
qbfutures Documentation
Release 0.1

Western X

February 25, 2016

Contents

1 Installation 2

2 Overview 3
2.1 Batch Mode . 3
2.2 Maya . 4

3 API Reference 5
3.1 Executor . 5
3.2 Future . 6
3.3 Batch . 6
3.4 Maya . 6

4 Installation 8

5 Special Considerations 9
5.1 Within __main__ . 9
5.2 Lambda Workaround . 9
5.3 Recursion . 9
5.4 Shutdown . 10

6 Indices and tables 11

i

qbfutures Documentation, Release 0.1

This Python package is a implementation of a concurrent.futures.Executor for PipelineFX’s Qube. The API is com-
patible with the standard Executor and provides extensions for working with Qube.

Contents 1

http://docs.python.org/dev/library/concurrent.futures.html
http://pipelinefx.com/

CHAPTER 1

Installation

The contained “types” directory must be added to the Qube server’s "worker_template_path", and the python
package must be importable.

2

CHAPTER 2

Overview

Basic usage is exactly the same:

>>> executor = qbfutures.Executor():
>>> future = executor.submit(my_function, 1, 2, key="value")
>>> future.result()
"Awesome results!"

An extended submit function, Executor.submit_ext, allows you to provide more information to Qube about
how to handle the job. Anything that would normally be set into a qb.Job object is viable and will be passed
through:

>>> future = executor.submit(my_function, name="Job Name", groups="farm")

Keyword arguments can also be passed to Executor.map:

>>> results_iter = executor.map(my_function, range(10), cpus=10)

Finally, keyword arguments to the Executor constructor will be used as defaults on all submitted jobs:

>>> executor = Executor(cpus=4, groups='farm')
>>> # Submit some jobs, and they will take on the cpus and group above.

2.1 Batch Mode

Often, logical jobs will be spread into multiple chunks of work. If those are processed individually via
Executor.submit they will be queued as individual jobs. A batch mode has been added to the API to facili-
tate grouping multiple function calls into a single Qube job:

>>> with Executor().batch(name="A set of functions", cpus=4) as batch:
... f1 = batch.submit(a_function, 'input')
... f2 = batch.submit_ext(another_function, name='work name')
... map_iter = batch.map(mapping_function, range(10))
...
>>> f1.results()
>>> f2.results()
>>> list(map_iter)

While batch methods will return a Future, they will not be in a valid state until the batch has been submitted. They
will not have job or work IDs, and iterating over a Batch.map result is undefined.

Since jobs submited via a batch are individual work items, extra keyword arguments to either Batch.submit_ext
or Batch.map will be passed through to the qb.Work.

3

qbfutures Documentation, Release 0.1

2.2 Maya

A maya.Executor subclass exists for use with Maya, which will bootstrap the Maya process, and optionally open
a file to work on and set the workspace. It also provides convenience functions for cloning the current environment,
and creating a temporary copy of the current file for the other processes to work on.

>>> executor = qbfutures.maya.Executor(clone_environ=True, cpus=4)
>>> executor.create_tempfile()
>>> with executor.batch("Get Node Types") as batch:
... for node in cmds.ls(sl=True):
... future = batch.submit(cmds.nodeType, node)
... future.node = node
...
>>> for future in as_completed(batch.futures):
... print future.job_id, future.work_id, future.node, future.result()

2.2. Maya 4

CHAPTER 3

API Reference

3.1 Executor

class qbfutures.Executor(**kwargs)
An object which provides methods to execute functions asynchonously on Qube.

Any keyword arguments passed to the constructor are used as a template for every job submitted to Qube.

submit(func, *args, **kwargs)
Schedules the given callable to be executed as func(*args, **kwargs).

Returns The Future linked to the submitted job.

submit_ext(func, args=None, kwargs=None, **extra)
Extended submission with more control over Qube job.

Parameters

• func – The function to call.

• args (list) – The positional arguments to call with.

• kwargs (dict) – The keyword arguments to call with.

• **extra – Values to pass through to the qb.Job.

Returns The Future linked to the submitted job.

map(func, *iterables, **extra)
Equivalent to map(func, *iterables) except func is executed asynchronously on Qube.

Parameters timeout – The number of seconds to wait for results, or None.

Any other keyword arguments will be passed through to the qb.Job:

>>> for result in Executor().map(my_function, range(10), cpus=4):
... print result

batch(name=None, **kwargs)
Start a batch process.

Parameters

• name (str) – The name of the Qube job.

• **kwargs – Other parameters for the Qube job.

Returns The Batch to use to schedule jobs in a batch.

5

http://docs.python.org/release/2.6.8/library/functions.html#list
http://docs.python.org/release/2.6.8/library/stdtypes.html#dict
http://docs.python.org/release/2.6.8/library/functions.html#str

qbfutures Documentation, Release 0.1

::

>>> with Executor().batch() as batch:
... f1 = batch.submit(first_function)
... f2 = batch.submit(second_function)
...
>>> print f1.results()

3.2 Future

class qbfutures.Future(job_id, work_id)
A Future representing a unit of work on Qube.

job_id = None
The Qube job ID.

work_id = None
The index of this work item into the job’s agenda.

status()
Get the current status for this particular work item.

