a circuit with self-feedback from the output port (zero-based) out_port to the input port in_port.

Parameters

- out_port (int or None) - The output port from which the feedback connection leaves (zero-based, default None corresponds to the last port).
- in_port (int or None) - The input port into which the feedback connection goes (zero-based, default None corresponds to the last port).

```
show()
```

Show the circuit expression in an IPython notebook.

```
render (fname=")
```

Render the circuit expression and store the result in a file
Parameters fname (str) - Path to an image file to store the result in.
Returns The path to the image file

Return type str

creduce ()
If the circuit is reducible, try to reduce each subcomponent once
Depending on whether the components at the next hierarchy-level are themselves reducible, successive circuit.creduce () operations yields an increasingly fine-grained decomposition of a circuit into its most primitive elements.

Return type Circuit

toSLH ()

Return the SLH representation of a circuit. This can fail if there are un-substituted pure circuit symbols (Circuit Symbol) left in the expression

Return type SLH

```
coherent_input (*input_amps)
```

Feed coherent input amplitudes into the circuit. E.g. For a circuit with channel dimension of two, C.coherent_input $(0,1)$ leads to an input amplitude of zero into the first and one into the second port.

Parameters input_amps (SCALAR_TYPES) - The coherent input amplitude for each port
Returns The circuit including the coherent inputs.
Return type Circuit
Raises WrongCDimError

```
class qnet.algebra.core.circuit_algebra.SLH (S,L,H)
    Bases: qnet.algebra.core.circuit_algebra.Circuit, qnet.algebra.core.
    abstract_algebra.Expression
```

Element of the SLH algebra
The SLH class encapsulate an open system model that is parametrized the a scattering matrix (S), a column vector of Lindblad operators (L), and a Hamiltonian (H).

Parameters

- \mathbf{S} (Matrix) - The scattering matrix (with in general Operator-valued elements)
- L(Matrix) - The coupling vector (with in general Operator-valued elements)
- H (Operator) - The internal Hamiltonian operator

S
Scattering matrix
L
Coupling vector
H
Hamiltonian
args
The tuple of positional arguments for the instantiation of the Expression
Ls
Lindblad operators (entries of the L vector), as a list
cdim
The circuit dimension
space
Total Hilbert space
free_symbols
Set of all symbols occcuring in S, L, or H
series_with_slh (other)
Series product with another SLH object
Parameters other (SLH) - An upstream SLH circuit.
Returns The combined system.
Return type $S L H$
concatenate_slh (other)
Concatenation with another SLH object
expand()
Expand out all operator expressions within S, L and H
Return a new SLH object with these expanded expressions.
simplify_scalar (func=<function simplify>)
Simplify all scalar expressions within S, L and H
Return a new SLH object with the simplified expressions.
See also: Quantumexpression.simplify_scalar()
symbolic_liouvillian()
symbolic_master_equation (rho=None)
Compute the symbolic Liouvillian acting on a state rho
If no rho is given, an OperatorSymbol is created in its place. This correspnds to the RHS of the master equation in which an average is taken over the external noise degrees of freedom.

Parameters rho (Operator) - A symbolic density matrix operator
Returns The RHS of the master equation.
Return type Operator
symbolic_heisenberg_eom ($X=$ None, noises=None, expand_simplify=True)
Compute the symbolic Heisenberg equations of motion of a system operator X. If no X is given, an OperatorSymbol is created in its place. If no noises are given, this correspnds to the ensemble-averaged Heisenberg equation of motion.

Parameters

- X (Operator) - A system operator
- noises (Operator) - A vector of noise inputs

Returns The RHS of the Heisenberg equations of motion of X.
Return type Operator

```
class qnet.algebra.core.circuit_algebra.CircuitSymbol(label, *sym_args, cdim)
    Bases: qnet.algebra.core.circuit_algebra.circuit, qnet.algebra.core.
    abstract_algebra.Expression
```

Symbolic circuit element

Parameters

- label (str) - Label for the symbol
- sym_args (Scalar) - optional scalar arguments. With zero $\operatorname{sym} _$args, the resulting symbol is a constant. With one or more sym_args, it becomes a function.
- cdim (int) - The circuit dimension, that is, the number of I/O lines

label

args
The tuple of positional arguments for the instantiation of the Expression

kwargs

The dictionary of keyword-only arguments for the instantiation of the Expression
sym_args
Tuple of arguments of the symbol
cdim
Dimension of circuit
class qnet.algebra.core.circuit_algebra. Component (*, label=None, **kwargs)
Bases: qnet.algebra.core.circuit_algebra.CircuitSymbol
Base class for circuit components
A circuit component is a Circuit Symbol that knows its own SLH representation. Consequently, it has a fixed number of I/O channels (CDIM class attribute), and a fixed number of named arguments. Components only accept keyword arguments.

Any subclass of Component must define all of the class attributes listed below, and the _toSLH () method that return the SLH object for the component. Subclasses must also use the properties_for_args () class decorator:

```
@partial(properties_for_args, arg_names='ARGNAMES')
```


Parameters

- label (str) - label for the component. Defaults to IDENTIFIER
- kwargs - values for the parameters in ARGNAMES

Class Attributes

- CDIM - the circuit dimension (number of I/O channels)
- PORTSIN - list of names for the input ports of the component
- PORTSOUT - list of names for the output ports of the component
- ARGNAMES - the name of the keyword-arguments for the components (excluding 'label')
- DEFAULTS - mapping of keyword-argument names to default values
- IDENTIFIER - the default label

Note: The port names defined in PORTSIN and PORTSOUT may be used when defining connection via connect ().

See also:

```
qnet.algebra.library.circuit_components for example Component subclasses.
```

```
CDIM = 0
```

PORTSIN = ()
PORTSOUT $=()$
ARGNAMES $=()$
DEFAULTS $=\{ \}$
IDENTIFIER = ''
args

Empty tuple (no arguments)
See also:
sym_args is a tuple of the keyword argument values.

kwargs

An OrderedDict with the value for the label argument, as well as any name in ARGNAMES
minimal_kwargs
An OrderedDict with the keyword arguments necessary to instantiate the component.
class qnet.algebra.core.circuit_algebra. CPermutation (permutation)
Bases: qnet.algebra.core.circuit_algebra.Circuit, qnet.algebra.core. abstract_algebra.Expression
Channel permuting circuit

This circuit expression is only a rearrangement of input and output fields. A channel permutation is given as a tuple of image points. A permutation $\sigma \in \Sigma_{n}$ of n elements is often represented in the following form

$$
\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
\sigma(1) & \sigma(2) & \ldots & \sigma(n)
\end{array}\right)
$$

but obviously it is fully sufficient to specify the tuple of images $(\sigma(1), \sigma(2), \ldots, \sigma(n))$. We thus parametrize our permutation circuits only in terms of the image tuple. Moreover, we will be working with zero-based indices!
A channel permutation circuit for a given permutation (represented as a python tuple of image indices) scatters the j-th input field to the $\sigma(j)$-th output field.

```
simplifications = []
```

classmethod create (permutation)
Instantiate while applying automatic simplifications
Instead of directly instantiating $c l s$, it is recommended to use create (), which applies simplifications to the args and keyword arguments according to the simplifications class attribute, and returns an appropriate object (which may or may not be an instance of the original cls).
Two simplifications of particular importance are match_replace() and match_replace_binary() which apply rule-based simplifications.

The temporary_rules () context manager may be used to allow temporary modification of the automatic simplifications that create () uses, in particular the rules for match_replace () and match_replace_binary(). Inside the managed context, the simplifications class attribute may be modified and rules can be managed with add_rule() and del_rules().
args
The tuple of positional arguments for the instantiation of the Expression

block_perms

If the circuit is reducible into permutations within subranges of the full range of channels, this yields a tuple with the internal permutations for each such block.

Type tuple
permutation
The permutation image tuple.
cdim
The channel dimension of the circuit expression, i.e. the number of external bosonic noises/inputs that the circuit couples to.
series_with_permutation (other)
Compute the series product with another channel permutation circuit
Parameters other (CPermutation) -

Returns

The composite permutation circuit (could also be the identity circuit for n channels)

Return type Circuit

```
qnet.algebra.core.circuit_algebra.CIdentity = CIdentity
```

Single pass-through channel; neutral element of SeriesProduct

```
qnet.algebra.core.circuit_algebra.CircuitZero = CircuitZero
```

Zero circuit, the neutral element of Concatenation
No ports, no internal dynamics.

```
class qnet.algebra.core.circuit_algebra.SeriesProduct(*operands, **kwargs)
    Bases: qnet.algebra.core.circuit_algebra.Circuit, qnet.algebra.core.
    abstract_algebra.Operation
```

The series product circuit operation. It can be applied to any sequence of circuit objects that have equal channel dimension.

```
    simplifications = [<function assoc>, <function filter_cid>, <function check_cdims>, <f
    neutral_element = CIdentity
        Single pass-through channel; neutral element of SeriesProduct
    cdim
        The channel dimension of the circuit expression, i.e. the number of external bosonic noises/inputs that the
        circuit couples to.
class qnet.algebra.core.circuit_algebra.Concatenation(*operands)
    Bases: qnet.algebra.core.circuit_algebra.Circuit, qnet.algebra.core.
    abstract_algebra.Operation
```

Concatenation of circuit elements
simplifications $=$ [<function assoc>, <function filter_neutral>, <function match_replac
neutral_element = CircuitZero
Zero circuit, the neutral element of Concatenation
No ports, no internal dynamics.
cdim
Circuit dimension (sum of dimensions of the operands)
class qnet.algebra.core.circuit_algebra.Feedback (circuit, *, out_port, in_port)
Bases: qnet.algebra.core.circuit_algebra.circuit, qnet.algebra.core. abstract_algebra.Operation

Feedback on a single channel of a circuit
The circuit feedback operation applied to a circuit of channel dimension >1 and from an output port index to an input port index.

Parameters

- circuit (Circuit) - The circuit that undergoes self-feedback
- out_port (int) - The output port index.
- in_port (int) - The input port index.

```
    delegate_to_method = (<class 'qnet.algebra.core.circuit_algebra.Concatenation'>, <clas
```

 simplifications \(=\) [<function match_replace>]
 kwargs
 The dictionary of keyword-only arguments for the instantiation of the Expression
operand
The Circuit that undergoes feedback
out_in_pair
Tuple of zero-based feedback port indices (out_port, in_port)
cdim
Circuit dimension (one less than the circuit on which the feedback acts
classmethod create (circuit, *, out_port, in_port)
Instantiate while applying automatic simplifications
Instead of directly instantiating $c l s$, it is recommended to use create (), which applies simplifications to the args and keyword arguments according to the simplifications class attribute, and returns an appropriate object (which may or may not be an instance of the original cls).

Two simplifications of particular importance are match_replace() and match_replace_binary() which apply rule-based simplifications.

The temporary_rules () context manager may be used to allow temporary modification of the automatic simplifications that create() uses, in particular the rules for match_replace () and match_replace_binary(). Inside the managed context, the simplifications class attribute may be modified and rules can be managed with add_rule() and del_rules().

Return type Feedback

class qnet.algebra.core.circuit_algebra. SeriesInverse (*operands, **kwargs)
Bases: qnet.algebra.core.circuit_algebra.circuit, qnet.algebra.core. abstract_algebra. Operation

Symbolic series product inversion operation

```
SeriesInverse(circuit)
```

One generally has

```
>>> C = CircuitSymbol('C', cdim=3)
>>> SeriesInverse(C) << C == circuit_identity(C.cdim)
True
```

and

```
>>> C << SeriesInverse(C) == circuit_identity(C.cdim)
True
```

```
simplifications = []
```

delegate_to_method = (<class 'qnet.algebra.core.circuit_algebra.SeriesProduct'>, <clas
operand

The un-inverted circuit

classmethod create (circuit)

Instantiate while applying automatic simplifications
Instead of directly instantiating $c l s$, it is recommended to use create (), which applies simplifications to the args and keyword arguments according to the simplifications class attribute, and returns an appropriate object (which may or may not be an instance of the original $c l s$).
Two simplifications of particular importance are match_replace() and match_replace_binary() which apply rule-based simplifications.
The temporary_rules () context manager may be used to allow temporary modification of the automatic simplifications that create () uses, in particular the rules for match_replace () and match_replace_binary(). Inside the managed context, the simplifications class attribute may be modified and rules can be managed with add_rule() and del_rules().
cdim
The channel dimension of the circuit expression, i.e. the number of external bosonic noises/inputs that the circuit couples to.
qnet.algebra.core.circuit_algebra.circuit_identity (n)
Return the circuit identity for n channels
Parameters \mathbf{n} (int) - The channel dimension
Returns n-channel identity circuit
Return type Circuit
qnet.algebra.core.circuit_algebra.FB (circuit, *, out_port=None, in_port=None)
Wrapper for Feedback, defaulting to last channel

Parameters

- circuit (Circuit) - The circuit that undergoes self-feedback
- out_port (int) - The output port index, default $=$ None \rightarrow last port
- in_port (int) - The input port index, default $=$ None $->$ last port

Returns The circuit with applied feedback operation.
Return type Circuit
qnet.algebra.core.circuit_algebra.extract_channel (k, cdim)
Create a CPermutation that extracts channel k
Return a permutation circuit that maps the k-th (zero-based) input to the last output, while preserving the relative order of all other channels.

Parameters

- \mathbf{k} (int) - Extracted channel index
- cdim (int) - The circuit dimension (number of channels)

Returns Permutation circuit
Return type Circuit
qnet.algebra.core.circuit_algebra.map_channels(mapping, cdim)

Create a CPermuation based on a dict of channel mappings

For a given mapping in form of a dictionary, generate the channel permutating circuit that achieves the specified mapping while leaving the relative order of all non-specified channels intact.

Parameters

- mapping (dict) - Input-output mapping of indices (zero-based) \{in1:out1, in2:out2,...\}
- $\operatorname{cdim}(i n t)$ - The circuit dimension (number of channels)

Returns Circuit mapping the channels as specified
Return type CPermutation
qnet.algebra.core.circuit_algebra.pad_with_identity (circuit, k, n)
Pad a circuit by adding a n-channel identity circuit at index k
That is, a circuit of channel dimension N is extended to one of channel dimension $N+n$, where the channels $k, k+1, \ldots \$ \mathrm{k}+\mathrm{n}-1 \$$, just pass through the system unaffected. E.g. let A, B be two single channel systems:

```
>>> A = CircuitSymbol('A', cdim=1)
>>> B = CircuitSymbol('B', cdim=1)
>>> print(ascii(pad_with_identity(A+B, 1, 2)))
A + cid(2) + B
```

This method can also be applied to irreducible systems, but in that case the result can not be decomposed as nicely.

Parameters

- circuit (Circuit) - circuit to pad
- \mathbf{k} (int) - The index at which to insert the circuit
- $\mathbf{n}(i n t)$ - The number of channels to pass through

Returns

An extended circuit that passes through the channels $k, k+1, \ldots, k+n-1$
Return type Circuit
qnet.algebra.core.circuit_algebra.getABCD (slh, a0=None, doubled_up=True)
Calculate the ABCD-linearization of an SLH model
Return the A, B, C, D and (a, c) matrices that linearize an SLH model about a coherent displacement amplitude a0.

The equations of motion and the input-output relation are then:
$d X=(A X+a) d t+B d A _i n d A _o u t=(C X+c) d t+D d A _i n$
where, if doubled_up $==$ False

$$
\mathrm{dX}=\left[\mathrm{a} _1, \ldots, \mathrm{a} _\mathrm{m}\right] \mathrm{dA} _\mathrm{in}=\left[\mathrm{dA} _1, \ldots, \mathrm{dA} _\mathrm{n}\right]
$$

or if doubled_up == True
$\mathrm{dX}=\left[\mathrm{a} _1, \ldots, \mathrm{a} _\mathrm{m}, \mathrm{a} _1^{\wedge *}, \ldots \mathrm{a} _\mathrm{m}^{\wedge *}\right] \mathrm{dA} _\mathrm{in}=\left[\mathrm{dA} _1, \ldots, \mathrm{dA} _\mathrm{n}, \mathrm{dA} _1^{\wedge *}, \ldots, \mathrm{dA} _\mathrm{n}^{\wedge *}\right]$

Parameters

- slh - SLH object
- a0 - dictionary of coherent amplitudes \{a1: a1_0, a2: a2_0, ...\} with annihilation mode operators as keys and (numeric or symbolic) amplitude as values.
- doubled_up - boolean, necessary for phase-sensitive / active systems

Returns

A tuple (A, B, C, D, a, c])
with

- A: coupling of modes to each other
- B: coupling of external input fields to modes
- C : coupling of internal modes to output
- D: coupling of external input fields to output fields
- a : constant coherent input vector for mode e.o.m.
- c : constant coherent input vector of scattered amplitudes contributing to the output
qnet.algebra.core.circuit_algebra.move_drive_to_H (slh, which=None, expand_simplify=True)
Move coherent drives from the Lindblad operators to the Hamiltonian.
For the given SLH model, move inhomogeneities in the Lindblad operators (resulting from the presence of a coherent drive, see CoherentDriveCC) to the Hamiltonian.

This exploits the invariance of the Lindblad master equation under the transformation (cf. Breuer and Pettrucione, Ch 3.2.1)

$$
\begin{align*}
L_{i} \longrightarrow L_{i}^{\prime} & =L_{i}-\alpha_{i} \tag{9.1}\\
H \longrightarrow H^{\prime} & =H+\frac{1}{2 i} \sum_{j}\left(\alpha_{j} L_{j}^{\dagger}-\alpha_{j}^{*} L_{j}\right) \tag{9.2}
\end{align*}
$$

In the context of SLH, this transformation is achieved by feeding slh into

$$
(,-\alpha, 0)
$$

where α has the elements α_{i}.

Parameters

- $\operatorname{slh}(S L H)$ - SLH model to transform. If $s l h$ does not contain any inhomogeneities, it is invariant under the transformation.
- which (sequence or None) - Sequence of circuit dimensions to apply the transform to. If None, all dimensions are transformed.
- expand_simplify (bool) - if True, expand and simplify the new SLH object before returning. This has no effect if $s l h$ does not contain any inhomogeneities.

Returns new_slh - Transformed SLH model.
Return type $S L H$
qnet.algebra.core.circuit_algebra.prepare_adiabatic_limit (slh, $k=N o n e$)
Prepare the adiabatic elimination on an SLH object
Args: slh: The SLH object to take the limit for k : The scaling parameter $\$ \mathrm{k}$

ightarrow infty\$. The default is a

positive symbol ' k '
Returns: tuple: The objects Y, A, B, F, G, N necessary to compute the limiting system.

```
qnet.algebra.core.circuit_algebra.eval_adiabatic_limit(YABFGN, Ytilde, P0)
```

Compute the limiting SLH model for the adiabatic approximation

Parameters

- YABFGN - The tuple (Y, A, B, F, G, N) as returned by prepare_adiabatic_limit.
- Ytilde - The pseudo-inverse of Y, satisfying Y * Ytilde = P0.
- PO - The projector onto the null-space of Y.

Returns Limiting SLH model
Return type $S L H$

```
qnet.algebra.core.circuit_algebra.try_adiabatic_elimination(slh, k=None,
                                    fock_trunc=6,
                                    sub_P0=True)
```

Attempt to automatically do adiabatic elimination on an SLH object
This will project the Y operator onto a truncated basis with dimension specified by fock_trunc. sub_P0 controls whether an attempt is made to replace the kernel projector P0 by an IdentityOperator.

qnet.algebra.core.exceptions module

Exceptions and Errors raised by QNET

Summary

Exceptions:

AlgebraError	Base class for all algebraic errors
AlgebraException	Base class for all algebraic exceptions
BadLiouvillianError	Raised when a Liouvillian is not of standard Lindblad form.
BasisNotSetError	Raised if the basis or a Hilbert space dimension is un- available
CannotConvertToSLH	Raised when a circuit algebra object cannot be con- verted to SLH
CannotEliminateAutomatically	Raised when attempted automatic adiabatic elimination fails.
CannotSimplify	Raised when a rule cannot further simplify an expres- sion
CannotSymbolicallyDiagonalize	Matrix cannot be diagonalized analytically.
CannotVisualize	Raised when a circuit cannot be visually represented.
IncompatibleBlockStructures	Raised for invalid block-decomposition
InfiniteSumError	Raised when expanding a sum into an infinite number of terms
NoConjugateMatrix	Raised when entries of Matrix have no defined conju- gate
NonSquareMatrix	Raised when a Matrix fails to be square
OverlappingSpaces	Raised when objects fail to be in separate Hilbert spaces.

Reference

exception qnet.algebra.core.exceptions.AlgebraException
Bases: Exception
Base class for all algebraic exceptions
exception qnet.algebra.core.exceptions.AlgebraError
Bases: qnet.algebra.core.exceptions.AlgebraException
Base class for all algebraic errors

```
exception qnet.algebra.core.exceptions.InfiniteSumError
```

Bases: qnet.algebra.core.exceptions.AlgebraError
Raised when expanding a sum into an infinite number of terms

```
exception qnet.algebra.core.exceptions.CannotSimplify
```

Bases: qnet.algebra.core.exceptions.AlgebraException
Raised when a rule cannot further simplify an expression
exception qnet.algebra.core.exceptions.CannotConvertToSLH
Bases: qnet.algebra.core.exceptions.AlgebraException
Raised when a circuit algebra object cannot be converted to SLH
exception qnet.algebra.core.exceptions. CannotVisualize
Bases: qnet.algebra.core.exceptions.AlgebraException
Raised when a circuit cannot be visually represented.
exception qnet.algebra.core.exceptions. WrongCDimError
Bases: qnet.algebra.core.exceptions.AlgebraError
Raised for mismatched channel number in circuit series

```
exception qnet.algebra.core.exceptions.IncompatibleBlockStructures
```

Bases: qnet.algebra.core.exceptions.AlgebraError
Raised for invalid block-decomposition
This is raised when a circuit decomposition into a block-structure is requested that is icompatible with the actual block structure of the circuit expression.

```
exception qnet.algebra.core.exceptions.CannotEliminateAutomatically
```

Bases: qnet.algebra.core.exceptions.AlgebraError
Raised when attempted automatic adiabatic elimination fails.

```
exception qnet.algebra.core.exceptions.BasisNotSetError
```

Bases: qnet.algebra.core.exceptions.AlgebraError
Raised if the basis or a Hilbert space dimension is unavailable

```
exception qnet.algebra.core.exceptions.UnequalSpaces
```

Bases: qnet.algebra.core.exceptions.AlgebraError
Raised when objects fail to be in the same Hilbert space.
This happens for example when trying to add two states from different Hilbert spaces.
exception qnet.algebra.core.exceptions.OverlappingSpaces
Bases: qnet.algebra.core.exceptions.AlgebraError
Raised when objects fail to be in separate Hilbert spaces.

```
exception qnet.algebra.core.exceptions.SpaceTooLargeError
Bases: qnet.algebra.core.exceptions.AlgebraError
```

Raised when objects fail to be have overlapping Hilbert spaces.
exception qnet.algebra.core.exceptions.CannotSymbolicallyDiagonalize
Bases: qnet.algebra.core.exceptions.AlgebraException
Matrix cannot be diagonalized analytically.
Signals that a fallback to numerical diagonalization is required.

```
exception qnet.algebra.core.exceptions.BadLiouvillianError
```

Bases: qnet.algebra.core.exceptions.AlgebraError
Raised when a Liouvillian is not of standard Lindblad form.

```
exception qnet.algebra.core.exceptions.NonSquareMatrix
```

Bases: qnet.algebra.core.exceptions.AlgebraError
Raised when a Matrix fails to be square

```
exception qnet.algebra.core.exceptions.NoConjugateMatrix
```

Bases: qnet.algebra.core.exceptions.AlgebraError
Raised when entries of Matrix have no defined conjugate

qnet.algebra.core.hilbert_space_algebra module

Core class hierarchy for Hilbert spaces
This module defines some simple classes to describe simple and compositeltensor (i.e., multiple degree of freedom) Hilbert spaces of quantum systems.

For more details see Algebraic Manipulations.

Summary

Classes:

HilbertSpace	Base class for Hilbert spaces
LocalSpace	Hilbert space for a single degree of freedom.
ProductSpace	Tensor product of local Hilbert spaces

Data:

FullSpace	The 'full space', i.e.
TrivialSpace	The 'nullspace', i.e.

\qquad _: FullSpace, HilbertSpace, LocalSpace, ProductSpace, TrivialSpace

Reference

```
class qnet.algebra.core.hilbert_space_algebra.HilbertSpace
```

 Bases: object
 Base class for Hilbert spaces
tensor (*others)
Tensor product between Hilbert spaces
remove (other)
Remove a particular factor from a tensor product space.
intersect (other)
Find the mutual tensor factors of two Hilbert spaces.

local_factors

Return tuple of LocalSpace objects that tensored together yield this Hilbert space.

isdisjoint (other)

Check whether two Hilbert spaces are disjoint (do not have any common local factors). Note that FullSpace is not disjoint with any other Hilbert space, while TrivialSpace is disjoint with any other HilbertSpace (even itself)
is_tensor_factor_of (other)
Test if a space is included within a larger tensor product space. Also True if self $==$ other.
Parameters other (HilbertSpace) - Other Hilbert space
Return type bool
is_strict_tensor_factor_of (other)
Test if a space is included within a larger tensor product space. Not True if self $==$ other.

dimension

Full dimension of the Hilbert space.
Raises BasisNotSetError - if the Hilbert space has no defined basis

has_basis

True if the Hilbert space has a basis

basis_states

Yield an iterator over the states (State instances) that form the canonical basis of the Hilbert space
Raises BasisNotSetError - if the Hilbert space has no defined basis

basis_state (index_or_label)

Return the basis state with the given index or label.

Raises

- BasisNotSetError - if the Hilbert space has no defined basis
- IndexError - if there is no basis state with the given index
- KeyError - if there is not basis state with the given label
basis_labels
Tuple of basis labels.
Raises BasisNotSetError - if the Hilbert space has no defined basis
is_strict_subfactor_of (other)
Test whether a Hilbert space occures as a strict sub-factor in a (larger) Hilbert space
\qquad ()

The number of LocalSpace factors / degrees of freedom.

```
class qnet.algebra.core.hilbert_space_algebra.LocalSpace(label, *, basis=None,
                                    dimension=None, lo-
                                    cal_identifiers=None,
                                    order_index=None)
```

Bases: qnet.algebra.core.hilbert_space_algebra.Hilbertspace, qnet.algebra.
core.abstract_algebra.Expression

Hilbert space for a single degree of freedom.

Parameters

- label (str or int or StrLabel) - label (subscript) of the Hilbert space
- basis (tuple or None) - Set an explicit basis for the Hilbert space (tuple of labels for the basis states)
- dimension (int or None) - Specify the dimension n of the Hilbert space. This implies a basis numbered from 0 to $n-1$.
- local_identifiers (dict) - Mapping of class names of LocalOperator subclasses to identifier names. Used e.g. ' b ' instead of the default ' a ' for the anihilation operator. This can be a dict or a dict-compatible structure, e.g. a list/tuple of key-value tuples.
- order_index (int or None) - An optional key that determines the preferred order of Hilbert spaces. This also changes the order of e.g. sums or products of Operators. Hilbert spaces will be ordered from left to right be increasing order_index; Hilbert spaces without an explicit order_index are sorted by their label

A LocalSpace fundamentally has a Fock-space like structure, in that its basis states may be understood as an "excitation". The spectrum can be infinite, with levels labeled by integers $0,1, \ldots$:

```
>>> hs = LocalSpace(label=0)
```

or truncated to a finite dimension:

```
>>> hs = LocalSpace(0, dimension=5)
>>> hs.basis_labels
('0', '1', '2', '3', '4')
```

For finite-dimensional (truncated) Hilbert spaces, we also allow an arbitrary alternative labeling of the canonical basis:

```
>>> hs = LocalSpace('rydberg', dimension=3, basis=('g', 'e', 'r'))
```


args

List of arguments, consisting only of label

label

Label of the Hilbert space

```
has_basis
```

True if the Hilbert space has a basis

basis_states

Yield an iterator over the states (Basisket instances) that form the canonical basis of the Hilbert space
Raises BasisNotSetError - if the Hilbert space has no defined basis
basis_state (index_or_label)
Return the basis state with the given index or label.
Raises

- BasisNotSetError - if the Hilbert space has no defined basis
- IndexError - if there is no basis state with the given index
- KeyError - if there is not basis state with the given label

basis_labels

Tuple of basis labels (strings).
Raises BasisNotSetError - if the Hilbert space has no defined basis

dimension

Dimension of the Hilbert space.
Raises BasisNotSetError - if the Hilbert space has no defined basis

kwargs

The dictionary of keyword-only arguments for the instantiation of the Expression

minimal_kwargs

A "minimal" dictionary of keyword-only arguments, i.e. a subset of kwargs that may exclude default options

remove (other)

Remove a particular factor from a tensor product space.

intersect (other)

Find the mutual tensor factors of two Hilbert spaces.

local_factors

Return tuple of LocalSpace objects that tensored together yield this Hilbert space.
is_strict_subfactor_of (other)
Test whether a Hilbert space occures as a strict sub-factor in a (larger) Hilbert space
next_basis_label_or_index (label_or_index, $n=1$)
Given the label or index of a basis state, return the label/index of the next basis state.
More generally, if n is given, return the n 'th next basis state label/index; n may also be negative to obtain previous basis state labels/indices.

The return type is the same as the type of label_or_index.

Parameters

- label_or_index (int or str or SymbolicLabelBase) - If int, the index of a basis state; if $s t r$, the label of a basis state
- $\mathbf{n}(i n t)$ - The increment

Raises

- IndexError - If going beyond the last or first basis state
- ValueError - If label is not a label for any basis state in the Hilbert space
- BasisNotSetError - If the Hilbert space has no defined basis
- TypeError - if label_or_index is neither a str nor an int, nor a SymbolicLabelBase
qnet.algebra.core.hilbert_space_algebra.TrivialSpace = TrivialSpace
The 'nullspace', i.e. a one dimensional Hilbert space, which is a factor space of every other Hilbert space.
This is the Hilbert space of scalars.

```
qnet.algebra.core.hilbert_space_algebra.FullSpace = FullSpace
```

The 'full space', i.e. a Hilbert space that includes any other Hilbert space as a tensor factor.
The FullSpace has no defined basis, any related properties will raise BasisNotSetError
class qnet.algebra.core.hilbert_space_algebra.ProductSpace (*local_spaces)
Bases: qnet.algebra.core.hilbert_space_algebra.HilbertSpace, qnet.algebra. core.abstract_algebra. Operation

Tensor product of local Hilbert spaces

```
>>> hs1 = LocalSpace('1', basis=(0,1))
>> hs2 = LocalSpace('2', basis=(0,1))
>>> hs = hs1 * hs2
>>> hs.basis_labels
('0,0', '0,1', '1,0', '1,1')
```

```
simplifications = [<function empty_trivial>, <function assoc>, <function convert_to_sp
```

classmethod create (*local_spaces)

Instantiate while applying automatic simplifications
Instead of directly instantiating $c l s$, it is recommended to use create (), which applies simplifications to the args and keyword arguments according to the simplifications class attribute, and returns an appropriate object (which may or may not be an instance of the original cls).

Two simplifications of particular importance are match_replace() and match_replace_binary() which apply rule-based simplifications.

The temporary_rules () context manager may be used to allow temporary modification of the automatic simplifications that create() uses, in particular the rules for match_replace () and match_replace_binary(). Inside the managed context, the simplifications class attribute may be modified and rules can be managed with add_rule() and del_rules().

has_basis

True if the all the local factors of the ProductSpace have a defined basis

basis_states

Yield an iterator over the states (Tensorket instances) that form the canonical basis of the Hilbert space
Raises BasisNotSetError - if the Hilbert space has no defined basis

basis_labels

Tuple of basis labels. Each basis label consists of the labels of the Basisket states that factor the basis state, separated by commas.

Raises BasisNotSetError - if the Hilbert space has no defined basis

basis_state (index_or_label)

Return the basis state with the given index or label.

Raises

- BasisNotSetError - if the Hilbert space has no defined basis
- IndexError - if there is no basis state with the given index
- KeyError - if there is not basis state with the given label

dimension

Dimension of the Hilbert space.
Raises BasisNotSetError - if the Hilbert space has no defined basis

remove (other)

Remove a particular factor from a tensor product space.

local_factors

The LocalSpace instances that make up the product

classmethod order_key (obj)

Key by which operands are sorted

intersect (other)

Find the mutual tensor factors of two Hilbert spaces.
is_strict_subfactor_of(other)
Test if a space is included within a larger tensor product space. Not True if self $==$ other.
qnet.algebra.core.indexed_operations module

Base classes for indexed operations (sums and products)

Summary

Classes:

IndexedSum Base class for indexed sums

\qquad : IndexedSum

Reference

```
class qnet.algebra.core.indexed_operations.IndexedSum(term, *ranges)
```

Bases: qnet.algebra.core.abstract_algebra. Operation
Base class for indexed sums

term

operands
Tuple of operands of the operation
args
Alias for operands

variables

List of the dummy (index) variable symbols
See also :property:‘bound_symbols' for a set of the same symbols
bound_symbols
Set of bound variables, i.e. the index variable symbols
See also :property:'variables ${ }^{6}$ for an ordered list of the same symbols

free_symbols

Set of all free symbols

kwargs

The dictionary of keyword-only arguments for the instantiation of the Expression

terms

Iterator over the terms of the sum
Yield from the (possibly) infinite list of terms of the indexed sum, if the sum was written out explicitly. Each yielded term in an instance of Expression
doit (classes=None, recursive=True, indices=None, max_terms=None, $* * k w a r g s$)
Write out the indexed sum explicitly
If classes is None or IndexedSum is in classes, (partially) write out the indexed sum in to an explicit sum of terms. If recursive is True, write out each of the new sum's summands by calling its doit () method.

