

Welcome to pyxtuml’s documentation!

Relational information modeling in Python using BridgePoint.

Contents:

	Getting Started
	Dependencies

	Installation

	Usage example

	Command Line Tools
	Consistency Check

	SQL Schema Generator

	XSD Schema Generator

	OAL Prebuilder

	API Reference
	xtuml

	bridgepoint

	Contributing

	License

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Dependencies

In addition to python itself, pyxtuml also depend on the python library
ply [http://www.dabeaz.com/ply]. For people running Ubuntu, everything is
available via apt-get:

$ sudo apt-get install python2.7 python-ply

pyxtuml also works with python3 and pypy [http://pypy.org].

Installation

pyxtuml is published on pypi [https://pypi.python.org], and thus may be
installed using pip:

$ python -m pip install pyxtuml

You could also fetch the source code from github and install it manually:

$ git clone https://github.com/xtuml/pyxtuml.git
$ cd pyxtuml
$ python setup.py install

Optionally, you can also execute a test suite:

$ python setup.py test

Usage example

The examples
folder [https://github.com/xtuml/pyxtuml/tree/master/examples]
contains a few scripts which demonstrate how pyxtuml may be used.

The following command will create an empty metamodel and populate it
with some sample data:

$ python examples/create_external_entity.py > test.sql

Copy the SQL statements saved in test.sql to your clipboard, and paste
them into the BridgePoint editor with a project selected in the project
explorer.

If you are on a more recent GNU/Linux system, you can also pipe the
output directly to your clipboard without bouncing via disk:

$ python examples/create_external_entity.py | xclip -selection clipboard

Command Line Tools

pyxtuml contain a few useful command line tools which are described below.

Consistency Check

A model may be checked for association constraint violations. By default, all
associations present in a model are checked. Optionally, the check may be
limited to one or more associations by appending the -r argument for each
association to check.

$ python -m xtuml.consistency_check [options] <sql_file> [another_sql_file...]

Note: both the model and its schema needs to be provided by the user.

Available options

	Option

	Description

	–version

	show program’s version number and exit

	–help, -h

	show this help message and exit

	-r <number>

	limit consistency check to one or more associations

	-k <key letter>

	limit check for uniqueness constraint violations to
one or more classes

	–verbosity, -v

	increase debug logging level

BridgePoint metamodel

There is also a tool available that checks for constraint violations in ooaofooa,
the metamodel used by the BridgePoint editor. It can be used to detect various
fatal issues in a BridgePoint model, e.g. parameters that lacks a type.

$ python -m bridgepoint.consistency_check [options] <model_path> [another_model_path...]

Available options

	Option

	Description

	–version

	show program’s version number and exit

	–help, -h

	show this help message and exit

	-r <number>

	limit consistency check to one or more associations

	-k <key letter>

	limit check for uniqueness constraint violations to
one or more classes

	–globals, -g

	add builtin global data types automatically, e.g.
boolean, integer and real

	–verbosity, -v

	increase debug logging level

SQL Schema Generator

To create an sql schema from a BridgePoint model, the following command may be used:

$ python -m bridgepoint.gen_sql_schema [options] <model_path> [another_model_path...]

Available options

	Option

	Description

	–version

	show program’s version number and exit

	–help, -h

	show this help message and exit

	–component=NAME, -c NAME

	export sql schema for the component named NAME

	–derived-attributes, -d

	include derived attributes in the schema

	–output=PATH, -o PATH

	save sql schema to PATH (required)

	–verbosity, -v

	increase debug logging level

XSD Schema Generator

To create an XSD schema for XML files, the following command may be used:

$ python -m bridgepoint.gen_xsd_schema [options] <model_path> [another_model_path...]

Available options

	Option

	Description

	–version

	show program’s version number and exit

	–help, -h

	show this help message and exit

	–component=NAME, -c NAME

	export xsd schema for the component named NAME

	–output=PATH, -o PATH

	save xsd schema to PATH (required)

	–verbosity, -v

	increase debug logging level

Note that the XSD schema is compatible with Microsoft Excel. Consequently, Excel
may be used to define instances in a model that can be easily exported to XML
files.

OAL Prebuilder

Generally, all model compilers takes as input an sql where all OAL actions
has been translated from its textual representation into instances in the
ooaofooa meta model. This translation is usually conducted by the Eclipse-
based prebuilder included with the BridgePoint IDE. pyxtuml contains an
independent prebuilder, implemented in python (and thus may be somewhat
slower). The pyxtuml prebuilder may be invoked using the folling command:

$ python -m bridgepoint.prebuild [options] <model_path> [another_model_path..]

