
pyxtuml Documentation
Release 1.0.0

John Törnblom

Jul 23, 2018

Contents

1 Getting Started 3
1.1 Dependencies . 3
1.2 Installation . 3
1.3 Usage example . 3

2 Command Line Tools 5
2.1 Consistency Check . 5
2.2 SQL Schema Generator . 6
2.3 XSD Schema Generator . 6
2.4 OAL Prebuilder . 6

3 API Reference 9
3.1 xtuml . 9
3.2 bridgepoint . 14

4 Contributing 17

5 License 19

6 Indices and tables 21

i

ii

pyxtuml Documentation, Release 1.0.0

Relational information modeling in Python using BridgePoint.

Contents:

Contents 1

pyxtuml Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Getting Started

1.1 Dependencies

In addition to python itself, pyxtuml also depend on the python library ply. For people running Ubuntu, everything is
available via apt-get:

$ sudo apt-get install python2.7 python-ply

pyxtuml also works with python3 and pypy.

1.2 Installation

pyxtuml is published on pypi, and thus may be installed using pip:

$ python -m pip install pyxtuml

You could also fetch the source code from github and install it manually:

$ git clone https://github.com/xtuml/pyxtuml.git
$ cd pyxtuml
$ python setup.py install

Optionally, you can also execute a test suite:

$ python setup.py test

1.3 Usage example

The examples folder contains a few scripts which demonstrate how pyxtuml may be used.

3

http://www.dabeaz.com/ply
http://pypy.org
https://pypi.python.org
https://github.com/xtuml/pyxtuml/tree/master/examples

pyxtuml Documentation, Release 1.0.0

The following command will create an empty metamodel and populate it with some sample data:

$ python examples/create_external_entity.py > test.sql

Copy the SQL statements saved in test.sql to your clipboard, and paste them into the BridgePoint editor with a project
selected in the project explorer.

If you are on a more recent GNU/Linux system, you can also pipe the output directly to your clipboard without
bouncing via disk:

$ python examples/create_external_entity.py | xclip -selection clipboard

4 Chapter 1. Getting Started

CHAPTER 2

Command Line Tools

pyxtuml contain a few useful command line tools which are described below.

2.1 Consistency Check

A model may be checked for association constraint violations. By default, all associations present in a model are
checked. Optionally, the check may be limited to one or more associations by appending the -r argument for each
association to check.

$ python -m xtuml.consistency_check [options] <sql_file> [another_sql_file...]

Note: both the model and its schema needs to be provided by the user.

Available options

Option Description
–version show program’s version number and exit
–help, -h show this help message and exit
-r <number> limit consistency check to one or more associations
-k <key letter> limit check for uniqueness constraint violations to one or more classes
–verbosity, -v increase debug logging level

2.1.1 BridgePoint metamodel

There is also a tool available that checks for constraint violations in ooaofooa, the metamodel used by the BridgePoint
editor. It can be used to detect various fatal issues in a BridgePoint model, e.g. parameters that lacks a type.

$ python -m bridgepoint.consistency_check [options] <model_path> [another_model_path..
→˓.]

5

pyxtuml Documentation, Release 1.0.0

Available options

Option Description
–version show program’s version number and exit
–help, -h show this help message and exit
-r <number> limit consistency check to one or more associations
-k <key letter> limit check for uniqueness constraint violations to one or more classes
–globals, -g add builtin global data types automatically, e.g. boolean, integer and real
–verbosity, -v increase debug logging level

2.2 SQL Schema Generator

To create an sql schema from a BridgePoint model, the following command may be used:

$ python -m bridgepoint.gen_sql_schema [options] <model_path> [another_model_path...]

