

Welcome to pyXe’s documentation!

pyXe is a package developed to address bottlenecks in the diffraction-strain analysis workflow. It is vital that X-ray diffraction data acquired during synchrotron beamtimes is analysed in as close to real time as is possible. This allows for a tight feedback loop and ensures that decisions regarding acquisition and experimental parameters are optimized.

The pyXe package therefore aims to allow for the efficient analysis and visualization of diffraction data acquired from these large scale facilities. It achieves this through the extraction of strain from individual peak fitting (i.e. not a Reitveld type refinement). Peak fitting routines can be run over 1D, 2D and 3D data sets. Peaks and strain are extracted as a function of azimuthal position (either detector position or caking angle). The resultant strain data is then further interrogated to facilitate the calculation of principal and shear strains. Analysed data is stored in the hdf5 file format and can be easily reloaded and visualised.

This package was originally designed to work with energy dispersive X-ray diffraction data (EDXRD) stored in the NeXus format acquired on the I12:JEEP beamline at the Diamond Light Source, UK. pyXe is now, however, capable of carrying out both the single and multi peak strain analysis from both energy dispersive and monochromatic X-ray sources.

Requirements

pyXe is built on Python’s scientific stack (numpy, scipy, matplotlib). The h5py package is also required for the manipulation and management of the NeXus/hdf5 data files. Development was carried out using the Anaconda (v 2019.03) package manager, which built with the following versions:

	Python: version 3.7.3

	numpy: version 1.16.2

	scipy: version 1.2.1

	matplotlib: version 3.0.3

	h5py: version 2.9.0

Backward compatability to python 3.5 is likely but not guaranteed. Monochromatic XRD caking/azimuthal integration within pyXe relies on pyFAI (and fabIO), which is a software package developed at the ESRF, designed to reduce SAXS, WAXS and XRPD images recorded by area detectors to 1D plots or 2D patterns. This caking functionality is not currently under development within pyXe and recent developments within pyFAI may have broken this functionality. While this may be fixed in the future we currently advise that azimuthal integration be carried out as a pre-processing step at the beamline (using pyFAI at ESRF or DAWN at DLS); the pyXe monochromatic post-processing analysis platform should be flexible enough to deal with most data inputs (although interface modules will likely be required outside of the Diamond Light Source).

Installation

Install from the distribution using the setup.py script. The source is stored in the GitHub repo, which can be found at:

https://github.com/casimp/pyxe

Simply download and unpack, then navigate to the download directory and run the following from the command-line:

pip install .

Documentation

Documentation is hosted by readthedocs. Although still incomplete they do, however, provide some background information and installation details:

http://pyxe.readthedocs.org/en/latest/

Contents

	Background
	Strain Calculation

	In-plane Strain Tensor

	Stress Calculations

	References

	License (MIT)

Indices and tables

	Index

	Module Index

	Search Page

Background

The following section provides a broad and basic overview of the key information and concepts used in the construction of the pyXe package. These details are by no means comprehensive. A comprehensive introduction to the topic can be found in the Synchrotron X-ray Diffraction (P. J. Withers) chapter of Practical Residual Stress Measurements by G. S. Shajer [1].

Strain Calculation

In pyXe, strain can now be calculated either from either a single user defined peak and associated lattice spacing, [image: d], or through a multi-peak Pawley type refinement and the associated lattice parameter, [image: a]. Strain is calculated against an unstrained equivalent, [image: d_0] or [image: a_0], respectively. For a single peak approach, strain is found according to the following relationship:

[image: \epsilon = \frac{d_n - d_0}{d_0}]

or, in terms of the scattering vector, q:

[image: \epsilon = \frac{q_0}{q_n} - 1.]