Parameters

- classes (None or list) - see Expression. doit()
- recursive (bool) - see Expression.doit ()
- indices (Iist) - List of IdxSym indices for which the sum should be expanded. If indices is a subset of the indices over which the sum runs, it will be partially expanded. If not given, expand the sum completely
- max_terms (int) - Number of terms after which to truncate the sum. This is particularly useful for infinite sums. If not given, expand all terms of the sum. Cannot be combined with indices
- kwargs - keyword arguments for recursive calls to doit(). See Expression. doit()
make_disjunct_indices (*others)
Return a copy with modified indices to ensure disjunct indices with others.
Each element in others may be an index symbol (IdxSym), a index-range object (IndexRangeBase) or list of index-range objects, or an indexed operation (something with a ranges attribute)

Each index symbol is primed until it does not match any index symbol in others.

qnet.algebra.core.matrix_algebra module

Matrices of Operators

Summary

Classes:
Matrix \quad Matrix of Expressions

Functions:

block_matrix	Generate the operator matrix with quadrants
diagm	Generalizes the diagonal matrix creation capabilities of numpy.diag to Matrix objects.
hstackm	Generalizes numpy.hstack to Matrix objects.
identity_matrix	Generate the N-dimensional identity matrix.
permutation_matrix	Return orthogonal permutation matrix for permutation tuple
vstackm	Generalizes numpy.vstack to Matrix objects.
zerosm	Generalizes numpy. zeros to Matrix objects.
_all__ Matrix,block_matrix, diagm, hstackm, identity_matrix, vstackm, zerosm	

Reference

class qnet.algebra.core.matrix_algebra.Matrix (m)
Bases: qnet.algebra.core.abstract_algebra.Expression

Matrix of Expressions

Matrices of Operator expressions are required for the SLH formalism.

```
matrix = None
```


shape

The shape of the matrix (nrows, ncols)

block_structure

For square matrices this gives the block (-diagonal) structure of the matrix as a tuple of integers that sum up to the full dimension.

Return type tuple

args

The tuple of positional arguments for the instantiation of the Expression

is_zero

Are all elements of the matrix zero?
transpose ()
The transpose matrix
conjugate()
The element-wise conjugate matrix
This is defined only if all the entries in the matrix have a defined conjugate (i.e., they have a conjugate method). This is not the case for a matrix of operators. In such a case, only an elementwise () adjoint () would be applicable, but this is mathematically different from a complex conjugate.

Raises NoConjugateMatrix - if any entries have no conjugate method
real
Element-wise real part
Raises NoConjugateMatrix - if entries have no conjugate method and no other way to determine the real part

Note: A mathematically equivalent way to obtain a real matrix from a complex matrix M is:

```
(M.conjugate() + M) / 2
```

However, the result may not be identical to M. real, as the latter tries to convert elements of the matrix to real values directly, if possible, and only uses the conjugate as a fall-back

imag

Element-wise imaginary part
Raises NoConjugateMatrix - if entries have no conjugate method and no other way to determine the imaginary part

Note: A mathematically equivalent way to obtain an imaginary matrix from a complex matrix M is:

```
(M.conjugate() - M) / (I * 2)
```

with same same caveats as real.

T
Alias for transpose ()

adjoint()

Adjoint of the matrix
This is the transpose and the Hermitian adjoint of all elements.

dag ()

Adjoint of the matrix
This is the transpose and the Hermitian adjoint of all elements.
trace ()

H
Alias for adjoint ()
element_wise (func, *args, **kwargs)
Apply a function to each matrix element and return the result in a new operator matrix of the same shape.

Parameters

- func (FunctionType) - A function to be applied to each element. It must take the element as its first argument.
- args - Additional positional arguments to be passed to func
- kwargs - Additional keyword arguments to be passed to func

Returns Matrix with results of func, applied element-wise.
Return type Matrix
series_expand (param, about, order)
Expand the matrix expression as a truncated power series in a scalar parameter.

Parameters

- param (Symbol) - Expansion parameter.
- about (Scalar) - Point about which to expand.
- order (int) - Maximum order of expansion $>=0$

Returns tuple of length (order+1), where the entries are the expansion coefficients.

expand ()

Expand each matrix element distributively.
Returns Expanded matrix.

Return type Matrix

free_symbols

Set of free SymPy symbols contained within the expression.
space
Combined Hilbert space of all matrix elements.
simplify_scalar (func=<function simplify>)
Simplify all scalar expressions appearing in the Matrix.
qnet.algebra. core.matrix_algebra.hstackm (matrices)
Generalizes numpy.hstack to Matrix objects.

```
qnet.algebra.core.matrix_algebra.vstackm(matrices)
```

Generalizes numpy.vstack to Matrix objects.
qnet.algebra.core.matrix_algebra.diagm ($v, k=0$)
Generalizes the diagonal matrix creation capabilities of numpy.diag to Matrix objects.
qnet.algebra.core.matrix_algebra.block_matrix (A, B, C, D)
Generate the operator matrix with quadrants

$$
\binom{A B}{C D}
$$

Parameters

- A (Matrix) - Matrix of shape (n, m)
- B (Matrix) - Matrix of shape (n, k)
- C (Matrix) - Matrix of shape (l, m)
- D (Matrix) - Matrix of shape (l, k)

Returns The combined block matrix [$[\mathrm{A}, \mathrm{B}]$, [C, D]].
Return type Matrix
qnet.algebra.core.matrix_algebra.identity_matrix (N)
Generate the N -dimensional identity matrix.
Parameters N (int) - Dimension
Returns Identity matrix in N dimensions
Return type Matrix
qnet.algebra.core.matrix_algebra.zerosm (shape, *args, **kwargs)
Generalizes numpy. zeros to Matrix objects.
qnet.algebra.core.matrix_algebra.permutation_matrix(permutation)
Return orthogonal permutation matrix for permutation tuple
Return an orthogonal permutation matrix M_{σ} for a permutation σ defined by the image tuple $(\sigma(1), \sigma(2), \ldots \sigma(n))$, such that

$$
M_{\sigma} \vec{e}_{i}=\vec{e}_{\sigma(i)}
$$

where \vec{e}_{k} is the k-th standard basis vector. This definition ensures a composition law:

$$
M_{\sigma \cdot \tau}=M_{\sigma} M_{\tau}
$$

The column form of M_{σ} is thus given by

$$
M=\left(\vec{e}_{\sigma(1)}, \vec{e}_{\sigma(2)}, \ldots \vec{e}_{\sigma(n)}\right)
$$

Parameters permutation (tuple) - A permutation image tuple (zero-based indices!)

qnet.algebra.core.operator_algebra module

This module features classes and functions to define and manipulate symbolic Operator expressions. For more details see Operator Algebra.

For a list of all properties and methods of an operator object, see the documentation for the basic Operator class.

Summary

Classes:

Adjoint	Symbolic Adjoint of an operator
Commutator	Commutator of two operators
LocalOperator	Base class for "known" operators on a LocalSpace
LocalSigma	Level flip operator between two levels of a LocalSpace
NullSpaceProjector	Projection operator onto the nullspace of its operand
Operator	Base class for all quantum operators.
OperatorDerivative	Symbolic partial derivative of an operator
OperatorIndexedSum	Indexed sum over operators
OperatorPlus	Sum of Operators
OperatorPlusMinusCC	An operator plus or minus its complex conjugate
OperatorSymbol	Symbolic operator
OperatorTimes	Product of operators
OperatorTrace	(Partial) trace of an operator
PseudoInverse	Unevaluated pseudo-inverse X^{+}of an operator X
ScalarTimesOperator	Product of a Scalar coefficient and an Operator

Functions:

LocalProjector	A projector onto a specific level of a LocalSpace
adjoint	Return the adjoint of an obj.
decompose_space	Simplifies OperatorTrace expressions over tensor- product spaces by turning it into iterated partial traces.
factor_coeff	Factor out coefficients of all factors.
factor_for_trace	Given a LocalSpace ls to take the partial trace over and an operator op, factor the trace such that operators acting on disjoint degrees of freedom are pulled out of the trace.
get_coeffs	Create a dictionary with all Operator terms of the ex- pression (understood as a sum) as keys and their coeffi- cients as values.
rewrite_with_operator_pm_cc	Try to rewrite expr using OperatorPlusMinusCC

Data:

II	IdentityOperator constant (singleton) object.
IdentityOperator	IdentityOperator constant (singleton) object.
Zerooperator	ZeroOperator constant (singleton) object.

__all__: Adjoint, Commutator, II, IdentityOperator, LocalOperator, LocalProjector, LocalSigma, NullSpaceProjector, Operator, OperatorDerivative, OperatorIndexedSum, OperatorPlus, OperatorPlusMinusCC, OperatorSymbol, OperatorTimes, OperatorTrace, PseudoInverse, ScalarTimesOperator, ZeroOperator, adjoint, decompose_space, factor_coeff, factor_for_trace, get_coeffs, rewrite_with_operator_pm_cc,tr

Reference

class qnet.algebra.core.operator_algebra.Operator (*args, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.Quantumexpression
Base class for all quantum operators.
pseudo_inverse()
Pseudo-inverse X^{+}of the operator X
It is defined via the relationship

$$
X X^{+} X=X X^{+} X X^{+}=X^{+}\left(X^{+} X\right)^{\dagger}=X^{+} X\left(X X^{+}\right)^{\dagger}=X X^{+}
$$

expand_in_basis (basis_states=None, hermitian=False)
Write the operator as an expansion into all KetBras spanned by basis_states.

Parameters

- basis_states (list or None) - List of basis states (State instances) into which to expand the operator. If None, use the operator's space.basis_states
- hermitian (bool) - If True, assume that the operator is Hermitian and represent all elements in the lower triangle of the expansion via OperatorPlusMinusCC. This is meant to enhance readability
Raises BasisNotSetError - If basis_states is None and the operator's Hilbert space has no well-defined basis

Example

```
>>> hs = LocalSpace(1, basis=('g', 'e'))
>>> op = LocalSigma('g', 'e', hs=hs) + LocalSigma('e', 'g', hs=hs)
>>> print(ascii(op, sig_as_ketbra=False))
sigma_e,g^(1) + sigma_g, e^(1)
>>> print(ascii(op.expand_in_basis()))
|e><g|^(1) + |g><e|^^(1)
>>> print(ascii(op.expand_in_basis(hermitian=True)))
|g><e|^(1) + c.c.
```

class qnet.algebra.core.operator_algebra.LocalOperator(*args, hs)

Bases: qnet.algebra.core.operator_algebra. Operator
Base class for "known" operators on a LocalSpace
All LocalOperator instances have known algebraic properties and a fixed associated identifier (symbol) that is used when printing that operator. A custom identifier can be used through the associated LocalSpace's local_identifiers parameter. For example:

```
>>> hsl_custom = LocalSpace(1, local_identifiers={'Destroy': 'b'})
>>> b = Destroy(hs=hs1_custom)
>>> ascii(b)
'b^(1)'
```

Note: It is recommended that subclasses use the properties_for_args () class decorator if they define any position arguments (via the _arg_names class attribute)

```
simplifications = [<function implied_local_space.<locals>.kwargs_to_local_space>]
space
    Hilbert space of the operator (LocalSpace instance)
args
    The positional arguments used for instantiating the operator
```


kwargs

```
The keyword arguments used for instantiating the operator
identifier
The identifier (symbol) that is used when printing the operator.
A custom identifier can be used through the associated LocalSpace's local_identifiers parameter. For example:
```

```
>>> a = Destroy(hs=1)
>>> a.identifier
'a'
>>> hsl_custom = LocalSpace(1, local_identifiers={'Destroy': 'b'})
>>> b = Destroy(hs=hs1_custom)
>>> b.identifier
'b'
>>> ascii(b)
'b^(1)'
```

class qnet.algebra.core.operator_algebra. OperatorSymbol (label, *sym_args, hs)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumSymbol, qnet. algebra. core. operator_algebra. Operator

Symbolic operator
See QuantumSymbol.
qnet. algebra. core.operator_algebra. IdentityOperator = Identityoperator
IdentityOperator constant (singleton) object.
qnet.algebra.core.operator_algebra.II = IdentityOperator
IdentityOperator constant (singleton) object.

```
qnet.algebra.core.operator_algebra.ZeroOperator = ZeroOperator
```

Zerooperator constant (singleton) object.

```
class qnet.algebra.core.operator_algebra.LocalSigma (j, k, *,hs)
```

Bases: qnet.algebra.core.operator_algebra. Localoperator
Level flip operator between two levels of a LocalSpace

$$
\sigma_{j k}^{\mathrm{hs}}=|j\rangle_{\mathrm{hs}}\left\langle\left. k\right|_{\mathrm{hs}}\right.
$$

For $j=k$ this becomes a projector P_{k} onto the eigenstate k; see LocalProjector.

Parameters

- \mathbf{j} (int or str) - The label or index identifying j
- \mathbf{k} (int or str) - The label or index identifying k
- hs (LocalSpace or int or str) - The Hilbert space on which the operator acts. If an int or a str, an implicit Hilbert space will be constructed as a subclass of LocalSpace, as configured by init_algebra().

Note: The parameters j or k may be an integer or a string. A string refers to the label of an eigenstate in the basis of $h s$, which needs to be set. An integer refers to the (zero-based) index of eigenstate of the Hilbert space. This works if $h s$ has an unknown dimension. Assuming the Hilbert space has a defined basis, using integer or string labels is equivalent:

```
>>> hs = LocalSpace('tls', basis=('g', 'e'))
>>> LocalSigma(0, 1, hs=hs) == LocalSigma('g', 'e', hs=hs)
True
```

Raises ValueError - If j or k are invalid value for the given $h s$
Printers should represent this operator either in braket notation, or using the operator identifier

```
>>> LocalSigma(0, 1, hs=0).identifier
```

'sigma'

For $j==k$, an alternative (fixed) identifier may be used

```
>>> LocalSigma(0, 0, hs=0)._identifier_projector
```

'Pi'
simplifications $=$ [<function implied_local_space.<locals>.kwargs_to_local_space>, <fun
args

The two eigenstate labels j and k that the operator connects

index_j

Index j or (zero-based) index of the label j in the basis

index_k

Index k or (zero-based) index of the label k in the basis
raise_jk (j_incr=0, k_incr $^{2}=0$)
Return a new LocalSigma instance with incremented j, k, on the same Hilbert space:

$$
\sigma_{j k}^{\mathrm{hs}} \rightarrow \sigma_{j^{\prime} k^{\prime}}^{\mathrm{hs}}
$$

This is the result of multiplying $\sigma_{j k}^{\mathrm{hs}}$ with any raising or lowering operators.
If j^{\prime} or k^{\prime} are outside the Hilbert space hs, the result is the Zerooperator.

Parameters

- j_incr (int) - The increment between labels j and j^{\prime}
- \mathbf{k} _incr $(i n t)$ - The increment between labels k and k^{\prime}. Both increments may be negative.
j
The j argument.
k
The k argument.
qnet.algebra.core.operator_algebra.LocalProjector (j, *, hs)
A projector onto a specific level of a LocalSpace
Parameters
- \mathbf{j} (int or str) - The label or index identifying the state onto which is projected
- hs (HilbertSpace) - The Hilbert space on which the operator acts

```
class qnet.algebra.core.operator_algebra.OperatorPlus(*operands, **kwargs)
    Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumPlus, qnet.algebra.
    core.operator_algebra.Operator
```

Sum of Operators

```
    simplifications = [<function assoc>, <function scalars_to_op>, <function orderby>, <fu
```

class qnet.algebra.core.operator_algebra.OperatorTimes(*operands, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumTimes, qnet.algebra.
core.operator_algebra. Operator

Product of operators
This serves both as a product within a Hilbert space as well as a tensor product.
simplifications = [<function assoc>, <function orderby>, <function filter_neutral>, <f
class qnet.algebra.core.operator_algebra.ScalarTimesOperator (coeff, term)
Bases: qnet.algebra.core.operator_algebra.operator, qnet.algebra.core.
abstract_quantum_algebra.ScalarTimesQuantumExpression
Product of a Scalar coefficient and an Operator
simplifications $=$ [<function match_replace>]
static has_minus_prefactor (c)
For a scalar object c, determine whether it is prepended by a "-" sign.
class qnet.algebra.core.operator_algebra.OperatorDerivative (op, *, derivs, vals=None)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative, qnet. algebra.core.operator_algebra. Operator

Symbolic partial derivative of an operator
See QuantumDerivative.
class qnet.algebra.core.operator_algebra. Commutator (A, B)
Bases: qnet.algebra.core.abstract_quantum_algebra.Quantumoperation, qnet. algebra.core.operator_algebra. Operator

Commutator of two operators

$$
[A, B]=A B-A B
$$

```
simplifications = [<function scalars_to_op>, <function disjunct_hs_zero>, <function co
```

 order_key
 alias of qnet.utils.ordering.FullCommutativeHSOrder
 A
Left side of the commutator
B
Left side of the commutator
doit (classes=None, recursive $=$ True, ${ }^{* * * w a r g s}$)
Write out commutator

Write out the commutator according to its definition $[A, B]=A B-A B$.
See Expression.doit().
class qnet.algebra.core.operator_algebra.OperatorTrace (op, *,over_space)
Bases: qnet.algebra.core.abstract_quantum_algebra.SingleQuantumoperation, qnet.algebra.core.operator_algebra. Operator
(Partial) trace of an operator
Trace of an operator $o p(\$ \mathrm{Op}\{\mathrm{O}\})$ over the degrees of freedom of a Hilbert space over_space (\$mathcal $\{\mathrm{H}\} \$)$:

$$
\operatorname{Tr}_{\mathcal{H}} O
$$

Parameters

- over_space (HilbertSpace) - The degrees of freedom to trace over
- op (Operator) - The operator to take the trace of.
simplifications $=$ [<function scalars_to_op>, <function implied_local_space.<locals>.kw

kwargs

The dictionary of keyword-only arguments for the instantiation of the Expression
operand
The operator that the operation acts on
space
Hilbert space of the operation result
class qnet.algebra.core.operator_algebra.Adjoint (op, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumAdjoint, qnet. algebra. core.operator_algebra. Operator

Symbolic Adjoint of an operator

```
    simplifications = [<function scalars_to_op>, <function delegate_to_method.<locals>._de
```

class qnet.algebra.core.operator_algebra. OperatorPlusMinusCC (op, *, sign=1)
Bases: qnet.algebra.core.abstract_quantum_algebra.SingleQuantumoperation,
qnet.algebra.core.operator_algebra. Operator

An operator plus or minus its complex conjugate

kwargs

The dictionary of keyword-only arguments for the instantiation of the Expression
minimal_kwargs
A "minimal" dictionary of keyword-only arguments, i.e. a subset of kwargs that may exclude default options
doit (classes=None, recursive $=$ True, ${ }^{* *}$ *wargs)
Write out the complex conjugate summand
See Expression. doit().
class qnet.algebra.core.operator_algebra.PseudoInverse (op, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.SingleQuantumoperation, qnet.algebra. core.operator_algebra. Operator
Unevaluated pseudo-inverse X^{+}of an operator X

It is defined via the relationship

$$
\begin{array}{r}
X X^{+} X=X \\
X^{+} X X^{+}=X^{+} \\
\left(X^{+} X\right)^{\dagger}=X^{+} X \\
\left(X X^{+}\right)^{\dagger}=X X^{+}
\end{array}
$$

```
    simplifications = [<function scalars_to_op>, <function delegate_to_method.<locals>._de
class qnet.algebra.core.operator_algebra.NullSpaceProjector (op,**kwargs)
    Bases: qnet.algebra.core.abstract_quantum_algebra.SingleQuantumOperation,
    qnet.algebra.core.operator_algebra.Operator
```

Projection operator onto the nullspace of its operand
Returns the operator $\mathcal{P}_{\operatorname{Ker} X}$ with

$$
\begin{array}{r}
X \mathcal{P}_{\mathrm{Ker} X}=0 \Leftrightarrow X\left(1-\mathcal{P}_{\mathrm{Ker} X}\right)=X \\
\mathcal{P}_{\mathrm{Ker} X}^{\dagger}=\mathcal{P}_{\mathrm{Ker} X}=\mathcal{P}_{\mathrm{Ker} X}^{2}
\end{array}
$$

```
    simplifications = [<function scalars_to_op>, <function match_replace>]
class qnet.algebra.core.operator_algebra.OperatorIndexedSum(term, *ranges)
    Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumIndexedSum, qnet.
    algebra.core.operator_algebra.Operator
```

Indexed sum over operators
simplifications $=$ [<function assoc_indexed>, <function scalars_to_op>, <function index qnet.algebra.core.operator_algebra.factor_for_trace (ls,op)

Given a LocalSpace ls to take the partial trace over and an operator op, factor the trace such that operators acting on disjoint degrees of freedom are pulled out of the trace. If the operator acts trivially on ls the trace yields only a pre-factor equal to the dimension of 1s. If there are LocalSigma operators among a product, the trace's cyclical property is used to move to sandwich the full product by LocalSigma operators:

$$
\operatorname{Tr} A \sigma_{j k} B=\operatorname{Tr} \sigma_{j k} B A \sigma_{j j}
$$

Parameters

- ls (HilbertSpace) - Degree of Freedom to trace over
- op (Operator) - Operator to take the trace of

Return type Operator
Returns The (partial) trace over the operator's spc-degrees of freedom

```
qnet.algebra.core.operator_algebra.decompose_space ( }H,A
```

Simplifies OperatorTrace expressions over tensor-product spaces by turning it into iterated partial traces.

Parameters

- \mathbf{H} (Product Space) - The full space.
- A (Operator) -

Returns Iterative partial trace expression
Return type Operator
qnet.algebra.core.operator_algebra.get_coeffs (expr, expand=False, epsilon=0.0)
Create a dictionary with all Operator terms of the expression (understood as a sum) as keys and their coefficients as values.

The returned object is a defaultdict that return 0 . if a term/key doesn't exist.

Parameters

- expr - The operator expression to get all coefficients from.
- expand - Whether to expand the expression distributively.
- epsilon - If non-zero, drop all Operators with coefficients that have absolute value less than epsilon.

Returns A dictionary \{op1: coeff1, op2: coeff2, ...\}
Return type dict
qnet.algebra.core.operator_algebra.factor_coeff (cls,ops, kwargs)
Factor out coefficients of all factors.
qnet.algebra.core.operator_algebra.adjoint (obj)
Return the adjoint of an obj.

```
qnet.algebra.core.operator_algebra.rewrite_with_operator_pm_cc(expr)
```

Try to rewrite expr using OperatorPlusMinusCC

Example

```
>>> A = OperatorSymbol('A', hs=1)
>>> sum = A + A.dag()
>>> sum2 = rewrite_with_operator_pm_cc(sum)
>>> print(ascii(sum2))
A^(1) + C.C.
```

qnet.algebra.core.scalar_algebra module

Implementation of the scalar (quantum) algebra

Summary

Classes:

Scalar	Base class for Scalars
ScalarDerivative	Symbolic partial derivative of a scalar
ScalarExpression	Base class for scalars with non-scalar arguments
ScalarIndexedSum	Indexed sum over scalars
ScalarPlus	Sum of scalars
ScalarPower	A scalar raised to a power
ScalarTimes	Product of scalars
ScalarValue	Wrapper around a numeric or symbolic value

Functions:

KroneckerDelta	Kronecker delta symbol
is_scalar	Check if scalar is a Scalar or a scalar value
sqrt	Square root of a Scalar or scalar value

Data:

One	The neutral element with respect to scalar multiplication
Zero	The neutral element with respect to scalar addition

__all__: KroneckerDelta, One, Scalar, ScalarDerivative, Scalarexpression, ScalarIndexedSum, ScalarPlus, ScalarPower, Scalartimes, ScalarValue, Zero, sqrt

Reference

class qnet.algebra.core.scalar_algebra.Scalar(*args, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.Quantumexpression
Base class for Scalars
space
TrivialSpace, by definition
conjugate ()
Complex conjugate
real
Real part
imag
Imaginary part
class qnet.algebra.core.scalar_algebra.ScalarValue (val)
Bases: qnet.algebra.core.scalar_algebra.Scalar
Wrapper around a numeric or symbolic value
The wrapped value may be of any of the following types:

```
>>> for t in ScalarValue._val_types:
... print(t)
<class 'int'>
<class 'float'>
<class 'complex'>
<class 'sympy.core.basic.Basic'>
<class 'numpy.int64'>
<class 'numpy.complex128'>
<class 'numpy.float64'>
```

A ScalarValue behaves exactly like its wrapped value in all algebraic contexts:

```
>>> 5 * ScalarValue.create(2)
10
```

Any unknown attributes or methods will be forwarded to the wrapped value to ensure complete "duck-typing":

```
>>> alpha = ScalarValue(sympy.symbols('alpha', positive=True))
>>> alpha.is_positive # same as alpha.val.is_positive
True
>>> ScalarValue(5).is_positive
Traceback (most recent call last):
AttributeError: 'int' object has no attribute 'is_positive'
```


classmethod create (val)

Instatiate the ScalarValue while recognizing Zero and One.
Scalar instances as val (including Scalarexpression instances) are left unchanged. This makes
ScalarValue. create () a safe method for converting unknown objects to Scalar.
val
The wrapped scalar value
args
Tuple containing the wrapped scalar value as its only element
real
Real part
imag
Imaginary part
class qnet.algebra.core.scalar_algebra.ScalarExpression(*args, **kwargs)
Bases: qnet.algebra.core.scalar_algebra.Scalar
Base class for scalars with non-scalar arguments
For example, a Braket is a Scalar, but has arguments that are states.
qnet.algebra.core.scalar_algebra.Zero = Zero
The neutral element with respect to scalar addition
Equivalent to the scalar value zero:

```
>>> Zero == 0
True
```

qnet.algebra.core.scalar_algebra.One = One
The neutral element with respect to scalar multiplication
Equivalent to the scalar value one:

```
>>> One == 1
True
```

class qnet.algebra.core.scalar_algebra.ScalarPlus(*operands, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.Quantumplus, qnet.algebra. core.scalar_algebra.Scalar

Sum of scalars
Generally, ScalarValue instances are combined directly:

```
>>> alpha = ScalarValue.create(sympy.symbols('alpha'))
>>> print(srepr(alpha + 1))
ScalarValue(Add(Symbol('alpha'), Integer(1)))
```

An unevaluated ScalarPlus remains only for ScalarExpression instaces:

```
>>> braket = KetSymbol('Psi', hs=0).dag() * KetSymbol('Phi', hs=0)
>>> print(srepr(braket + 1, indented=True))
ScalarPlus
    One,
    BraKet(
        KetSymbol(
            'Psi',
            hs=LocalSpace
                '0')),
        KetSymbol(
            'Phi',
            hs=LocalSpace
                '0')) ))
```

simplifications = [<function assoc>, <function convert_to_scalars>, <function orderby>
conjugate()

Complex conjugate of of the sum
class qnet.algebra.core.scalar_algebra.ScalarTimes (*operands, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra. Quantumimes, qnet.algebra. core.scalar_algebra.Scalar

Product of scalars
Generally, ScalarValue instances are combined directly:

```
>>> alpha = ScalarValue.create(sympy.symbols('alpha'))
>>> print(srepr(alpha * 2))
ScalarValue(Mul(Integer(2), Symbol('alpha')))
```

An unevaluated ScalarTimes remains only for ScalarExpression instaces:

```
>>> braket = KetSymbol('Psi', hs=0).dag() * KetSymbol('Phi', hs=0)
>>> print(srepr(braket * 2, indented=True))
ScalarTimes(
    ScalarValue(
        2),
    BraKet
        KetSymbol(
            'Psi',
            hs=LocalSpace(
                '0')),
        KetSymbol(
            'Phi',
            hs=LocalSpace(
                '0'))))
```

simplifications = [<function assoc>, <function orderby>, <function filter_neutral>, <f
classmethod create (*operands, **kwargs)

Instantiate the product while applying simplification rules
conjugate()
Complex conjugate of of the product

```
class qnet.algebra.core.scalar_algebra.ScalarIndexedSum(term, *ranges)
```

Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumIndexedSum, qnet. algebra.core.scalar_algebra.Scalar

Indexed sum over scalars

```
simplifications = [<function assoc_indexed>, <function indexed_sum_over_kronecker>, <f
classmethod create (term, *ranges)
    Instantiate the indexed sum while applying simplification rules
conjugate()
    Complex conjugate of of the indexed sum
real
    Real part
imag
    Imaginary part
class qnet.algebra.core.scalar_algebra.ScalarPower (b,e)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumOperation, qnet.
algebra.core.scalar_algebra.Scalar
```

A scalar raised to a power
Generally, ScalarValue instances are exponentiated directly:

```
>>> alpha = ScalarValue.create(sympy.symbols('alpha'))
>>> print(srepr(alpha**2))
ScalarValue(Pow(Symbol('alpha'), Integer(2)))
```

An unevaluated ScalarPower remains only for ScalarExpression instaces, see e.g. sqrt ().
simplifications $=$ [<function convert_to_scalars>, <function match_replace>]
base

The base of the exponential
exp
The exponent
class qnet.algebra.core.scalar_algebra.ScalarDerivative (op, *, derivs, vals=None)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative, qnet.
algebra.core.scalar_algebra.Scalar
Symbolic partial derivative of a scalar
See QuantumDerivative.
qnet.algebra.core.scalar_algebra.KroneckerDelta (i, j, simplify=True)
Kronecker delta symbol
Return One (i equals j)), Zero (i and j are non-symbolic an unequal), or a ScalarValue wrapping SymPy's KroneckerDelta.

```
>>> i, j = IdxSym('i'), IdxSym('j')
>>> KroneckerDelta(i, i)
One
>>> KroneckerDelta(1, 2)
Zero
>>> KroneckerDelta(i, j)
KroneckerDelta(i, j)
```

By default, the Kronecker delta is returned in a simplified form, e.g:

```
>>> KroneckerDelta((i+1)/2, (j+1)/2)
KroneckerDelta(i, j)
```

This may be suppressed by setting simplify to False:

```
>>> KroneckerDelta((i+1)/2, (j+1)/2, simplify=False)
KroneckerDelta(i/2 + 1/2, j/2 + 1/2)
```


Raises

- TypeError - if i or j is not an integer or sympy expression. There
- is no automatic sympification of i and j.
qnet.algebra.core.scalar_algebra.sqrt (scalar)
Square root of a Scalar or scalar value
This always returns a Scalar, and uses a symbolic square root if possible (i.e., for non-floats):

```
>>> sqrt(2)
sqrt(2)
>>> sqrt(2.0)
1.414213...
```

For a ScalarExpression argument, it returns a ScalarPower instance:

```
>>> braket = KetSymbol('Psi', hs=0).dag() * KetSymbol('Phi', hs=0)
>>> nrm = sqrt(braket * braket.dag())
>>> print(srepr(nrm, indented=True))
ScalarPower(
    ScalarTimes(
        BraKet(
            KetSymbol(
                    'Phi',
            hs=LocalSpace(
                '0')),
        KetSymbol(
            'Psi',
            hs=LocalSpace(
                '0'))),
        BraKet(
            KetSymbol(
            'Psi',
            hs=LocalSpace(
                '0')),
        KetSymbol(
            'Phi',
            hs=LocalSpace(
                '0'))) ),
    ScalarValue(
        Rational(1, 2)))
```

qnet.algebra.core.scalar_algebra.is_scalar (scalar)

Check if scalar is a Scalar or a scalar value
Specifically, whether scalar is an instance of Scalar or an instance of a numeric or symbolic type that could be wrapped in ScalarValue.

For internal use only.

qnet.algebra.core.state_algebra module

This module implements the algebra of states in a Hilbert space
For more details see State (Ket-) Algebra.