Available options

Option Description
–version show program’s version number and exit
–help, -h show this help message and exit
–component=NAME, -c NAME export sql schema for the component named NAME
–derived-attributes, -d include derived attributes in the schema
–output=PATH, -o PATH save sql schema to PATH (required)
–verbosity, -v increase debug logging level

2.3 XSD Schema Generator

To create an XSD schema for XML files, the following command may be used:

$ python -m bridgepoint.gen_xsd_schema [options] <model_path> [another_model_path...]

Available options

Option Description
–version show program’s version number and exit
–help, -h show this help message and exit
–component=NAME, -c NAME export xsd schema for the component named NAME
–output=PATH, -o PATH save xsd schema to PATH (required)
–verbosity, -v increase debug logging level

Note that the XSD schema is compatible with Microsoft Excel. Consequently, Excel may be used to define instances
in a model that can be easily exported to XML files.

2.4 OAL Prebuilder

Generally, all model compilers takes as input an sql where all OAL actions has been translated from its textual rep-
resentation into instances in the ooaofooa meta model. This translation is usually conducted by the Eclipse- based

6 Chapter 2. Command Line Tools

pyxtuml Documentation, Release 1.0.0

prebuilder included with the BridgePoint IDE. pyxtuml contains an independent prebuilder, implemented in python
(and thus may be somewhat slower). The pyxtuml prebuilder may be invoked using the folling command:

$ python -m bridgepoint.prebuild [options] <model_path> [another_model_path..]

Available options

Option Description
–version show program’s version number and exit
–help, -h show this help message and exit
–verbosity, -v increase debug logging level
–output=PATH, -o PATH set output to PATH

2.4. OAL Prebuilder 7

pyxtuml Documentation, Release 1.0.0

8 Chapter 2. Command Line Tools

CHAPTER 3

API Reference

3.1 xtuml

The following section lists functions, classes and exceptions from the xtuml module. The operations are independent
of the underlying metamodel definition, i.e. the sql schema.

3.1.1 Loading Metamodels

xtuml.load_metamodel(resource)
Load and return a metamodel from a resource. The resource may be either a filename, or a list of filenames.

Usage example:

>>> metamodel = xtuml.load_metamodel(['schema.sql', 'data.sql'])

class xtuml.ModelLoader
Class for loading metamodels previously persisted to disk.

Data may be provided in any order, e.g. instances followed by associations, followed by class definitions. One
single loader may be used to build several xtuml.MetaModel objects, and additional data may be provided at any
time.

Note: Additional data will not affect previosly built metamodels.

Usage example:

>>> l = xtuml.ModelLoader()
>>> l.filename_input('data.sql')
>>> l.filename_input('schema.sql')
>>> m1 = l.build_metamodel()
>>> l.filename_input('additional_data.sql')
>>> m2 = l.build_metamodel()

9

pyxtuml Documentation, Release 1.0.0

build_metamodel(id_generator=None)
Build and return a xtuml.MetaModel containing previously loaded input.

file_input(file_object)
Read and parse data from a file object, i.e. the type of object returned by the builtin python function open().

filename_input(filename)
Open and read from a filename on disk, and parse its content.

input(data, name=’<string>’)
Parse data directly from a string. The name is used when reporting positional information if the parser
encounter syntax errors.

populate(metamodel)
Populate a metamodel with entities previously encountered from input.

3.1.2 Metamodel Operations

class xtuml.MetaModel(id_generator=None)
A metamodel contains metaclasses with associations between them.

Note: All identifiers, e.g. attributes, association ids, key letters (the kind or name of a class), are case insensitive.

clone(instance)
Create a shallow clone of an instance.

Note: the clone and the original instance does not have to be part of the same metaclass.

find_class(kind)
Find a class of some kind in the metamodel.

new(kind, *args, **kwargs)
Create and return a new instance in the metamodel of some kind.

Optionally, initial attribute values may be assigned to the new instance by passing them as positional or
keyword arguments. Positional arguments are assigned in the order in which they appear in the metaclass.

select_many(kind, where_clause=None)
Query the metamodel for a set of instances of some kind. Optionally, a conditional where-clause in the
form of a function may be provided.

