
pyworkdir Documentation

pyworkdir

Sep 20, 2019

CONTENTS

1 Basic usage 3

2 Directories are Customizable Classes 5

3 Directories have a Command Line Interface 7

4 Changing Environment Variables 9

5 Yaml Files 11

6 Logging 13

7 API 15
7.1 workdir . 15
7.2 util . 19
7.3 main . 20

8 Indices and tables 21

Index 23

i

ii

pyworkdir Documentation

Python Working Directories

Visit project home on GitHub.

CONTENTS 1

https://github.com/Olllom/pyworkdir

pyworkdir Documentation

2 CONTENTS

CHAPTER

ONE

BASIC USAGE

Changing the current working directory:

from pyworkdir import WorkDir

with WorkDir("some_directory"):
everything in this context is run
in the specified directory
pass

3

pyworkdir Documentation

4 Chapter 1. Basic usage

CHAPTER

TWO

DIRECTORIES ARE CUSTOMIZABLE CLASSES

WorkDir classes can be be customized by adding a file workdir.py to the directory. All variables, functions, or classes
defined in this file will be added as attributes of the WorkDir instances.

For instance, consider the following workdir.py file:

-- workdir.py --
def data_file(workdir, filename="data.csv"):

return workdir/filename

The function can now be accessed from other code as follows:

from pyworkdir import WorkDir

with WorkDir() as wd:
print(wd.data_file())

Note that the parameter workdir behaves like the self argument of the method. If workdir is not an argument of the
function, the function behaves like a static method.

By default, the WorkDir instance also recursively inherits attributes defined in its parent directory’s workdir.py files.
Therefore, subdirectories behave like subclasses.

5

pyworkdir Documentation

6 Chapter 2. Directories are Customizable Classes

CHAPTER

THREE

DIRECTORIES HAVE A COMMAND LINE INTERFACE

Custom functions of the WorkDir are directly accessible from a terminal via the command workdir. Before being
called from the command line, all function parameters (except the reserved keywords workdir and here) have to be
declared as Click options:

-- workdir.py --
import click

num_apples = 2

@click.option("-c", type=int, default=12, help="A number (default:12)")
@click.option("-s","--somebody", type=str, help="A name")
def hello(count, somebody, workdir):

"""This function says hello."""
workdir.num_apples += 1
print(

f"{count} times Hello! to {somebody}: "
f"we have {workdir.num_apples} apples."

)

Calling the function from the command line looks like this:

foo@bar:~$ workdir hello --help
Usage: workdir hello [OPTIONS]

This function says hello.

Options:
-c, --count INTEGER A number (default:12)
-s, --somebody TEXT A name
--help Show this message and exit.

foo@bar:~$ workdir hello -s "you"
12 times Hello! to you: we have 3 apples.

Writing workdir.py files like this makes it easy to define local functions that can be called both from inside python and
from a terminal. For the latter, the workdir.py behaves similar to a Makefile.

To suppress generation of the command line interface for a function, pyworkdir provides a no_cli decorator:

-- workdir.py --

from pyworkdir import no_cli

(continues on next page)

7

https://click.palletsprojects.com/options/

pyworkdir Documentation

(continued from previous page)

@no_cli
def a_function_without_command_line_interface():

pass

8 Chapter 3. Directories have a Command Line Interface

CHAPTER

FOUR

CHANGING ENVIRONMENT VARIABLES

Temporary changes of the environment:

from pyworkdir import WorkDir

with WorkDir(environment={"MY_ENVIRONMENT_VARIABLE":"1"}):
in this context the environment variable is set
pass

outside the context, it is not set any longer

9

pyworkdir Documentation

10 Chapter 4. Changing Environment Variables

CHAPTER

FIVE

YAML FILES

Environment variables and simple attributes can also be set through yml files. The templates {{ workdir }} and {{ here
}} are available and will be replaced by the working directory instance and the directory that contains the yml file,
respectively:

-- workdir.yml --
environment:

VAR_ONE: "a"
attributes:

my_number: 1
my_list:

- 1
- 2
- 3

my_tmpdir: {{ here/"tmpdir" }}
my_local_tmpfile: {{ workdir/"file.tmp" }}

commands:
echo: echo Hello // print Hello to the command line

The commands are shortcuts for terminal commands that can be called from python and from the command line.
Everything after // is used as a documentation string for the command line interface. The attributes and environment
variables get added to the WorkDir:

import os

with WorkDir() as wd:
print(wd.my_number + 5, wd.my_tmpdir , wd.my_local_tmpfile)
for el in wd.my_list:

print(el)
print(os.environ["VAR_ONE"])

Note that environment variables passed to the constructor have preference over those in a yml file.

11

pyworkdir Documentation

12 Chapter 5. Yaml Files

CHAPTER

SIX

LOGGING

A logger is available:

from pyworkdir import WorkDir
import logging

wd = WorkDir()
wd.log("a INFO-level message")
wd.log("a DEBUG-level message", logging.DEBUG)

By default, INFO-level and higher is printed to the console. DEBUG-level output is only printed to a file workdir.log.

13

pyworkdir Documentation

14 Chapter 6. Logging

CHAPTER

SEVEN

API

7.1 workdir

Python working directories.

class pyworkdir.workdir.WorkDir(directory=’.’, mkdir=True, python_files=[’workdir.py’],
yml_files=[’workdir.yml’], python_files_recursion=-1,
yml_files_recursion=-1, environment={}, logger=None,
logfile=’workdir.log’, loglevel_console=20, loglevel_file=10)

Bases: object

Working directory class.

Parameters

• directory (str, Optional, default: ".") – The directory name

• mkdir (bool, Optional, default: True) – Whether to create the directory if
it does not exist

• python_files (list of string, Optional, default: ["workdir.
py"]) – A list of python files. All variables, functions, and classes defined in these files are
added as members to customize the WorkDir.

• yml_files (list of string, Optional, default: ["workdir.
yml"]) – A list of configuration files to read a configuration from.

• python_files_recursion (int, Optional, default: -1) – Recursion
level for loading python files from parent directories. 0 means only this directory, 1 means
this directory and its parent directory, etc. If -1, recurse until root.

• yml_files_recursion (int, Optional, default: -1) – Recursion level
for yml files.

• environment (dict, Optional, default: dict()) – A dictionary. Keys
(names of environment variables) and values (values of environment variables) have to be
strings. Environment variables are temporarily set to these values within a context (a with
WorkDir() . . . block) and set to their original values outside the context.

• logger (logging.Logger or None, Optional, default: None) – A
logger instance. If None, use a default logger. If a custom logger is specified, the other
arguments that concern the logger are not recognized.

• logfile (str, Optional, default: "workdir.log") – The logfile to write
output to.

• loglevel_console (int, Optional, default: logging.INFO) – The
level of logging to the console.

15

pyworkdir Documentation

• loglevel_file (int, Optional, default: logging.DEBUG) – The level
of logging to the logfile.

path
Absolute path of this working directory

Type pathlib.Path

scope_path
The path of the surrounding scope (when used as a context manager)

Type pathlib.Path

environment
A dictionary of environment variables to be set in the context

Type dict

scope_environment
A dictionary to keep track of the environment of the scope

Type dict

custom_attributes
A dictionary that lists custom attributes of this working directory. The values of the dictionary are the
source files which contain the definition of each attribute.

Type dict

python_files
A list of python filenames that the workdir instance may read its custom attributes from. Files do not need
to exist.

Type list of str

yml_files
A list of yml filenames that the workdir instance may read its custom attributes from. Files do not need to
exist.

Type list of str

logger
A logger instance

Type logging.Logger or None

logfile
Filename of the log file

Type str

loglevel_console
An integer between 0 (logging.NOT_SET) and 50 (logging.CRITICAL) for level of printing to the console

Type int

loglevel_file
An integer between 0 (logging.NOT_SET) and 50 (logging.CRITICAL) for level of printing to the file

Type int

commands
A dictionary of terminal commands.