Summary

Classes:

Basisket	Local basis state, identified by index or label
Bra	The associated dual/adjoint state for any ket
BraKet	The symbolic inner product between two states
CoherentStateKet	Local coherent state, labeled by a complex amplitude
KetBra	Outer product of two states
KetIndexedSum	Indexed sum over Kets
KetPlus	Sum of states
KetSymbol	Symbolic state
LocalKet	A state on a Local Space
OperatorTimesKet	Product of an operator and a state.
ScalarTimesKet	Product of a Scalar coefficient and a ket
State	Base class for states in a Hilbert space
StateDerivative	Symbolic partial derivative of a state
TensorKet	A tensor product of kets

Data:

TrivialKet	TrivialKet constant (singleton) object.
Zeroket	ZeroKet constant (singleton) object for the null-state.
Ketsymbol, LocalKet, OperatorTimesKet, ScalarTimesKet, State, StateDerivative,	
Tensorket, Trivialket, ZeroKet	

Reference

class qnet.algebra.core.state_algebra.State (*args, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.Quantumexpression
Base class for states in a Hilbert space

isket

Whether the state represents a ket
isbra
Wether the state represents a bra (adjoint ket)
bra
The bra associated with a ket
ket
The ket associated with a bra
class qnet.algebra.core.state_algebra.KetSymbol (label, *sym_args, hs)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumSymbol, qnet. algebra.core.state_algebra.State

Symbolic state
See QuantumSymbol.

```
class qnet.algebra.core.state_algebra.LocalKet(*args,hs)
```

Bases: qnet.algebra.core.state_algebra.State
A state on a LocalSpace
This does not include operations, even if these operations only involve states acting on the same local space
space
The HilbertSpace on which the operator acts non-trivially
kwargs
The dictionary of keyword-only arguments for the instantiation of the Expression

```
qnet.algebra.core.state_algebra.ZeroKet = ZeroKet
```

ZeroKet constant (singleton) object for the null-state.

```
qnet.algebra.core.state_algebra.TrivialKet = TrivialKet
```

TrivialKet constant (singleton) object. This is the neutral element under the state tensor-product.

```
class qnet.algebra.core.state_algebra.BasisKet(label_or_index, *,hs)
    Bases: qnet.algebra.core.state_algebra.Localket, qnet.algebra.core.
    state_algebra.KetSymbol
```

Local basis state, identified by index or label
Basis kets are orthornormal, and the next () and prev () methods can be used to move between basis states.

Parameters

- label_or_index - If str, the label of the basis state (must be an element of $\left.h s . b a s i s _l a b e l s\right)$. If int, the (zero-based) index of the basis state. This works if $h s$ has an unknown dimension. For a symbolic index, label_or_index can be an instance of an appropriate subclass of SymbolicLabelBase
- hs (LocalSpace) - The Hilbert space in which the basis is defined

Raises

- ValueError - if label_or_index is not in the Hilbert space
- TypeError - if label_or_index is not of an appropriate type
- BasisNotSetError - if label_or_index is a str but no basis is defined for hs

Note: Basis states that are instantiated via a label or via an index are equivalent:

```
>>> hs = LocalSpace('tls', basis=('g', 'e'))
>>> BasisKet('g', hs=hs) == BasisKet(0, hs=hs)
True
>>> print(ascii(BasisKet(0, hs=hs)))
|g>^(tls)
```

When instantiating the Basisket via create (), an integer label outside the range of the underlying Hilbert space results in a Zeroket:

```
>>> BasisKet.create(-1, hs=0)
ZeroKet
>>> BasisKet.create(2, hs=LocalSpace('tls', dimension=2))
Zeroket
```

```
simplifications = [<function basis_ket_zero_outside_hs>]
```

args
Tuple containing label_or_index as its only element.
index

The index of the state in the Hilbert space basis

```
>>> hs = LocalSpace('tls', basis=('g', 'e'))
>>> BasisKet('g', hs=hs).index
0
>>> BasisKet('e', hs=hs).index
1
>>> BasisKet(1, hs=hs).index
1
```

For a Basisket with an indexed label, this may return a sympy expression:

```
>>> hs = SpinSpace('s', spin='3/2')
>>> i = symbols('i', cls=IdxSym)
>>> lbl = SpinIndex(i/2, hs)
>>> ket = BasisKet(lbl, hs=hs)
>>> ket.index
```

$\mathrm{i} / 2+3 / 2$
next ($n=1$)

Move up by n steps in the Hilbert space:

```
>>> hs = LocalSpace('tls', basis=('g', 'e'))
>>> ascii(BasisKet('g', hs=hs).next())
'|e>^(tls)'
>>> ascii(BasisKet(0, hs=hs).next())
'|e>^(tls)'
```

We can also go multiple steps:

```
>>> hs = LocalSpace('ten', dimension=10)
>>> ascii(BasisKet(0, hs=hs).next(2))
'| 2>^(ten)'
```

An increment that leads out of the Hilbert space returns zero:

```
>>> BasisKet(0, hs=hs).next(10)
ZeroKet
```

prev ($n=1$)

Move down by n steps in the Hilbert space, cf. next ().

```
>>> hs = LocalSpace('3l', basis=('g', 'e', 'r'))
>>> ascii(BasisKet('r', hs=hs).prev(2))
'|g>^(3l)'
>>> BasisKet('r', hs=hs).prev(3)
ZeroKet
```

class qnet.algebra.core.state_algebra.CoherentStateKet (ampl, *, hs)
Bases: qnet.algebra.core.state_algebra.LocalKet

Local coherent state, labeled by a complex amplitude

Parameters

- hs (LocalSpace) - The local Hilbert space degree of freedom.
- ampl (Scalar) - The coherent displacement amplitude.
args
The tuple of positional arguments for the instantiation of the Expression
ampl
to_fock_representation (index_symbol='n', max_terms=None)
Return the coherent state written out as an indexed sum over Fock basis states
class qnet.algebra.core.state_algebra. KetPlus(*operands)
Bases: qnet.algebra.core.state_algebra.State, qnet.algebra.core.
abstract_quantum_algebra.QuantumPlus
Sum of states
simplifications = [<function accept_bras>, <function assoc>, <function orderby>, <func
order_key
alias of qnet.utils.ordering.FullCommutativeHSOrder
class qnet.algebra.core.state_algebra.TensorKet (*operands)
Bases: qnet.algebra.core.state_algebra.State, qnet.algebra.core. abstract_quantum_algebra.QuantumTimes

A tensor product of kets
Each ket must belong to different degree of freedom (LocalSpace).

```
simplifications = [<function accept_bras>, <function assoc>, <function orderby>, <func
    order_key
        alias of qnet.utils.ordering.FullCommutativeHSOrder
    classmethod create(*ops)
        Instantiate while applying automatic simplifications
Instead of directly instantiating \(c l s\), it is recommended to use create (), which applies simplifications to the args and keyword arguments according to the simplifications class attribute, and returns an appropriate object (which may or may not be an instance of the original cls).
```

Two simplifications of particular importance are match_replace() and match_replace_binary() which apply rule-based simplifications.

The temporary_rules () context manager may be used to allow temporary modification of the automatic simplifications that create() uses, in particular the rules for match_replace () and match_replace_binary(). Inside the managed context, the simplifications class attribute may be modified and rules can be managed with add_rule() and del_rules().

```
class qnet.algebra.core.state_algebra.ScalarTimesKet (coeff,term)
    Bases: qnet.algebra.core.state_algebra.State, qnet.algebra.core.
    abstract_quantum_algebra.ScalarTimesQuantumExpression
```

Product of a Scalar coefficient and a ket

Parameters

- coeff (Scalar) - coefficient
- term (State) - the ket that is multiplied
simplifications $=$ [<function match_replace>]
classmethod create (coeff, term)
Instantiate while applying automatic simplifications
Instead of directly instantiating $c l s$, it is recommended to use create (), which applies simplifications to the args and keyword arguments according to the simplifications class attribute, and returns an appropriate object (which may or may not be an instance of the original cls).

Two simplifications of particular importance are match_replace() and match_replace_binary() which apply rule-based simplifications.

The temporary_rules () context manager may be used to allow temporary modification of the automatic simplifications that create () uses, in particular the rules for match_replace () and match_replace_binary(). Inside the managed context, the simplifications class attribute may be modified and rules can be managed with add_rule() and del_rules().
class qnet.algebra.core.state_algebra. OperatorTimesket (operator, ket)
Bases: qnet.algebra.core.state_algebra.State, qnet.algebra.core.
abstract_algebra.Operation
Product of an operator and a state.
simplifications $=$ [<function match_replace>]
space
The HilbertSpace on which the operator acts non-trivially
operator
ket
The ket associated with a bra
class qnet.algebra.core.state_algebra.StateDerivative (op, *, derivs, vals=None)
Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative, qnet. algebra.core.state_algebra.State

Symbolic partial derivative of a state
See QuantumDerivative.

```
class qnet.algebra.core.state_algebra.Bra(ket)
```

Bases: qnet.algebra.core.state_algebra.State, qnet.algebra.core.
abstract_quantum_algebra.QuantumAdjoint
The associated dual/adjoint state for any ket
ket
The original State
bra
The bra associated with a ket

```
    operand
    The original State
isket
    False, by defintion
isbra
    True, by definition
    label
class qnet.algebra.core.state_algebra.BraKet (bra,ket)
    Bases: qnet.algebra.core.scalar_algebra.ScalarExpression, qnet.algebra.core.
    abstract_algebra.Operation
```

The symbolic inner product between two states
This mathermatically corresponds to:

$$
\langle b \mid k\rangle
$$

which we define to be linear in the state k and anti-linear in b.

Parameters

- bra (State) - The anti-linear state argument. Note that this is not a Bra instance.
- ket (State) - The linear state argument.
simplifications $=$ [<function match_replace>]
ket
The ket of the braket
bra
The bra of the braket (Bra instance)
class qnet.algebra.core.state_algebra. KetBra (ket, bra)
Bases: qnet.algebra.core.operator_algebra.operator, qnet.algebra.core.
abstract_algebra. Operation
Outer product of two states

Parameters

- ket (State) - The left factor in the product
- bra (State) - The right factor in the product. Note that this is not a Bra instance.
simplifications $=$ [<function match_replace>]
ket
The left factor in the product
bra
The co-state right factor in the product
This is a Bra instance (unlike the bra given to the constructor

space

The Hilbert space of the states being multiplied
class qnet.algebra.core.state_algebra.KetIndexedSum (term, *ranges)
Bases: qnet.algebra.core.state_algebra.State, qnet.algebra.core.
abstract_quantum_algebra.QuantumIndexedSum
Indexed sum over Kets
simplifications $=$ [<function assoc_indexed>, <function indexed_sum_over_kronecker>, <f
classmethod create (term, *ranges)
Instantiate while applying automatic simplifications
Instead of directly instantiating $c l s$, it is recommended to use create (), which applies simplifications to the args and keyword arguments according to the simplifications class attribute, and returns an appropriate object (which may or may not be an instance of the original cls).

Two simplifications of particular importance are match_replace() and match_replace_binary() which apply rule-based simplifications.

The temporary_rules () context manager may be used to allow temporary modification of the automatic simplifications that create () uses, in particular the rules for match_replace () and match_replace_binary(). Inside the managed context, the simplifications class attribute may be modified and rules can be managed with add_rule() and del_rules().

qnet.algebra.core.super_operator_algebra module

The specification of a quantum mechanics symbolic super-operator algebra. See Super-Operator Algebra for more details.

Summary

Classes:

SPost	Linear post-multiplication operator
SPre	Linear pre-multiplication operator
ScalarTimesSuperOperator	Product of a Scalar coefficient and a SuperOperator
SuperAdjoint	Adjoint of a super-operator
SuperCommutativeHSOrder	Ordering class that acts like DisjunctCommuta- tiveHSOrder, but also commutes any SPost and SPre
SuperOperator	Base class for super-operators
SuperOperatorDerivative	Symbolic partial derivative of a super-operator
SuperOperatorPlus	A sum of super-operators
SuperOperatorSymbol	Symbolic super-operator
SuperOperatorTimes	Product of super-operators
SuperOperatorTimesOperator	Application of a super-operator to an operator

Functions:

anti_commutator	If B $!=$ None, return the anti-commutator $\{A, B\}$, otherwise return the super-operator $\{A, \cdot\}$.
commutator	Commutator of A and B
lindblad	Return the super-operator Lindblad term of the Lindblad operator C
liouvillian	Return the Liouvillian super-operator associated with H and $L s$
liouvillian_normal_form	Return a Hamilton operator H and a minimal list of col- lapse operators Ls that generate the liouvillian L.

Data:

	IdentitySupe	eroperator	Neutral element for product of super-operators				
	ZeroSuperOpe	erator	Neutral element for sum of super-operators				
	\qquad __all $:$ SuperAdjoint, SuperOperator ZeroSuperOper liouvillian	```IdentitySuperOperator, SuperOperator, rSymbol, SuperOpe rator, anti_commutat normal_form```	SPost, SuperOperat eratorTime tor, com	$\begin{aligned} & \text { SPre, } \\ & \text { roDerit } \\ & \text { rtator, } \end{aligned}$	ScalarTime vative, Supe SuperOperator lindblad,	SuperOp roperat Timesop liouv	erator, orPlus, erator, illian,

Reference

class qnet.algebra.core.super_operator_algebra. SuperOperator (*args, **kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.Quantumexpression
Base class for super-operators
class qnet.algebra.core.super_operator_algebra. SuperOperatorSymbol (label,

Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumSymbol, qnet. algebra.core.super_operator_algebra.SuperOperator

Symbolic super-operator
See QuantumSymbol.
qnet.algebra.core.super_operator_algebra.IdentitySuperOperator = IdentitySuperOperator
Neutral element for product of super-operators
qnet.algebra.core.super_operator_algebra.ZeroSuperOperator = ZeroSuperOperator
Neutral element for sum of super-operators
class qnet.algebra.core.super_operator_algebra.SuperOperatorPlus (*operands,
**kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.Quantumplus, qnet.algebra.
core.super_operator_algebra. SuperOperator
A sum of super-operators
simplifications $=$ [<function assoc>, <function orderby>, <function collect_summands>,
class qnet.algebra.core.super_operator_algebra.SuperCommutativeHSOrder (op,
space_order=None,
op_order=None)
Bases: qnet.utils.ordering.Disjunct CommutativeHSOrder
Ordering class that acts like DisjunctCommutativeHSOrder, but also commutes any SPost and SPre
class qnet.algebra.core.super_operator_algebra.SuperOperatorTimes(*operands,
**kwargs)
Bases: qnet.algebra.core.abstract_quantum_algebra.Quantumimes, qnet.algebra.
core.super_operator_algebra. SuperOperator
Product of super-operators

```
simplifications = [<function assoc>, <function orderby>, <function filter_neutral>, <f
order_key
    alias of SuperCommutativeHSOrder
```


classmethod create (*ops)

Instantiate while applying automatic simplifications
Instead of directly instantiating cls, it is recommended to use create (), which applies simplifications to the args and keyword arguments according to the simplifications class attribute, and returns an appropriate object (which may or may not be an instance of the original cls).

Two simplifications of particular importance are match_replace() and match_replace_binary() which apply rule-based simplifications.

The temporary_rules () context manager may be used to allow temporary modification of the automatic simplifications that create () uses, in particular the rules for match_replace () and match_replace_binary(). Inside the managed context, the simplifications class attribute may be modified and rules can be managed with add_rule() and del_rules().
class qnet.algebra.core.super_operator_algebra.ScalarTimesSuperOperator (coeff, term)
Bases: qnet.algebra.core.super_operator_algebra.Superoperator, qnet.algebra. core.abstract_quantum_algebra.ScalarTimesQuantumExpression

Product of a Scalar coefficient and a SuperOperator

```
    simplifications = [<function match_replace>]
class qnet.algebra.core.super_operator_algebra.SuperAdjoint (operand)
    Bases: qnet.algebra.core.abstract_quantum_algebra.QuantumAdjoint, qnet.
    algebra.core.super_operator_algebra.SuperOperator
```

Adjoint of a super-operator
The mathematical notation for this is typically

$$
\operatorname{Super} \operatorname{Adjoint}(\mathcal{L})=: \mathcal{L}^{*}
$$

and for any super operator \mathcal{L}, its super-adjoint \mathcal{L}^{*} satisfies for any pair of operators M, N :

$$
\operatorname{Tr}[M(\mathcal{L} N)]=\operatorname{Tr}\left[\left(\mathcal{L}^{*} M\right) N\right]
$$

```
    simplifications = [<function delegate_to_method.<locals>._delegate_to_method>]
class qnet.algebra.core.super_operator_algebra.SPre(*args, **kwargs)
    Bases: qnet.algebra.core.super_operator_algebra.SuperOperator, qnet.algebra.
    core.abstract_algebra.Operation
```

Linear pre-multiplication operator
Acting SPre (A) on an operator B just yields the product A $\star \mathrm{B}$
simplifications $=$ [<function match_replace>]
space
The HilbertSpace on which the operator acts non-trivially
class qnet.algebra.core.super_operator_algebra.SPost(*args, **kwargs)
Bases: qnet.algebra.core.super_operator_algebra. SuperOperator, qnet.algebra. core.abstract_algebra.Operation
Linear post-multiplication operator
Acting SPost (A) on an operator B just yields the reversed product $B * A$.
simplifications $=$ [<function match_replace>]

space

The HilbertSpace on which the operator acts non-trivially
class qnet.algebra.core.super_operator_algebra.SuperOperatorTimesOperator(sop, op)
Bases: qnet.algebra.core.operator_algebra.operator, qnet.algebra.core. abstract_algebra. Operation

Application of a super-operator to an operator
The result of this operation is(result is an Operator

```
simplifications = [<function match_replace>]
space
```

 The HilbertSpace on which the operator acts non-trivially
 sop
 op
 class qnet.algebra.core.super_operator_algebra.SuperOperatorDerivative (op,

Symbolic partial derivative of a super-operator
See QuantumDerivative.

```
qnet.algebra.core.super_operator_algebra.commutator ( }A,B=None
```

Commutator of A and B
If $\mathrm{B}!=$ None, return the commutator $[A, B]$, otherwise return the super-operator $[A, \cdot]$. The super-operator $[A, \cdot]$ maps any other operator B to the commutator $[A, B]=A B-B A$.

Parameters

- \mathbf{A} - The first operator to form the commutator of.
- B - The second operator to form the commutator of, or None.

Returns The linear superoperator $[A, \cdot]$
Return type SuperOperator
qnet.algebra.core.super_operator_algebra.anti_commutator ($A, B=$ None)
If $\mathrm{B}!=$ None, return the anti-commutator $\{A, B\}$, otherwise return the super-operator $\{A, \cdot\}$. The superoperator $\{A, \cdot\}$ maps any other operator B to the anti-commutator $\{A, B\}=A B+B A$.

Parameters

- A - The first operator to form all anti-commutators of.
- B - The second operator to form the anti-commutator of, or None.

Returns The linear superoperator $[A, \cdot]$
Return type SuperOperator
qnet.algebra.core.super_operator_algebra.lindblad (C)
Return the super-operator Lindblad term of the Lindblad operator C

Return
SPre(C) * SPost(C.adjoint()) - (1/2) * santi_commutator(C.
adjoint ()$* C)$. These are the super-operators $\mathcal{D}[C]$ that form the collapse terms of a Master-Equation.
Applied to an operator X they yield

$$
\mathcal{D}[C] X=C X C^{\dagger}-\frac{1}{2}\left(C^{\dagger} C X+X C^{\dagger} C\right)
$$

Parameters C (Operator) - The associated collapse operator
Returns The Lindblad collapse generator.

Return type SuperOperator

qnet.algebra.core.super_operator_algebra.liouvillian ($H, L s=N o n e$)
Return the Liouvillian super-operator associated with H and $L s$
The Liouvillian \mathcal{L} generates the Markovian-dynamics of a system via the Master equation:

$$
\dot{\rho}=\mathcal{L} \rho=-i[H, \rho]+\sum_{j=1}^{n} \mathcal{D}\left[L_{j}\right] \rho
$$

Parameters

- H (Operator) - The associated Hamilton operator
- Ls (sequence or Matrix) - A sequence of Lindblad operators.

Returns The Liouvillian super-operator.
Return type SuperOperator
qnet.algebra.core.super_operator_algebra.liouvillian_normal_form(L, symbolic=False)
Return a Hamilton operator H and a minimal list of collapse operators Ls that generate the liouvillian L.
A Liouvillian defined by a hermitian Hamilton operator H and a vector of collapse operators $\mathbf{L}=$ $\left(L_{1}, L_{2}, \ldots L_{n}\right)^{T}$ is invariant under the following two operations:

$$
\begin{aligned}
& (H, \mathbf{L}) \mapsto\left(H+\frac{1}{2 i}\left(\mathbf{w}^{\dagger} \mathbf{L}-\mathbf{L}^{\dagger} \mathbf{w}\right), \mathbf{L}+\mathbf{w}\right) \\
& (H, \mathbf{L}) \mapsto(H, \mathbf{U L})
\end{aligned}
$$

where \mathbf{w} is just a vector of complex numbers and \mathbf{U} is a complex unitary matrix. It turns out that for quantum optical circuit models the set of collapse operators is often linearly dependent. This routine tries to find a representation of the Liouvillian in terms of a Hamilton operator H with as few non-zero collapse operators Ls as possible. Consider the following example, which results from a two-port linear cavity with a coherent input into the first port:

```
>>> kappa_1, kappa_2 = sympy.symbols('kappa_1, kappa_2', positive = True)
>>> Delta = sympy.symbols('Delta', real = True)
>>> alpha = sympy.symbols('alpha')
>>> H = (Delta * Create(hs=1) * Destroy(hs=1) +
... (sqrt(kappa_1) / (2 * I)) *
... (alpha * Create(hs=1) - alpha.conjugate() * Destroy(hs=1)))
>>> Ls = [sqrt(kappa_1) * Destroy(hs=1) + alpha,
... sqrt(kappa_2) * Destroy(hs=1)]
>>> LL = liouvillian(H, Ls)
>>> Hnf, Lsnf = liouvillian_normal_form(LL)
>>> print(ascii(Hnf))
-I*alpha*sqrt(kappa_1) * a^(1)H + I*sqrt(kappa_1)*conjugate(alpha) * a^(1) + U
\hookrightarrowDelta * a^(1)H * a^(1)
```

(continued from previous page)

```
>>> len(Lsnf)
1
>>> print(ascii(Lsnf[0]))
sqrt(kappa_1 + kappa_2) * a^(1)
```

In terms of the ensemble dynamics this final system is equivalent. Note that this function will only work for proper Liouvillians.

Parameters L (SuperOperator) - The Liouvillian
Returns (H, Ls)
Return type tuple
Raises BadLiouvillianError

Summary

\qquad Exceptions:

AlgebraError	Base class for all algebraic errors
AlgebraException	Base class for all algebraic exceptions
BadLiouvillianError	Raised when a Liouvillian is not of standard Lindblad form.
BasisNotSetError	Raised if the basis or a Hilbert space dimension is unavailable
CannotConvertToSLH	Raised when a circuit algebra object cannot be converted to SLH
CannotEliminateAutomatically	Raised when attempted automatic adiabatic elimination fails.
CannotSimplify	Raised when a rule cannot further simplify an expression
CannotSymbolicallyDiagonalize	Matrix cannot be diagonalized analytically.
CannotVisualize	Raised when a circuit cannot be visually represented.
IncompatibleBlockStructures	Raised for invalid block-decomposition
InfiniteSumError	Raised when expanding a sum into an infinite number of terms
NoConjugateMatrix	Raised when entries of Matrix have no defined conjugate
NonSquareMatrix	Raised when a Matrix fails to be square
OverlappingSpaces	Raised when objects fail to be in separate Hilbert spaces.
SpaceToolargeError	Raised when objects fail to be have overlapping Hilbert spaces.
UnequalSpaces	Raised when objects fail to be in the same Hilbert space.
WrongCDimerror	Raised for mismatched channel number in circuit series

__all__ Classes:

Adjoint	Symbolic Adjoint of an operator
Basisket	Local basis state, identified by index or label
Bra	The associated dual/adjoint state for any ket
Braket	The symbolic inner product between two states
CPermutation	Channel permuting circuit
Circuit	Base class for the circuit algebra elements
CircuitSymbol	Symbolic circuit element
CoherentStateKet	Local coherent state, labeled by a complex amplitude
Commutator	Commutator of two operators
Component	Base class for circuit components
Concatenation	Concatenation of circuit elements

Continued on next page

Table 26 - continued from previous page

Expression	Base class for all QNET Expressions
Feedback	Feedback on a single channel of a circuit
HilbertSpace	Base class for Hilbert spaces
IndexedSum	Base class for indexed sums
KetBra	Outer product of two states
KetIndexedSum	Indexed sum over Kets
KetPlus	Sum of states
Ket Symbol	Symbolic state
Localket	A state on a Localspace
Localoperator	Base class for "known" operators on a LocalSpace
LocalSigma	Level flip operator between two levels of a LocalSpace
LocalSpace	Hilbert space for a single degree of freedom.
Matrix	Matrix of Expressions
NullSpaceProjector	Projection operator onto the nullspace of its operand
Operation	Base class for "operations"
Operator	Base class for all quantum operators.
OperatorDerivative	Symbolic partial derivative of an operator
OperatorIndexedSum	Indexed sum over operators
OperatorPlus	Sum of Operators
OperatorPlusMinusCC	An operator plus or minus its complex conjugate
OperatorSymbol	Symbolic operator
OperatorTimes	Product of operators
OperatorTimesket	Product of an operator and a state.
OperatorTrace	(Partial) trace of an operator
ProductSpace	Tensor product of local Hilbert spaces
PseudoInverse	Unevaluated pseudo-inverse X^{+}of an operator X
QuantumAdjoint	Base class for adjoints of quantum expressions
QuantumDerivative	Symbolic partial derivative
Quantumexpression	Base class for expressions associated with a Hilbert space
QuantumIndexedSum	Base class for indexed sums
QuantumOperation	Base class for operations on quantum expression
QuantumPlus	General implementation of addition of quantum expressions
QuantumSymbol	Symbolic element of an algebra
QuantumTimes	General implementation of product of quantum expressions
SLH	Element of the SLH algebra
SPost	Linear post-multiplication operator
SPre	Linear pre-multiplication operator
Scalar	Base class for Scalars
ScalarDerivative	Symbolic partial derivative of a scalar
Scalarexpression	Base class for scalars with non-scalar arguments
ScalarIndexedSum	Indexed sum over scalars
ScalarPlus	Sum of scalars
ScalarPower	A scalar raised to a power
Scalartimes	Product of scalars
ScalarTimesKet	Product of a Scalar coefficient and a ket
ScalartimesOperator	Product of a Scalar coefficient and an Operator
ScalarTimesQuantumexpression	Product of a Scalar and a QuantumExpression
ScalartimesSuperOperator	Product of a Scalar coefficient and a SuperOperator
ScalarValue	Wrapper around a numeric or symbolic value
SeriesInverse	Symbolic series product inversion operation

Table 26 - continued from previous page

SeriesProduct	The series product circuit operation.
SingleQuantumOperation	Base class for operations on a single quantum expression
State	Base class for states in a Hilbert space
StateDerivative	Symbolic partial derivative of a state
SuperAdjoint	Adjoint of a super-operator
SuperOperator	Base class for super-operators
SuperOperatorDerivative	Symbolic partial derivative of a super-operator
SuperOperatorPlus	A sum of super-operators
SuperOperatorSymbol	Symbolic super-operator
SuperOperatorTimes	Product of super-operators
SuperOperatorTimesOperator	Application of a super-operator to an operator
TensorKet	A tensor product of kets

_all__ Functions:

FB	Wrapper for F eedback, defaulting to last channel
KroneckerDelta	Kronecker delta symbol
LocalProjector	A projector onto a specific level of a LocalSpace
Sum	Instantiator for an arbitrary indexed sum.
adjoint	Return the adjoint of an obj.
anti_commutator	If B ! = None, return the anti-commutator $\{A, B\}$, otherwise return the super-operator $\{$
block_matrix	Generate the operator matrix with quadrants
circuit_identity	Return the circuit identity for n channels
commutator	Commutator of A and B
decompose_space	Simplifies OperatorTrace expressions over tensor-product spaces by turning it into iterated
diagm	Generalizes the diagonal matrix creation capabilities of numpy.diag to Matrix objects.
eval_adiabatic_limit	Compute the limiting SLH model for the adiabatic approximation
extract_channel	Create a CPermutation that extracts channel k
factor_coeff	Factor out coefficients of all factors.
factor_for_trace	Given a LocalSpacels to take the partial trace over and an operator op, factor the trace
getABCD	Calculate the ABCD-linearization of an SLH model
get_coeffs	Create a dictionary with all Operator terms of the expression (understood as a sum) as key
hstackm	Generalizes numpy.hstack to Matrix objects.
identity_matrix	Generate the N-dimensional identity matrix.
lindblad	Return the super-operator Lindblad term of the Lindblad operator C
liouvillian	Return the Liouvillian super-operator associated with H and $L s$
liouvillian_normal_form	Return a Hamilton operator H and a minimal list of collapse operators Ls that generate the
map_channels	Create a CPermuation based on a dict of channel mappings
move_drive_to_H	Move coherent drives from the Lindblad operators to the Hamiltonian.
pad_with_identity	Pad a circuit by adding a n-channel identity circuit at index k
prepare_adiabatic_limit	Prepare the adiabatic elimination on an SLH object
rewrite_with_operator_pm_cc	Try to rewrite expr using OperatorPlusMinusCC
sqrt	Square root of a Scalar or scalar value
substitute	Substitute symbols or (sub-)expressions with the given replacements and re-evalute the res
try_adiabatic_elimination	Attempt to automatically do adiabatic elimination on an SLH object
vstackm	Generalizes numpy.vstack to Matrix objects.
zerosm	Generalizes numpy \quad zeros to Matrix objects.

CIdentity	Single pass-through channel; neutral element of SeriesProduct
CircuitZero	Zero circuit, the neutral element of Concatenation
FullSpace	The 'full space', i.e.
II	IdentityOperator constant (singleton) object.
IdentityOperator	IdentityOperator constant (singleton) object.
IdentitySuperOperator	Neutral element for product of super-operators
One	The neutral element with respect to scalar multiplication
TrivialKet	TrivialKet constant (singleton) object.
TrivialSpace	The 'nullspace', i.e.
Zero	The neutral element with respect to scalar addition
ZeroKet	ZeroKet constant (singleton) object for the null-state.
ZeroOperator	ZeroOperator constant (singleton) object.
ZeroSuperOperator	Neutral element for sum of super-operators
tr	Instantiate while applying automatic simplifications

qnet.algebra.library package

Collection of algebraic objects extending core
Submodules:

qnet.algebra.library.circuit_components module

Collection of essential circuit components

Summary

Classes:

Beamsplitter	Infinite bandwidth beamsplitter component.
CoherentDriveCC	Coherent displacement of the input field
PhaseCC	Coherent phase shift cicuit component

__all__: Beamsplitter, CoherentDriveCC, PhaseCC

Reference

class qnet.algebra.library.circuit_components.CoherentDriveCC(*, label=None, **kwargs)
Bases: qnet.algebra.core.circuit_algebra. Component
Coherent displacement of the input field
Typically, the input field is the, displaced by a complex amplitude α. This component serves as the model of an ideal laser source without internal non-classical internal dynamics.

The coherent drive is represented as an inhomogeneous Lindblad operator $L=\alpha$, with a trivial Hamiltonian and scattering matrix. For a complete circuit with coherent drives, the inhomogeneous Lindblad operators can be transformed to driving terms in the total network Hamiltonian through move_drive_to_H ().

Parameters

- label - label for the component.
- displacement - the coherent displacement amplitude. Defaults to a complex symbol 'alpha'
CDIM $=1$
circuit dimension
PORTSIN = ('in',
PORTSOUT = ('out',
ARGNAMES = ('displacement',)
DEFAULTS = \{'displacement': alpha\}
IDENTIFIER = 'W'
displacement
The displacement argument.
class qnet.algebra.library.circuit_components.PhaseCC(*, label=None, **kwargs)
Bases: qnet.algebra.core.circuit_algebra. Component
Coherent phase shift cicuit component
The field passing through obtains a phase factor $e^{i \phi}$ for a real-valued phase ϕ. The component has no dynamics, i.e. a trivial Hamiltonian and Lindblad operators

Parameters

- label - label for the component.
- phase - the phase. Defaults to a real symbol 'phi'

CDIM $=1$
PORTSIN = ('in',
PORTSOUT = ('out',
ARGNAMES $=($ (phase', $)$
DEFAULTS = \{'phase': phi\}
IDENTIFIER = 'Phase'
phase
The phase argument.
class qnet.algebra.library.circuit_components.Beamsplitter(*, label=None, **kwargs)
Bases: qnet.algebra.core.circuit_algebra. Component
Infinite bandwidth beamsplitter component.
It is a pure scattering component, i.e. it's internal dynamics are not modeled explicitly (trivial Hamiltonian and Lindblad operators). The single real parameter is the mixing_angle for the two signals.

$$
S=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

The beamsplitter uses the following labeled input/output channels:

That is, output channel 0 is the transmission of input channel 0 ("in"), and output channel 1 is the reflection of input channel 0 ; vice versa for the secondary input channel 1 ("vac": often connected to a vacuum mode). For $\theta=0$, the beam splitter results in full transmission, and full reflection for $\theta=\pi / 2$.

Parameters

- label - label for the beamsplitter.
- mixing_angle - the angle that determines the ratio of transmission and reflection defaults to $\pi / 4$, corresponding to a $50-50$-beamsplitter. It is recommended to use a sympy expression for the mixing angle.