Available options

	Option

	Description

	–version

	show program’s version number and exit

	–help, -h

	show this help message and exit

	–verbosity, -v

	increase debug logging level

	–output=PATH, -o PATH

	set output to PATH

API Reference

xtuml

The following section lists functions, classes and exceptions from the xtuml
module. The operations are independent of the underlying metamodel definition,
i.e. the sql schema.

Loading Metamodels

	
xtuml.load_metamodel(resource)

	Load and return a metamodel from a resource. The resource may be either
a filename, or a list of filenames.

Usage example:

>>> metamodel = xtuml.load_metamodel(['schema.sql', 'data.sql'])

	
class xtuml.ModelLoader

	Class for loading metamodels previously persisted to disk.

Data may be provided in any order, e.g. instances followed by associations,
followed by class definitions. One single loader may be used to build
several xtuml.MetaModel objects, and additional data may be provided at
any time.

Note: Additional data will not affect previosly built metamodels.

Usage example:

>>> l = xtuml.ModelLoader()
>>> l.filename_input('data.sql')
>>> l.filename_input('schema.sql')
>>> m1 = l.build_metamodel()
>>> l.filename_input('additional_data.sql')
>>> m2 = l.build_metamodel()

	
build_metamodel(id_generator=None)

	Build and return a xtuml.MetaModel containing previously loaded input.

	
file_input(file_object)

	Read and parse data from a file object, i.e. the type of object
returned by the builtin python function open().

	
filename_input(filename)

	Open and read from a filename on disk, and parse its content.

	
input(data, name='<string>')

	Parse data directly from a string. The name is used when reporting
positional information if the parser encounter syntax errors.

	
populate(metamodel)

	Populate a metamodel with entities previously encountered from input.

Metamodel Operations

	
class xtuml.MetaModel(id_generator=None)

	A metamodel contains metaclasses with associations between them.

Note: All identifiers, e.g. attributes, association ids, key letters
(the kind or name of a class), are case insensitive.

	
clone(instance)

	Create a shallow clone of an instance.

Note: the clone and the original instance does not have to be
part of the same metaclass.

	
find_class(kind)

	Find a class of some kind in the metamodel.

	
new(kind, *args, **kwargs)

	Create and return a new instance in the metamodel of some kind.

Optionally, initial attribute values may be assigned to the new instance
by passing them as positional or keyword arguments. Positional arguments
are assigned in the order in which they appear in the metaclass.

	
select_many(kind, where_clause=None)

	Query the metamodel for a set of instances of some kind. Optionally,
a conditional where-clause in the form of a function may be provided.

Usage example:

>>> m = xtuml.load_metamodel('db.sql')
>>> inst_set = m.select_many('My_Class', lambda sel: sel.number > 5)

	
select_one(kind, where_clause=None)

	Query the metamodel for a single instance of some kind. Optionally, a
conditional where-clause in the form of a function may be provided.

Usage example:

>>> m = xtuml.load_metamodel('db.sql')
>>> inst = m.select_one('My_Class', lambda sel: sel.name == 'Test')

	
xtuml.navigate_one(instance)

	Initialize a navigation from one instance to another across a one-to-one
association.

The resulting query will return an instance or None.

Usage example:

>>> from xtuml import navigate_one as one
>>> m = xtuml.load_metamodel('db.sql')
>>> inst = m.select_any('My_Modeled_Class')
>>> other_inst = one(inst).Some_Other_Class[4]()

The syntax is somewhat similar to the action language used in BridgePoint.
The same semantics would be expressed in BridgePoint as:

select any inst from instances of My_Modeled_Class;
select one other_inst related by inst->Some_Other_Class[R4];

Note: If the navigated association is reflexive, a phrase must be
provided, e.g.

>>> other_inst = one(inst).Some_Other_Class[4, 'some phrase']()

	
xtuml.navigate_any(instance_or_set)

	Initialize a navigation from an instance, or a set of instances, to
associated instances across a one-to-many or many-to-many association.

The resulting query will return an instance or None.

	
xtuml.navigate_many(instance_or_set)

	Initialize a navigation from an instance, or a set of instances, to
associated instances across a one-to-many or many-to-many association.

The resulting query will return a set of instances.

	
xtuml.navigate_subtype(supertype, rel_id)

	Perform a navigation from supertype to its subtype across rel_id. The
navigated association must be modeled as a subtype-supertype association.