Usage example:

>>> m = xtuml.load_metamodel('db.sql')
>>> inst_set = m.select_many('My_Class', lambda sel: sel.number > 5)

select_one(kind, where_clause=None)
Query the metamodel for a single instance of some kind. Optionally, a conditional where-clause in the
form of a function may be provided.

Usage example:

>>> m = xtuml.load_metamodel('db.sql')
>>> inst = m.select_one('My_Class', lambda sel: sel.name == 'Test')

xtuml.navigate_one(instance)
Initialize a navigation from one instance to another across a one-to-one association.

The resulting query will return an instance or None.

10 Chapter 3. API Reference

pyxtuml Documentation, Release 1.0.0

Usage example:

>>> from xtuml import navigate_one as one
>>> m = xtuml.load_metamodel('db.sql')
>>> inst = m.select_any('My_Modeled_Class')
>>> other_inst = one(inst).Some_Other_Class[4]()

The syntax is somewhat similar to the action language used in BridgePoint. The same semantics would be
expressed in BridgePoint as:

select any inst from instances of My_Modeled_Class;
select one other_inst related by inst->Some_Other_Class[R4];

Note: If the navigated association is reflexive, a phrase must be provided, e.g.

>>> other_inst = one(inst).Some_Other_Class[4, 'some phrase']()

xtuml.navigate_any(instance_or_set)
Initialize a navigation from an instance, or a set of instances, to associated instances across a one-to-many or
many-to-many association.

The resulting query will return an instance or None.

xtuml.navigate_many(instance_or_set)
Initialize a navigation from an instance, or a set of instances, to associated instances across a one-to-many or
many-to-many association.

The resulting query will return a set of instances.

xtuml.navigate_subtype(supertype, rel_id)
Perform a navigation from supertype to its subtype across rel_id. The navigated association must be modeled as
a subtype-supertype association.

The return value will an instance or None.

xtuml.relate(from_instance, to_instance, rel_id, phrase=”)
Relate from_instance to to_instance across rel_id. For reflexive association, a phrase indicating the direction
must also be provided.

The two instances are related to each other by copying the identifying attributes from the instance on the TO
side of a association to the instance n the FROM side. Updated values which affect existing associations are
propagated. A set of all affected instances will be returned.

xtuml.unrelate(from_instance, to_instance, rel_id, phrase=”)
Unrelate from_instance from to_instance across rel_id. For reflexive associations, a phrase indicating the direc-
tion must also be provided.

The two instances are unrelated from each other by reseting the identifying attributes on the FROM side of the
association. Updated values which affect existing associations are propagated. A set of all affected instances
will be returned.

xtuml.delete(instance)
Delete an instance from its metaclass instance pool.

xtuml.where_eq(**kwargs)
Return a where-clause that filters out instances based on named keywords.

Usage example:

3.1. xtuml 11

pyxtuml Documentation, Release 1.0.0

>>> from xtuml import where_eq as where
>>> m = xtuml.load_metamodel('db.sql')
>>> inst = m.select_any('My_Modeled_Class', where(My_Number=5))

xtuml.sort_reflexive(set_of_instances, rel_id, phrase)
Sort a set of instances in the order they appear across a conditional and reflexive association. The first instance
in the resulting ordered set is not associated to an instance across the given phrase.

class xtuml.MetaClass(kind, metamodel=None)
A metaclass contain metadata for instances, e.g. what attributes are available, what thier types are, and so on.

In addition, each metaclass also handle allocations of instances.

append_attribute(name, type_name)
Append an attribute with a given name and type name at the end of the list of attributes.

attribute_names
Obtain an ordered list of all attribute names.

clone(instance)
Create a shallow clone of an instance.