Note: We use a real-valued, but asymmetric scattering matrix. A common alternative convention for the beamsplitter is the symmetric scattering matrix

$$
S=\left(\begin{array}{cc}
\cos \theta & i \sin \theta \\
i \sin \theta & \cos \theta
\end{array}\right)
$$

To achieve the symmetric beamsplitter (or any general beamsplitter), the Beamsplitter component can be combined with one or more appropriate PhaseCC components.

```
CDIM = 2
    circuit dimension
PORTSIN = ('in', 'vac')
PORTSOUT = ('tr', 'rf')
ARGNAMES = ('mixing_angle',)
DEFAULTS = {'mixing_angle': pi/4}
IDENTIFIER = 'BS'
mixing_angle
    The mixing_angle argument.
```


qnet.algebra.library.fock_operators module

Collection of operators that act on a bosonic Fock space

Summary

Classes:

Create	Bosonic creation operator
Destroy	Bosonic annihilation operator
	Continued on next page

Table 29 - continued from previous page

Displace	Unitary coherent displacement operator
Phase	Unitary "phase" operator
Squeeze	Unitary squeezing operator

\qquad
\qquad : Create, Destroy, Displace, Phase, Squeeze

Reference

class qnet.algebra.library.fock_operators.Destroy (*, hs)
Bases: qnet.algebra.core.operator_algebra. LocalOperator
Bosonic annihilation operator
It obeys the bosonic commutation relation:

```
>>> Destroy(hs=1) * Create(hs=1) - Create(hs=1) * Destroy(hs=1)
IdentityOperator
>>> Destroy(hs=1) * Create(hs=2) - Create(hs=2) * Destroy(hs=1)
ZeroOperator
```


identifier

The identifier (symbol) that is used when printing the annihilation operator. This is identical to the identifier of Create. A custom identifier for both Destroy and Create can be set through the local_identifiers parameter of the associated Hilbert space:

```
>>> hs_custom = LocalSpace(0, local_identifiers={'Destroy': 'b'})
>>> Create(hs=hs_custom).identifier
'b'
>>> Destroy(hs=hs_custom).identifier
'b'
```

class qnet.algebra.library.fock_operators.Create (*,hs)
Bases: qnet.algebra.core.operator_algebra. LocalOperator
Bosonic creation operator
This is the adjoint of Destroy.

identifier

The identifier (symbols) that is used when printing the creation operator. This is identical to the identifier of Destroy
class qnet.algebra.library.fock_operators.Phase(*args, hs)
Bases: qnet.algebra.core.operator_algebra. LocalOperator
Unitary "phase" operator

$$
P_{\mathrm{hs}}(\phi)=\exp \left(i \phi a_{\mathrm{hs}}^{\dagger} a_{\mathrm{hs}}\right)
$$

where a_{hs} is the annihilation operator acting on the LocalSpace $h s$.

Parameters

- phase (Scalar) - the phase ϕ
- hs (HilbertSpace or int or str) - The Hilbert space on which the operator acts

Printers should represent this operator with the default identifier:

```
>>> Phase._identifier
'Phase'
```

A custom identifier may be define using hs's local_identifiers argument.
simplifications $=$ [<function implied_local_space.<locals>.kwargs_to_local_space>, <fun phase

The phase argument, as a Scalar instance.
class qnet.algebra.library.fock_operators.Displace (*args, hs)
Bases: qnet.algebra.core.operator_algebra. Localoperator
Unitary coherent displacement operator

$$
D_{\mathrm{hs}}(\alpha)=\exp \left(\alpha a_{\mathrm{hs}}^{\dagger}-\alpha^{*} a_{\mathrm{hs}}\right)
$$

where a_{hs} is the annihilation operator acting on the LocalSpace $h s$.

Parameters

- displacement (Scalar) - the displacement amplitude α
- hs (HilbertSpace or int or str) - The Hilbert space on which the operator acts

Printers should represent this operator with the default identifier:

```
>>> Displace._identifier
'D'
```

A custom identifier may be define using hs's local_identifiers argument.

```
simplifications = [<function implied_local_space.<locals>.kwargs_to_local_space>, <fun
```


displacement

The displacement argument, as a Scalar instance.
class qnet.algebra.library.fock_operators.Squeeze(*args, hs)
Bases: qnet.algebra.core.operator_algebra.LocalOperator
Unitary squeezing operator

$$
S_{\mathrm{hs}}(\eta)=\exp \left(\frac{\eta}{2}{a_{\mathrm{hs}}^{\dagger}}^{2}-\frac{\eta^{*}}{2}{a_{\mathrm{hs}}}^{2}\right)
$$

where $a_{\text {hs }}$ is the annihilation operator acting on the LocalSpace hs.

Parameters

- squeezing_factor (Scalar) - the squeezing factor η
- hs (HilbertSpace or int or str) - The Hilbert space on which the operator acts

Printers should represent this operator with the default identifier:

```
>>> Squeeze._identifier
'Squeeze'
```

A custom identifier may be define using hs's local_identifiers argument.

```
simplifications = [<function implied_local_space.<locals>.kwargs_to_local_space>, <fun
squeezing_factor
The squeezing_factor argument, as a Scalar instance.
```


qnet.algebra.library.pauli_matrices module

Constructors for Pauli-Matrix operators on any two levels of a system

Summary

Functions:

PauliX	Pauli-type X-operator
PauliY	Pauli-type Y-operator
PauliZ	Pauli-type Z-operator

\qquad : PauliX, PauliY, PauliZ

Reference

qnet.algebra.library.pauli_matrices.PauliX(local_space, states=None)
Pauli-type X-operator

$$
\hat{\sigma}_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

on an arbitrary two-level system.

Parameters

- local_space (str or int or LocalSpace) - Associated Hilbert space. If str or int, a Localspace with a matching label will be created.
- states (None or tuple [int or str]) - The labels for the basis states for the two levels on which the operator acts. If None, the two lowest levels are used.

Returns Local X-operator as a linear combination of LocalSigma
Return type Operator
qnet.algebra.library.pauli_matrices.PauliY(local_space, states=None)
Pauli-type Y-operator

$$
\hat{\sigma}_{x}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

on an arbitrary two-level system.
See PauliX()
qnet.algebra.library.pauli_matrices.Pauliz (local_space, states=None)
Pauli-type Z-operator

$$
\hat{\sigma}_{x}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

on an arbitrary two-level system.
See PauliX()

qnet.algebra.library.spin_algebra module

Definitions for an algebra on spin (angular momentum) Hilbert spaces, both for integer and half-integer spin

Summary

Classes:

Jminus	Lowering operator on a spin space
Jplus	Raising operator of a spin space
Jz	Spin (angular momentum) operator in z-direction
SpinOperator	Base class for operators in a spin space
SpinSpace	A Hilbert space for an integer or half-integer spin sys- tem

Functions

Jmjmcoeff	Eigenvalue of the J_{-}(Jminus) operator
Jpjmcoeff	Eigenvalue of the J_{+}(Jplus) operator
Jzjmcoeff	Eigenvalue of the J_{z} (Jz) operator
SpinBasisKet	Constructor for a BasisKet for a SpinSpace

\qquad
\qquad : Jminus, Jplus, Jz, SpinBasisKet, SpinOperator, SpinSpace

Reference

class qnet.algebra.library.spin_algebra.SpinSpace(label, *, spin, basis=None, local_identifiers=None, order index=None)
Bases: qnet.algebra.core.hilbert_space_algebra.LocālSpace
A Hilbert space for an integer or half-integer spin system
For a given spin N, the resulting Hilbert space has dimension $2 N+1$ with levels labeled from $-N$ to $+N$ (as strings)

For an integer spin:

```
>>> hs = SpinSpace(label=0, spin=1)
>>> hs.dimension
3
>>> hs.basis_labels
('-1', '0', '+1')
```

For a half-integer spin

```
>>> hs = SpinSpace(label=0, spin=sympy.Rational(3, 2))
>>> hs.spin
3/2
>>> hs.dimension
4
>>> hs.basis_labels
('-3/2', '-1/2', '+1/2', '+3/2')
```

For convenience, you may also give spin as a tuple or a string:

```
>>> hs = SpinSpace(label=0, spin=(3, 2))
>>> assert hs == SpinSpace(label=0, spin=sympy.Rational(3, 2))
>>> hs = SpinSpace(label=0, spin='3/2')
>>> assert hs == SpinSpace(label=0, \operatorname{spin}=(3, 2))
```

You may use custom labels, e.g.:

```
>>> hs = SpinSpace(label='s', spin='1/2', basis=('-', '+'))
>>> hs.basis_labels
('-', '+')
```

The labels "up" and "down" are recognized and printed as the appropritate arrow symbols:

```
>>> hs = SpinSpace(label='s', spin='1/2', basis=('down', 'up'))
>>> unicode(BasisKet('up', hs=hs))
'|\uparrow'
>>> unicode(BasisKet('down', hs=hs))
'|\downarrow'
```

Raises ValueError - if spin is not an integer or half-integer greater than zero
next_basis_label_or_index (label_or_index, $n=1$)
Given the label or index of a basis state, return the label the next basis state.
More generally, if n is given, return the n 'th next basis state label/index; n may also be negative to obtain previous basis state labels. Returns a str label if label_or_index is a str or int, or a SpinIndex if label_or_index is a SpinIndex.

Parameters

- label_or_index (int or str or SpinIndex)-If int, the zero-based index of a basis state; if $s t r$, the label of a basis state
- n (int) - The increment

Raises

- IndexError - If going beyond the last or first basis state
- ValueError - If label is not a label for any basis state in the Hilbert space
- BasisNotSetError - If the Hilbert space has no defined basis
- TypeError - if label_or_index is neither a str nor an int, nor a SpinIndex

Note: This differs from its super-method only by never returning an integer index (which is not accepted when instantiating a BasisKet for a SpinSpace)
spin
The spin-number associated with the SpinSpace
This can be a SymPy integer or a half-integer.

Return type Rational

multiplicity
The multiplicity of the Hilbert space, $2 S+1$.
This is equivalent to the dimension:

```
>>> hs = SpinSpace('s', spin=sympy.Rational(3, 2))
>>> hs.multiplicity == 4 == hs.dimension
True
```


Return type int

qnet.algebra.library.spin_algebra.SpinBasisKet (*numer_denom, hs)
Constructor for a BasisKet for a SpinSpace
For a half-integer spin system:

```
>>> hs = SpinSpace('s', spin=(3, 2))
>>> assert SpinBasisKet(1, 2, hs=hs) == BasisKet("+1/2", hs=hs)
```

For an integer spin system:

```
>>> hs = SpinSpace('s', spin=1)
>>> assert SpinBasisKet(1, hs=hs) == BasisKet("+1", hs=hs)
```

Note that Basisket (1, hs=hs) with an integer index (which would hypothetically refer to Basisket ("0", hs=hs) is not allowed for spin systems:

```
>>> BasisKet(1, hs=hs)
Traceback (most recent call last):
    . . .
TypeError: label_or_index must be an instance of one of str, SpinIndex; not int
```


Raises

- TypeError - if $h s$ is not a SpinSpace or the wrong number of positional arguments is given
- ValueError - if any of the positional arguments are out range for the given $h s$
class qnet.algebra.library.spin_algebra.SpinOperator(*args, hs)
Bases: qnet.algebra.core.operator_algebra.LocalOperator
Base class for operators in a spin space
class qnet.algebra.library.spin_algebra.Jz(*,hs)
Bases: qnet.algebra.library.spin_algebra.SpinOperator
Spin (angular momentum) operator in z-direction
J_{z} is the z component of a general spin operator acting on a particular SpinSpace $h s$ of freedom with well defined spin quantum number s. It is Hermitian:

```
>>> hs = SpinSpace(1, spin=(1, 2))
>>> print(ascii(Jz(hs=hs).adjoint()))
J__z^(1)
```

Jz, Jplus and Jminus satisfy the angular momentum commutator algebra:

```
>>> print(ascii((Jz(hs=hs) * Jplus(hs=hs) -
... Jplus(hs=hs)*Jz(hs=hs)).expand()))
J_+^^(1)
>>> print(ascii((Jz(hs=hs) * Jminus(hs=hs) -
```

```
...Jminus(hs=hs)*Jz(hs=hs)). expand()))
-J_-^^(1)
>>> print(ascii((Jplus(hs=hs) * Jminus(hs=hs)
... - Jminus(hs=hs)*Jplus(hs=hs)).expand ()))
2 * J__z^(1)
>>> Jplus(hs=hs).dag() == Jminus(hs=hs)
True
>>> Jminus(hs=hs).dag() == Jplus(hs=hs)
True
```

Printers should represent this operator with the default identifier:

```
>>> Jz._identifier
'J_z'
```

A custom identifier may be define using hs's local_identifiers argument.
class qnet.algebra.library.spin_algebra.Jplus (*, hs)
Bases: qnet.algebra.library.spin_algebra.SpinOperator
Raising operator of a spin space
$J_{+}=J_{x}+i J_{y}$ is the raising ladder operator of a general spin operator acting on a particular SpinSpace hs with well defined spin quantum number s. It's adjoint is the lowering operator:

```
>>> hs = SpinSpace(1, spin=(1, 2))
>>> print(ascii(Jplus(hs=hs).adjoint()))
J_-^^(1)
```

$J z, J p l u s$ and Jminus satisfy that angular momentum commutator algebra, see $J z$
Printers should represent this operator with the default identifier:

```
>>> Jplus._identifier
'J__+'
```

A custom identifier may be define using $h s$'s local_identifiers argument.
class qnet.algebra.library.spin_algebra.Jminus (*, hs)
Bases: qnet.algebra.library.spin_algebra.SpinOperator
Lowering operator on a spin space
$J_{-}=J_{x}-i J_{y}$ is the lowering ladder operator of a general spin operator acting on a particular SpinSpace $h s$ with well defined spin quantum number s. It's adjoint is the raising operator:

```
>>> hs = SpinSpace(1, spin=(1, 2))
>>> print(ascii(Jminus(hs=hs).adjoint()))
J_+^^(1)
```

$J z, J p l u s$ and Jminus satisfy that angular momentum commutator algebra, see $J z$.
Printers should represent this operator with the default identifier:

```
>>> Jminus._identifier
'J_-'
```

A custom identifier may be define using hs's local_identifiers argument.
qnet.algebra.library.spin_algebra.Jpjmcoeff(ls, m, shift=False)
Eigenvalue of the J_{+}(Jplus) operator

$$
J_{+} s, m=\sqrt{s(s+1)-m(m+1)} s, m
$$

where the multiplicity s is implied by the size of the Hilbert space $l s$: there are $2 s+1$ eigenstates with $m=$ $-s,-s+1, \ldots, s$.

Parameters

- ls (LocalSpace) - The Hilbert space in which the J_{+}operator acts.
- \mathbf{m} (str or int) - If str, the label of the basis state of $h s$ to which the operator is applied. If integer together with shift=True, the zero-based index of the basis state. Otherwise, directly the quantum number m.
- shift (bool) - If True for a integer value of m, treat m as the zero-based index of the basis state (i.e., shift m down by s to obtain the quantum number $\$ \mathrm{~m} \$$)

Return type Expr
qnet.algebra.library.spin_algebra.Jzjmcoeff (ls, m, shift)
Eigenvalue of the $J_{z}(J z)$ operator

$$
J_{z} s, m=m s, m
$$

See also Jpjmcoeff ().
Return type Expr
qnet.algebra.library.spin_algebra.Jmjmcoeff (ls, m, shift)
Eigenvalue of the J_{-}(Jminus) operator

$$
J_{-} s, m=\sqrt{s(s+1)-m(m-1)} s, m
$$

See also Jpjmcoeff ().
Return type Expr

Summary

__all__ Classes:

Beamsplitter	Infinite bandwidth beamsplitter component.
CoherentDriveCC	Coherent displacement of the input field
Create	Bosonic creation operator
Destroy	Bosonic annihilation operator
Displace	Unitary coherent displacement operator
Jminus	Lowering operator on a spin space
Jplus	Raising operator of a spin space
Jz	Spin (angular momentum) operator in z-direction
Phase	Unitary "phase" operator
PhaseCC	Coherent phase shift cicuit component
SpinOperator	Base class for operators in a spin space
SpinSpace	A Hilbert space for an integer or half-integer spin system
Squeeze	Unitary squeezing operator

\qquad
\qquad Functions:

PauliX	Pauli-type X-operator
PauliY	Pauli-type Y-operator
PauliZ	Pauli-type Z-operator
SpinBasisKet	Constructor for a BasisKet for a SpinSpace

qnet.algebra.pattern_matching package

QNET's pattern matching engine.
Patterns may be constructed by either instantiating a Pattern instance directly, or (preferred) by calling the pattern(), pattern_head(), or wc () helper routines.

The pattern may then be matched against an expression using match_pattern(). The result of a match is a MatchDict object, which evaluates to True or False in a boolean context to indicate the success or failure of the match (or alternatively, through the success attribute). The MatchDict object also maps any wildcard names to the expression that the corresponding wildcard Pattern matches.

Summary

\qquad

MatchDict	Result of a Pattern.match ()
Pattern	Pattern for matching an expression

Private Classes:

$$
\begin{array}{|l|l|}
\hline \text { ProtoExpr } & \text { Object representing an un-instantiated Expression } \\
\hline
\end{array}
$$

\qquad
\qquad Functions:

match_pattern	Recursively match expr with the given expr_or_pattern
pattern	'Flat' constructor for the Pattern class
pattern_head	Constructor for a Pattern matching a ProtoExpr
wC	Constructor for a wildcard-Pattern

Reference

class qnet.algebra.pattern_matching. MatchDict (*args)
Bases: collections.OrderedDict
Result of a Pattern.match ()
Dictionary of wildcard names to expressions. Once the value for a key is set, attempting to set it again with a different value raises a KeyError. The attribute merge_lists may be set to modify this behavior for values that are lists: If it is set to a value different from zero, two lists that are set via the same key are merged. If merge_lists is negative, the new values are appended to the existing values; if it is positive, the new values are prepended.
In a boolean context, a MatchDict always evaluates as True (even if empty, unlike a normal dictionary), unless the success attribute is explicitly set to False (which a failed Pattern.match () should do)

Attributes

- success (bool) - Value of the MatchDict object in a boolean context: bool (match) == match.success
- reason (str) - If success is False, string explaining why the match failed
- merge_lists (int) - Code that indicates how to combine multiple values that are lists
update (*others)
Update dict with entries from other
If other has an attribute success=False and reason, those attributes are copied as well
class qnet.algebra.pattern_matching.Pattern(head=None, args=None, kwargs=None, *, mode $=1$, wc_name=None, conditions=None)
Bases: ob ject
Pattern for matching an expression

Parameters

- head (type or None) - The type (or tuple of types) of the expression that can be matched. If None, any type of Expression matches
- args (list or None) - List or tuple of positional arguments of the matched Expression (cf. Expression.args). Each element is an expression (to be matched exactly) or another Pattern instance (matched recursively). If None, no arguments are checked
- kwargs (dict or None) - Dictionary of keyword arguments of the expression (cf. Expression.kwargs). As for args, each value is an expression or Pattern instance.
- mode (int) - If the pattern is used to match the arguments of an expression, code to indicate how many arguments the Pattern can consume: Pattern.single, Pattern.one_or_more, Pattern.zero_or_more
- wc_name (str or None) - If pattern matches an expression, key in the resulting MatchDict for the expression. If None, the match will not be recorded in the result
- conditions (list of callables, or None) - If not None, a list of callables that take expr and return a boolean value. If the return value is False, the pattern is determined not to match expr.

Note: For (sub-)patterns that occur nested in the args attribute of another pattern, only the first or last subpattern may have a mode other than Pattern.single. This also implies that only one of the args may have a mode other than Pattern.single. This restrictions ensures that patterns can be matched without backtracking, thus guaranteeing numerical efficiency.

Example

Consider the following nested circuit expression:

```
>>> C1 = CircuitSymbol('C1', cdim=3)
>>> C2 = CircuitSymbol('C2', cdim=3)
>>> C3 = CircuitSymbol('c3', cdim=3)
>>> C4 = CircuitSymbol('C4', cdim=3)
>>> perm1 = CPermutation((2, 1, 0))
>>> perm2 = CPermutation((0, 2, 1))
```

```
>>> concat_expr = Concatenation(
... (C1 << C2 << perm1),
    (C3 << C4 << perm2))
```

We may match this with the following pattern:

```
>>> conditions = [lambda c: c.cdim == 3,
... lambda c: c.label[0] == ' C']
>>> A___Circuit = wc("A__", head=CircuitSymbol,
... conditions=conditions)
>>> C___Circuit = wc("C__", head=CircuitSymbol,
... conditions=conditions)
>>> B_CPermutation = wc("B", head=CPermutation)
>>> D_CPermutation = wc("D", head=CPermutation)
>>> pattern_concat = pattern(
... Concatenation,
... pattern(SeriesProduct, A__Circuit, B_CPermutation),
... pattern(SeriesProduct, C__Circuit, D_CPermutation))
>>> m = pattern_concat.match(concat_expr)
```

The match returns the following dictionary:

```
>>> result = {'A': [C1, C2], 'B': perm1, 'C': [C3, C4], 'D': perm2}
>>> assert m == result
```

```
single = 1
```

one_or_more $=2$
zero_or_more = 3

extended_arg_patterns()

Iterator over patterns for positional arguments to be matched
This yields the elements of args, extended by their mode value

```
match (expr)
```

Match the given expression (recursively)
Returns a MatchDict instance that maps any wildcard names to the expressions that the corresponding wildcard pattern matches. For (sub-)pattern that have a mode attribute other than Pattern.single, the wildcard name is mapped to a list of all matched expression.

If the match is successful, the resulting MatchDict instance will evaluate to True in a boolean context. If the match is not successful, it will evaluate as False, and the reason for failure is available in the reason attribute of the MatchDict object.

Return type MatchDict

findall (expr)

list of all matching (sub-)expressions in expr

See also:

finditer() yields the matches (MatchDict instances) for the matched expressions.

finditer (expr)

Return an iterator over all matches in expr
Iterate over all MatchDict results of matches for any matching (sub-)expressions in expr. The order of the matches conforms to the equivalent matched expressions returned by findall().

wc_names

Set of all wildcard names occurring in the pattern
qnet.algebra.pattern_matching.pattern (head, *args, mode=1, wc_name=None, conditions $=$ None, ${ }^{* *}$ kwargs)
'Flat' constructor for the Pattern class
Positional and keyword arguments are mapped into args and kwargs, respectively. Useful for defining rules that match an instantiated Expression with specific arguments

Return type Pattern
qnet.algebra.pattern_matching.pattern_head (*args, conditions=None, wc_name=None, **kwargs)

Constructor for a Pattern matching a ProtoExpr

The patterns associated with _rules and _binary_rules of an Expression subclass, or those passed to Expression.add_rule(), must be instantiated through this routine. The function does not allow to set a wildcard name (wc_name must not be given / be None)

Return type Pattern

qnet.algebra.pattern_matching.wc (name_mode='_', head=None, args=None, kwargs=None, *, conditions $=$ None)
Constructor for a wildcard-Pattern
Helper function to create a Pattern object with an emphasis on wildcard patterns, if we don't care about the arguments of the matched expressions (otherwise, use pattern ())

Parameters

- name_mode (str) - Combined wc_name and mode for Pattern constructor argument. See below for syntax
- head (type, or None) - See Pattern
- args (list or None)-See Pattern
- kwargs (dict or None) - See Pattern
- conditions (list or None)-See Pattern

The name_mode argument uses trailing underscored to indicate the mode:

- A ->Pattern(wc_name="A", mode=Pattern.single, ...)
- A_->Pattern(wc_name="A", mode=Pattern.single, ...)
-B__ ->Pattern(wc_name="B", mode=Pattern.one_or_more, ...)
- B \qquad -> Pattern(wc_name="C", mode=Pattern.zero_or_more, ...)

Return type Pattern

class qnet.algebra.pattern_matching.ProtoExpr(args, kwargs, cls=None)
Bases: collections.abc.Sequence
Object representing an un-instantiated Expression
A ProtoExpr may be matched by a Pattern created via pattern_head(). This is used in Expression.create (): before an expression is instantiated, a ProtoExpr is constructed with the positional and keyword arguments passed to create (). Then, this ProtoExpr is matched against all the automatic rules create () knows about.

Parameters

- args (list) - positional arguments that would be used in the instantiation of the Expression
- kwargs (dict) - keyword arguments. Will we converted to an OrderedDict
- cls (class or None) - The class of the Expression that will ultimately be instantiated.

The combined values of args and kwargs are accessible as a (mutable) sequence.
instantiate ($c l s=$ None)
Return an instantiated Expression as cls.create (*self.args, **self.kwargs)

Parameters

- cls (class) - The class of the instantiated expression. If not
- self.cls will be used. (given,)-
classmethod from_expr (expr)
Instantiate proto-expression from the given Expression
qnet.algebra.pattern_matching.match_pattern (expr_or_pattern, expr)
Recursively match expr with the given expr_or_pattern
Parameters
- expr_or_pattern (ob ject) - either a direct expression (equal to expr for a successful match), or an instance of Pattern.
- expr (ob ject) - the expression to be matched

Return type MatchDict

qnet.algebra.toolbox package

Collection of tools to manually manipulate algebraic expressions
Submodules:
qnet.algebra.toolbox.circuit_manipulation module

Summary

Functions:
connect Connect a list of components according to a list of con- nections.
\qquad all \qquad : connect

Reference

qnet.algebra.toolbox.circuit_manipulation.connect (components,	connections,
	force_SLH=False,
pand_simplify $=T r u e) ~$	

Connect a list of components according to a list of connections.

Parameters

- components (list) - List of Circuit instances
- connections (list) - List of pairs ((c1, port1), (c2, port2)) where c1 and $c 2$ are elements of components (or the index of the element in components), and port 1 and port 2 are the indices (or port names) of the ports of the two components that should be connected
- force_SLH (bool) - If True, convert the result to an SLH object
- expand_simplify (bool) - If the result is an SLH object, expand and simplify the circuit after each feedback connection is added

Example

```
>>> A = CircuitSymbol('A', cdim=2)
>>> B = CircuitSymbol('B', cdim=2)
>>> BS = Beamsplitter()
>>> circuit = connect(
... components=[A, B, BS],
... connections= [
... ((A, 0), (BS, 'in')),
... ((BS, 'tr'), (B, 0)),
... ((A, 1), (B, 1))])
>>> print(unicode(circuit).replace('cid(1)', 'I'))
(B 1) Perm(0, 2, 1) (BS (\pi/4) 1) Perm(0, 2, 1) (A 1)
```

The above example corresponds to the circuit diagram:

Raises ValueError - if connections includes any invalid entries

Note: The list of components may contain duplicate entries, but in this case you must use a positional index in connections to refer to any duplicate component. Alternatively, use unique components by defining different labels.

qnet.algebra.toolbox.commutator_manipulation module

Summary

Functions:

expand_commutators_leibniz | Recursively expand commutators in expr according to |
| :--- |
| the Leibniz rule. |

\qquad : expand_commutators_leibniz

Reference

qnet.algebra.toolbox.commutator_manipulation.expand_commutators_leibniz(expr, ex-
pand_expr=True)
Recursively expand commutators in expr according to the Leibniz rule.

$$
\begin{aligned}
& {[A B, C]=A[B, C]+[A, C] B} \\
& {[A, B C]=[A, B] C+B[A, C]}
\end{aligned}
$$

If expand_expr is True, expand products of sums in expr, as well as in the result.
qnet.algebra.toolbox.core module

Summary

Functions:

no_instance_caching	Temporarily disable instance caching in create ()
symbols	The symbols() function from SymPy
temporary_instance_cache	Use a temporary cache for instances in create ()
temporary_rules	Allow temporary modification of rules for create ()
__all__ no_instance_caching, symbols, temporary_instance_cache, temporary_rules	

Reference

qnet.algebra.toolbox.core.no_instance_caching()
Temporarily disable instance caching in create ()
Within the managed context, create () will not use any caching, for any class.
qnet.algebra.toolbox.core.temporary_instance_cache (*classes)
Use a temporary cache for instances in create ()
The instance cache used by create () for any of the given classes will be cleared upon entering the managed context, and restored on leaving it. That is, no cached instances from outside of the managed context will be used within the managed context, and vice versa

```
qnet.algebra.toolbox.core.temporary_rules(*classes, clear=False)
```

Allow temporary modification of rules for create ()
For every one of the given classes, protect the rules (processed by match_replace() or match_replace_binary ()) associated with that class from modification beyond the managed context. Implies temporary_instance_cache(). If clear is given as True, all existing rules are temporarily cleared from the given classes on entering the managed context.
Within the managed context, add_rule () may be used for any class in classes to define local rules, or del_rules () to disable specific existing rules (assuming clear is False). Upon leaving the managed context all original rules will be restored, removing any local rules.

The classes' simplifications attribute is also protected from permanent modification. Locally modifying simplifications should be done with care, but allows complete control over the creation of expressions.
qnet.algebra.toolbox.core.symbols (names, **args)
The symbols () function from SymPy
This can be used to generate QNET symbols as well:

```
>>> A, B, C = symbols('A B C', cls=OperatorSymbol, hs=0)
>>> srepr(A)
"OperatorSymbol('A', hs=LocalSpace('0'))"
>>> C1, C2 = symbols('C_1:3', cls=CircuitSymbol, cdim=2)
>>> srepr(C1)
"CircuitSymbol('C_1', cdim=2)"
```

Basically, the $c l s$ keyword argument can be any instantiator, i.e. a class or callable that receives a symbol name as the single positional argument. Any keyword arguments not handled by symbols () directly (see sympy. core.symbol.symbols() documentation) is passed on to the instantiator. Obviously, this is extremely flexible.

Note: symbol () does not pass positional arguments to the instantiator. Two possible workarounds to create symbols with e.g. a scalar argument are:

```
>>> t = symbols('t', positive=True)
>>> A_t, B_t = symbols(
... 'A B', cls=lambda s: OperatorSymbol(s, t, hs=0))
>>> srepr(A_t, cache={t: 't'})
"OperatorSymbol('A', t, hs=LocalSpace('0'))"
>>> A_t, B_t = (OperatorSymbol(s, t, hs=0) for s in ('A', 'B'))
>>> srepr(B_t, cache={t: 't'})
"OperatorSymbol('B', t, hs=LocalSpace('0'))"
```


qnet.algebra.toolbox.equation module

Tools for working with equations

Summary

Classes:
Eq \quad Symbolic equation
\qquad

Reference

class qnet.algebra.toolbox.equation.Eq(lhs, rhs, tag=None, prev_lhs=None, _prev_rhs=None,_prev_tags=None)
Bases: object
Symbolic equation
This class keeps track of the $l h s$ and $r h s$ of an equation across arbitrary manipulations

Parameters

- lhs (Expression) - the left-hand-side of the equation
- rhs (Expression) - the right-hand-side of the equation
- tag (None or str) - a tag (equation number) to be shown when printing the equation

Example

```
>>> \omega, E0 = sympy.symbols('omega, E_0')
>>> hbar = sympy.symbols('hbar', positive=True)
>>> H_0, H_1 = (OperatorSymbol(s, hs=0) for s in ('H_0', 'H_1'))
>>> H = OperatorSymbol('H', hs=0)
>>> mu = OperatorSymbol('mu', hs=0)
>>> eq0 = Eq(H_0, \omega * Create(hs=0) * Destroy(hs=0) + E0, tag='0')
>>> print(unicode(eq0, show_hs_label=False))
H0}=\mp@subsup{E}{0}{}+\omega\mp@subsup{a}{}{\wedge}+ a (0
>>> eq1 = Eq(H_1, mu + E0, tag='1')
>>> print(unicode(eq1, show_hs_label=False))
H1}=\mp@subsup{E}{0}{}+\mu\quad(1
>>> eq = (
... (eq0 + eq1).set_tag('2')
... .apply_to_rhs(lambda expr: expr - 2*E0, cont=True)
... .apply(lambda expr: expr * hbar, cont=True)
... .apply_mtd_to_lhs(
... 'substitute', var_map={H_0 + H_1: H}, cont=True)
... .apply(lambda expr: expr**2, cont=True)
... .apply_mtd_to_rhs('substitute', var_map={mu: 0}, cont=True)
... .apply_mtd_to_rhs('expand', cont=True, tag='')
... )
>>> print(unicode(eq, show_hs_label=False))
    H0}+\mp@subsup{H}{1}{}=2\mp@subsup{\textrm{E}}{0}{}+\mu+\omega\mp@subsup{a}{}{\wedge}+\textrm{a
            = 
h ( H0}+\mp@subsup{H}{1}{\prime})=h(\mu+\omega\mp@subsup{a}{}{\wedge}+\textrm{a}
    h H}=h(\mu+\omega\mp@subsup{a}{}{\wedge}+ a
    h}\mp@subsup{h}{}{2}HH=\mp@subsup{h}{}{2}(\mu+\omega\mp@subsup{a}{}{\wedge}\daggera)(\mu+\omega\mp@subsup{a}{}{\wedge}\dagger a
        = h2 }\mp@subsup{\omega}{}{2}\mp@subsup{a}{}{\wedge}\dagger(+\mp@subsup{a}{}{\wedge}\daggera)
```



```
        ()
>>> (eq
... .apply_mtd_to_lhs('substitute', eq.as_dict)
... .verify().is_zero)
True
```

lhs
The left-hand-side of the equation
rhs
The right-hand-side of the equation

tag

A tag (equation number) to be shown when printing the equation, or None

```
set_tag(tag)
```

Return a copy of the equation with a new tag

as_dict

Mapping of the lhs to the rhs
This allows to plug an equation into another expression via substitute ().
apply (func, *args, cont=False, tag=None, **kwargs)
Apply func to both sides of the equation
Returns a new equation where the left-hand-side and right-hand side are replaced by the application of func:

```
lhs=func(lhs, *args, **kwargs)
rhs=func(rhs, *args, **kwargs)
```

If cont=True, the resulting equation will keep a history of its previous state (resulting in multiple lines of equations when printed, as in the main example above).