The unstrained lattice spacing ([image: d_0]) much either be explicitly given or specified via an analysed pyXe file (i.e. containing unstrained peaks that had been fit using pyXe) containing measurements from an unstrained source.
A consideration of the methods by which to extract unstrained lattice parameters can be found in work by Withers et al [3]. Note that in almost all cases, it is preferable to pass in a list of unstrained lattice spacings/parameters with respect to detetor or angle. This typically removes much of the systematic error introduced via detector alignment and set-up.

In-plane Strain Tensor

The detector, and therefore angle, specific strain values can be further utilised to calculate the in-plane strain tensor. This reduces uncertainty relative to single detector/angle analysis and allows for the extraction of strain at any defined angle.

[image: Strain fit]

(a) An example of the fit made through the strain array corresponding to the 23-element detector array. (b) The corresponding Mohr’s circle highlighting both the principal strain and the strain and shear strain at 0° and 90°.

Stress Calculations

In a 3D strain state, the normal stresses can be calculated according to the following equation:

[image: \sigma_{xx} = \frac{E}{(1 + \mu)(1 - 2\mu)} \left[(1 - \mu)\epsilon_{xx} + \mu(\epsilon_{yy} + \epsilon_{zz})\right].]

In both monochromatic and energy dispersive diffraction we typically capture the peak shifts and therefore the strain in 2D (nominally in x and y). The peak shift and strain in the orientation along the beam are not measured. Stress cannot be calculated unless additional information is available. One situation in which it is possible to calculate stress is under a plane strain criterion. In this scenario material along one axis (in this case along the beam direction) is under constraint and the strain can be approximated to zero. Ignoring poisson ratio effects, the full strain tensor collapses down to the 2D in-plane state such that:

[image: \epsilon_{ij} = \begin{pmatrix} \epsilon_{xx} & \epsilon_{xy} & \epsilon_{xz} \\ \epsilon_{yx} & \epsilon_{yy} & \epsilon_{yz} \\ \epsilon_{zx} & \epsilon_{zy} & \epsilon_{zz} \end{pmatrix} = \begin{pmatrix} \epsilon_{xx} & \epsilon_{xy}\\ \epsilon_{yx} & \epsilon_{yy} \end{pmatrix}.]

This then allows for the convenient calculation of stress:

[image: \sigma_{xx} = \frac{E}{(1 + \mu)(1 - 2\mu)} \left[(1 - \mu)\epsilon_{xx} + \mu(\epsilon_{yy})\right]]

A similar consideration and approach is available in pyXe for scenarios in which the stress state is more accurately characterised as plane stress.

References

	Withers, P. (2013). Synchrotron X-ray Diffraction. In - Practical Residual Stress Measurement Methods (pp. 163–194).

	Drakopoulos, M., Connolley, T., Reinhard, C., Atwood, R., Magdysyuk, O., Vo, N., … Wanelik, K. (2015). I12: the Joint Engineering , Environment and Processing (JEEP) beamline at Diamond Light Source. Journal of Synchrotron Radiation, (2015), 828–838. http://doi.org/10.1107/S1600577515003513

	Withers, P. J., Preuss, M., Steuwer, a., & Pang, J. W. L. (2007). Methods for obtaining the strain-free lattice parameter when using diffraction to determine residual stress. Journal of Applied Crystallography, 40(5), 891–904. http://doi.org/10.1107/S0021889807030269

License (MIT)

Copyright (c) 2015 Chris Simpson

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Index

EDXD Analysis (DLS - I12)

Background

I12 and specifically EH2, houses a 23-element energy dispersive X-ray detector.
Data acquired using this detector is stored in the NeXus format, which is a
data format used principally to store data from X-ray and neutron sources.

The NeXus file contains raw data and meta-data pertaining to each scan. In the
case of the energy dispersive detector it notably contains the location and
raw energy spectra (in keV) from each data point across each detector. These energy
spectra are calibrated and converted to the equivalent momentum transfer vector, q.

These values of q are stored in a multi-dimensional array, such that a scan of
size 10 x 10 would have an associated data array of size 10 x 10 x 24 x 4026.
4026 is the number of bins to collect the data and 24 is the number of detectors.
The 24th detector is unused and is there as a back-up.