Note: the clone and the original instance does not have to be part of the same metaclass.

delete(instance)
Delete an instance from the instance pool. If the instance is not part of the metaclass, a MetaException is
thrown.

delete_attribute(name)
Delete an attribute with a given name from the list of attributes.

insert_attribute(index, name, type_name)
Insert an attribute with a given name and type name at some index in the list of attributes.

navigate(inst, kind, rel_id, phrase=”)
Navigate across a link with some rel_id and phrase that yields instances of some kind.

new(*args, **kwargs)
Create and return a new instance.

query(dictonary_of_values)
Query the instance pool for instances with attributes that match a given dictonary of values.

select_many(where_clause=None)
Select several instances from the instance pool. Optionally, a conditional where-clause in the form of a
function may be provided.

select_one(where_clause=None)
Select a single instance from the instance pool. Optionally, a conditional where-clause in the form of a
function may be provided.

xtuml.check_association_integrity(m, rel_id=None)
Check the model for integrity violations on association(s).

xtuml.check_uniqueness_constraint(m, kind=None)
Check the model for uniqueness constraint violations.

3.1.3 Persistance

xtuml.persist_database(metamodel, path)
Persist all instances, class definitions and association definitions in a metamodel by serializing them and saving

12 Chapter 3. API Reference

pyxtuml Documentation, Release 1.0.0

to a path on disk.

xtuml.persist_instances(metamodel, path)
Persist all instances in a metamodel by serializing them and saving to a path on disk.

xtuml.persist_schema(metamodel, path)
Persist all class and association definitions in a metamodel by serializing them and saving to a path on disk.

xtuml.serialize(resource)
Serialize some xtuml resource, e.g. an instance or a complete metamodel.

xtuml.serialize_database(metamodel)
Serialize all instances, class definitions, association definitions, and unique identifiers in a metamodel.

xtuml.serialize_schema(metamodel)
Serialize all class and association definitions in a metamodel.

xtuml.serialize_instances(metamodel)
Serialize all instances in a metamodel.

xtuml.serialize_instance(instance)
Serialize an instance from a metamodel.

3.1.4 Tools

class xtuml.UUIDGenerator
A uuid-based id generator. 128-bit unique numbers are generated randomly each time a new id is requested.

class xtuml.IntegerGenerator
An integer-based id generator. Integers are generated sequentially, starting from the number one.

Generally, the uuid-based id generator shall be used. In some cases such as testing however, having deterministic
unique ids may be benifitial.

Usage example:

>>> l = xtuml.ModelLoader()
>>> l.filename_input("schema.sql")
>>> l.filename_input("data.sql")
>>> m = l.build_metamodel(xtuml.IntegerGenerator())

class xtuml.Walker
A walker may be used to walk a tree.

visitors = None

accept(node, **kwargs)
Invoke the visitors before and after decending down the tree. The walker will also try to invoke a method
matching the pattern accept_<type name>, where <type name> is the name of the accepted node.

default_accept(node, **kwargs)
The default accept behaviour is to decend into the iterable member node.children (if available).

class xtuml.Visitor
A visitor may be used to visit tree nodes walked by a walker.

default_enter(node)
The default behaviour when entering a node if no other action is defined by a subclass is to do nothing.

default_leave(node)
The default behaviour when leaving a node if no other action is defined by a subclass is to do nothing.

3.1. xtuml 13

pyxtuml Documentation, Release 1.0.0

enter(node)
Tries to invoke a method matching the pattern enter_<type name>, where <type name> is the name of the
type of the node.

leave(node)
Tries to invoke a method matching the pattern leave_<type name>, where <type name> is the name of the
type of the node.

class xtuml.NodePrintVisitor
A visitor that prints a tree-like structure to stdout.

default_render(node)
The default behaviour when rendering a node if no other rendering method is defined by a subclass is to
render the class name.

render(node)
Try to invoke a method matching the pattern render_<type name>, where <type name> is the name of the
rendering node.