The resulting equation with have the given tag.
apply_to_lhs (func, *args, cont=False, tag=None, **kwargs)
Apply func to lhs of equation only
Like apply (), but modifying only the left-hand-side.
apply_to_rhs (func, *args, cont=False, tag=None, **kwargs)
Apply func to rhs of equation only
Like $\operatorname{apply}()$, but modifying only the right-hand-side.
apply_mtd (mtd , *args, cont=False, tag=None, **kwargs)
Call the method $m t d$ on both sides of the equation
That is, the left-hand-side and right-hand-side are replaced by:

```
lhs=lhs.<mtd>(*args, **kwargs)
rhs=rhs.<mtd>(*args, **kwargs)
```

The cont and tag parameters are as in apply ().
apply_mtd_to_lhs ($\mathrm{mtd}, * \operatorname{args}$, cont=False, tag=None, **kwargs)
Call the method $m t d$ on the lhs of the equation only.
Like apply_mtd(), but modifying only the left-hand-side.
apply_mtd_to_rhs ($\mathrm{mtd}, * \operatorname{args}$, cont=False, tag=None, **kwargs)
Call the method $m t d$ on the rhs of the equation
Like apply_mtd(), but modifying only the right-hand-side.
substitute (var_map, cont=False, tag=None)
Substitute sub-expressions both on the lhs and rhs
Parameters var_map (dict) - Dictionary with entries of the form \{expr:
substitution $\}$
verify (func=None, *args, **kwargs)
Subtract the rhs from the lhs of the equation
Before the substraction, each side is expanded and any scalars are simplified. If given, func with the positional arguments args and keyword-arguments kwargs is applied to the result before returning it.
You may complete the verification by checking the is_zero attribute of the returned expression.
copy ()
Return a copy of the equation

free_symbols

Set of free SymPy symbols contained within the equation.

bound_symbols

Set of bound SymPy symbols contained within the equation.
all_symbols
Combination of free_symbols and bound_symbols

Summary

> | Eq | Symbolic equation |
| :--- | :--- |

\qquad

connect	Connect a list of components according to a list of connections.
expand_commutators_leibniz	Recursively expand commutators in expr according to the Leibniz rule.
no_instance_caching	Temporarily disable instance caching in create ()
symbols	The symbols () function from SymPy
temporary_instance_cache	Use a temporary cache for instances in create ()
temporary_rules	Allow temporary modification of rules for create ()

Summary

__all__ Exceptions:

AlgebraError	Base class for all algebraic errors
AlgebraException	Base class for all algebraic exceptions
BadLiouvillianError	Raised when a Liouvillian is not of standard Lindblad form.
BasisNotSetError	Raised if the basis or a Hilbert space dimension is unavailable
CannotConvertToSLH	Raised when a circuit algebra object cannot be converted to SLH
CannotEliminateAutomatically	Raised when attempted automatic adiabatic elimination fails.
CannotSimplify	Raised when a rule cannot further simplify an expression
CannotSymbolicallyDiagonalize	Matrix cannot be diagonalized analytically.
CannotVisualize	Raised when a circuit cannot be visually represented.
IncompatibleBlockStructures	Raised for invalid block-decomposition
InfiniteSumError	Raised when expanding a sum into an infinite number of terms
NoConjugateMatrix	Raised when entries of Matrix have no defined conjugate
NonSquareMatrix	Raised when a Matrix fails to be square
OverlappingSpaces	Raised when objects fail to be in separate Hilbert spaces.
SpaceToolargeError	Raised when objects fail to be have overlapping Hilbert spaces.
UnequalSpaces	Raised when objects fail to be in the same Hilbert space.
WrongCDimError	Raised for mismatched channel number in circuit series

__all__ Classes:

Adjoint	Symbolic Adjoint of an operator
Basisket	Local basis state, identified by index or label
Beamsplitter	Infinite bandwidth beamsplitter component.
Bra	The associated dual/adjoint state for any ket

Continued on next page

Table 37 - continued from previous page

Braket	The symbolic inner product between two states
CPermutation	Channel permuting circuit
Circuit	Base class for the circuit algebra elements
CircuitSymbol	Symbolic circuit element
CoherentDriveCC	Coherent displacement of the input field
CoherentStateKet	Local coherent state, labeled by a complex amplitude
Commutator	Commutator of two operators
Component	Base class for circuit components
Concatenation	Concatenation of circuit elements
Create	Bosonic creation operator
Destroy	Bosonic annihilation operator
Displace	Unitary coherent displacement operator
Eq	Symbolic equation
Expression	Base class for all QNET Expressions
Feedback	Feedback on a single channel of a circuit
HilbertSpace	Base class for Hilbert spaces
IndexedSum	Base class for indexed sums
Jminus	Lowering operator on a spin space
Jplus	Raising operator of a spin space
Jz	Spin (angular momentum) operator in z-direction
KetBra	Outer product of two states
KetIndexedSum	Indexed sum over Kets
KetPlus	Sum of states
KetSymbol	Symbolic state
Localket	A state on a LocalSpace
Localoperator	Base class for "known" operators on a Localspace
LocalSigma	Level flip operator between two levels of a LocalSpace
LocalSpace	Hilbert space for a single degree of freedom.
MatchDict	Result of a Pattern.match ()
Matrix	Matrix of Expressions
NullSpaceProjector	Projection operator onto the nullspace of its operand
Operation	Base class for "operations"
Operator	Base class for all quantum operators.
OperatorDerivative	Symbolic partial derivative of an operator
OperatorIndexedSum	Indexed sum over operators
OperatorPlus	Sum of Operators
OperatorPlusMinusCC	An operator plus or minus its complex conjugate
OperatorSymbol	Symbolic operator
OperatorTimes	Product of operators
OperatorTimesket	Product of an operator and a state.
OperatorTrace	(Partial) trace of an operator
Pattern	Pattern for matching an expression
Phase	Unitary "phase" operator
PhaseCC	Coherent phase shift cicuit component
Product Space	Tensor product of local Hilbert spaces
PseudoInverse	Unevaluated pseudo-inverse X^{+}of an operator X
QuantumAdjoint	Base class for adjoints of quantum expressions
QuantumDerivative	Symbolic partial derivative
Quantumexpression	Base class for expressions associated with a Hilbert space
QuantumIndexedSum	Base class for indexed sums

Continued on next page

Table 37 - continued from previous page

QuantumOperation	Base class for operations on quantum expression
QuantumPlus	General limplementation of addition of quantum expressions
QuantumSymbol	Symbolic element of an algebra
QuantumTimes	General implementation of product of quantum expressions
SLH	Element of the SLH algebra
Spost	Linear post-multiplication operator
SPre	Linear pre-multiplication operator
Scalar	Base class for Scalars
ScalarDerivative	Symbolic partial derivative of a scalar
ScalarExpression	Base class for scalars with non-scalar arguments
ScalarIndexedSum	Indexed sum over scalars
ScalarPlus	Sum of scalars
ScalarPower	A scalar raised to a power
ScalarTimes	Product of scalars
ScalarTimesKet	Product of a Scalar coefficient and a ket
ScalarTimesOperator	Product of a Scalar coefficient and an Operator
ScalarTimesQuantumExpression	Product of a Scalar and a Quant umExpression
ScalarTimesSuperoperator	Product of a Scalar coefficient and a SuperOperator
ScalarValue	Wrapper around a numeric or symbolic value
SeriesInverse	Symbolic series product inversion operation
SeriesProduct	The series product circuit operation.
SingleQuantumOperation	Base class for operations on a single quantum expression
SpinOperator	Base class for operators in a spin space
SpinSpace	A Hilbert space for an integer or half-integer spin system
Squeeze	Unitary squeezing operator
State	Base class for states in a Hilbert space
StateDerivative	Symbolic partial derivative of a state
SuperAdjoint	Adjoint of a super-operator
Superoperator	Base class for super-operators
SuperoperatorDerivative	Symbolic partial derivative of a super-operator
SuperoperatorPlus	A sum of super-operators
SuperoperatorSymbol	Symbolic super-operator
SuperoperatorTimes	Product of super-operators
SuperoperatorTimesOperator	Application of a super-operator to an operator
TensorKet	A tensor product of kets

__all_Functions:

FB	Wrapper for Feedback, defaulting to last channel
KroneckerDelta	Kronecker delta symbol
LocalProjector	A projector onto a specific level of a LocalSpace
PauliX	Pauli-type X-operator
PauliY	Pauli-type Y-operator
PauliZ	Pauli-type Z-operator
SpinBasisKet	Constructor for a BasisKet for a SpinSpace
Sum	Instantiator for an arbitrary indexed sum.
adjoint	Return the adjoint of an obj.
anti_commutator	If B \quad = None, return the anti-commutator $\{A, B\}$, otherwise return the super-operator $\{$
block_matrix	Generate the operator matrix with quadrants
Circuit_identity	Return the circuit identity for n channels

commutator	Commutator of A and B
connect	Connect a list of components according to a list of connections.
decompose_space	Simplifies OperatorTrace expressions over tensor-product spaces by turning it into iterated
diagm	Generalizes the diagonal matrix creation capabilities of numpy.diag to Matrix objects.
eval_adiabatic_limit	Compute the limiting SLH model for the adiabatic approximation
expand_commutators_leibniz	Recursively expand commutators in expr according to the Leibniz rule.
extract_channel	Create a CPermutation that extracts channel k
factor_coeff	Factor out coefficients of all factors.
factor_for_trace	Given a LocalSpacels to take the partial trace over and an operator op, factor the trace
getABCD	Calculate the ABCD-linearization of an SLH model
get_coeffs	Create a dictionary with all Operator terms of the expression (understood as a sum) as key
hstackm	Generalizes numpy.hstack to Mat rix objects.
identity_matrix	Generate the N-dimensional identity matrix.
init_algebra	Initialize the algebra system
lindblad	Return the super-operator Lindblad term of the Lindblad operator C
liouvillian	Return the Liouvillian super-operator associated with H and $L s$
liouvillian_normal_form	Return a Hamilton operator H and a minimal list of collapse operators Ls that generate the
map_channels	Create a CPermuation based on a dict of channel mappings
match_pattern	Recursively match expr with the given expr_or_pattern
move_drive_to_H	Move coherent drives from the Lindblad operators to the Hamiltonian.
no_instance_caching	Temporarily disable instance caching in create ()
pad_with_identity	Pad a circuit by adding a n-channel identity circuit at index k
pattern	'Flat' constructor for the Pattern class
pattern_head	Constructor for a Pattern matching a ProtoExpr
prepare_adiabatic_limit	Prepare the adiabatic elimination on an SLH object
rewrite_with_operator_pm_cc	Try to rewrite expr using OperatorPlusMinusCC
sqrt	Square root of a Scalar or scalar value
substitute	Substitute symbols or (sub-)expressions with the given replacements and re-evalute the res
symbols	The symbols () function from SymPy
temporary_instance_cache	Use a temporary cache for instances in create ()
temporary_rules	Allow temporary modification of rules for create ()
try_adiabatic_elimination	Attempt to automatically do adiabatic elimination on an SLH object
vstackm	Generalizes numpy.vstack to Matrix objects.
wC	Constructor for a wildcard-Pattern
zerosm	Generalizes numpy . zeros to Matrix objects.

CIdentity	Single pass-through channel; neutral element of SeriesProduct
CircuitZero	Zero circuit, the neutral element of Concatenation
FullSpace	The 'full space', i.e.
II	IdentityOperator constant (singleton) object.
IdentityOperator	IdentityOperator constant (singleton) object.
IdentitySuperOperator	Neutral element for product of super-operators
One	The neutral element with respect to scalar multiplication
TrivialKet	TrivialKet constant (singleton) object.
TrivialSpace	The 'nullspace', i.e.
Zero	The neutral element with respect to scalar addition
ZeroKet	ZeroKet constant (singleton) object for the null-state.
ZeroOperator	ZeroOperator constant (singleton) object.
ZeroSuperOperator	Neutral element for sum of super-operators
tr	Instantiate while applying automatic simplifications

Reference

qnet.algebra.init_algebra(*, default_hs_cls='LocalSpace')
Initialize the algebra system
Parameters default_hs_cls (str) - The name of the LocalSpace subclass that should be used when implicitly creating Hilbert spaces, e.g. in OperatorSymbol

9.1.2 qnet.convert package

Conversion to QuTiP and Sympy
Submodules:
qnet.convert.to_qutip module
Conversion of QNET expressions to qutip objects.

Summary

Functions:

SLH_to_qutip	Generate and return QuTiP representation matrices for the Hamiltonian and the collapse operators.
convert_to_qutip	Convert a QNET expression to a qutip object

```
__all__: SLH_to_qutip, convert_to_qutip
```


Reference

```
qnet.convert.to_qutip.convert_to_qutip(expr,full_space=None, mapping=None)
```

Convert a QNET expression to a qutip object
Parameters

- expr - a QNET expression
- full_space (HilbertSpace) - The Hilbert space in which expr is defined. If not given, expr. space is used. The Hilbert space must have a well-defined basis.
- mapping (dict) - A mapping of any (sub-)expression to either a quip.Qobj directly, or to a callable that will convert the expression into a qutip.Qobj. Useful for e.g. supplying objects for symbols

Raises ValueError - if expr is not in full_space, or if expr cannot be converted.
qnet. convert.to_qutip.SLH_to_qutip (slh, full_space=None, time_symbol=None, convert_as='pyfunc')
Generate and return QuTiP representation matrices for the Hamiltonian and the collapse operators. Any inhomogeneities in the Lindblad operators (resulting from coherent drives) will be moved into the Hamiltonian, cf. move_drive_to_H().

Parameters

- slh (SLH) - The SLH object from which to generate the qutip data
- full_space (HilbertSpace or None) - The Hilbert space in which to represent the operators. If None, the space of $s h l$ will be used
- time_symbol (sympy . Symbol or None) - The symbol (if any) expressing time dependence (usually 't')
- convert_as (str) - How to express time dependencies to qutip. Must be 'pyfunc' or 'str'

Returns tuple (H, [L1, L2, ...]) as numerical qutip.Qobj representations, where H and each L may be a nested list to express time dependence, e.g. $H=\left[H 0,\left[H 1, ~ e p s _t\right]\right]$, where H0 and H1 are of type qutip.Qobj, and eps_t is either a string (convert_as='str') or a function (convert_as='pyfunc')
Raises AlgebraError - If the Hilbert space (slh.space or full_space) is invalid for numerical conversion

qnet.convert.to_sympy_matrix module

Conversion of QNET expressions to sympy matrices. For small Hilbert spaces, this facilitates some analytic treatments, such as decomposition into a basis.

Summary

Functions:

SympyCreate	Creation operator for a Hilbert space of dimension n, as an instance of sympy.Matrix
basis_state	$\mathrm{n} \times 1$ sympy.Matrix representing the i 'th eigenstate of an n-dimensional Hilbert space $(i>=0)$
convert_to_sympy_matrix	Convert a QNET expression to an explicit $\mathrm{n} \times \mathrm{n}$ in- stance of sympy.Matrix, where n is the dimension of full_space.

[^1]
Reference

qnet. convert.to_sympy_matrix.basis_state (i, n)
$\mathrm{n} \times 1$ sympy.Matrix representing the i^{\prime} th eigenstate of an n-dimensional Hilbert space $(i>=0)$
qnet. convert.to_sympy_matrix. SympyCreate (n)
Creation operator for a Hilbert space of dimension n, as an instance of sympy.Matrix
qnet. convert.to_sympy_matrix.convert_to_sympy_matrix (expr,full_space=None)
Convert a QNET expression to an explicit $\mathrm{n} \times \mathrm{n}$ instance of sympy.Matrix, where n is the dimension of full_space. The entries of the matrix may contain symbols.

Parameters

- expr - a QNET expression
- full_space (qnet.algebra.hilbert_space_algebra.HilbertSpace) The Hilbert space in which expr is defined. If not given, expr. space is used. The Hilbert space must have a well-defined basis.

Raises

- qnet.algebra.hilbert_space_algebra.BasisNotSetError-iffull_space does not have a defined basis
- ValueError - if expr is not in full_space, or if expr cannot be converted.

Summary

\qquad

SLH_to_qutip	Generate and return QuTiP representation matrices for the Hamiltonian and the col- lapse operators.
convert_to_qutip	Convert a QNET expression to a qutip object
convert_to_sympy_m	Convert a QNET expression to an explicit $\mathrm{n} \times \mathrm{n}$ instance of sympy.Matrix, where n is the dimension of full_space.

9.1.3 qnet.printing package

Printing system for QNET Expressions and related objects
Submodules:

qnet.printing.asciiprinter module

ASCII Printer

Summary

Classes:

Table 41 - continued from previous page
QnetAsciiPrinter Printer for a string (ASCII) representation.

Reference

```
class qnet.printing.asciiprinter.QnetAsciiPrinter(cache=None, settings=None)
```

 Bases: qnet.printing.base.QnetBasePrinter
 Printer for a string (ASCII) representation.

Attributes

- _parenth_left (str) - String to use for a left parenthesis (e.g. 'left(' in LaTeX). Used by _split_op()
- _parenth_left (str) - String to use for a right parenthesis
- _dagger_sym (str) - Symbol that indicates the complex conjugate of an operator. Used by _split_op()
- _tensor_sym (str) - Symbol to use for tensor products. Used by _render_hs_label ().

sympy_printer_cls

alias of qnet.printing. sympy. SympyStrPrinter
printmethod = '_ascii'
parenthesize (expr, level, *args, strict=False, **kwargs)
Render expr and wrap the result in parentheses if the precedence of expr is below the given level (or at the given level if strict is True. Extra args and kwargs are passed to the internal doit renderer
class qnet.printing.asciiprinter.QnetAsciiDefaultPrinter
Bases: qnet.printing.asciiprinter. QnetAsciiPrinter
Printer for an ASCII representation that accepts no settings. This can be used internally when a well-defined, static representation is needed (e.g. as a sort key)

qnet.printing.base module

Provides the base class for Printers

Summary

Classes:
QnetBasePrinter Base class for all QNET expression printers

Reference

class qnet.printing.base.QnetBasePrinter (cache=None, settings=None)
Bases: sympy.printing.printer.Printer
Base class for all QNET expression printers
Parameters

- cache (dict or None) - A dict that maps expressions to strings. It may be given during istantiation to use pre-defined strings for specific expressions. The cache will be updated as the printer is used.
- settings (dict or None) - A dict of settings.

Class Attributes

- sympy_printer_cls (type) - The class that will be instantiated to print Sympy expressions
- _default_settings (dict) - The default value of all settings. Note only settings for which there are defaults defined here are accepted when instantiating the printer
- printmethod (None or str) - Name of a method that expressions may define to print themeselves.

Attributes

- cache (dict) - Dictionary where the results of any call to doprint () is stored. When doprint () is called for an expression that is already in cache, the result from the cache is returned.
- _sympy_printer (sympy.printing.printer.Printer) - The printer instance that will be used to print any Sympy expression.
- _allow_caching (bool) - A flag that may be set to completely disable caching
- _print_level (int) - The recursion depth of doprint () (>= 1 inside any of the _print * methods)

Raises TypeError - If any key in settings is not defined in the _default_settings of the printer, respectively the sympy_printer_cls.

sympy_printer_cls

alias of qnet.printing. sympy. SympyStrPrinter
printmethod $=$ None
emptyPrinter (expr)
Fallback method for expressions that neither know how to print themeselves, nor for which the printer has
a suitable_print * method
doprint (expr, *args, **kwargs)
Returns printer's representation for expr (as a string)
The representation is obtained by the following methods:

1. from the cache
2. If expr is a Sympy object, delegate to the doprint () method of _sympy_printer
3. Let the expr print itself if has the printmethod
4. Take the best fitting _print_* method of the printer
5. As fallback, delegate to emptyPrinter ()

Any extra args or kwargs are passed to the internal $_$print method.

qnet.printing.dot module

DOT printer for Expressions.
This module provides the dotprint () function that generates a DOT diagram for a given expression. For example:

```
>>> A = OperatorSymbol("A", hs=1)
>>> B = OperatorSymbol("B", hs=1)
>>> expr = 2 * (A + B)
>>> with configure_printing(str_format='unicode'):
... dot = dotprint (expr)
>>> dot.strip() == r'''
... digraph{
... # Graph style
... "ordering"="out"
... "rankdir"="TD"
...
... #########
... # Nodes #
... #########
... "node_(0, 0) " ["label"="ScalarTimesOperator"];
... "node_(1, 0)" ["label"="2"];
... "node_(1, 1)" ["label"="OperatorPlus"];
... "node_(2, 0)" ["label"="A" "];
... "node_(2, 1)" ["label"="B""];
..
... #########
... # Edges #
... #########
...
... "node_(0, 0)" -> "node_(1, 0)"
... "node_(0, 0)" -> "node_(1, 1)"
... "node_(1, 1)" -> "node_(2, 0) "
... "node_(1, 1)" -> "node_(2, 1)"
... }'''.strip()
True
```

The dot commandline program renders the code into an image:

The various options of dotprint () allow for arbitrary customization of the graph's structural and visual properties.

Summary

Functions:

dotprint	Return the DOT (graph) description of an Expression tree as a string
expr_labelfunc function labelfunc (expr,	

Reference

qnet.printing.dot.expr_labelfunc (leaf_renderer=<class 'str'>, fallback=<class 'str'>)
Factory for function labelfunc (expr, is_leaf)
It has the following behavior:

- If is_leaf is True, return leaf_renderer (expr).
- Otherwise,
- if expr is an Expression, return a custom string similar to srepr (), but with an ellipsis for args
- otherwise, return fallback (expr)
qnet.printing.dot.dotprint (expr, styles=None, maxdepth=None, repeat=True, labelfunc $=<$ function expr_labelfunc.<locals>._labelfunc>, idfunc=None, get_children $=<$ function _op_children $>, * * k w a r g s)$
Return the DOT (graph) description of an Expression tree as a string

Parameters

- expr (object) - The expression to render into a graph. Typically an instance of Expression, but with appropriate get_children, labelfunc, and id_func, this could be any tree-like object
- styles (list or None)-A list of tuples (expr_filter, style_dict) where expr_filter is a callable and style_dict is a list of DOT node properties that should be used when rendering a node for which expr_filter (expr) return True.
- maxdepth (int or None) - The maximum depth of the resulting tree (any node at maxdepth will be drawn as a leaf)
- repeat (bool) - By default, if identical sub-expressions occur in multiple locations (as identified by idfunc, they will be repeated in the graph. If repeat=Fal se is given, each unique (sub-)expression is only drawn once. The resulting graph may no longer be a proper tree, as recurring expressions will have multiple parents.
- labelfunc (callable) - A function that receives expr and a boolean is_leaf and returns the label of the corresponding node in the graph. Defaults to expr_labelfunc (str, str).
- idfunc (callable or None) - A function that returns the ID of the node representing a given expression. Expressions for which idfunc returns identical results are considered identical if repeat is False. The default value None uses a function that is appropriate to a single standalone DOT file. If this is insufficient, something like hash or str would make a good idfunc.
- get_children (callable) - A function that return a list of sub-expressions (the children of expr). Defaults to the operands of an Operation (thus, anything that is not an Operation is a leaf)
- kwargs - All further keyword arguments set custom DOT graph attributes

Returns a multiline str representing a graph in the DOT language
Return type str

Notes

The node styles are additive. For example, consider the following custom styles:

```
styles = [
    (lambda expr: isinstance(expr, SCALAR_TYPES),
        {'color': 'blue', 'shape': 'box', 'fontsize': 12}),
    (lambda expr: isinstance(expr, Expression),
        {'color': 'red', 'shape': 'box', 'fontsize': 12}),
```

(continued from previous page)

```
(lambda expr: isinstance(expr, Operation),
    {'color': 'black', 'shape': 'ellipse'})]
```

For Operations (which are a subclass of Expression) the color and shape are overwritten, while the fontsize 12 is inherited.

Keyword arguments are directly translated into graph styles. For example, in order to produce a horizontal instead of vertical graph, use dotprint (..., rankdir='LR').

See also:

```
sympy.printing.dot.dotprint() provides an equivalent function for SymPy expressions.
```


qnet.printing.latexprinter module

Routines for rendering expressions to LaTeX

Summary

Classes:
QnetLatexPrinter \quad Printer for a LaTeX representation.

Functions:

Assemble a string from the primary name and the given sub- and superscripts.

Reference

```
class qnet.printing.latexprinter.QnetLatexPrinter (cache=None, settings=None)
```

 Bases: qnet.printing.asciiprinter.QnetAsciiPrinter
 Printer for a LaTeX representation.
See qnet.printing.latex() for documentation of settings.
sympy_printer_cls
alias of qnet.printing. sympy. SympyLatexPrinter
printmethod = '_latex'
qnet.printing.latexprinter.render_latex_sub_super (name, subs=None, supers=None, translate_symbols=True, sep=', ')
Assemble a string from the primary name and the given sub- and superscripts:

```
>>> render_latex_sub_super(name='alpha', subs=['mu', 'nu'], supers=[2])
'\\alpha_{\\mu,\\nu}^{2}'
>>> render_latex_sub_super(
... name='alpha', subs=['1', '2'], supers=['(1)'], sep='')
'\\alpha_{12}^{(1) }'
```


Parameters

- name (str) - the string without the subscript/superscript
- subs (list or None) - list of subscripts
- supers (list or None) - list of superscripts
- translate_symbols (bool) - If True, try to translate (Greek) symbols in name, 'subs, and supers to unicode
- sep (str) - Separator to use if there are multiple subscripts/superscripts

qnet.printing.sreprprinter module

Provides printers for a full-structured representation

Summary

Classes:

IndentedSReprPrinter	Printer for rendering an expression in such a way that the resulting string can be evaluated in an appropri- ate context to re-instantiate an identical object, us-
ing nested indentation (implementing srepr (expr, indented=True)	
IndentedSympyReprPrinter	Indented repr printer for Sympy objects
QnetSReprPrinter	Printer for a string (ASCII) representation.

Reference

```
class qnet.printing.sreprprinter.QnetSReprPrinter(cache=None, settings=None)
```

 Bases: qnet.printing.base.QnetBasePrinter
 Printer for a string (ASCII) representation.
sympy_printer_cls
alias of qnet.printing.sympy. SympyReprPrinter
emptyPrinter (expr)
Fallback printer
class qnet.printing.sreprprinter.IndentedSympyReprPrinter(settings=None)
Bases: qnet.printing.sympy.SympyReprPrinter
Indented repr printer for Sympy objects
doprint (expr)
Returns printer's representation for expr (as a string)
class qnet.printing.sreprprinter.IndentedSReprPrinter (cache=None, settings=None)
Bases: qnet.printing.base. QnetBasePrinter
Printer for rendering an expression in such a way that the resulting string can be evaluated in an appropriate context to re-instantiate an identical object, using nested indentation (implementing srepr (expr, indented=True)

sympy_printer_cls

alias of IndentedSympyReprPrinter
emptyPrinter (expr)
Fallback printer

qnet.printing.sympy module

Custom Printers for Sympy expressions

These classes are used by default by the QNET printing systems as sub-printers for SymPy objects (e.g. for symbolic coefficients). They fix some issues with SymPy's builtin printers:

- factors like $\frac{1}{\sqrt{2}}$ occur very commonly in quantum mechanics, and it is standard notation to write them as such. SymPy insists on rationalizing denominators, using $\frac{\sqrt{2}}{2}$ instead. Our custom printers restore the canonical form. Note that internally, Sympy still uses the rationalized structure; but in any case, Sympy makes no guarantees between the algebraic structure of an expression and how it is printed.
- Symbols (especially greek letters) are extremely common, and it's much more readable if the string representation of an expression uses unicode for these. SymPy supports unicode "pretty-printing" (sympy. printing.pretty.pretty.pretty_print()) only in "2D", where expressions are rendered as multiline unicode strings. While this is fine for interactive display, it does not work so well for a simple str. The SympyUnicodePrinter solves this by producing simple strings with unicode symbols.
- Some algebraic structures such as factorials, complex-conjugates and indexed symbols have sub-optimal rendering in sympy.printing.str.StrPrinter
- QNET contains some custom subclasses of SymPy objects (e.g. IdxSym) that the default printers don't know how to deal with (respectively, render incorrectly!)

Summary

Classes:

SympyLatexPrinter	Variation of sympy LatexPrinter that derationalizes de- nominators
SympyReprPrinter	Representation printer with support for IdxSym
SympyStrPrinter	Variation of sympy StrPrinter that derationalizes de- nominators.
SympyUnicodePrinter	Printer that represents SymPy expressions as (single- line) unicode strings.

Functions:

derationalize_denom	Try to de-rationalize the denominator of the given ex- pression.

Reference

qnet.printing.sympy.derationalize_denom (expr)

Try to de-rationalize the denominator of the given expression.
The purpose is to allow to reconstruct e.g. $1 / \operatorname{sqrt}(2)$ from sqrt (2)/2.

Specifically, this matches expr against the following pattern:
Mul(..., Rational(n, d), Pow(d, Rational(1, 2)), ...)
and returns a tuple (numerator, denom_sq, post_factor), where numerator and denom_sq are n and d in the above pattern (of type int), respectively, and post_factor is the product of the remaining factors (. . . in expr). The result will fulfill the following identity:

```
(numerator / sqrt(denom_sq)) * post_factor == expr
```

If expr does not follow the appropriate pattern, a ValueError is raised.
class qnet.printing.sympy.SympyStrPrinter (settings=None)
Bases: sympy.printing.str. StrPrinter
Variation of sympy StrPrinter that derationalizes denominators.
Additionally, it contains the following modifications:

- Support for IdxSym
- Rendering of sympy.tensor. indexed. Indexed as subscripts
- Rendering of sympy.functions.combinatorial.factorials.factorial as !
- Option conjg_style to configure how complex conjugates are rendered: 'func' renders it as
conjugate (...), and 'star' uses an exponentiated asterisk
printmethod = '_sympystr'
class qnet.printing.sympy.SympyLatexPrinter(settings=None)
Bases: sympy.printing.latex.LatexPrinter
Variation of sympy LatexPrinter that derationalizes denominators
Additionally, it contains the following modifications:
- Support for IdxSym
- A setting conjg_style that allows to specify how complex conjugate are rendered: 'overline' (the default) draws a line over the number, 'star' uses an exponentiated asterisk, and 'func' renders a a conjugate function
printmethod = '_latex'
class qnet.printing.sympy.SympyUnicodePrinter (settings=None)
Bases: qnet.printing. sympy. SympyStrPrinter
Printer that represents SymPy expressions as (single-line) unicode strings.
This is a mixture of StrPrinter and sympy.printing.pretty.pretty.PrettyPrinter (minus the 2D printing), with the same extensions as SympyStrPrinter
printmethod = '_sympystr'

```
class qnet.printing.sympy.SympyReprPrinter(settings=None)
```

Bases: sympy.printing.repr.ReprPrinter
Representation printer with support for IdxSym

qnet.printing.treeprinting module

Tree printer for Expressions

This is mainly for interactive use.