The return value will an instance or None.

	
xtuml.relate(from_instance, to_instance, rel_id, phrase='')

	Relate from_instance to to_instance across rel_id. For reflexive
association, a phrase indicating the direction must also be provided.

The two instances are related to each other by copying the identifying
attributes from the instance on the TO side of a association to the instance
n the FROM side. Updated values which affect existing associations are
propagated. A set of all affected instances will be returned.

	
xtuml.unrelate(from_instance, to_instance, rel_id, phrase='')

	Unrelate from_instance from to_instance across rel_id. For reflexive
associations, a phrase indicating the direction must also be provided.

The two instances are unrelated from each other by reseting the identifying
attributes on the FROM side of the association. Updated values which affect
existing associations are propagated. A set of all affected instances will
be returned.

	
xtuml.delete(instance)

	Delete an instance from its metaclass instance pool.

	
xtuml.where_eq(**kwargs)

	Return a where-clause that filters out instances based on named
keywords.

Usage example:

>>> from xtuml import where_eq as where
>>> m = xtuml.load_metamodel('db.sql')
>>> inst = m.select_any('My_Modeled_Class', where(My_Number=5))

	
xtuml.sort_reflexive(set_of_instances, rel_id, phrase)

	Sort a set of instances in the order they appear across a conditional and
reflexive association. The first instance in the resulting ordered set is
not associated to an instance across the given phrase.

	
class xtuml.MetaClass(kind, metamodel=None)

	A metaclass contain metadata for instances, e.g. what attributes are
available, what thier types are, and so on.

In addition, each metaclass also handle allocations of instances.

	
append_attribute(name, type_name)

	Append an attribute with a given name and type name at the end of
the list of attributes.

	
attribute_names

	Obtain an ordered list of all attribute names.

	
clone(instance)

	Create a shallow clone of an instance.

Note: the clone and the original instance does not have to be
part of the same metaclass.

	
delete(instance)

	Delete an instance from the instance pool. If the instance is not
part of the metaclass, a MetaException is thrown.

	
delete_attribute(name)

	Delete an attribute with a given name from the list of attributes.

	
insert_attribute(index, name, type_name)

	Insert an attribute with a given name and type name at some index
in the list of attributes.

	
navigate(inst, kind, rel_id, phrase='')

	Navigate across a link with some rel_id and phrase that yields
instances of some kind.

	
new(*args, **kwargs)

	Create and return a new instance.

	
query(dictonary_of_values)

	Query the instance pool for instances with attributes that match a given
dictonary of values.

	
select_many(where_clause=None)

	Select several instances from the instance pool. Optionally,
a conditional where-clause in the form of a function may be provided.

	
select_one(where_clause=None)

	Select a single instance from the instance pool. Optionally, a
conditional where-clause in the form of a function may be provided.

	
xtuml.check_association_integrity(m, rel_id=None)

	Check the model for integrity violations on association(s).

	
xtuml.check_uniqueness_constraint(m, kind=None)

	Check the model for uniqueness constraint violations.

Persistance

	
xtuml.persist_database(metamodel, path)

	Persist all instances, class definitions and association definitions in a
metamodel by serializing them and saving to a path on disk.

	
xtuml.persist_instances(metamodel, path)

	Persist all instances in a metamodel by serializing them and saving to a
path on disk.

	
xtuml.persist_schema(metamodel, path)

	Persist all class and association definitions in a metamodel by
serializing them and saving to a path on disk.

	
xtuml.serialize(resource)

	Serialize some xtuml resource, e.g. an instance or a complete metamodel.

	
xtuml.serialize_database(metamodel)

	Serialize all instances, class definitions, association definitions, and
unique identifiers in a metamodel.

	
xtuml.serialize_schema(metamodel)

	Serialize all class and association definitions in a metamodel.

	
xtuml.serialize_instances(metamodel)

	Serialize all instances in a metamodel.

	
xtuml.serialize_instance(instance)

	Serialize an instance from a metamodel.

Tools

	
class xtuml.UUIDGenerator

	A uuid-based id generator. 128-bit unique numbers are generated
randomly each time a new id is requested.

	
class xtuml.IntegerGenerator

	An integer-based id generator. Integers are generated sequentially,
starting from the number one.

Generally, the uuid-based id generator shall be used. In some cases such as
testing however, having deterministic unique ids may be benifitial.