3.1.5 Exceptions

exception xtuml.ParsingException
An exception that may be thrown while loading (and parsing) a metamodel.

exception xtuml.MetaException
Base class for all exceptions thrown by the xtuml.meta module.

exception xtuml.DeleteException
An exception that may be thrown during delete operations.

exception xtuml.RelateException
An exception that may be thrown during relate operations.

exception xtuml.UnrelateException
An exception that may be thrown during unrelate operations.

exception xtuml.MetaModelException
Base class for exceptions thrown by the MetaModel class.

exception xtuml.UnknownLinkException(from_kind, to_kind, rel_id, phrase)
An exception that may be thrown when a link is not found.

exception xtuml.UnknownClassException
An exception that may be thrown when a metaclass is not found.

3.2 bridgepoint

The following section lists functions and classes from the bridgepoint module. All operations require input expressed
in the BridgePoint metamodel (ooaofooa).

3.2.1 Loading Models

bridgepoint.load_metamodel(resource=None, load_globals=True)
Load and return a metamodel expressed in ooaofooa from a resource. The resource may be either a filename, a
path, or a list of filenames and/or paths.

14 Chapter 3. API Reference

pyxtuml Documentation, Release 1.0.0

class bridgepoint.ModelLoader(load_globals=True)
A xtuml.MetaModel loader with ooaofooa schema and globals pre-defined.

build_component(name=None, derived_attributes=False)
Instantiate and build a component from ooaofooa named name as a pyxtuml model. Classes, associations,
attributes and unique identifers, i.e. O_OBJ, R_REL, O_ATTR in ooaofooa, are defined in the resulting
pyxtuml model.

Optionally, control whether derived attributes shall be mapped into the resulting pyxtuml model as at-
tributes or not.

Futhermore, if no name is provided, the entire content of the ooaofooa model is instantiated into the
pyxtuml model.

filename_input(path_or_filename)
Open and read input from a path or filename, and parse its content.

If the filename is a directory, files that ends with .xtuml located somewhere in the directory or sub directo-
ries will be loaded as well.

3.2.2 Model Transformation

bridgepoint.gen_text_action(instance)
Generate textual OAL action code from an instance in the BridgePoint metamodel. The input may be an instance
of the following classes:

• S_SYNC

• S_BRG

• O_TFR

• O_DBATTR

• SM_ACT

• SPR_RO

• SPR_RS

• SPR_PO

• SPR_PS

In addition, anything in the ooaofooa subsystems Value or Body, e.g. ACT_SMT or V_VAL are also supported.

bridgepoint.prebuild_action(instance)
Transform textual OAL actions of an instance to instances in the ooaofooa subsystems Value and Body. The
provided instance must be an instance of one of the following classes:

• S_SYNC

• S_BRG

• O_TFR

• O_DBATTR

• SM_ACT

• SPR_RO

• SPR_RS

• SPR_PO

3.2. bridgepoint 15

pyxtuml Documentation, Release 1.0.0

• SPR_PS

bridgepoint.prebuild_model(metamodel)
Transform textual OAL actions in a ooaofooa metamodel to instances in the subsystems Value and Body. In-
stances of the following classes are supported:

• S_SYNC

• S_BRG

• O_TFR

• O_DBATTR

• SM_ACT

• SPR_RO

• SPR_RS

• SPR_PO

• SPR_PS

16 Chapter 3. API Reference

CHAPTER 4

Contributing

If you encounter problems with pyxtuml, please file a github issue. If you plan on sending pull request which affect
more than a few lines of code, please file an issue before you start to work on you changes. This will allow us to
discuss the solution properly before you commit time and effort.

17

https://github.com/xtuml/pyxtuml/issues/new

pyxtuml Documentation, Release 1.0.0

18 Chapter 4. Contributing

CHAPTER 5

License

pyxtuml is licensed under the LGPLv3+.