Summary

Functions:

print_tree	Print a tree representation of the structure of expr
tree	Give the output of tree as a multiline string, using line
	drawings to visualize the hierarchy of expressions (sim- ilar to the tree unix command line program for show- ing directory trees)

Reference

qnet.printing.treeprinting.print_tree(expr, attr='operands', padding=", exclude_type $=$ None, \quad depth=None, unicode=True, srepr_leaves=False, _last=False, _root=True, _level $=0$, print=True)
Print a tree representation of the structure of expr

Parameters

- expr (Expression) - expression to render
- attr (str) - The attribute from which to get the children of expr
- padding (str) - Whitespace by which the entire tree is idented
- exclude_type (type) - Type (or list of types) which should never be expanded recursively
- depth (int or None) - Maximum depth of the tree to be printed
- unicode ($b \circ \circ 1$) - If True, use unicode line-drawing symbols for the tree, and print expressions in a unicode representation. If False, use an ASCII approximation.
- srepr_leaves (bool) - Whether or not to render leaves with srepr, instead of ascii/unicode

See also:

tree () return the result as a string, instead of printing it
qnet.printing.treeprinting.tree (expr, **kwargs)
Give the output of tree as a multiline string, using line drawings to visualize the hierarchy of expressions (similar to the tree unix command line program for showing directory trees)

See also:

qnet. printing.srepr () with indented=True produces a similar tree-like rendering of the given expression that can be re-evaluated to the original expression.
qnet.printing.unicodeprinter module
Unicode Printer

Summary

Classes:

QnetUnicodePrinter	Printer for a string (Unicode) representation.
SubSupFmt	A format string that divides into a name, subscript, and superscript
SubSupFmtNoUni	SubSupFmt with default unicode_sub_super=False

Reference

class qnet.printing.unicodeprinter.SubSupFmt(name, sub=None, sup=None, unicode_sub_super=True)
Bases: object
A format string that divides into a name, subscript, and superscript

```
>>> fmt = SubSupFmt('{name}', sub='({i},{j})', sup='({sup})')
>>> fmt.format(name='alpha', i='mu', j='nu', sup=1)
' }\mp@subsup{\alpha}{_}{\prime}(\mu,\nu)^(1)
>>> fmt = SubSupFmt('{name}', sub='{sub}', sup='({sup})')
>>> fmt.format(name='alpha', sub='1', sup=1)
' }\mp@subsup{\alpha}{1}{}\mp@subsup{}{}{1
```


format (**kwargs)

Format and combine the name, subscript, and superscript
class qnet.printing.unicodeprinter.SubSupFmtNoUni (name, sub=None, sup=None, unicode_sub_super $=$ False)
Bases: qnet.printing.unicodeprinter. SubSupFmt
SubSupFmt with default unicode_sub_super=False
class qnet.printing.unicodeprinter.QnetUnicodePrinter(cache=None, settings=None)
Bases: qnet.printing.asciiprinter.QnetAsciiPrinter
Printer for a string (Unicode) representation.
sympy_printer_cls
alias of qnet.printing.sympy.SympyUnicodePrinter
printmethod = '_unicode'

Summary
\qquad all _ Functions:

ascii	Return an ASCII representation of the given object / expression
configure_d	Gontext gnanager for temporarily changing the printing system.
dotprint	Return the 'DOT'_(graph) description of an Expression tree as a string
init_print_f	dgitialize the printing system.
latex	Return a LaTeX representation of the given object / expression
print_tree	Print a tree representation of the structure of expr
srepr	Render the given expression into a string that can be evaluated in an appropriate context to re- instantiate an identical expression.
tex	Alias for latex ()
tree	Give the output of tree as a multiline string, using line drawings to visualize the hierarchy of expressions (similar to the $t r e e ~ u n i x ~ c o m m a n d ~ l i n e ~ p r o g r a m ~ f o r ~ s h o w i n g ~ d i r e c t o r y ~ t r e e s) ~$
unicode	Return a unicode representation of the given object / expression

Reference

qnet.printing.init_printing(*, reset=False, init_sympy=True, **kwargs)
Initialize the printing system.
This determines the behavior of the ascii(), unicode(), and latex() functions, as well as the \qquad _str_ and \qquad repr_ of any Expression.

The routine may be called in one of two forms. First,

```
init_printing(
    str_format=<str_fmt>, repr_format=<repr_fmt>,
    caching=<use_caching>, **settings)
```

provides a simplified, "manual" setup with the following parameters.

Parameters

- str_format (str) - Format for __str__ representation of an Expression. One of 'ascii', 'unicode', 'latex', 'srepr', 'indsrepr' ("indented srepr"), or 'tree'. The string representation will be affected by the settings for the corresponding print routine, e.g. unicode () for str_format='unicode'
- repr_format (str) - Like str_format, but for__repr__. This is what gets displayed in an interactive (I)Python session.
- caching (bool) - By default, the printing functions (ascii(), unicode(), latex ()) cache their result for any expression and sub-expression. This is both for efficiency and to give the ability to to supply custom strings for subexpression by passing a cache parameter to the printing functions. Initializing the printing system with caching=False disables this possibility.
- settings - Any setting understood by any of the printing routines.

Second,

```
init_printing(inifile=<path_to_file>)
```

allows for more detailed settings through a config file, see the notes on using an INI file.
If str_format or repr_format are not given, they will be set to 'unicode' if the current terminal is known to support an UTF8 (accordig to sys.stdout.encoding), and 'ascii' otherwise.

Generally, init_printing() should be called only once at the beginning of a script or notebook. If it is called multiple times, any settings accumulate. To avoid this and to reset the printing system to the defaults,
you may pass reset=True. In a Jupyter notebook, expressions are rendered graphically via LaTeX, using the settings as they affect the latex () printer.

The sympy.init_printing() routine is called automatically, unless init_sympy is given as False.

See also:

configure_printing() allows to temporarily change the printing system from what was configured in init_printing().
qnet.printing.configure_printing (**kwargs)
Context manager for temporarily changing the printing system.
This takes the same parameters as init_printing()

Example

```
>>> A = OperatorSymbol('A', hs=1); B = OperatorSymbol('B', hs=1)
>>> with configure_printing(show_hs_label=False):
... print(ascii(A + B))
A + B
>>> print(ascii(A + B))
A^(1) + B^^(1)
```

qnet.printing.ascii (expr, cache=None, **settings)
Return an ASCII representation of the given object / expression

Parameters

- expr - Expression to print

- cache (dict or None) - dictionary to use for caching
- show_hs_label (bool or str) - Whether to a label for the Hilbert space of expr. By default (show_hs_label=True), the label is shown as a superscript. It can be shown as a subscript with show_hs_label='subscript' or suppressed entirely (show_hs_label=False)
- sig_as_ketbra (bool) - Whether to render instances of LocalSigma as a ket-bra (default), or as an operator symbol

Examples

```
>>> A = OperatorSymbol('A', hs=1); B = OperatorSymbol('B', hs=1)
>>> ascii(A + B)
'A^(1) + B^(1)'
>>> ascii(A + B, cache={A: 'A', B: 'B'})
'A + B'
>>> ascii(A + B, show_hs_label='subscript')
'A_(1) + B_(1)'
>>> ascii(A + B, show_hs_label=False)
'A + B'
>>> ascii(LocalSigma(0, 1, hs=1))
'|0><1|^(1)'
>>> ascii(LocalSigma(0, 1, hs=1), sig_as_ketbra=False)
'sigma_0,1^(1)'
```

Note that the accepted parameters and their default values may be changed through init_printing() or configure_printing()
qnet.printing.unicode (expr, cache=None, **settings)
Return a unicode representation of the given object / expression

Parameters

- expr - Expression to print
- cache (dict or None) - dictionary to use for caching
- show_hs_label (bool or str) - Whether to a label for the Hilbert space of expr. By default (show_hs_label=True), the label is shown as a superscript. It can be shown as a subscript with show_hs_label='subscript' or suppressed entirely (show_hs_label=False)
- sig_as_ketbra (bool) - Whether to render instances of LocalSigma as a ket-bra (default), or as an operator symbol
- unicode_sub_super ($b \circ \circ 1$) - Whether to try to use unicode symbols for sub- or superscripts if possible
- unicode_op_hats (bool) - Whether to draw unicode hats on single-letter operator symbols

Examples

```
>>> A = OperatorSymbol('A', hs=1); B = OperatorSymbol('B', hs=1)
>>> unicode(A + B)
'A
>>> unicode(A + B, cache={A: 'A', B: 'B'})
'A + B'
>>> unicode(A + B, show_hs_label='subscript')
' A
>>> unicode(A + B, show_hs_label=False)
'A + B'
>>> unicode(LocalSigma(0, 1, hs=1))
'|01|''
>>> unicode(LocalSigma(0, 1, hs=1), sig_as_ketbra=False)
'\sigma_0,1^(1)'
>>> unicode(A + B, unicode_sub_super=False)
'A^(1) + B^(1)'
>>> unicode(A + B, unicode_op_hats=False)
'A' + B''
```

Note that the accepted parameters and their default values may be changed through init_printing() or configure_printing()
qnet.printing.latex (expr, cache=None, **settings)
Return a LaTeX representation of the given object / expression

Parameters

- expr - Expression to print
- cache (dict or None) - dictionary to use for caching
- show_hs_label (bool or str) - Whether to a label for the Hilbert space of expr. By default (show_hs_label=True), the label is shown as a superscript. It can be shown as a subscript with show_hs_label='subscript' or suppressed entirely (show_hs_label=False)
- tex_op_macro (str) - macro to use for formatting operator symbols. Must accept 'name' as a format key.
- tex_textop_macro (str) - macro to use for formatting multi-letter operator names.
- tex_sop_macro (str) - macro to use for formattign super-operator symbols
- tex_textsop_macro (str) - macro to use for formatting multi-letter super-operator names
- tex_identity_sym (str) - macro for the identity symbol
- tex_use_braket (bool) - If True, use macros from the braket package. Note that this will not automatically render in IPython Notebooks, but it is recommended when generating latex for a document.
- tex_frac_for_spin_labels (bool) - Whether to use 'frac' when printing basis state labels for spin Hilbert spaces

Examples

```
>>> A = OperatorSymbol('A', hs=1); B = OperatorSymbol('B', hs=1)
>>> latex(A + B)
'\\hat {A}^{(1)} + \\hat {B }^{(1) }'
>>> latex(A + B, cache={A: 'A', B: 'B'})
'A + B'
>>> latex(A + B, show_hs_label='subscript')
'\\hat {A}_{(1)} + \\hat{B}_{(1)}'
>>> latex(A + B, show_hs_label=False)
'\\hat {A} + \\hat {B}'
>>> latex(LocalSigma(0, 1, hs=1))
'\\left\\lvert 0 \\middle\\rangle\\!\\middle\\langle 1 \\right\\rvert^{(1)}'
>>> latex(LocalSigma(0, 1, hs=1), sig_as_ketbra=False)
'\\hat{\\sigma}_{0,1}^{(1)}'
>>> latex(A + B, tex_op_macro=r'\Op{{{name}}}')
'\\Op{A}^{(1)}+\\Op{B}^{(1) }'
>>> CNOT = OperatorSymbol('CNOT', hs=1)
>>> latex(CNOT)
'\\text{CNOT}^{(1) }'
>>> latex(CNOT, tex_textop_macro=r'\Op{{{name}}}')
'\\Op{CNOT }^{(1) }'
```

```
>>> A = SuperOperatorSymbol('A', hs=1)
>>> latex(A)
'\\mathrm{A}^{(1)}'
>>> latex(A, tex_sop_macro=r'\SOp{{{name}}}')
'\\SOp{A}^{(1) }'
>>> Lindbladian = SuperOperatorSymbol('Lindbladian', hs=1)
>>> latex(Lindbladian)
'\\mathrm{Lindbladian}^{(1) }'
>>> latex(Lindbladian, tex_textsop_macro=r'\SOp{{{name}}}')
'\\SOp{Lindbladian}^{(1) }'
```

```
>>> latex(IdentityOperator)
'\\mathbb {1}'
>>> latex(IdentityOperator, tex_identity_sym=r'\identity')
'\\identity'
```

```
>>> latex(LocalSigma(0, 1, hs=1), tex_use_braket=True)
```

$' \backslash \backslash \operatorname{Ket}\{0\} \backslash \backslash!\backslash \backslash \operatorname{Bra}\{1\}^{\wedge}\{(1)\}$ '

```
>>> spin = SpinSpace('s', spin=(1, 2))
>>> up = SpinBasisKet(1, 2, hs=spin)
>>> latex(up)
'\\left\\lvert +1/2 \\right\\rangle^{(s)}'
>>> latex(up, tex_frac_for_spin_labels=True)
'\\left\\lvert +\\frac{1}{2} \\right\\rangle^{(s)}'
```

Note that the accepted parameters and their default values may be changed through init_printing() or configure_printing()
qnet.printing.tex (expr, cache $=$ None, $* *_{\text {settings }}$)
Alias for latex ()
qnet.printing.srepr (expr, indented=False, cache=None)
Render the given expression into a string that can be evaluated in an appropriate context to re-instantiate an identical expression. If indented is False (default), the resulting string is a single line. Otherwise, the result is a multiline string, and each positional and keyword argument of each Expression is on a separate line, recursively indented to produce a tree-like output. The cache may be used to generate more readable expressions.

Example

```
>>> hs = LocalSpace('1')
>>> A = OperatorSymbol('A', hs=hs); B = OperatorSymbol('B', hs=hs)
>>> expr = A + B
>>> srepr(expr)
"OperatorPlus(OperatorSymbol('A', hs=LocalSpace('1')), OperatorSymbol('B',
\hookrightarrowhs=LocalSpace('1')))"
>>> eval(srepr(expr)) == expr
True
>>> srepr(expr, cache={hs:'hs'})
"OperatorPlus(OperatorSymbol('A', hs=hs), OperatorSymbol('B', hs=hs))"
>>> eval(srepr(expr, cache={hs:'hs'})) == expr
True
>>> print(srepr(expr, indented=True))
OperatorPlus(
    OperatorSymbol(
        'A',
        hs=LocalSpace(
            '1')),
        OperatorSymbol(
        'B',
        hs=LocalSpace(
            '1')))
>>> eval(srepr(expr, indented=True)) == expr
True
```


See also:

print_tree(), respectively qnet.printing.tree.tree(), produces an output similar to the indented srepr (), for interactive use. Their result cannot be evaluated and the exact output depends on init_printing().
dotprint () provides a way to graphically explore the tree structure of an expression.

9.1.4 qnet.utils package

Auxiliary utilities, mostly for internal use
Submodules:
qnet.utils.check_rules module
Utilities for algebraic rules

Summary

Functions:

check_rules_dict \quad| Verify the rules that classes may use for the _rules or |
| :--- |
| _binary_rules class attribute. |

Reference

qnet.utils.check_rules.check_rules_dict (rules)
Verify the rules that classes may use for the _rules or _binary_rules class attribute.
Specifically, rules must be a OrderedDict-compatible object (list of key-value tuples, dict, OrderedDict) that maps a rule name (str) to a rule. Each rule consists of a Pattern and a replaceent callable. The Pattern must be set up to match a ProtoExpr. That is, the Pattern should be constructed through the pattern_head() routine.

Raises

- TypeError - If rules is not compatible with OrderedDict, the keys in rules are not strings, or rule is not a tuple of (Pattern, callable)
- ValueError - If the head-attribute of each Pattern is not an instance of ProtoExpr, or if there are duplicate keys in rules

Returns OrderedDict of rules

qnet.utils.containers module

Tools for working with data structures built from native containers.

Summary

Functions:

nested_tuple	Recursively transform a container structure to a nested tuple.
sorted_if_possible	Create a sorted list of elements of an iterable if they are orderable.

Reference

qnet.utils.containers.sorted_if_possible (iterable, **kwargs)
Create a sorted list of elements of an iterable if they are orderable.
See sorted for details on optional arguments to customize the sorting.

Parameters

- iterable (Iterable) - Iterable returning a finite number of elements to sort.
- kwargs - Keyword arguments are passed on to sorted.

Returns List of elements, sorted if orderable, otherwise kept in the order of iteration.
Return type list
qnet.utils.containers.nested_tuple (container)
Recursively transform a container structure to a nested tuple.
The function understands container types inheriting from the selected abstract base classes in collections.abc, and performs the following replacements: Mapping
tuple of key-value pair tuple's. The order is preserved in the case of an 'OrderedDict, otherwise the key-value pairs are sorted if orderable and otherwise kept in the order of iteration.

Sequence tuple containing the same elements in unchanged order.
Container and Iterable and Sized (equivalent to Collection in python >=3.6) tuple containing the same elements in sorted order if orderable and otherwise kept in the order of iteration.

The function recurses into these container types to perform the same replacement, and leaves objects of other types untouched.

The returned container is hashable if and only if all the values contained in the original data structure are hashable.

Parameters container - Data structure to transform into a nested tuple.
Returns Nested tuple containing the same data as container.
Return type tuple
qnet.utils.indices module

Summary

Classes:

FockIndex	Symbolic index labeling a basis state in a LocalSpace
FockLabe1	Symbolic label that evaluates to the label of a basis state
IdxSym	Index symbol in an indexed sum or product
IndexOverFockSpace	Index range over the integer indices of a LocalSpace basis
IndexOverList	Index over a list of explicit values
IndexOverRange	Index over the inclusive range between two integers
IndexRangeBase	Base class for index ranges

Table 53 - continued from previous page

IntIndex	A symbolic label that evaluates to an integer
SpinIndex	Symbolic label for a spin degree of freedom
StrLabel	Symbolic label that evaluates to a string
SymbolicLabelBase	Base class for symbolic labels

Functions:

product	Cartesian product akin to itertools.product(), but accepting generator functions
yield_from_ranges	
IndexOverRange, IntIndex, SpinIndex, StrLabel	

Reference

qnet.utils.indices.product(*generators, repeat=1)
Cartesian product akin to itertools.product (), but accepting generator functions
Unlike itertools.product () this function does not convert the input iterables into tuples. Thus, it can handle large or infinite inputs. As a drawback, however, it only works with "restartable" iterables (something that iter () can repeatably turn into an iterator, or a generator function (but not the generator iterator that is returned by that generator function)

Parameters

- generators - list of restartable iterators or generator functions
- repeat - number of times generators should be repeated

Adapted from https://stackoverflow.com/q/12093364/

```
qnet.utils.indices.yield_from_ranges(ranges)
```

class qnet.utils.indices.IdxSym
Bases: sympy. core. symbol. Symbol
Index symbol in an indexed sum or product

Parameters

- name (str) - The label for the symbol. It must be a simple Latin or Greek letter, possibly with a subscript, e.g. 'i', 'mu', 'gamma_A'
- primed (int) - Number of prime marks (') associated with the symbol

Notes

The symbol can be used in arbitrary algebraic (sympy) expressions:

```
>>> sympy.sqrt(IdxSym('n') + 1)
sqrt(n + 1)
```

By default, the symbol is assumed to represent an integer. If this is not the case, you can instantiate explicitly as a non-integer:

```
>>> IdxSym('i').is_integer
True
>>> IdxSym('i', integer=False).is_integer
False
```

You may also declare the symbol as positive:

```
>>> IdxSym('i').is_positive
>>> IdxSym('i', positive=True).is_positive
True
```

The primed parameter is used to automatically create distinguishable indices in products of sums, or more generally if the same index occurs in an expression with potentially differnt values:

```
>>> ascii(IdxSym('i', primed=2))
"i''"
>>> IdxSym('i') == IdxSym('i', primed=1)
False
```

It should not be used when creating indices "by hand"

Raises

- ValueError - if name is not a simple symbol label, or if primed <0
- TypeError - if name is not a string
is_finite $=$ True
is_Symbol = True
is_symbol = True
is_Atom = True
primed
incr_primed (incr=1)
Return a copy of the index with an incremented primed
prime
equivalent to inc_primed() with incr=1
default_assumptions = \{'finite': True, 'infinite': False\}
is_infinite = False
class qnet.utils.indices.SymbolicLabelBase (expr)
Bases: object
Base class for symbolic labels
A symbolic label is a SymPy expression that contains one or more $I d x S y m$, and can be rendered into an integer or string label by substituting integer values for each IdxSym.

See Int Index for an example.
substitute (var_map)
Substitute in the expression describing the label.
If the result of the substitution no longer contains any IdxSym, this returns a "rendered" label.

free_symbols

Free symbols in the expression describing the label
class qnet.utils.indices.IntIndex (expr)
Bases: qnet.utils.indices.SymbolicLabelBase
A symbolic label that evaluates to an integer
The label can be rendered via substitute ():

```
>>> i, j = symbols('i, j', cls=IdxSym)
>>> idx = IntIndex(i+j)
>>> idx.substitute({i: 1, j:1})
2
```

An "incomplete" substitution (anything that still leaves a IdxSym in the label expression) will result in another Int Index instance:

```
>>> idx.substitute({i: 1})
IntIndex(Add(IdxSym('j', integer=True), Integer(1)))
```

class qnet.utils.indices.FockIndex (expr)
Bases: qnet.utils.indices.IntIndex
Symbolic index labeling a basis state in a LocalSpace

fock_index

class qnet.utils.indices.StrLabel (expr)
Bases: qnet.utils.indices.SymbolicLabelBase
Symbolic label that evaluates to a string

Example

```
>>> i = symbols('i', cls=IdxSym)
>>> A = symbols('A', cls=sympy.IndexedBase)
>>> lbl = StrLabel(A[i])
>>> lbl.substitute({i: 1})
'A_1'
```

class qnet.utils.indices.FockLabel (expr, $h s$)
Bases: qnet.utils.indices.StrLabel

Symbolic label that evaluates to the label of a basis state
This evaluates first to an index, and then to the label for the basis state of the Hilbert space for that index:

```
>>> hs = LocalSpace('tls', basis=('g', 'e'))
>>> i = symbols('i', cls=IdxSym)
>>> lbl = FockLabel(i, hs=hs)
>>> lbl.substitute({i: 0})
'g'
```

```
fock_index
```

```
substitute (var_map)
```

Substitute in the expression describing the label.
If the result of the substitution no longer contains any IdxSym, this returns a "rendered" label.
class qnet.utils.indices.SpinIndex (expr, $h s$)
Bases: qnet.utils.indices.Strlabel

Symbolic label for a spin degree of freedom
This evaluates to a string representation of an integer or half-integer. For values of e.g. $1,-1,1 / 2,-1 / 2$, the rendered resulting string is " +1 ", " $-1 ", "+1 / 2 ", "-1 / 2$ ", respectively (in agreement with the convention for the basis labels in a spin degree of freedom)

```
>>> i}=\mathrm{ symbols('i', cls=IdxSym)
>>> hs= SpinSpace('s', spin='1/2')
>>> lbl = SpinIndex(i/2, hs)
>>> lbl.substitute({i: 1})
'+1/2'
```

Rendering an expression that is not integer or half-integer valued results in a ValueError.
fock_index
substitute (var_map)
Substitute in the expression describing the label.
If the result of the substitution no longer contains any IdxSym, this returns a "rendered" label.

```
class qnet.utils.indices.IndexRangeBase (index_symbol)
```

Bases: object
Base class for index ranges
Index ranges occur in indexed sums or products.
iter ()
substitute (var_map)
piecewise_one (expr)
Value of 1 for all index values in the range, 0 otherwise
A Piecewise object that is 1 for any value of expr in the range of possible index values, and 0 otherwise.

```
class qnet.utils.indices.IndexOverList(index_symbol,values)
```

Bases: qnet.utils.indices. IndexRangeBase
Index over a list of explicit values

Parameters

- index_symbol (IdxSym) - The symbol iterating over the value
- values (Iist) - List of values for the index
iter()
substitute (var_map)
piecewise_one (expr)
Value of 1 for all index values in the range, 0 otherwise
A Piecewise object that is 1 for any value of expr in the range of possible index values, and 0 otherwise.
class qnet.utils.indices.IndexOverRange (index_symbol, start_from, to, step=1)
Bases: qnet.utils.indices. IndexRangeBase
Index over the inclusive range between two integers

Parameters

- index_symbol (IdxSym) - The symbol iterating over the range
- start_from (int) - Starting value for the index
- to (int) - End value of the index
- step (int) - Step width by which index increases
iter ()
range
substitute (var_map)
piecewise_one (expr)
Value of 1 for all index values in the range, 0 otherwise
A Piecewise object that is 1 for any value of expr in the range of possible index values, and 0 otherwise.
class qnet.utils.indices.IndexOverFockSpace (index_symbol, hs)
Bases: qnet.utils.indices. IndexRangeBase
Index range over the integer indices of a LocalSpace basis

Parameters

- index_symbol (IdxSym) - The symbol iterating over the range
- hs (LocalSpace) - Hilbert space over whose basis to iterate
iter ()
substitute (var_map)
piecewise_one (expr)
Value of 1 for all index values in the range, 0 otherwise
APiecewise object that is 1 for any value of expr in the range of possible index values, and 0 otherwise.

qnet.utils.ordering module

The ordering package implements the default canonical ordering for sums and products of operators, states, and superoperators.
To the extent that commutativity rules allow this, the ordering defined here groups objects of the same Hilbert space together, and orders these groups in the same order that the Hilbert spaces occur in a ProductSpace (lexicographically/by order_index/by complexity). Objects within the same Hilbert space (again, assuming they commute) are ordered by the KeyTuple value that expr_order_key returns for each object. Note that expr_order_key defers to the object's _order_key property, if available. This property should be defined for all QNET Expressions, generally ordering objects according to their type, then their label (if any), then their pre-factor then any other properties.

We assume that quantum operations have either full commutativity (sums, or products of states), or commutativity of objects only in different Hilbert spaces (e.g. products of operators). The former is handled by FullCommutativeHSOrder, the latter by DisjunctCommutativeHSOrder. Theses classes serve as the order_key for sums and products (e.g. OperatorPlus and similar classes)
A user may implement a custom ordering by subclassing (or replacing) FullCommutativeHSOrder and/or DisjunctCommutativeHSOrder, and assigning their replacements to all the desired algebraic classes.

Summary

Classes:

DisjunctCommutativeHSOrder	Auxiliary class that generates the correct pseudo-order relation for operator products.
FullCommutativeHSOrder	Auxiliary class that generates the correct pseudo-order relation for operator sums.
KeyTuple	A tuple that allows for ordering, facilitating the default ordering of Operations.

Functions:
expr_order_key A default order key for arbitrary expressions

Reference

```
class qnet.utils.ordering.KeyTuple
```

 Bases: tuple
 A tuple that allows for ordering, facilitating the default ordering of Operations. It differs from a normal tuple in that it falls back to string comparison if any elements are not directly comparable
qnet.utils.ordering.expr_order_key (expr)
A default order key for arbitrary expressions
class qnet.utils.ordering.DisjunctCommutativeHSOrder (op, space_order=None, op_order=None)
Bases: object
Auxiliary class that generates the correct pseudo-order relation for operator products. Only operators acting on disjoint Hilbert spaces are commuted to reflect the order the local factors have in the total Hilbert space. I.e., sorted (factors, key=DisjunctCommutativeHSOrder) achieves this ordering.
class qnet.utils.ordering.FullCommutativeHSOrder (op, space_order=None, op_order=None)
Bases: object
Auxiliary class that generates the correct pseudo-order relation for operator sums. Operators are first ordered by their Hilbert space, then by their order-key; sorted (factors, key=FullCommutativeHSOrder) achieves this ordering.
qnet.utils.permutations module
Summary

Exceptions:

BadPermutationError	Can be raised to signal that a permutation does not pass the :py:func:check_permutation test.

Functions:
block_perm_and_perms_within_blocks Decompose a permutation into a block permutation and into permutations acting within each block.

Continued on next page

Table 58 - continued from previous page

check_permutation	Verify that a tuple of permutation image points (sigma(1), sigma(2), ..., sigma(n)) is a valid permutation, i.e.
compose_permutations	Find the composite permutation
concatenate_permutations	Concatenate two permutations:
full_block_perm	Extend a permutation of blocks to a permutation for the internal signals of all blocks.
invert_permutation	Compute the image tuple of the inverse permutation.
permutation_from_block_permutations	Reverse operation permutation_to_block_permutations() Compute the concatenation of permutations
permutation_from_disjoint_cycles	Reconstruct a permutation image tuple from a list of disjoint cycles :param cycles: sequence of disjoint cycles :type cycles: list or tuple :param offset: Offset to subtract from the resulting permutation image points :type offset: int :return: permutation image tuple :rtype: tuple
permutation_to_block_permutations	If possible, decompose a permutation into a sequence of permutations each acting on individual ranges of the full range of indices.
permutation_to_disjoint_cycles	Any permutation sigma can be represented as a product of cycles.
permute	Apply a permutation sigma($\{j\}$) to an arbitrary sequence.

Reference

exception qnet.utils.permutations.BadPermutationError
Bases: ValueError
Can be raised to signal that a permutation does not pass the :py:func:check_permutation test.
qnet.utils.permutations.check_permutation (permutation)
Verify that a tuple of permutation image points (sigma(1), sigma(2), ..., sigma(n)) is a valid permutation, i.e. each number from 0 and $\mathrm{n}-1$ occurs exactly once. I.e. the following set-equality must hold:

```
{sigma(1), sigma(2), ..., sigma(n)} == {0, 1, 2, ... n-1}
```

Parameters permutation (tuple) - Tuple of permutation image points
Return type bool
qnet.utils.permutations.invert_permutation (permutation)
Compute the image tuple of the inverse permutation.
Parameters permutation - A valid (cf. :py:func:check_permutation) permutation.
Returns The inverse permutation tuple
Return type tuple
qnet.utils.permutations.permutation_to_disjoint_cycles (permutation)
Any permutation sigma can be represented as a product of cycles. A cycle (c_1,.. c_n) is a closed sequence of indices such that
$\operatorname{sigma}\left(\mathrm{c} _1\right)==\mathrm{c} _2, \operatorname{sigma}\left(\mathrm{c}_{-} 2\right)==\operatorname{sigma}^{\wedge} 2\left(\mathrm{c} _1\right)==\mathrm{c}_{-} 3, \ldots, \operatorname{sigma}\left(\mathrm{c} _(\mathrm{n}-1)\right)==\mathrm{c} _\mathrm{n}, \operatorname{sigma}\left(\mathrm{c} _\mathrm{n}\right)==$ c_1

Any single length-n cycle admits n equivalent representations in correspondence with which element one defines as c_1.

$$
(0,1,2)==(1,2,0)==(2,0,1)
$$

A decomposition into disjoint cycles can be made unique, by requiring that the cycles are sorted by their smallest element, which is also the left-most element of each cycle. Note that permutations generated by disjoint cycles commute. E.g.,

$$
(1,0,3,2)==((1,0),(3,2)) \rightarrow((0,1),(2,3)) \text { normal form }
$$

Parameters permutation (tuple) - A valid permutation image tuple
Returns A list of disjoint cycles, that when comb
Return type list
Raise BadPermutationError
qnet.utils.permutations.permutation_from_disjoint_cycles (cycles, offset=0)
Reconstruct a permutation image tuple from a list of disjoint cycles :param cycles: sequence of disjoint cycles :type cycles: list or tuple :param offset: Offset to subtract from the resulting permutation image points :type offset: int :return: permutation image tuple :rtype: tuple

```
qnet.utils.permutations.permutation_to_block_permutations (permutation)
```

If possible, decompose a permutation into a sequence of permutations each acting on individual ranges of the full range of indices. E.g.

$$
(1,2,0,3,5,4) \rightarrow(1,2,0) \quad[+] \quad(0,2,1)
$$

Parameters permutation (tuple) - A valid permutation image tuple $s=\left(s _0, \ldots s _n\right)$ with $\mathrm{n}>0$

Returns A list of permutation tuples $\left[t=\left(t _0, \ldots, t _n 1\right), u=\left(u _0, \ldots, u _n 2\right)\right.$, . $\left.\ldots, z=\left(z _0, \ldots, z _n m\right)\right]$ such that $s=t[+] u[+] \ldots[+] z$

Return type list of tuples
Raise ValueError
qnet.utils.permutations.permutation_from_block_permutations (permutations)
Reverse operation to permutation_to_block_permutations() Compute the concatenation of permutations

$$
(1,2,0) \quad[+] \quad(0,2,1) \quad-->(1,2,0,3,5,4)
$$

Parameters permutations (list of tuples) - A list of permutation tuples [$t=\left(t _0\right.$, $\left.\left.\ldots, t _n 1\right), u=\left(u _0, \ldots, u _n 2\right), \ldots, z=\left(z _0, \ldots, z _n m\right)\right]$
Returns permutation image tuple $s=t \quad[+] \quad u \quad[+] \ldots$ [+] z
Return type tuple
qnet.utils.permutations.compose_permutations (alpha, beta)
Find the composite permutation

$$
\begin{array}{r}
\sigma:=\alpha \cdot \beta \\
\Leftrightarrow \sigma(j)=\alpha(\beta(j))
\end{array}
$$

Parameters

- a - first permutation image tuple
- beta (tuple) - second permutation image tuple

Returns permutation image tuple of the composition.
Return type tuple
qnet.utils.permutations.concatenate_permutations (a, b)
Concatenate two permutations: $\mathrm{s}=\mathrm{a}[+] \mathrm{b}$

Parameters

- a (tuple) - first permutation image tuple
- \mathbf{b} (tuple) - second permutation image tuple

Returns permutation image tuple of the concatenation.
Return type tuple
qnet.utils.permutations.permute (sequence, permutation)
Apply a permutation sigma($\{\mathrm{j}\})$ to an arbitrary sequence.

Parameters

- sequence - Any finite length sequence $\left[1 _1,1 _2, \ldots 1 _n\right]$. If it is a list, tuple or str, the return type will be the same.
- permutation (tuple) - permutation image tuple

Returns The permuted sequence [l_sigma(1), l_sigma(2), ..., l_sigma(n)]
Raise BadPermutationError or ValueError
qnet.utils.permutations.full_block_perm(block_permutation, block_structure)
Extend a permutation of blocks to a permutation for the internal signals of all blocks. E.g., say we have two blocks of sizes ('block structure') $(2,3)$, then a block permutation that switches the blocks would be given by the image tuple $(1,0)$. However, to get a permutation of all $2+3=5$ channels that realizes that block permutation we would need $(2,3,4,0,1)$

Parameters

- block_permutation (tuple) - permutation image tuple of block indices
- block_structure (tuple) - The block channel dimensions, block structure

Returns A single permutation for all channels of all blocks.
Return type tuple
qnet.utils.permutations.block_perm_and_perms_within_blocks (permutation,
block_structure)
Decompose a permutation into a block permutation and into permutations acting within each block.