Usage example:

>>> l = xtuml.ModelLoader()
>>> l.filename_input("schema.sql")
>>> l.filename_input("data.sql")
>>> m = l.build_metamodel(xtuml.IntegerGenerator())

	
class xtuml.Walker

	A walker may be used to walk a tree.

	
visitors = None

	

	
accept(node, **kwargs)

	Invoke the visitors before and after decending down the tree.
The walker will also try to invoke a method matching the pattern
accept_<type name>, where <type name> is the name of the accepted
node.

	
default_accept(node, **kwargs)

	The default accept behaviour is to decend into the iterable member
node.children (if available).

	
class xtuml.Visitor

	A visitor may be used to visit tree nodes walked by a walker.

	
default_enter(node)

	The default behaviour when entering a node if no other action is
defined by a subclass is to do nothing.

	
default_leave(node)

	The default behaviour when leaving a node if no other action is
defined by a subclass is to do nothing.

	
enter(node)

	Tries to invoke a method matching the pattern enter_<type name>, where
<type name> is the name of the type of the node.

	
leave(node)

	Tries to invoke a method matching the pattern leave_<type name>, where
<type name> is the name of the type of the node.

	
class xtuml.NodePrintVisitor

	A visitor that prints a tree-like structure to stdout.

	
default_render(node)

	The default behaviour when rendering a node if no other rendering
method is defined by a subclass is to render the class name.

	
render(node)

	Try to invoke a method matching the pattern render_<type name>, where
<type name> is the name of the rendering node.

Exceptions

	
exception xtuml.ParsingException

	An exception that may be thrown while loading (and parsing) a metamodel.

	
exception xtuml.MetaException

	Base class for all exceptions thrown by the xtuml.meta module.

	
exception xtuml.DeleteException

	An exception that may be thrown during delete operations.

	
exception xtuml.RelateException

	An exception that may be thrown during relate operations.

	
exception xtuml.UnrelateException

	An exception that may be thrown during unrelate operations.

	
exception xtuml.MetaModelException

	Base class for exceptions thrown by the MetaModel class.

	
exception xtuml.UnknownLinkException(from_kind, to_kind, rel_id, phrase)

	An exception that may be thrown when a link is not found.

	
exception xtuml.UnknownClassException

	An exception that may be thrown when a metaclass is not found.

bridgepoint

The following section lists functions and classes from the bridgepoint module.
All operations require input expressed in the BridgePoint metamodel (ooaofooa).

Loading Models

	
bridgepoint.load_metamodel(resource=None, load_globals=True)

	Load and return a metamodel expressed in ooaofooa from a resource.
The resource may be either a filename, a path, or a list of filenames
and/or paths.

	
class bridgepoint.ModelLoader(load_globals=True)

	A xtuml.MetaModel loader with ooaofooa schema and globals pre-defined.

	
build_component(name=None, derived_attributes=False)

	Instantiate and build a component from ooaofooa named name as a
pyxtuml model. Classes, associations, attributes and unique identifers,
i.e. O_OBJ, R_REL, O_ATTR in ooaofooa, are defined in the resulting
pyxtuml model.

Optionally, control whether derived attributes shall be mapped into
the resulting pyxtuml model as attributes or not.

Futhermore, if no name is provided, the entire content of the ooaofooa
model is instantiated into the pyxtuml model.

	
filename_input(path_or_filename)

	Open and read input from a path or filename, and parse its content.

If the filename is a directory, files that ends with .xtuml located
somewhere in the directory or sub directories will be loaded as well.

Model Transformation

	
bridgepoint.gen_text_action(instance)

	Generate textual OAL action code from an instance in the BridgePoint
metamodel. The input may be an instance of the following classes:

	S_SYNC

	S_BRG

	O_TFR

	O_DBATTR

	SM_ACT

	SPR_RO

	SPR_RS

	SPR_PO

	SPR_PS

In addition, anything in the ooaofooa subsystems Value or Body, e.g. ACT_SMT
or V_VAL are also supported.

	
bridgepoint.prebuild_action(instance)

	Transform textual OAL actions of an instance to instances in the ooaofooa
subsystems Value and Body. The provided instance must be an instance of
one of the following classes:

	S_SYNC

	S_BRG

	O_TFR

	O_DBATTR

	SM_ACT

	SPR_RO

	SPR_RS

	SPR_PO

	SPR_PS

	
bridgepoint.prebuild_model(metamodel)

	Transform textual OAL actions in a ooaofooa metamodel to instances in the
subsystems Value and Body. Instances of the following classes are supported:

	S_SYNC

	S_BRG

	O_TFR

	O_DBATTR

	SM_ACT

	SPR_RO

	SPR_RS

	SPR_PO

	SPR_PS

Contributing

If you encounter problems with pyxtuml, please file a github issue [https://github.com/xtuml/pyxtuml/issues/new]. If you plan on sending
pull request which affect more than a few lines of code, please file an issue
before you start to work on you changes. This will allow us to discuss the
solution properly before you commit time and effort.