The analysis is carried out across each detector, with peaks being calculated
according to a specified value for q0 (or a list of multiple q0 values - [q0_1, q0_2]).
The peaks are found and stored along with the peak errors. This data is
converted to strain (and strain_err) relative to the q0 (or q0s) that were originally specified.

Code Example

The initial analysis step was designed to be simple and complete. Data from all
detectors is assessed and the subsequent strain fitting/tensor calculation is completed.
This increases computation time (slightly) but the intent is for the data to be
saved and reloaded/interrogated at leisure.

>>> from pyxe.edi12_analysis import EDI12
>>> fname = r'./test/50418.nxs'
>>> data = EDI12(file = fname, q0 = 3.1, window = 0.5, func = 'gaussian')
File: C:\\Users\\casim\\Dropbox\\Python\\pyxe\\pyxe\\test\\50418.nxs - 195 acquisition points
Progress: [####################] 100%
Total points: 4485 (23 detectors x 195 positions)
Peak not found in 0 position/detector combintions
Error limit exceeded (or pcov not estimated) 0 times

The output from the analysis gives some basic metrics to judge whether the analysis
was successful. The peak fitting is applied to each data point/detector combination
and peak fitting failures are recorded. It is not unusual for the fitting to
have failed at some data point/detector combination. This is particularly likely
if your peak intensity is low or material contains texture such that particular
orientations have low intensity.

The data object that is output contains a lot of the raw data, most notably
the raw q values:

>>> data.I.shape
(13, 15, 24, 4096)

Along with the extracted strain:

>>> data.strain.shape
> (13, 15, 24, 1)

The final dimension of the strain array refers to the number of q0 values that
were given and peaks that were analysed.

The analysed data can be saved back to a NeXus file, which can be reloaded
without the need for re-analysis.

>>> data.save_to_nxs(fname = 'test.nxs')

Area Detector Analysis

Background

Code Example

EDXRD Analysis (DLS - I12:JEEP)

I12 and EDXRD

Beamline I12:JEEP (Joint Engineering, Environmental, and Processing) is a high energy X-ray beamline for imaging, diffraction and scattering, which operates at energies of 53-150 keV.

The I12-JEEP beamline is located at the Diamond Light Source (DLS) in Oxfordshire, UK. Specifications for the beamline have be detailed in the Journal of Synchrontron Radiation [2]. Much of this information is replicated on the DLS’s website:

http://www.diamond.ac.uk/Beamlines/Engineering-and-Environment/I12.html

The I12-JEEP beamline can be accessed through two separate experimental hutches. Experimental Hutch 2 (EH2), which is the larger of the hutches, contains the energy dispersive X-ray detector (EDXRD). The layout of the detector can be seen below:

[image: EDXRD setup]

The EDXRD system. (a) Geometry of the detector, detector slits and sample slits showing the semi-annular arrangement of 23 independent Ge crystals [2].

The detector is comprised of 23 elements spaced in steps of 8.2°, covering an azimuthal range from 0 to 180°. An additional, unused, detector is available in the case that one detector should fail. The data array that is output contains reference to this detector but it is ignored during the analysis. Detailed information about the EDXRD setup can be found in the previously noted journal article and on the DLS website:

http://www.diamond.ac.uk/Beamlines/Engineering-and-Environment/I12/detectors/EDXRD.html

Data Analysis

I12 and specifically EH2, houses a 23-element energy dispersive X-ray detector.
Data acquired using this detector is stored in the NeXus format, which is a
data format used principally to store data from X-ray and neutron sources.

The NeXus file contains raw data and meta-data pertaining to each scan. In the
case of the energy dispersive detector it notably contains the location and
raw energy spectra (in keV) from each data point across each detector. These energy
spectra are calibrated and converted to the equivalent momentum transfer vector, q.