3.3 Batch

class qbfutures.core.Batch(executor, job)
Pseudo-executor that submits callables into a single Qube job.

Be careful not to use any of the resulting futures until the jobs have been submitted, either by using the Batch
as a context manager, or calling commit().

submit(func, *args, **kwargs)
Same as Executor.submit

submit_ext(func, args=None, kwargs=None, **extra)
Same as Executor.submit_ext, except extra keyword arguments are passed to the qb.Work.

map(func, *iterables, **extra)
Same as Executor.map, except extra keyword arguments are passed to the qb.Work.

commit()
Perform the actual job submittion. Called automatically if used as a context manager.

3.4 Maya

class qbfutures.maya.Executor(clone_environ=None, create_tempfile=False, filename=None,
workspace=None, version=None, **kwargs)

An executor that is tailored to the Maya environment.

Parameters

• clone_environ (bool) – Convenience for clone_environ().

• create_tempfile (bool) – Convenience for create_tempfile().

• filename (str) – File to open once bootstrapped.

3.2. Future 6

http://docs.python.org/release/2.6.8/library/functions.html#bool
http://docs.python.org/release/2.6.8/library/functions.html#bool
http://docs.python.org/release/2.6.8/library/functions.html#str

qbfutures Documentation, Release 0.1

• workspace (str) – Workspace to set once bootstrapped.

• version (int) – Version of maya to use.

create_tempfile()
Save the current file in a temporary location for Qube processes to use.

clone_environ()
Set the jobs to use the same environment that we are currently in.

Sets the current filename, workspace, and version.

3.4. Maya 7

http://docs.python.org/release/2.6.8/library/functions.html#str
http://docs.python.org/release/2.6.8/library/functions.html#int

CHAPTER 4

Installation

This package depends upon concurrent.futures, which is included with Python 3. For Python 2, the futures
package provides a backport.

Qube must also have access to the custom jobtype; either the qbfutures type must be copied to where your jobtypes
are stored, or the types directory must be added to the worker_template_path within the qb.conf for your
workers.

8

http://pypi.python.org/pypi/futures

CHAPTER 5

Special Considerations

Unlike when using threading, callables and their arguments must be serialized (via pickle) to be passed to the
Qube workers. This places some restrictions upon what can be used. A non-exhaustive list of rules include:

• callables (functions or classes) must be within the global scope of a module;

• aallables must be uniquely named within that module;

• a callable’s module must have a __name__ that is not importable;

• lambdas are not permissable (since they cannot be pickled).

5.1 Within __main__

Many of our tools are called via the -m switch of the python interpreter. In that case, callables within the main module
are not unpickleable since their module is named __main__ and then the callable will not be found. As such, you
may also pass a string in the form package.module:function to specify a callable:

>>> executor.submit('awesome_package.the_tool:qube_handler', *args)

5.2 Lambda Workaround

Even though lambdas are not pickleable, we can also acheive the same effect as lambdas by calling eval and passing
in a string of Python source code, and a dictionary for the scope to run that code in:

>>> executor.submit(eval, 'a + b', dict(a=1, b=2)).result()
3

5.3 Recursion

Jobs are free to schedule additional jobs, but sometimes this can run away from us and take over all of the worker
resources. Therefore, a very conservative recursion limit has been setup; by default recusion will only be allowed to 4
levels, and the 5th recursive job will fail to schedule.

A QBLVL variable has been placed into the execution environment to track how deep the current recursion is, with the
first job assuming a value of 1.

The recusion limit may be increased by setting a QBFUTURES_RECURSION_LIMIT variable in the environment.

9

http://docs.python.org/release/2.6.8/library/pickle.html#module-pickle

qbfutures Documentation, Release 0.1

5.4 Shutdown

For various reasons, we have to forcibly shutdown the Python process. We do our best to clean up as much as we can
(by triggering atexit, clearing all modules, and running the garbage collector), but we cannot guarantee that your
destructors will be called in the same way as a normal process.

Be mindful to cleanup all resources.

5.4. Shutdown 10

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

11

Index

B
Batch (class in qbfutures.core), 6
batch() (qbfutures.Executor method), 5

C
clone_environ() (qbfutures.maya.Executor method), 7
commit() (qbfutures.core.Batch method), 6
create_tempfile() (qbfutures.maya.Executor method), 7

E
Executor (class in qbfutures), 5
Executor (class in qbfutures.maya), 6

F
Future (class in qbfutures), 6

J
job_id (qbfutures.Future attribute), 6

M
map() (qbfutures.core.Batch method), 6
map() (qbfutures.Executor method), 5

S
status() (qbfutures.Future method), 6
submit() (qbfutures.core.Batch method), 6
submit() (qbfutures.Executor method), 5
submit_ext() (qbfutures.core.Batch method), 6
submit_ext() (qbfutures.Executor method), 5

W
work_id (qbfutures.Future attribute), 6

12

	Installation
	Overview
	Batch Mode
	Maya

	API Reference
	Executor
	Future
	Batch
	Maya

	Installation
	Special Considerations
	Within __main__
	Lambda Workaround
	Recursion
	Shutdown

	Indices and tables