Parameters

- permutation (tuple) - The overall permutation to be factored.
- block_structure (tuple) - The channel dimensions of the blocks

Returns (block_permutation, permutations_within_blocks) Where block_permutations is an image tuple for a permutation of the block indices and permutations_within_blocks is a list of image tuples for the permutations of the channels within each block

Return type tuple
qnet.utils.properties_for_args module
Class decorator for adding properties for arguments

Summary

Functions:

properties_for_args \quad| For a class with an attribute arg_names containing a list |
| :--- |
| of names, add a property for every name in that list | of names, add a property for every name in that list.

Reference

qnet.utils.properties_for_args.properties_for_args (cls, arg_names='_arg_names')
For a class with an attribute arg_names containing a list of names, add a property for every name in that list.
It is assumed that there is an instance attribute self._<arg_name>, which is returned by the arg_name property. The decorator also adds a class attribute _has_properties_for_args that may be used to ensure that a class is decorated.

qnet.utils.singleton module

Constant algebraic objects are best implemented as singletons (i.e., they only exist as a single object). This module provides the means to declare singletons:

- The Singleton metaclass ensures that every class based on it produces the same object every time it is instantiated
- The singleton_object () class decorator converts a singleton class definition into the actual singleton object

Singletons in QNET should use both of these.

Note: In order for the Sphinx autodoc extension to correctly recognize singletons, a custom documenter will have to be registered. The Sphinx conf.py file must contain the following:

```
from sphinx.ext.autodoc import DataDocumenter
class SingletonDocumenter(DataDocumenter):
    directivetype = 'data'
    objtype = 'singleton'
    priority = 20
    @classmethod
    def can_document_member(cls, member, membername, isattr, parent):
        return isinstance(member, qnet.utils.singleton.SingletonType)
def setup(app):
    # ... (other hook settings)
    app.add_autodocumenter(SingletonDocumenter)
```


Summary

Classes:
Singleton \quad Metaclass for singletons

Functions:

singleton_object \quad| Class decorator that transforms (and replaces) a class |
| :--- |
| definition (which must have a Singleton metaclass) with |
| the actual singleton object. |

Data:
SingletonType A dummy type that may be used to check whether an object is a Singleton.
\qquad
\qquad : Singleton, SingletonType, singleton_object

Reference

qnet.utils.singleton.singleton_object (cls)
Class decorator that transforms (and replaces) a class definition (which must have a Singleton metaclass) with the actual singleton object. Ensures that the resulting object can still be "instantiated" (i.e., called), returning the same object. Also ensures the object can be pickled, is hashable, and has the correct string representation (the name of the singleton)

If the class defines a _hash_val class attribute, the hash of the singleton will be the hash of that value, and the singleton will compare equal to that value. Otherwise, the singleton will have a unique hash and compare equal only to itself.
class qnet.utils.singleton. Singleton
Bases: abc.ABCMeta
Metaclass for singletons
Any instantiation of a singleton class yields the exact same object, e.g.:

```
>>> class MyClass(metaclass=Singleton) :
... pass
>>> a = MyClass()
>>> b = MyClass()
>>> a is b
True
```

You can check that an object is a singleton using:

```
>>> isinstance(a, SingletonType)
True
```

qnet.utils.singleton.SingletonType $=$ <class 'qnet.utils.singleton.SingletonType'>
A dummy type that may be used to check whether an object is a Singleton:

```
isinstance(obj, SingletonType)
```


qnet.utils.testing module

Collection of routines needed for testing. This includes proto-fixtures, i.e. routines that should be imported and then turned into a fixture with the pytest.fixture decorator.

See https://pytest.org/latest/fixture.html

Summary

Classes:
QnetAsciiTestPrinter \quad A Printer subclass for testing

Functions:

check_idempotent_create	Check that an expression is 'idempotent'
datadir	Proto-fixture responsible for searching a folder with the
	same name of test module and, if available, moving all
contents to a temporary directory so tests can use them	
freely.	

Reference

```
class qnet.utils.testing.QnetAsciiTestPrinter(cache=None, settings=None)
```

Bases: qnet.printing.asciiprinter. QnetAsciiPrinter
A Printer subclass for testing
qnet.utils.testing.datadir(tmpdir, request)
Proto-fixture responsible for searching a folder with the same name of test module and, if available, moving all contents to a temporary directory so tests can use them freely.
In any test, import the datadir routine and turn it into a fixture:

```
>>> import pytest
>>> import qnet.utils.testing
>>> datadir = pytest.fixture(qnet.utils.testing.datadir)
```

qnet.utils.testing.check_idempotent_create (expr)

Check that an expression is 'idempotent'

qnet.utils.unicode module

Utils for working with unicode strings

Summary

Functions:

grapheme_len	Number of graphemes in text
ljust	Left-justify text to a total of width
rjust	Right-justify text for a total of width graphemes

Reference

qnet.utils.unicode.grapheme_len (text)
Number of graphemes in text
This is the length of the text when printed::

```
>>> s = 'A'
>>> len(s)
2
>>> grapheme_len(s)
1
```

qnet.utils.unicode.ljust (text, width, fillchar=',')
Left-justify text to a total of width
The width is based on graphemes:

```
>>> s = 'A'
>>> s.ljust(2)
'A'
>>> ljust(s, 2)
'A '
```

qnet.utils.unicode.rjust (text, width, fillchar=' ')
Right-justify text for a total of width graphemes
The width is based on graphemes:

```
>>> s = 'A'
>>> s.rjust(2)
'A'
>>> rjust(s, 2)
' A'
```


Summary

\qquad

FockIndex	Symbolic index labeling a basis state in a LocalSpace
FockLabel	Symbolic label that evaluates to the label of a basis state
IdxSym	Index symbol in an indexed sum or product
IndexOverFockSpace	Index range over the integer indices of a LocalSpace basis
IndexOverList	Index over a list of explicit values
IndexOverRange	Index over the inclusive range between two integers
IntIndex	A symbolic label that evaluates to an integer
Singleton	Metaclass for singletons
SpinIndex	Symbolic label for a spin degree of freedom
StrLabel	Symbolic label that evaluates to a string

\qquad 11 \qquad Functions:
singleton_objjetass decorator that transforms (and replaces) a class definition (which must have a Singleton metaclass) with the actual singleton object.
\qquad _all \qquad Data:

SingletonType \quad A dummy type that may be used to check whether an object is a Singleton:

9.1.5 qnet.visualization package

Visualization routines, e.g. circuit diagrams.
Submodules:

qnet.visualization.circuit_pyx module

Circuit visualization via the pyx package
This requires a working LaTeX installation.

Summary

Functions:

draw_circuit	Generate a graphic representation of circuit and store them in a file.
draw_circuit_canvas	Generate a PyX graphical representation of a circuit ex- pression object.

\qquad : draw_circuit, draw_circuit_canvas

Reference

qnet.visualization.circuit_pyx.draw_circuit_canvas(circuit, hunit=4, vunit=-1.0, rhmargin $=0.1, \quad$ rvmargin $=0.2$, rpermutation_length $=0.4$, draw_boxes=True, permutation_arrows=False) Generate a PyX graphical representation of a circuit expression object.

Parameters

- circuit (ca.Circuit) - The circuit expression
- hunit (float) - The horizontal length unit, default = HUNIT
- vunit $(f l o a t)-$ The vertical length unit, default $=$ VUNIT
- rhmargin (float) - relative horizontal margin, default = RHMARGIN
- rvmargin (float) - relative vertical margin, default = RVMARGIN
- rpermutation_length (float) - the relative length of a permutation circuit, default = RPLENGTH
- draw_boxes (bool) - Whether to draw indicator boxes to denote subexpressions (Concatenation, SeriesProduct, etc.), default = True
- permutation_arrows (bool) - Whether to draw arrows within the permutation visualization, default $=\mathrm{Fal}$ se

Returns A PyX canvas object that can be further manipulated or printed to an output image.
Return type pyx.canvas.canvas
qnet.visualization.circuit_pyx.draw_circuit(circuit, filename, direction='lr', hunit $=4, \quad$ vunit $=-1.0, \quad$ rhmargin $=0.1, \quad r v$ margin $=0.2, \quad$ rpermutation_length $=0.4$, draw_boxes=True, permutation_arrows=False)
Generate a graphic representation of circuit and store them in a file. The graphics format is determined from the file extension.

Parameters

- circuit (ca.Circuit) - The circuit expression
- filename (str) - A filepath to store the output image under. The file name suffix determines the output graphics format
- direction - The horizontal direction of laying out series products. One of 'lr' and $' r l '$. This option overrides a negative value for hunit, default = 'lr'
- hunit $(f l o a t)$ - The horizontal length unit, default $=$ HUNIT
- vunit (float) - The vertical length unit, default = VUNIT
- rhmargin (float) - relative horizontal margin, default = RHMARGIN
- rvmargin (float) - relative vertical margin, default = RVMARGIN
- rpermutation_length (float) - the relative length of a permutation circuit, default = RPLENGTH
- draw_boxes (bool) - Whether to draw indicator boxes to denote subexpressions (Concatenation, SeriesProduct, etc.), default $=$ True
- permutation_arrows (bool) - Whether to draw arrows within the permutation visualization, default = False

Returns True if printing was successful, False if not.
Return type bool

Summary

__all__ Functions:

draw_circuit	Generate a graphic representation of circuit and store them in a file.
draw_circuit_canvas	Generate a PyX graphical representation of a circuit expression object.

9.1.6 Summary

_all__ Exceptions:

AlgebraError	Base class for all algebraic errors
AlgebraException	Base class for all algebraic exceptions
BadLiouvillianError	Raised when a Liouvillian is not of standard Lindblad form.
BasisNotSetError	Raised if the basis or a Hilbert space dimension is unavailable
CannotConvertToSLH	Raised when a circuit algebra object cannot be converted to SLH
CannotEliminateAutomatically	Raised when attempted automatic adiabatic elimination fails.
CannotSimplify	Raised when a rule cannot further simplify an expression
CannotSymbolicallyDiagonalize	Matrix cannot be diagonalized analytically.
CannotVisualize	Raised when a circuit cannot be visually represented.
IncompatibleBlockStructures	Raised for invalid block-decomposition
InfiniteSumError	Raised when expanding a sum into an infinite number of terms
NoConjugateMatrix	Raised when entries of Matrix have no defined conjugate
NonSquareMatrix	Raised when a Matrix fails to be square
OverlappingSpaces	Raised when objects fail to be in separate Hilbert spaces.
SpaceToolargeError	Raised when objects fail to be have overlapping Hilbert spaces.
UnequalSpaces	Raised when objects fail to be in the same Hilbert space.
WrongCDimError	Raised for mismatched channel number in circuit series

\qquad Classes:

Adjoint	Symbolic Adjoint of an operator
BasisKet	Local basis state, identified by index or label
Beamsplitter	Infinite bandwidth beamsplitter component.
Bra	The associated dual/adjoint state for any ket
Braket	The symbolic inner product between two states
CPermutation	Channel permuting circuit
Circuit	Base class for the circuit algebra elements
CircuitSymbol	Symbolic circuit element
CoherentDriveCC	Coherent displacement of the input field
CoherentStateKet	Local coherent state, labeled by a complex amplitude
Commutator	Commutator of two operators
Component	Base class for circuit components
Concatenation	Concatenation of circuit elements
Create	Bosonic creation operator
Destroy	Bosonic annihilation operator
Displace	Unitary coherent displacement operator
Eq	Symbolic equation
Expression	Base class for all QNET Expressions
Feedback	Feedback on a single channel of a circuit
FockIndex	Symbolic index labeling a basis state in a LocalSpace
FockLabel	Symbolic label that evaluates to the label of a basis state
HilbertSpace	Base class for Hilbert spaces
IdxSym	Index symbol in an indexed sum or product
IndexOverFockSpace	Index range over the integer indices of a LocalSpace basis
IndexOverList	Index over a list of explicit values
IndexOverRange	Index over the inclusive range between two integers
IndexedSum	Base class for indexed sums

Continued on next page

Table 67 - continued from previous page

Int Index	A symbolic label that evaluates to an integer
Jminus	Lowering operator on a spin space
Jplus	Raising operator of a spin space
Jz	Spin (angular momentum) operator in z-direction
KetBra	Outer product of two states
Ket IndexedSum	Indexed sum over Kets
KetPlus	Sum of states
KetSymbol	Symbolic state
LocalKet	A state on a Local Space
Localoperator	Base class for "known" operators on a LocalSpace
LocalSigma	Level flip operator between two levels of a LocalSpace
LocalSpace	Hilbert space for a single degree of freedom.
MatchDict	Result of a Pattern.match ()
Matrix	Matrix of Expressions
NullspaceProjector	Projection operator onto the nullspace of its operand
Operation	Base class for "operations"
Operator	Base class for all quantum operators.
OperatorDerivative	Symbolic partial derivative of an operator
OperatorIndexedSum	Indexed sum over operators
OperatorPlus	Sum of Operators
OperatorPlusMinusCC	An operator plus or minus its complex conjugate
OperatorSymbol	Symbolic operator
OperatorTimes	Product of operators
OperatorTimesKet	Product of an operator and a state.
OperatorTrace	(Partial) trace of an operator
Pattern	Pattern for matching an expression
Phase	Unitary "phase" operator
PhaseCC	Coherent phase shift cicuit component
ProductSpace	Tensor product of local Hilbert spaces
PseudoInverse	Unevaluated pseudo-inverse X^{+}of an operator X
QuantumAdjoint	Base class for adjoints of quantum expressions
QuantumDerivative	Symbolic partial derivative
Quantumexpression	Base class for expressions associated with a Hilbert space
QuantumIndexedSum	Base class for indexed sums
QuantumOperation	Base class for operations on quantum expression
QuantumPlus	General implementation of addition of quantum expressions
QuantumSymbol	Symbolic element of an algebra
QuantumTimes	General implementation of product of quantum expressions
SLH	Element of the SLH algebra
SPost	Linear post-multiplication operator
SPre	Linear pre-multiplication operator
Scalar	Base class for Scalars
ScalarDerivative	Symbolic partial derivative of a scalar
Scalarexpression	Base class for scalars with non-scalar arguments
ScalarIndexedSum	Indexed sum over scalars
ScalarPlus	Sum of scalars
ScalarPower	A scalar raised to a power
Scalartimes	Product of scalars
ScalarTimesKet	Product of a Scalar coefficient and a ket
ScalarTimesOperator	Product of a Scalar coefficient and an Operator

Table 67 - continued from previous page

ScalarTimesQuantumExpression	Product of a Scalar and a QuantumExpression
ScalarTimesSuperOperator	Product of a Scalar coefficient and a SuperOperator
ScalarValue	Wrapper around a numeric or symbolic value
SeriesInverse	Symbolic series product inversion operation
SeriesProduct	The series product circuit operation.
SingleQuantumOperation	Base class for operations on a single quantum expression
Singleton	Metaclass for singletons
SpinIndex	Symbolic label for a spin degree of freedom
SpinOperator	Base class for operators in a spin space
SpinSpace	A Hilbert space for an integer or half-integer spin system
Squeeze	Unitary squeezing operator
State	Base class for states in a Hilbert space
StateDerivative	Symbolic partial derivative of a state
StrLabel	Symbolic label that evaluates to a string
SuperAdjoint	Adjoint of a super-operator
SuperOperator	Base class for super-operators
SuperOperatorDerivative	Symbolic partial derivative of a super-operator
SuperOperatorPlus	A sum of super-operators
SuperOperatorSymbol	Symbolic super-operator
SuperOperatorTimes	Product of super-operators
SuperOperatorTimesOperator	Application of a super-operator to an operator
TensorKet	A tensor product of kets

_all__ Functions:

FB	Wrapper for Feedback, defaulting to last channel
KroneckerDelta	Kronecker delta symbol
LocalProjector	A projector onto a specific level of a LocalSpace
PauliX	Pauli-type X-operator
PauliY	Pauli-type Y-operator
PauliZ	Pauli-type Z-operator
SLH_to_qutip	Generate and return QuTiP representation matrices for the Hamiltonian and the collapse ol
SpinBasisKet	Constructor for a BasisKet for a SpinSpace
Sum	Instantiator for an arbitrary indexed sum.
adjoint	Return the adjoint of an obj.
anti_commutator	If B ! = None, return the anti-commutator $\{A, B\}$, otherwise return the super-operator $\{$
ascii	Return an ASCII representation of the given object / expression
block_matrix	Generate the operator matrix with quadrants
circuit_identity	Return the circuit identity for n channels
commutator	Commutator of A and B
configure_printing	Context manager for temporarily changing the printing system.
connect	Connect a list of components according to a list of connections.
convert_to_qutip	Convert a QNET expression to a qutip object
convert_to_sympy_matrix	Convert a QNET expression to an explicit n x n instance of sympy.Matrix, where n is th
decompose_space	Simplifies OperatorTrace expressions over tensor-product spaces by turning it into iterated
diagm	Generalizes the diagonal matrix creation capabilities of numpy.diag to Matrix objects.
dotprint	Return the 'DOT‘_ (graph) description of an Expression tree as a string
draw_circuit	Generate a graphic representation of circuit and store them in a file.
draw_circuit_canvas	Generate a PyX graphical representation of a circuit expression object.
eval_adiabatic_limit	Compute the limiting SLH model for the adiabatic approximation

expand_commutators_leibniz	Recursively expand commutators in expr according to the Leibniz rule.
extract_channel	Create a CPermutation that extracts channel k
factor_coeff	Factor out coefficients of all factors.
factor_for_trace	Given a Local Space ls to take the partial trace over and an operator op, factor the trace
getABCD	Calculate the ABCD-linearization of an SLH model
get_coeffs	Create a dictionary with all Operator terms of the expression (understood as a sum) as key
hstackm	Generalizes numpy.hstack to Matrix objects.
identity_matrix	Generate the N -dimensional identity matrix.
init_algebra	Initialize the algebra system
init_printing	Initialize the printing system.
latex	Return a LaTeX representation of the given object / expression
lindblad	Return the super-operator Lindblad term of the Lindblad operator C
liouvillian	Return the Liouvillian super-operator associated with H and Ls
Iiouvillian_normal_form	Return a Hamilton operator H and a minimal list of collapse operators Ls that generate the
map_channels	Create a CPermuation based on a dict of channel mappings
match_pattern	Recursively match expr with the given expr_or_pattern
move_drive_to_H	Move coherent drives from the Lindblad operators to the Hamiltonian.
no_instance_caching	Temporarily disable instance caching in create ()
pad_with_identity	Pad a circuit by adding a n-channel identity circuit at index k
pattern	'Flat' constructor for the Pattern class
pattern_head	Constructor for a Pattern matching a ProtoExpr
prepare_adiabatic_limit	Prepare the adiabatic elimination on an SLH object
print_tree	Print a tree representation of the structure of expr
rewrite_with_operator_pm_cc	Try to rewrite expr using OperatorPlusMinusCC
singleton_object	Class decorator that transforms (and replaces) a class definition (which must have a Single
sqrt	Square root of a Scalar or scalar value
srepr	Render the given expression into a string that can be evaluated in an appropriate context to
substitute	Substitute symbols or (sub-)expressions with the given replacements and re-evalute the res
symbols	The symbols () function from SymPy
temporary_instance_cache	Use a temporary cache for instances in create ()
temporary_rules	Allow temporary modification of rules for create ()
tex	Alias for latex ()
tree	Give the output of tree as a multiline string, using line drawings to visualize the hierarchy
try_adiabatic_elimination	Attempt to automatically do adiabatic elimination on an SLH object
unicode	Return a unicode representation of the given object / expression
vstackm	Generalizes numpy.vstack to Matrix objects.
WC	Constructor for a wildcard-P attern
zerosm	Generalizes numpy . zeros to Matrix objects.

CIdentity	Single pass-through channel; neutral element of SeriesProduct
Circuitzero	Zero circuit, the neutral element of Concatenation
FullSpace	The ‘full space', i.e.
II	Ident ityOperator constant (singleton) object.
IdentityOperator	IdentityOperator constant (singleton) object.
IdentitySuperoperator	Neutral element for product of super-operators
One	The neutral element with respect to scalar multiplication
SingletonType	A dummy type that may be used to check whether an object is a Singleton:
TrivialKet	TrivialKet constant (singleton) object.
TrivialSpace	The 'nullspace', i.e.
Zero	The neutral element with respect to scalar addition
ZeroKet	ZeroKet constant (singleton) object for the null-state.
ZeroOperator	ZeroOperator constant (singleton) object.
ZeroSuperOperator	Neutral element for sum of super-operators
tr	Instantiate while applying automatic simplifications

Python Module Index

```
q
qnet,43
qnet.algebra,44
qnet.algebra.core, 44
qnet.algebra.core.abstract_algebra,44
qnet.algebra.core.abstract_quantum_algebqqet.printing.sympy,147
    4 9
qnet.algebra.core.algebraic_properties, qnet.printing.unicodeprinter, 149
    5 6
qnet.algebra.core.circuit_algebra,61
qnet.algebra.core.exceptions,74
qnet.algebra.core.hilbert_space_algebra,
    7 6
qnet.algebra.core.indexed_operations,
    8 1
qnet.algebra.core.matrix_algebra, 82
qnet.algebra.core.operator_algebra, }8
qnet.algebra.core.scalar_algebra, }9
qnet.algebra.core.state_algebra, 99
qnet.algebra.core.super_operator_algebra,4net.visualization.circuit_pyx, 171
    105
qnet.algebra.library,113
qnet.algebra.library.circuit_components,
    113
qnet.algebra.library.fock_operators, 115
qnet.algebra.library.pauli_matrices,118
qnet.algebra.library.spin_algebra,119
qnet.algebra.pattern_matching, 124
qnet.algebra.toolbox, 128
qnet.algebra.toolbox.circuit_manipulation,
    128
qnet.algebra.toolbox.commutator_manipulation,
    1 2 9
qnet.algebra.toolbox.core, 130
qnet.algebra.toolbox.equation,131
qnet.convert,138
qnet.convert.to_qutip, 138
qnet.convert.to_sympy_matrix, 139
qnet.printing, 140
```


Symbols

apply_mtd_to_lhs()
__len__ () (qnet.algebra.core.hilbert_space_algebra.HilbertSpace (qnet.algebra.toolbox.equation.Eq method), method), 77 133
__ne__() (qnet.algebra.core.abstract_algebra.Expressionapply_mtd_to_rhs () method), 49
(qnet.algebra.toolbox.equation.Eq method),

A

A (qnet.algebra.core.operator_algebra.Commutator attribute), 90
accept_bras() (in module qnet.algebra.core.algebraic_properties), 61
add_rule() (qnet.algebra.core.abstract_algebra.Expressia class method), 45
Adjoint (class in qnet.algebra.core.operator_algebra), 91
adjoint() (in module qnet.algebra.core.operator_algebra), 93
adjoint() (qnet.algebra.core.abstract_quantum_algebra method), 50
adjoint() (qnet.algebra.core.matrix_algebra.Matrix method), 84
AlgebraError, 74
AlgebraException, 74
all_symbols (qnet.algebra.core.abstract_algebra.Expressions (qnet.algebra.core.abstract_algebra.Operation atattribute), 49
all_symbols (qnet.algebra.toolbox.equation.Eq attribute), 134
ampl (qnet.algebra.core.state_algebra.CoherentStateKet attribute), 102
anti_commutator() (in module qnet.algebra.core.super_operator_algebra), 108
apply() (qnet.algebra.core.abstract_algebra.Expression method), 47
apply() (qnet.algebra.toolbox.equation.Eq method), 132
apply_mtd() (qnet.algebra.toolbox.equation.Eq method), 133

133
apply_rule() (qnet.algebra.core.abstract_algebra.Expression method), 48
apply_rules() (qnet.algebra.core.abstract_algebra.Expression method), 48
apply_to_lhs() (qnet.algebra.toolbox.equation.Eq method), 133
apply_to_rhs() (qnet.algebra.toolbox.equation.Eq method), 133
ARGNAMES (qnet.algebra.core.circuit_algebra.Component attribute), 67
ARGNAMES (qnet.algebra.library.circuit_components.Beamsplitter attribute), 115
ARGNAMES (qnet.algebra.library.circuit_components.CoherentDriveCC attribute), 114
ARGNAMES (qnet.algebra.library.circuit_components.PhaseCC attribute), 114
args (qnet.algebra.core.abstract_algebra.Expression attribute), 46 net.algebra.c
tribute), 49
args (qnet.algebra.core.abstract_quantum_algebra.QuantumSymbol attribute), 52
args (qnet.algebra.core.circuit_algebra.CircuitSymbol attribute), 66
args (qnet.algebra.core.circuit_algebra.Component attribute), 67
args (qnet.algebra.core.circuit_algebra.CPermutation attribute), 68
args (qnet.algebra.core.circuit_algebra.SLH attribute), 65
args (qnet.algebra.core.hilbert_space_algebra.LocalSpace attribute), 78
args (qnet.algebra.core.indexed_operations.IndexedSum attribute), 81

```
args (qnet.algebra.core.matrix_algebra.Matrix at- Beamsplitter (class in
        tribute), 83
args (qnet.algebra.core.operator_algebra.LocalOperator
        attribute), }8
    block_matrix() (in module
        (qnet.algebra.core.operator_algebra.LocalSigma
        attribute), }8
args (qnet.algebra.core.scalar_algebra.ScalarValue at-
        tribute), }9
args (qnet.algebra.core.state_algebra.BasisKet at-
        tribute), 101
args (qnet.algebra.core.state_algebra.CoherentStateKet
        attribute),102
as_dict (qnet.algebra.toolbox.equation.Eq attribute),
        132
ascii()(in module qnet.printing), 152
assoc() (in module
        qnet.algebra.core.algebraic_properties),
        58
assoc_indexed() (in module
        qnet.algebra.core.algebraic_properties),
        58
B
B (qnet.algebra.core.operator_algebra.Commutator at-
    tribute), }9
BadLiouvillianError,75
BadPermutationError, 164
base (qnet.algebra.core.scalar_algebra.ScalarPower at-
        tribute), }9
basis_ket_zero_outside_hs() (in module
        qnet.algebra.core.algebraic_properties), 61 C
basis_labels(qnet.algebra.core.hilbert_space_algebrattilqertSpgGevertToSLH, }7
        attribute),77 CannotEliminateAutomatically, 75
basis_labels(qnet.algebra.core.hilbert_space_algebrad_qGalSegGempli i y, }7
        attribute),78 CannotSymbolicallyDiagonalize,75
basis_labels(qnet.algebra.core.hilbert_space_algebrad&rad\elletSpagealize, 75
        attribute),80 cdim (qnet.algebra.core.circuit_algebra.Circuit at-
basis_state() (in module tribute),63
        qnet.convert.to_sympy_matrix),140 cdim (qnet.algebra.core.circuit_algebra.CircuitSymbol
basis_state()(qnet.algebra.core.hilbert_space_algebra.HilbertSq&&bute),66
        method),77 CDIM (qnet.algebra.core.circuit_algebra.Component at-
basis_state() (qnet.algebra.core.hilbert_space_algebra.LocalSpq&&|te), 67
        method), 78 cdim (qnet.algebra.core.circuit_algebra.Concatenation
basis_state() (qnet.algebra.core.hilbert_space_algebra.ProductSaqigute), 69
        method), 80 cdim (qnet.algebra.core.circuit_algebra.CPermutation
basis_states(qnet.algebra.core.hilbert_space_algebra.HilbertSpq4qfibute),68
        attribute),77 cdim (qnet.algebra.core.circuit_algebra.Feedback at-
basis_states (qnet.algebra.core.hilbert_space_algebra.LocalSpafgqbute), }6
        attribute),78
                            cdim (qnet.algebra.core.circuit_algebra.SeriesInverse
basis_states(qnet.algebra.core.hilbert_space_algebra.ProductSaq4&&ute), 70
        attribute), 80
BasisKet (class in qnet.algebra.core.state_algebra),
        100
BasisNotSetError,75
    cdim (qnet.algebra.core.circuit_algebra.SeriesProduct
    attribute),69
    cdim (qnet.algebra.core.circuit_algebra.SLH attribute),
    6 5
```

```
CDIM(qnet.algebra.library.circuit_components.Beamsplitteroncatenate_slh()
    attribute),115 (qnet.algebra.core.circuit_algebra.SLH
CDIM(qnet.algebra.library.circuit_components.CoherentDriveCC method),65
    attribute),114 Concatenation (class in
CDIM(qnet.algebra.library.circuit_components.PhaseCC
        attribute),114
check_cdims() (in module
    qnet.algebra.core.algebraic_properties),
    6 0
check_idempotent_create() (in module conjugate()(qnet.algebra.core.matrix_algebra.Matrix
    qnet.utils.testing), }16
check_permutation() (in
    qnet.utils.permutations), 164
check_rules_dict() (in
    qnet.utils.check_rules), 156
CIdentity (in
    qnet.algebra.core.circuit_algebra),68
Circuit (class in qnet.algebra.core.circuit_algebra),
    6 2
circuit_identity() (in module
        qnet.algebra.core.circuit_algebra), 70
CircuitSymbol (class
        qnet.algebra.core.circuit_algebra), 66
CircuitZero (in module
    qnet.algebra.core.circuit_algebra),68 convert_to_scalars() (in module
coeff (qnet.algebra.core.abstract_quantum_algebra.ScalarTimesQuqmettua|lgxpressimn.algebraic_properties),
    attribute), }5
        6 1
coherent_input() (qnet.algebra.core.circuit_algebra.Ciocuiert_to_spaces() (in module
        method),64
CoherentDriveCC
    (class
        qnet.algebra.library.circuit_components),
        113
CoherentStateKet (class
        qnet.algebra.core.state_algebra), 102
collect_scalar_summands() (in module CPermutation (class in
        qnet.algebra.core.algebraic_properties),
        59
collect_summands() (in module
    qnet.algebra.core.algebraic_properties),
        5 8
Commutator (class
        qnet.algebra.core.operator_algebra), 90
commutator() (in module
        qnet.algebra.core.super_operator_algebra),
        108
commutator_order() (in module
        qnet.algebra.core.algebraic_properties),
        6 1
Component (class
        qnet.algebra.core.circuit_algebra), 66
compose_permutations() (in
        qnet.utils.permutations), 165
concatenate_permutations() (in
        qnet.utils.permutations), 166
```

create () (qnet.algebra.core.scalar_algebra.ScalarTimes diagm () (in module qnet.algebra.core.matrix_algebra), class method), 9684
create () (qnet.algebra.core.scalar_algebra.ScalarValue diff() (qnet.algebra.core.abstract_quantum_algebra.QuantumExpressio class method), 95 method), 51
create() (qnet.algebra.core.state_algebra.KetIndexedSundimension (qnet.algebra.core.hilbert_space_algebra.HilbertSpace class method), 105 attribute), 77
create() (qnet.algebra.core.state_algebra.ScalarTimesKetimension (qnet.algebra.core.hilbert_space_algebra.LocalSpace class method), 103 attribute), 78
create() (qnet.algebra.core.state_algebra.TensorKet dimension(qnet.algebra.core.hilbert_space_algebra.ProductSpace class method), 102 attribute), 80
create () (qnet.algebra.core.super_operator_algebra.Supḋ்̇pjeratorTimws zero() (in module class method), 106 qnet.algebra.core.algebraic_properties),
creduce () (qnet.algebra.core.circuit_algebra.Circuit 61
method), 64
DisjunctCommutativeHSOrder (class in qnet.utils.ordering), 163
D
Displace (class in qnet.algebra.library.fock_operators),
dag () (qnet.algebra.core.abstract_quantum_algebra.QuantumExpression method), 50
dag () (qnet.algebra.core.matrix_algebra.Matrix
displacement (qnet.algebra.library.circuit_components.CoherentDrive method), 84
datadir() (in module qnet.utils.testing), 169 attribute), 114
displacement (qnet.algebra.library.fock_operators.Displace attribute), 117
decompose_space() (in module doit() (qnet.algebra.core.abstract_algebra.Expression qnet.algebra.core.operator_algebra), 92 method), 46
default_assumptions (qnet.utils.indices.IdxSym doit() (qnet.algebra.core.indexed_operations.IndexedSum attribute), 159 method), 81
DEFAULTS (qnet.algebra.core.circuit_algebra.Component doit () (qnet.algebra.core.operator_algebra.Commutator attribute), 67 method), 90
DEFAULTS (qnet.algebra.library.circuit_components.Beamsqłittert) (qnet.algebra.core.operator_algebra.OperatorPlusMinusCC attribute), 115 method), 91
DEFAULTS (qnet.algebra.library.circuit_components.Cohereamintec) (qnet.printing.base.QnetBasePrinter attribute), 114 method), 142
DEFAULTS (qnet.algebra.library.circuit_components.Phasecorint () (qnet.printing.sreprprinter.IndentedSympyReprPrinter attribute), 114 method), 146
del_rules() (qnet.algebra.core.abstract_algebra.Expreßbt\#print () (in module qnet.printing.dot), 144 class method), 46 draw_circuit() (in module
delegate_to_method (qnet.algebra.core.circuit_algebra.Feedback attribute), 69
draw_circuit_canvas() (in
module qnet.visualization.circuit_pyx), 171
delegate_to_method (qnet.algebra.core.circuit_algebra.SeriesInverse E attribute), 70 element_wise () (qnet.algebra.core.matrix_algebra.Matrix
delegate_to_method() (in module qnet.algebra.core.algebraic_properties), 61
derationalize_denom() (in module qnet.printing.sympy), 147
derivative_via_diff() (in module qnet.algebra.core.algebraic_properties), 61
derivs (qnet.algebra.core.abstract_quantum_algebra.Quaatum\&enivativer () (qnet.printing.sreprprinter.QnetSReprPrinter attribute), 54 method), 146
Destroy (class in qnet.algebra.library.fock_operators), ensure_local_space() (in module 116 qnet.algebra.core.abstract_quantum_algebra), 56

```
Eq (class in qnet.algebra.toolbox.equation),131
eval_adiabatic_limit() (in module
    qnet.algebra.core.circuit_algebra), }7
evaluate_at () (qnet.algebra.core.abstract_quantum_a
    method), 54
exp (qnet.algebra.core.scalar_algebra.ScalarPower at-
        tribute), }9
expand() (qnet.algebra.core.abstract_quantum_algebra.
        method), 51
expand() (qnet.algebra.core.circuit_algebra.SLH
        method),65
expand() (qnet.algebra.core.matrix_algebra.Matrix
        method), }8
expand_commutators_leibniz() (in module
        qnet.algebra.toolbox.commutator_manipulation), free_symbols(qnet.algebra.core.abstract_quantum_algebra.Quantums
        130
expand_in_basis()
        (qnet.algebra.core.operator_algebra.Operator
        method), }8
expr_labelfunc() (in module qnet.printing.dot),
        143
expr_order_key() (in module qnet.utils.ordering),
        163
Expression (class in
        qnet.algebra.core.abstract_algebra), 44
extended_arg_patterns()
        (qnet.algebra.pattern_matching.Pattern
        method),126
extract_channel() (in module
        qnet.algebra.core.circuit_algebra), }7
F
factor_coeff() (in module
        qnet.algebra.core.operator_algebra), 93
factor_for_space()
    (qnet.algebra.core.abstract_quantum_algebra.QuantumTim@ket.algebra.core.hilbert_space_algebra),
    method),53 79
factor_for_trace() (in module
    qnet.algebra.core.operator_algebra), 92
FB () (in module qnet.algebra.core.circuit_algebra), }7
Feedback (class in qnet.algebra.core.circuit_algebra),
    6 9
feedback() (qnet.algebra.core.circuit_algebra.Circuit
        method), }6
filter_cid() (in module
    qnet.algebra.core.algebraic_properties),
    60
filter_neutral() (in module
    qnet.algebra.core.algebraic_properties),
    58
findall() (qnet.algebra.pattern_matching.Pattern
    method),126
finditer() (qnet.algebra.pattern_matching.Pattern
    method),126
    get_blocks() (qnet.algebra.core.circuit_algebra.Circuit
        method),63
get_coeffs() (in module
qnet.algebra.core.operator_algebra), }9
getABCD() (in module
        qnet.algebra.core.circuit_algebra), }7
grapheme_len() (in module qnet.utils.unicode), 170
H
H (qnet.algebra.core.circuit_algebra.SLH attribute), }6
H (qnet.algebra.core.matrix_algebra.Matrix attribute), 84
has_basis(qnet.algebra.core.hilbert_space_algebra.HilbertSpace
                attribute), }7
        s is (qnet.algebra.core.hilbert_space_algebra.LocalSpace
        attribute), }7
```

has_basis (qnet.algebra.core.hilbert_space_algebra.ProđurdquatcedSympyReprPrinter (class in
attribute), 80
has_minus_prefactor()
qnet.printing.sreprprinter), 146
(qnet.algebra.core.operator_algebra.ScalarTimesOperator attribute), 101
static method), 90
HilbertSpace (class in qnet.algebra.core.hilbert_space_algebra), 76
hstackm() (in module
qnet.algebra.core.matrix_algebra), 84
I
idem () (in module qnet.algebra.core.algebraic_properties),
58 i
IDENTIFIER (qnet.algebra.core.circuit_algebra.Component qnet.algebra.core.algebraic_properties), 61 attribute), 67 IndexedSum (class in
identifier (qnet.algebra.core.operator_algebra.LocalOperator qnet.algebra.core.indexed_operations), 81 attribute), 88 IndexOverFockSpace (class in qnet.utils.indices),
IDENTIFIER (qnet.algebra.library.circuit_components.Beamsplitter 162 attribute), 115