Type dict

16 Chapter 7. API

pyworkdir Documentation

Notes

Get the absolute path of a file in this working directory

>>> with WorkDir("some_path") as wd:
>>> absolute_path = wd / "some_file.txt"

Get the number of files and subdirectories:

>>> len(wd)

Iterate over all files in this working directory:

>>> for f in wd.files():
>>> pass

Examples

Basic usage:

>>> with WorkDir("some_path"):
>>> # everything in this context will
>>> # run in the specified directory
>>> pass

Customizing the working directory:

To add or change attributes of the WorkDir, create a file “workdir.py” in the directory. All functions, classes,
and variables defined in “workdir.py” will be added as attributes to the WorkDir.

>>> # -- workdir.py --
>>> def custom_sum_function(a, b):
>>> return a + b

>>> # -- main.py --
>>> wd = WorkDir(".")
>>> result = wd.custom_sum_function(a,b)

By default, these attributes get added recursively from parent directories as well, where more specific settings
(further down in the directory tree) override more general ones. This mimics a kind of inheritance, where
subdirectories inherit attributes from their parents.

When defining functions in the workdir.py file, some argument names have special meaning: - The argument
name workdir refers to the working directory instance.

It represents the self argument of the method.

• The argument name here refers to the absolute path of the directory that contains the workdir.py file.

Environment variables can be changed inside a context as follows.

>>> import os
>>> with WorkDir(environment={"VAR_ONE": "ONE", "VAR_TWO": "TWO"}):
>>> print(os.environ["VAR_ONE"])
>>> assert "VAR_ONE" not in os.environ

7.1. workdir 17

pyworkdir Documentation

Environment variables and simple attributes can also be set through yml files. The templates {{ workdir }} and
{{ here }} are available and will be replaced by the working directory instance and the directory that contains
the yml file, respectively.

>>> # -- workdir.yml --
environment:

VAR_ONE: "a"
attributes:

my_number: 1
my_list:

- 1
- 2
- 3

my_tmpdir: {{ here/"tmpdir" }}
my_local_tmpfile: {{ workdir/"file.tmp" }}

>>> with WorkDir() as wd:
>>> print(wd.my_number + 5, wd.my_tmpdir , wd.my_local_tmpfile)
>>> for el in wd.my_list:
>>> print(el)
>>> print(os.environ["VAR_ONE"])

Note that environment variables passed to the constructor have preference over those in a yml file.

A logging instance is available; the default output file is workdir.log:

>>> wd = WorkDir()
>>> wd.log("my message")
>>> import logging
>>> wd.log("debug info", level=logging.DEBUG)

add_members_from_pyfile(pyfile)
Initialize members of this WorkDir from a python file.

The following attributes are not added as members of the WorkDir:

1) imported modules

2) built-ins and private objects, i.e. if the name starts with an underscore

3) objects that are imported from other modules using from . . . import . . .

The only exception to 3. is if the imported function has a command-line interface, i.e. @click.option-
decorated functions added to the workdir so that they can be called from the command line.

Parameters pyfile (path-like object) – Absolute path of a python file.

Notes

The function arguments workdir and here of imported functions are replaced by the WorkDir instance and
the directory containing the pyfile, respectively.

add_members_from_yml_file(yml_file)
Initialize members and environment variables from a yml file.

files(abs=False)
Iterator over files in this work dir.

Parameters abs (bool, Optional, default=False) – Yield absolute filenames

Yields file (str) – Filenames in this directory

18 Chapter 7. API

pyworkdir Documentation

Examples

>>> with WorkDir("some_directory") as wd:
>>> for file in wd.files():
>>> print(file)

log(message, level=20)
Write logging output to the console and/or a log file.