19

http://www.gnu.org/copyleft/lgpl.html

pyxtuml Documentation, Release 1.0.0

20 Chapter 5. License

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

21

pyxtuml Documentation, Release 1.0.0

22 Chapter 6. Indices and tables

Index

A
accept() (xtuml.Walker method), 13
append_attribute() (xtuml.MetaClass method), 12
attribute_names (xtuml.MetaClass attribute), 12

B
build_component() (bridgepoint.ModelLoader method),

15
build_metamodel() (xtuml.ModelLoader method), 9

C
check_association_integrity() (in module xtuml), 12
check_uniqueness_constraint() (in module xtuml), 12
clone() (xtuml.MetaClass method), 12
clone() (xtuml.MetaModel method), 10

D
default_accept() (xtuml.Walker method), 13
default_enter() (xtuml.Visitor method), 13
default_leave() (xtuml.Visitor method), 13
default_render() (xtuml.NodePrintVisitor method), 14
delete() (in module xtuml), 11
delete() (xtuml.MetaClass method), 12
delete_attribute() (xtuml.MetaClass method), 12
DeleteException, 14

E
enter() (xtuml.Visitor method), 13

F
file_input() (xtuml.ModelLoader method), 10
filename_input() (bridgepoint.ModelLoader method), 15
filename_input() (xtuml.ModelLoader method), 10
find_class() (xtuml.MetaModel method), 10

G
gen_text_action() (in module bridgepoint), 15

I
input() (xtuml.ModelLoader method), 10
insert_attribute() (xtuml.MetaClass method), 12
IntegerGenerator (class in xtuml), 13

L
leave() (xtuml.Visitor method), 14
load_metamodel() (in module bridgepoint), 14
load_metamodel() (in module xtuml), 9

M
MetaClass (class in xtuml), 12
MetaException, 14
MetaModel (class in xtuml), 10
MetaModelException, 14
ModelLoader (class in bridgepoint), 14
ModelLoader (class in xtuml), 9

N
navigate() (xtuml.MetaClass method), 12
navigate_any() (in module xtuml), 11
navigate_many() (in module xtuml), 11
navigate_one() (in module xtuml), 10
navigate_subtype() (in module xtuml), 11
new() (xtuml.MetaClass method), 12
new() (xtuml.MetaModel method), 10
NodePrintVisitor (class in xtuml), 14

P
ParsingException, 14
persist_database() (in module xtuml), 12
persist_instances() (in module xtuml), 13
persist_schema() (in module xtuml), 13
populate() (xtuml.ModelLoader method), 10
prebuild_action() (in module bridgepoint), 15
prebuild_model() (in module bridgepoint), 16

Q
query() (xtuml.MetaClass method), 12

23

pyxtuml Documentation, Release 1.0.0

R
relate() (in module xtuml), 11
RelateException, 14
render() (xtuml.NodePrintVisitor method), 14

S
select_many() (xtuml.MetaClass method), 12
select_many() (xtuml.MetaModel method), 10
select_one() (xtuml.MetaClass method), 12
select_one() (xtuml.MetaModel method), 10
serialize() (in module xtuml), 13
serialize_database() (in module xtuml), 13
serialize_instance() (in module xtuml), 13
serialize_instances() (in module xtuml), 13
serialize_schema() (in module xtuml), 13
sort_reflexive() (in module xtuml), 12

U
UnknownClassException, 14
UnknownLinkException, 14
unrelate() (in module xtuml), 11
UnrelateException, 14
UUIDGenerator (class in xtuml), 13

V
Visitor (class in xtuml), 13
visitors (xtuml.Walker attribute), 13

W
Walker (class in xtuml), 13
where_eq() (in module xtuml), 11

24 Index

	Getting Started
	Dependencies
	Installation
	Usage example

	Command Line Tools
	Consistency Check
	SQL Schema Generator
	XSD Schema Generator
	OAL Prebuilder

	API Reference
	xtuml
	bridgepoint

	Contributing
	License
	Indices and tables