These values of q are stored in a multi-dimensional array, such that a scan of
size 10 x 10 would have an associated data array of size 10 x 10 x 24 x 4026.
4026 is the number of bins to collect the data and 24 is the number of detectors.
The 24th detector is unused and is there as a back-up.

The analysis is carried out across each detector, with peaks being calculated
according to a specified value for q0 (or a list of multiple q0 values - [q0_1, q0_2]).
The peaks are found and stored along with the peak errors. This data is
converted to strain (and strain_err) relative to the q0 (or q0s) that were originally specified.

Code Example

The initial analysis step was designed to be simple and complete. Data from all
detectors is assessed and the subsequent strain fitting/tensor calculation is completed.
This increases computation time (slightly) but the intent is for the data to be
saved and reloaded/interrogated at leisure.

>>> from pyxe.edi12_analysis import EDI12
>>> fname = r'./test/50418.nxs'
>>> data = EDI12(file = fname, q0 = 3.1, window = 0.5, func = 'gaussian')
File: C:\\Users\\casim\\Dropbox\\Python\\pyxe\\pyxe\\test\\50418.nxs - 195 acquisition points
Progress: [####################] 100%
Total points: 4485 (23 detectors x 195 positions)
Peak not found in 0 position/detector combintions
Error limit exceeded (or pcov not estimated) 0 times

The output from the analysis gives some basic metrics to judge whether the analysis
was successful. The peak fitting is applied to each data point/detector combination
and peak fitting failures are recorded. It is not unusual for the fitting to
have failed at some data point/detector combination. This is particularly likely
if your peak intensity is low or material contains texture such that particular
orientations have low intensity.

The data object that is output contains a lot of the raw data, most notably
the raw q values:

>>> data.I.shape
(13, 15, 24, 4096)

Along with the extracted strain:

>>> data.strain.shape
> (13, 15, 24, 1)

The final dimension of the strain array refers to the number of q0 values that
were given and peaks that were analysed.

The analysed data can be saved back to a NeXus file, which can be reloaded
without the need for re-analysis.

>>> data.save_to_nxs(fname = 'test.nxs')

Plotting

In addition to the the extraction and manipulation of strain data, the edi12 package also provides some plotting functions to allow for the visulisation of the strain data.

Tools

…

 _static/up-pressed.png

_images/math/ade2c6b48de2e18843bf1145ba9057e057fdb3c9.png

_images/math/b9d10b54744d07746b97f53c55eb98046fd76c8c.png

_images/math/146e39a2b85d68415f99a9b51186facf0fb3eb99.png

_static/up.png

_images/math/186f3d6a7fd402a1aaf62df7f793faa396466738.png
Orre

(14 2)(1 —2p)

[(1 = p)eas + pleyy + €:2)]

_images/math/d90e4e31221d9a839b27cade5e8cd5541abd6e39.png

_images/math/e04a87c0ffa16c7fae8fd783a06bf5f8c34400f1.png
Orre

(14 2)(1—2p)

[(1 = p)exs + plegy)]

_images/math/bd9d9c7512c898e0a254a0882184197bc1bd9c9f.png

_images/math/d1a15392374eb2875fc3efa1ae555846991e0553.png

_images/math/f8fb8306a8df02159ae547d42437b4d80571199b.png

_static/ajax-loader.gif

_images/example_fitmohrs.png
00030

0002 o ()
00025
0 (e =)
00020
001
00015
§ ooo0 0000
&
00005
00000 o001
—~0.0005 .
-0.002
—~0.0010,
00 05 10 13 20 25 30 3s 0001 0000 0601 0002 0003 0004

Detector angle Strain

nav.xhtml

 Table of Contents

 		
 Welcome to pyXe’s documentation!

 		
 Background

 		
 Strain Calculation

 		
 In-plane Strain Tensor

 		
 Stress Calculations

 		
 References

 		
 License (MIT)

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