Parameters

• message (str) –

• level (int, Optional, default: logging.DEBUG) –

7.2 util

Utilities for workdir

exception pyworkdir.util.WorkDirException
Bases: Exception

General exception class for pyworkdir module.

pyworkdir.util.forge_method(instance, func, replace_args={}, name=None, add=True)
Forge a method and add it to an instance.

Parameters

• instance (class instance) – The instance to which the function should be added as
a method

• func (function) – The function to be added to the instance

• replace_args (dict, Optional, default = dict()) – Any arguments that
are replaced by default values in the spirit of functools.partial

• name (str, Optional, default=None) – The function’s name; if None, infer from
function.__name__

• add (bool, Optional, default=True) – If False, do not add the function but re-
turn it instead.

Notes

This function takes care of option-decorated functions. They retain their __click_params__ field; also all re-
place_args get added as hidden options so that they are not visible on the command line interface.

pyworkdir.util.import_from_file(filename)
Import a python module from a file by path.

Parameters filename (str or path-like) – The file to be imported

Returns pymod – The imported module

Return type python module

pyworkdir.util.recursively_get_filenames(path, filenames, recursion_depth, cur-
rent_recursion_level=0)

Get all filenames (python/yaml) that attributes should be read from.

7.2. util 19

pyworkdir Documentation

Parameters

• path (str or path-like object) – the current directory

• filenames (str) – The base filenames.

• recursion_depth (int) – The maximum recursion depth (0 = only current directory,
1 = current and parents). -1 means recurse until root.

• current_recursion_level (int, Optional, default = 0) – Current re-
cursion level of the function.

Returns filenames – A list of filenames, where the ones further up front in the list are further up in
the directory tree. The files do not need to exist.

Return type list

7.3 main

Command line interface

pyworkdir.main.bash_function(bash_command)
Bash command as a python function

Parameters bash_command (str) –

Returns function – A python function that runs the bash command.

Return type callable

pyworkdir.main.entrypoint()
Entrypoint for the workdir command.

pyworkdir.main.forge_command_line_interface(*args, **kwargs)
Forge the click.Group that holds all commands defined in workdir.py All arguments are forwarded to the con-
structor of WorkDir.

Returns

Return type A click.Group that defines one command for every custom function in the WorkDir.

pyworkdir.main.no_cli(function)
Function decorator to suppress generation of a command-line interface for this function.

Examples

>>> # in workdir.py
>>> from pyworkdir import no_cli
>>>
>>> @no_cli
>>> def function_without_command_line_interace()
>>> pass

pyworkdir.main.show(workdir, variables=False, functions=False, sources=False, environment=False,
commands=False, out=<_io.TextIOWrapper name=’<stdout>’ mode=’w’
encoding=’UTF-8’>)

Print the working directory in yaml format.

20 Chapter 7. API

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

21

pyworkdir Documentation

22 Chapter 8. Indices and tables

INDEX

C
commands (pyworkdir.workdir.WorkDir attribute), 16
custom_attributes (pyworkdir.workdir.WorkDir

attribute), 16

E
environment (pyworkdir.workdir.WorkDir attribute),

16

L
logfile (pyworkdir.workdir.WorkDir attribute), 16
logger (pyworkdir.workdir.WorkDir attribute), 16
loglevel_console (pyworkdir.workdir.WorkDir at-

tribute), 16
loglevel_file (pyworkdir.workdir.WorkDir at-

tribute), 16

P
path (pyworkdir.workdir.WorkDir attribute), 16
python_files (pyworkdir.workdir.WorkDir attribute),

16

S
scope_environment (pyworkdir.workdir.WorkDir

attribute), 16
scope_path (pyworkdir.workdir.WorkDir attribute), 16

Y
yml_files (pyworkdir.workdir.WorkDir attribute), 16

23

	Basic usage
	Directories are Customizable Classes
	Directories have a Command Line Interface
	Changing Environment Variables
	Yaml Files
	Logging
	API
	workdir
	util
	main

	Indices and tables
	Index