License

pyxtuml is licensed under the LGPLv3+ [http://www.gnu.org/copyleft/lgpl.html].

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | U
 | V
 | W

A

 	
 	accept() (xtuml.Walker method)

 	
 	append_attribute() (xtuml.MetaClass method)

 	attribute_names (xtuml.MetaClass attribute)

B

 	
 	build_component() (bridgepoint.ModelLoader method)

 	
 	build_metamodel() (xtuml.ModelLoader method)

C

 	
 	check_association_integrity() (in module xtuml)

 	check_uniqueness_constraint() (in module xtuml)

 	
 	clone() (xtuml.MetaClass method)

 	(xtuml.MetaModel method)

D

 	
 	default_accept() (xtuml.Walker method)

 	default_enter() (xtuml.Visitor method)

 	default_leave() (xtuml.Visitor method)

 	default_render() (xtuml.NodePrintVisitor method)

 	
 	delete() (in module xtuml)

 	(xtuml.MetaClass method)

 	delete_attribute() (xtuml.MetaClass method)

 	DeleteException

E

 	
 	enter() (xtuml.Visitor method)

F

 	
 	file_input() (xtuml.ModelLoader method)

 	filename_input() (bridgepoint.ModelLoader method)

 	(xtuml.ModelLoader method)

 	
 	find_class() (xtuml.MetaModel method)

G

 	
 	gen_text_action() (in module bridgepoint)

I

 	
 	input() (xtuml.ModelLoader method)

 	
 	insert_attribute() (xtuml.MetaClass method)

 	IntegerGenerator (class in xtuml)

L

 	
 	leave() (xtuml.Visitor method)

 	
 	load_metamodel() (in module bridgepoint)

 	(in module xtuml)

M

 	
 	MetaClass (class in xtuml)

 	MetaException

 	MetaModel (class in xtuml)

 	
 	MetaModelException

 	ModelLoader (class in bridgepoint)

 	(class in xtuml)

N

 	
 	navigate() (xtuml.MetaClass method)

 	navigate_any() (in module xtuml)

 	navigate_many() (in module xtuml)

 	navigate_one() (in module xtuml)

 	
 	navigate_subtype() (in module xtuml)

 	new() (xtuml.MetaClass method)

 	(xtuml.MetaModel method)

 	NodePrintVisitor (class in xtuml)

P

 	
 	ParsingException

 	persist_database() (in module xtuml)

 	persist_instances() (in module xtuml)

 	
 	persist_schema() (in module xtuml)

 	populate() (xtuml.ModelLoader method)

 	prebuild_action() (in module bridgepoint)

 	prebuild_model() (in module bridgepoint)

Q

 	
 	query() (xtuml.MetaClass method)

R

 	
 	relate() (in module xtuml)

 	
 	RelateException

 	render() (xtuml.NodePrintVisitor method)

S

 	
 	select_many() (xtuml.MetaClass method)

 	(xtuml.MetaModel method)

 	select_one() (xtuml.MetaClass method)

 	(xtuml.MetaModel method)

 	serialize() (in module xtuml)

 	
 	serialize_database() (in module xtuml)

 	serialize_instance() (in module xtuml)

 	serialize_instances() (in module xtuml)

 	serialize_schema() (in module xtuml)

 	sort_reflexive() (in module xtuml)

U

 	
 	UnknownClassException

 	UnknownLinkException

 	
 	unrelate() (in module xtuml)

 	UnrelateException

 	UUIDGenerator (class in xtuml)

V

 	
 	Visitor (class in xtuml)

 	
 	visitors (xtuml.Walker attribute)

W

 	
 	Walker (class in xtuml)

 	
 	where_eq() (in module xtuml)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to pyxtuml’s documentation!

 		
 Getting Started

 		
 Dependencies

 		
 Installation

 		
 Usage example

 		
 Command Line Tools

 		
 Consistency Check

 		
 BridgePoint metamodel

 		
 SQL Schema Generator

 		
 XSD Schema Generator

 		
 OAL Prebuilder

 		
 API Reference

 		
 xtuml

 		
 Loading Metamodels

 		
 Metamodel Operations

 		
 Persistance

 		
 Tools

 		
 Exceptions

 		
 bridgepoint

 		
 Loading Models

 		
 Model Transformation

 		
 Contributing

 		
 License

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