IndexOverList (class in qnet.utils.indices), 161
 attribute), 114 IndexRangeBase (class in qnet.utils.indices), 161
IDENTIFIER (qnet.algebra.library.circuit_components.PhđeferniteSumError, 74 attribute), 114
init_algebra() (in module qnet.algebra), 138
identifier(qnet.algebra.library.fock_operators.Create init_printing()(in module qnet.printing), 151 attribute), 116 instance_caching (qnet.algebra.core.abstract_algebra.Expression
identifier(qnet.algebra.library.fock_operators.Destroy attribute), 45 attribute), 116
instantiate() (qnet.algebra.pattern_matching.ProtoExpr
identity_matrix() (in module qnet.algebra.core.matrix_algebra), 85
IdentityOperator (in module qnet.algebra.core.operator_algebra), 88
IdentitySuperOperator (in module qnet.algebra.core.super_operator_algebra), 106
IdxSym (class in qnet.utils.indices), 158
II (in module qnet.algebra.core.operator_algebra), 88
imag (qnet.algebra.core.matrix_algebra.Matrix attribute), 83
imag (qnet.algebra.core.scalar_algebra.Scalar attribute), 94
imag (qnet.algebra.core.scalar_algebra.ScalarIndexedSum attribute), 97
imag (qnet.algebra.core.scalar_algebra.ScalarValue attribute), 95
implied_local_space() (in module qnet.algebra.core.algebraic_properties), 60
IncompatibleBlockStructures, 75
incr_primed() (qnet.utils.indices.IdxSym method), 159
IndentedSReprPrinter (class in qnet.printing.sreprprinter), 146
method), 128
intersect() (qnet.algebra.core.hilbert_space_algebra.HilbertSpace method), 76
intersect() (qnet.algebra.core.hilbert_space_algebra.LocalSpace method), 79
intersect() (qnet.algebra.core.hilbert_space_algebra.ProductSpace method), 80
Int Index (class in qnet.utils.indices), 159
invert_permutation() (in module qnet.utils.permutations), 164
is_Atom (qnet.utils.indices.IdxSym attribute), 159
is_finite (qnet.utils.indices.IdxSym attribute), 159
is_infinite (qnet.utils.indices.IdxSym attribute),
is_scalar() (in module qnet.algebra.core.scalar_algebra), 98
is_strict_subfactor_of() (qnet.algebra.core.hilbert_space_algebra.HilbertSpace method), 77
is_strict_subfactor_of()
(qnet.algebra.core.hilbert_space_algebra.LocalSpace method), 79
is_strict_subfactor_of()
in (qnet.algebra.core.hilbert_space_algebra.ProductSpace method), 80
is_strict_tensor_factor_of()
(qnet.algebra.core.hilbert_space_algebra.HilbertSpatcBra (class in qnet.algebra.core.state_algebra), 104 method), 77 (class in
is_Symbol (qnet.utils.indices.IdxSym attribute), 159
is_symbol (qnet.utils.indices.IdxSym attribute), 159
is_tensor_factor_of() (qnet.algebra.core.hilbert_space_algebra.HilbertSpace 100
method), 77 KeyTuple (class in qnet.utils.ordering), 163
 attribute), 50 qnet.algebra.core.scalar_algebra), 97
is_zero (qnet.algebra.core.matrix_algebra.Matrix at- kwargs (qnet.algebra.core.abstract_algebra.Expression tribute), 83
isbra (qnet.algebra.core.state_algebra.Bra attribute), 104
isbra (qnet.algebra.core.state_algebra.State attribute),
99
isdisjoint() (qnet.algebra.core.hilbert_space_algebra
qnet.algebra.core.state_algebra), 104
KetPlus (class in qnet.algebra.core.state_algebra), 102
Ketsymbol (class in qnet.algebra.core.state_algebra), attribute), 46
kwargs (qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative method), 77
isket (qnet.algebra.core.state_algebra.Bra attribute), 104
isket (qnet.algebra.core.state_algebra.State attribute), 99
iter() (qnet.utils.indices.IndexOverFockSpace method), 162
iter() (qnet.utils.indices.IndexOverList method), 161
iter() (qnet.utils.indices.IndexOverRange method), 162
iter() (qnet.utils.indices.IndexRangeBase method), 161
J
j (qnet.algebra.core.operator_algebra.LocalSigma attribute), 89
Jminus (class in qnet.algebra.library.spin_algebra), 122
Jmjmcoeff () (in module qnet.algebra.library.spin_algebra), 123
Jpjmcoeff() (in module qnet.algebra.library.spin_algebra), 122
Jplus (class in qnet.algebra.library.spin_algebra), 122
Jz (class in qnet.algebra.library.spin_algebra), 121
Jzjmcoeff () (in module qnet.algebra.library.spin_algebra), 123

K

k (qnet.algebra.core.operator_algebra.LocalSigma attribute), 89
ket (qnet.algebra.core.state_algebra.Bra attribute), 103
ket (qnet.algebra.core.state_algebra.BraKet attribute), 104
ket (qnet.algebra.core.state_algebra.KetBra attribute), 104
ket (qnet.algebra.core.state_algebra.OperatorTimesKet attribute), 103
ket (qnet.algebra.core.state_algebra.State attribute), 99
attribute), 54
kwargs (qnet.algebra.core.abstract_quantum_algebra.QuantumSymbol attribute), 52
Hkithegts(xquet.algebra.core.circuit_algebra.CircuitSymbol attribute), 66
kwargs (qnet.algebra.core.circuit_algebra.Component attribute), 67
kwargs (qnet.algebra.core.circuit_algebra.Feedback attribute), 69
kwargs (qnet.algebra.core.hilbert_space_algebra.LocalSpace attribute), 79
kwargs (qnet.algebra.core.indexed_operations.IndexedSum attribute), 81
kwargs (qnet.algebra.core.operator_algebra.LocalOperator attribute), 88
kwargs (qnet.algebra.core.operator_algebra.OperatorPlusMinusCC attribute), 91
kwargs (qnet.algebra.core.operator_algebra.OperatorTrace attribute), 91
kwargs (qnet.algebra.core.state_algebra.LocalKet attribute), 100

L (qnet.algebra.core.circuit_algebra.SLH attribute), 65
label (qnet.algebra.core.abstract_quantum_algebra.QuantumSymbol attribute), 52
label (qnet.algebra.core.circuit_algebra.CircuitSymbol attribute), 66
label (qnet.algebra.core.hilbert_space_algebra.LocalSpace attribute), 78
label (qnet.algebra.core.state_algebra.Bra attribute), 104
latex() (in module qnet.printing), 153
lhs (qnet.algebra.toolbox.equation.Eq attribute), 132
lindblad() (in module qnet.algebra.core.super_operator_algebra), 108
liouvillian() (in module qnet.algebra.core.super_operator_algebra), 109
liouvillian_normal_form() (in module qnet.algebra.core.super_operator_algebra),

109
l just () (in module qnet.utils.unicode), 170

attribute), $76 \quad$ attribute), 120
move_drive_to_H() (in module qnet.algebra.core.circuit_algebra), 72
local_factors (qnet.algebra.core.hilbert_space_algebra.LocalSpace
attribute), 79
local_factors (qnet.algebra.core.hilbert_space_algebrq. Pqteqt.\&qtg\&bace.core.abstract_quantum_algebra.QuantumDerivative attribute), 80
LocalKet (class in qnet.algebra.core.state_algebra), 100
LocalOperator (class
qnet.algebra.core.operator_algebra), 87
LocalProjector() (in module qnet.algebra.core.operator_algebra), 89
LocalSigma (class qnet.algebra.core.operator_algebra), 88
in
in qnet.algebra.core.hilbert_space_algebra), 77
Ls (qnet.algebra.core.circuit_algebra.SLH attribute), 65

M

make_disjunct_indices() (qnet.algebra.core.indexed_operations.IndexedSum method), 82
map_channels() (in module O qnet.algebra.core.circuit_algebra), 71
match () (qnet.algebra.pattern_matching.Pattern method), 126
match_pattern() (in module qnet.algebra.pattern_matching), 128
match_replace() (in module qnet.algebra.core.algebraic_properties), 59
match_replace_binary() (in module qnet.algebra.core.algebraic_properties), 60
MatchDict (class in qnet.algebra.pattern_matching), 124
Matrix (class in qnet.algebra.core.matrix_algebra), 82
matrix (qnet.algebra.core.matrix_algebra.Matrix attribute), 83
minimal_kwargs (qnet.algebra.core.abstract_algebra.Expression attribute), 49 attribute), 46
operands (qnet.algebra.core.indexed_operations.IndexedSum
minimal_kwargs (qnet.algebra.core.abstract_quantum_algebra.Qufttbme) exivative
attribute), 54 Operation (class in
minimal_kwargs (qnet.algebra.core.circuit_algebra.Component qnet.algebra.core.abstract_algebra), 49
attribute), 67 Operator (class in qnet.algebra.core.operator_algebra),
minimal_kwargs (qnet.algebra.core.hilbert_space_algebra.LocalSppace
attribute), 79 operator (qnet.algebra.core.state_algebra.OperatorTimesKet

attribute), 91 OperatorDerivative (class in
mixing_angle (qnet.algebra.library.circuit_components.Beamsplitţret.algebra.core.operator_algebra), 90 attribute), 115

One (in module qnet.algebra.core.scalar_algebra), 95
one_or_more (qnet.algebra.pattern_matching.Pattern attribute), 126
op (qnet.algebra.core.super_operator_algebra.SuperOperatorTimesOperat attribute), 108
operand (qnet.algebra.core.abstract_quantum_algebra.SingleQuantumO attribute), 52
operand (qnet.algebra.core.circuit_algebra.Feedback
operand (qnet.algebra.core.circuit_algebra.SeriesInverse attribute), 70
operand (qnet.algebra.core.operator_algebra.OperatorTrace attribute), 91
operand (qnet.algebra.core.state_algebra.Bra attribute), 103
operands (qnet.algebra.core.abstract_algebra.Operation


```
OperatorIndexedSum (class
    qnet.algebra.core.operator_algebra), 92
OperatorPlus (class
    qnet.algebra.core.operator_algebra), 90
OperatorPlusMinusCC (class
    qnet.algebra.core.operator_algebra), 91
OperatorSymbol (class
    qnet.algebra.core.operator_algebra), 88
OperatorTimes (class
    qnet.algebra.core.operator_algebra), 90
OperatorTimesket (class
    qnet.algebra.core.state_algebra),103
OperatorTrace (class
    qnet.algebra.core.operator_algebra), 91
order_key (qnet.algebra.core.abstract_quantum_algebra.Q
    attribute),52 phase (qnet.algebra.library.fock_operators.Phase at-
order_key (qnet.algebra.core.abstract_quantum_algebra.Quantumffrimbuate),117
    attribute),53 PhaseCC (class in qnet.algebra.library.circuit_components),
order_key (qnet.algebra.core.operator_algebra.Commutator 114
    attribute),90 piecewise_one() (qnet.utils.indices.IndexOverFockSpace
order_key (qnet.algebra.core.state_algebra.KetPlus
        attribute),102
order_key (qnet.algebra.core.state_algebra.TensorKet
        attribute),102
        method), 162
    piecewise_one() (qnet.utils.indices.IndexOverList
        method), 161
    piecewise_one() (qnet.utils.indices.IndexOverRange
order_key (qnet.algebra.core.super_operator_algebra.SuperOperantorflimales }16
    attribute),106 piecewise_one()(qnet.utils.indices.IndexRangeBase
order_key() (qnet.algebra.core.hilbert_space_algebra.ProductSpancethod), 161
        class method), }8
orderby() (in module
    qnet.algebra.core.algebraic_properties),
        58
out_in_pair(qnet.algebra.core.circuit_algebra.FeedbackORTS IN (qnet.algebra.library.circuit_components.CoherentDriveCC
        attribute),69
    attribute), 114
OverlappingSpaces,75
P
pad_with_identity() (in module
    qnet.algebra.core.circuit_algebra), 71
parenthesize()(qnet.printing.asciiprinter.QnetAsciiPrinter attribute),115
        method),141
Pattern (class in qnet.algebra.pattern_matching), 125
pattern() (in module
        qnet.algebra.pattern_matching), 127
    module prepare_adiabatic_limit() (in module
        qnet.algebra.pattern_matching),127
PauliX() (in module
        qnet.algebra.library.pauli_matrices), 118
PauliY() (in module
        qnet.algebra.library.pauli_matrices),118
PauliZ() (in module
        qnet.algebra.library.pauli_matrices),118
permutation (qnet.algebra.core.circuit_algebra.CPermupationtmethod (qnet.printing.asciiprinter.QnetAsciiPrinter
        attribute), }6
        attribute),141
printmethod (qnet.printing.base.QnetBasePrinter at-
```

```
    tribute), 142
printmethod(qnet.printing.latexprinter.QnetLatexPrinte
    attribute),145
printmethod (qnet.printing.sympy.SympyLatexPrinter
    attribute),148
printmethod (qnet.printing.sympy.SympyStrPrinter
    attribute),148
printmethod(qnet.printing.sympy.SympyUnicodePrinter
    attribute),148
printmethod(qnet.printing.unicodeprinter.QnetUnicode&riateralgebra.toolbox.circuit_manipulation
    attribute),150
product() (in module qnet.utils.indices),158
ProductSpace (class
    qnet.algebra.core.hilbert_space_algebra),
    7 9
properties_for_args() (in module
    qnet.utils.properties_for_args), 167
ProtoExpr (class in qnet.algebra.pattern_matching),
        127
pseudo_inverse() (qnet.algebra.core.operator_algebra_⿴囗teraterinting (module), 140
    method), }8
PseudoInverse (class
    qnet.algebra.core.operator_algebra), 91
Q
qnet (module), 43
qnet.algebra (module), 44
qnet.algebra.core (module), 44
qnet.algebra.core.abstract_algebra(mod-
    ule),44
qnet.algebra.core.abstract_quantum_algeb
    (module), 49
qnet.algebra.core.algebraic_properties
    (module), }5
qnet.algebra.core.circuit_algebra (mod-
    ule), }6
qnet.algebra.core.exceptions(module), 74
qnet.algebra.core.hilbert_space_algebra
    (module), 76
qnet.algebra.core.indexed_operations
    (module), }8
qnet.algebra.core.matrix_algebra (mod-
    ule), }8
qnet.algebra.core.operator_algebra(mod-
        ule), }8
qnet.algebra.core.scalar_algebra (mod-
    ule), }9
qnet.algebra.core.state_algebra (module),
        9
qnet.algebra.core.super_operator_algebra
        (module), }10
qnet.algebra.library (module), 113
qnet.algebra.library.circuit_components
```

 (module), 113

set_tag() (qnet.algebra.toolbox.equation.Eq simplifications(qnet.algebra.core.state_algebra.BasisKet method), 132 attribute), 101
shape (qnet.algebra.core.matrix_algebra.Matrix at- simplifications (qnet.algebra.core.state_algebra.BraKet tribute), 83 attribute), 104
show() (qnet.algebra.core.circuit_algebra.Circuit simplifications (qnet.algebra.core.state_algebra.KetBra method), 64 attribute), 104
show_rules() (qnet.algebra.core.abstract_algebra.Expresisiopalifications (qnet.algebra.core.state_algebra.KetIndexedSum class method), 46 attribute), 104
simplifications (qnet.algebra.core.abstract_algebra.Exipmessiofnications (qnet.algebra.core.state_algebra.KetPlus attribute), 45 attribute), 102
simplifications (qnet.algebra.core.abstract_quantumsáhgebráfQucantuinober_(quantit.elgebra.core.state_algebra.OperatorTimesKet attribute), 54 attribute), 103
simplifications (qnet.algebra.core.circuit_algebra.C\&ュicatenditiancations (qnet.algebra.core.state_algebra.ScalarTimesKet attribute), 69 attribute), 103
simplifications (qnet.algebra.core.circuit_algebra.CBeirmataitioincations (qnet.algebra.core.state_algebra.TensorKet attribute), 68 attribute), 102
simplifications (qnet.algebra.core.circuit_algebra.Fesdillapeki fications (qnet.algebra.core.super_operator_algebra.ScalarTi attribute), 69 attribute), 107
simplifications (qnet.algebra.core.circuit_algebra.Sesiemloversé cations (qnet.algebra.core.super_operator_algebra.SPost attribute), 70 attribute), 107
simplifications (qnet.algebra.core.circuit_algebra.Sesiemßnodidiaitcations (qnet.algebra.core.super_operator_algebra.SPre attribute), 69 attribute), 107
simplifications (qnet.algebra.core.hilbert_space_algebinapPröđiact\&pacicons (qnet.algebra.core.super_operator_algebra.SuperAa attribute), 80 attribute), 107
simplifications (qnet.algebra.core.operator_algebra.Adidiojintifications (qnet.algebra.core.super_operator_algebra.Super O_{l} attribute), 91 attribute), 106
simplifications (qnet.algebra.core.operator_algebra.Ciomphnitatiocat ions (qnet.algebra.core.super_operator_algebra.Super O_{r} attribute), 90 attribute), 106
simplifications (qnet.algebra.core.operator_algebra.ぁidrodDperiatart ions (qnet.algebra.core.super_operator_algebra.SuperOf attribute), 87 attribute), 108
simplifications (qnet.algebra.core.operator_algebra.\&imqdSïgfinacations (qnet.algebra.library.fock_operators.Displace attribute), 89 attribute), 117
 attribute), 92 attribute), 117
simplifications (qnet.algebra.core.operator_algebra.@prapaltarfindeardSoms (qnet.algebra.library.fock_operators.Squeeze attribute), 92 attribute), 117
simplifications (qnet.algebra.core.operator_algebra.@prapaitorfPluss calar() attribute), 90 (qnet.algebra.core.abstract_quantum_algebra.QuantumExpressio
simplifications (qnet.algebra.core.operator_algebra.OperatorTinethod), 51 attribute), 90 simplify_scalar()
simplifications (qnet.algebra.core.operator_algebra.OperatorTqonce.algebra.core.circuit_algebra.SLH attribute), $91 \quad$ method), 65
simplifications (qnet.algebra.core.operator_algebra.Disupdolnixqrsвcalar() attribute), 92 (qnet.algebra.core.matrix_algebra.Matrix
simplifications (qnet.algebra.core.operator_algebra.ScalarTimas\#pochatz\#:
attribute), 90 single (qnet.algebra.pattern_matching.Pattern at-
simplifications (qnet.algebra.core.scalar_algebra.ScalarIndextrdBuna), 126
attribute), 97 SingleQuantumOperation (class in
simplifications (qnet.algebra.core.scalar_algebra.ScalarPlus qnet.algebra.core.abstract_quantum_algebra), attribute), 96 52
simplifications (qnet.algebra.core.scalar_algebra.ScalamBdedron (class in qnet.utils.singleton), 168 attribute), 97 singleton_object() (in module
simplifications (qnet.algebra.core.scalar_algebra.ScalarTimesqnet.utils.singleton), 168 attribute), 96 SingletonType (in module qnet.utils.singleton), 168

SLH (class in qnet.algebra.core.circuit_algebra), 6498
SLH_to_qutip() (in module qnet.convert.to_qutip), Squeeze (class in qnet.algebra.library.fock_operators), 139117
sop (qnet.algebra.core.super_operator_algebra.SuperOperatquTiqné̇Opgeraitort or (qnet.algebra.library.fock_operators.Squeeze attribute), $108 \quad$ attribute), 117
sorted_if_possible() (in module srepr() (in module qnet.printing), 155 qnet.utils.containers), 157 State (class in qnet.algebra.core.state_algebra), 99
space (qnet.algebra.core.abstract_quantum_algebra.Quan@tmexapivessionative (class) in attribute), $50 \quad$ qnet.algebra.core.state_algebra), 103
space (qnet.algebra.core.abstract_quantum_algebra.Quan\$tnrlnderedSkahass in qnet.utils.indices), 160 attribute), 54 substitute() (in module
space (qnet.algebra.core.abstract_quantum_algebra.QuantumOperaqivat.algebra.core.abstract_algebra), 49
attribute), 52 substitute () (qnet.algebra.core.abstract_algebra.Expression
space (qnet.algebra.core.abstract_quantum_algebra.QuantumSymbohethod), 46
attribute), 52 substitute() (qnet.algebra.toolbox.equation.Eq
space (qnet.algebra.core.abstract_quantum_algebra.ScalarTimesQuowethondxpliession
attribute), 53 substitute () (qnet.utils.indices.FockLabel method),
space (qnet.algebra.core.circuit_algebra.SLH at- 160
tribute), 65 substitute () (qnet.utils.indices.IndexOverFockSpace
space (qnet.algebra.core.matrix_algebra.Matrix at- method), 162
tribute), 84 substitute() (qnet.utils.indices.IndexOverList
space (qnet.algebra.core.operator_algebra.LocalOperator method), 161
attribute), 88 substitute() (qnet.utils.indices.IndexOverRange
space (qnet.algebra.core.operator_algebra.OperatorTrace method), 162
attribute), 91 substitute() (qnet.utils.indices.IndexRangeBase
space (qnet.algebra.core.scalar_algebra.Scalar at- method), 161
tribute), 94 substitute() (qnet.utils.indices.SpinIndex method),
space (qnet.algebra.core.state_algebra.KetBra at- 161
tribute), 104 substitute () (qnet.utils.indices.SymbolicLabelBase
space (qnet.algebra.core.state_algebra.LocalKet method), 159
attribute), $100 \quad$ SubSupFmt (class in qnet.printing.unicodeprinter), 150
space (qnet.algebra.core.state_algebra.OperatorTimesKetSubSupFmtNoUni (class) in attribute), 103 qnet.printing.unicodeprinter), 150
space (qnet.algebra.core.super_operator_algebra.SPost Sum () (in module qnet.algebra.core.abstract_quantum_algebra), attribute), 107 54
space (qnet.algebra.core.super_operator_algebra.SPre SuperAdjoint (class in attribute), 107
qnet.algebra.core.super_operator_algebra),
space (qnet.algebra.core.super_operator_algebra.SuperOperatorTimesioperator
attribute), 108 SuperCommutativeHSOrder (class in
SpaceTooLargeError, 75
SuperCommutativeHSOrder (class
qnet.algebra.core.super_operator_algebra),
spin (qnet.algebra.library.spin_algebra.SpinSpace attribute), 120 106

SpinBasisKet() (in module
qnet.algebra.library.spin_algebra), 121
SpinIndex (class in qnet.utils.indices), 160
SuperOperator (class in qnet.algebra.core.super_operator_algebra), 106

SpinOperator (class in qnet.algebra.core.super_operator_algebra), qnet.algebra.library.spin_algebra), 121
SpinSpace (class qnet.algebra.library.spin_algebra), 119
SPost (class in qnet.algebra.core.super_operator_algebra), 107 (
SPre (class in qnet.algebra.core.super_operator_algebra),
$107 \quad 106$
Superoper 108
sqrt() (in module qnet.algebra.core.scalar_algebra), SuperOperatorTimes (class in

```
    qnet.algebra.core.super_operator_algebra), temporary_instance_cache() (in module
    106
SuperOperatorTimesOperator (class in
    qnet.algebra.core.super_operator_algebra),
    108
sym_args (qnet.algebra.core.abstract_quantum_algebra.QuantumSymeblobd), 76
    attribute),52 TensorKet (class in qnet.algebra.core.state_algebra),
sym_args (qnet.algebra.core.circuit_algebra.CircuitSymbol 102
    attribute),66 term(qnet.algebra.core.abstract_quantum_algebra.ScalarTimesQuantumi
symbolic_heisenberg_eom()
        (qnet.algebra.core.circuit_algebra.SLH
    method),66
symbolic_liouvillian()
    (qnet.algebra.core.circuit_algebra.SLH
    method),65
symbolic_master_equation()
    (qnet.algebra.core.circuit_algebra.SLH
    method),65
SymbolicLabelBase (class in qnet.utils.indices), 159
symbols() (in module qnet.algebra.toolbox.core),130
sympy_printer_cls
    (qnet.printing.asciiprinter.QnetAsciiPrinter
    attribute),141
sympy_printer_cls
    (qnet.printing.base.QnetBasePrinter attribute),
    142
sympy_printer_cls
    (qnet.printing.latexprinter.QnetLatexPrinter
    attribute),145
sympy_printer_cls
    (qnet.printing.sreprprinter:IndentedSReprPrinter try_adiabatic_elimination() (in module
    attribute),146
sympy_printer_cls
    (qnet.printing.sreprprinter.QnetSReprPrinter
    attribute),146
sympy_printer_cls
    (qnet.printing.unicodeprinter.QnetUnicodePrinterupdate () (qnet.algebra.pattern_matching.MatchDict
    attribute), 150
        method), }12
SympyCreate() (in module
    qnet.convert.to_sympy_matrix), 140
SympyLatexPrinter (class in qnet.printing.sympy),
    148
SympyReprPrinter (class in qnet.printing.sympy),
        148
SympyStrPrinter (class in qnet.printing.sympy),148
SympyUnicodePrinter (class in
        qnet.printing.sympy),148
U
UnequalSpaces,75
unicode() (in module qnet.printing), 153
V
val (qnet.algebra.core.scalar_algebra.ScalarValue at-
                tribute), }9
vals (qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative
                attribute), 54
    variables (qnet.algebra.core.indexed_operations.IndexedSum
        attribute), 81
    verify() (qnet.algebra.toolbox.equation.Eq method),
syms (qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative3
    attribute),54 vstackm()
```

attribute), 54 vstackm() (in module attribute), 54 vstackm() (in module qnet.algebra.core.matrix_algebra), 84

T

T (qnet.algebra.core.matrix_algebra.Matrix attribute), 83
tag (qnet.algebra.toolbox.equation.Eq attribute), 132
W
wC () (in module qnet.algebra.pattern_matching), 127

```
temporary_instance_cache() (in module qnet.algebra.toolbox.core), 130
SuperOperatorTimesOperator (class in temporary_rules() module qnet.algebra.toolbox.core), 130
tensor() (qnet.algebra.core.hilbert_space_algebra.HilbertSpace sym_args (qnet.algebra.core.abstract_quantum_algebra.QuantumSymeblobd), 76 attribute), 52 TensorKet (class in qnet.algebra.core.state_algebra),
    attribute), }5
    term(qnet.algebra.core.indexed_operations.IndexedSum
    attribute), }8
terms (qnet.algebra.core.indexed_operations.IndexedSum attribute), 81
tex () (in module qnet.printing), 155
to_fock_representation()
(qnet.algebra.core.state_algebra.CoherentStateKet method), 102
tOSLH () (qnet.algebra.core.circuit_algebra.Circuit method), 64
trace() (qnet.algebra.core.matrix_algebra.Matrix method), 84
transpose() (qnet.algebra.core.matrix_algebra.Matrix method), 83
tree () (in module qnet.printing.treeprinting), 149
TrivialKet (in module qnet.algebra.core.state_algebra), 100
Trivialspace (in module qnet.algebra.core.hilbert_space_algebra), 79
abatic_elimination() (in module qnet.algebra.core.circuit_algebra), 73
sympy_printer_cls
(qnet.printing.sreprprinter.QnetSReprPrinter
attribute), 146
method), 125
V
val (qnet.algebra.core.scalar_algebra.ScalarValue attribute), 95
vals (qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative attribute), 54
variables (qnet.algebra.core.indexed_operations.IndexedSum attribute), 81
verify() (qnet.algebra.toolbox.equation.Eq method), syms (qnet.algebra.core.abstract_quantum_algebra.QuantumDerivative3
```

```
wc_names (qnet.algebra.pattern_matching.Pattern at-
        tribute), 126
WrongCDimError,75
```


Y

yield_from_ranges() (in module qnet.utils.indices), 158

Z

Zero (in module qnet.algebra.core.scalar_algebra), 95 zero_or_more (qnet.algebra.pattern_matching.Pattern attribute), 126
Zeroket (in module qnet.algebra.core.state_algebra), 100
ZeroOperator (in module
qnet.algebra.core.operator_algebra), 88
zerosm() (in module qnet.algebra.core.matrix_algebra), 85
ZeroSuperOperator (in module qnet.algebra.core.super_operator_algebra), 106

[^0]: ${ }^{1}$ trivial in the sense that $\mathcal{H}_{0} \simeq \mathbb{C}$, i.e., all states are multiples of each other and thus equivalent.

[^1]: \qquad : convert_to_sympy_matrix

