

pyworkdir

Python Working Directories

Visit project home on GitHub. [https://github.com/Olllom/pyworkdir]

Basic usage

Changing the current working directory:

from pyworkdir import WorkDir

with WorkDir("some_directory"):
 # everything in this context is run
 # in the specified directory
 pass

Directories are Customizable Classes

WorkDir classes can be be customized by adding a file workdir.py to the directory.
All variables, functions, or classes defined in this file will be added as attributes of
the WorkDir instances.

For instance, consider the following workdir.py file:

-- workdir.py --
def data_file(workdir, filename="data.csv"):
 return workdir/filename

The function can now be accessed from other code as follows:

from pyworkdir import WorkDir

with WorkDir() as wd:
 print(wd.data_file())

Note that the parameter workdir behaves like the self argument of the method. If workdir is not
an argument of the function, the function behaves like a static method.

By default, the WorkDir instance also recursively inherits attributes defined
in its parent directory’s workdir.py files.
Therefore, subdirectories behave like subclasses.

Directories have a Command Line Interface

Custom functions of the WorkDir are directly accessible from a terminal via the command workdir.
Before being called from the command line, all function parameters (except the reserved keywords workdir and here)
have to be declared as Click options [https://click.palletsprojects.com/options/]:

-- workdir.py --
import click

num_apples = 2

@click.option("-c", type=int, default=12, help="A number (default:12)")
@click.option("-s","--somebody", type=str, help="A name")
def hello(count, somebody, workdir):
 """This function says hello."""
 workdir.num_apples += 1
 print(
 f"{count} times Hello! to {somebody}: "
 f"we have {workdir.num_apples} apples."
)

Calling the function from the command line looks like this:

foo@bar:~$ workdir hello --help
Usage: workdir hello [OPTIONS]

 This function says hello.

Options:
 -c, --count INTEGER A number (default:12)
 -s, --somebody TEXT A name
 --help Show this message and exit.

foo@bar:~$ workdir hello -s "you"
12 times Hello! to you: we have 3 apples.

Writing workdir.py files like this makes it easy to define local functions that can be called both from inside python
and from a terminal. For the latter, the workdir.py behaves similar to a Makefile.

To suppress generation of the command line interface for a function, pyworkdir provides a no_cli decorator:

-- workdir.py --

from pyworkdir import no_cli

@no_cli
def a_function_without_command_line_interface():
 pass

Changing Environment Variables

Temporary changes of the environment:

from pyworkdir import WorkDir

with WorkDir(environment={"MY_ENVIRONMENT_VARIABLE":"1"}):
 # in this context the environment variable is set
 pass

outside the context, it is not set any longer

Yaml Files

Environment variables and simple attributes can also be set through yml files.
The templates {{ workdir }} and {{ here }} are available and will be replaced by the working directory
instance and the directory that contains the yml file, respectively:

-- workdir.yml --
environment:
 VAR_ONE: "a"
attributes:
 my_number: 1
 my_list:
 - 1
 - 2
 - 3
 my_tmpdir: {{ here/"tmpdir" }}
 my_local_tmpfile: {{ workdir/"file.tmp" }}
commands:
 echo: echo Hello // print Hello to the command line

The commands are shortcuts for terminal commands that can be called from python and from the command line.
Everything after // is used as a documentation string for the command line interface.
The attributes and environment variables get added to the WorkDir:

import os

with WorkDir() as wd:
 print(wd.my_number + 5, wd.my_tmpdir , wd.my_local_tmpfile)
 for el in wd.my_list:
 print(el)
 print(os.environ["VAR_ONE"])

Note that environment variables passed to the constructor have preference over those in a yml file.

Logging

A logger is available:

from pyworkdir import WorkDir
import logging

wd = WorkDir()
wd.log("a INFO-level message")
wd.log("a DEBUG-level message", logging.DEBUG)

By default, INFO-level and higher is printed to the console.
DEBUG-level output is only printed to a file workdir.log.

API

workdir

Python working directories.

	
class pyworkdir.workdir.WorkDir(directory='.', mkdir=True, python_files=['workdir.py'], yml_files=['workdir.yml'], python_files_recursion=-1, yml_files_recursion=-1, environment={}, logger=None, logfile='workdir.log', loglevel_console=20, loglevel_file=10)

	Bases: object

Working directory class.

	Parameters

	
	directory (str, Optional, default: ".") – The directory name

	mkdir (bool, Optional, default: True) – Whether to create the directory if it does not exist

	python_files (list of string, Optional, default: ["workdir.py"]) – A list of python files. All variables, functions, and classes defined
in these files are added as members to customize the WorkDir.

	yml_files (list of string, Optional, default: ["workdir.yml"]) – A list of configuration files to read a configuration from.

	python_files_recursion (int, Optional, default: -1) – Recursion level for loading python files from parent directories. 0 means only this directory, 1 means
this directory and its parent directory, etc. If -1, recurse until root.

	yml_files_recursion (int, Optional, default: -1) – Recursion level for yml files.

	environment (dict, Optional, default: dict()) – A dictionary. Keys (names of environment variables) and values (values of environment variables)
have to be strings. Environment variables are temporarily set to these values within a context
(a with WorkDir() … block) and set to their original values outside the context.

	logger (logging.Logger or None, Optional, default: None) – A logger instance. If None, use a default logger. If a custom logger is specified,
the other arguments that concern the logger are not recognized.

	logfile (str, Optional, default: "workdir.log") – The logfile to write output to.

	loglevel_console (int, Optional, default: logging.INFO) – The level of logging to the console.

	loglevel_file (int, Optional, default: logging.DEBUG) – The level of logging to the logfile.

	
path

	Absolute path of this working directory

	Type

	pathlib.Path

	
scope_path

	The path of the surrounding scope (when used as a context manager)

	Type

	pathlib.Path

	
environment

	A dictionary of environment variables to be set in the context

	Type

	dict

	
scope_environment

	A dictionary to keep track of the environment of the scope

	Type

	dict

	
custom_attributes

	A dictionary that lists custom attributes of this working directory. The values of the dictionary are
the source files which contain the definition of each attribute.

	Type

	dict

	
python_files

	A list of python filenames that the workdir instance may read its custom attributes from.
Files do not need to exist.

	Type

	list of str

	
yml_files

	A list of yml filenames that the workdir instance may read its custom attributes from.
Files do not need to exist.

	Type

	list of str

	
logger

	A logger instance

	Type

	logging.Logger or None

	
logfile

	Filename of the log file

	Type

	str

	
loglevel_console

	An integer between 0 (logging.NOT_SET) and 50 (logging.CRITICAL) for level of printing to the console

	Type

	int

	
loglevel_file

	An integer between 0 (logging.NOT_SET) and 50 (logging.CRITICAL) for level of printing to the file

	Type

	int

	
commands

	A dictionary of terminal commands.

	Type

	dict

Notes

Get the absolute path of a file in this working directory

>>> with WorkDir("some_path") as wd:
>>> absolute_path = wd / "some_file.txt"

Get the number of files and subdirectories:

>>> len(wd)

Iterate over all files in this working directory:

>>> for f in wd.files():
>>> pass

Examples

Basic usage:

>>> with WorkDir("some_path"):
>>> # everything in this context will
>>> # run in the specified directory
>>> pass

Customizing the working directory:

To add or change attributes of the WorkDir, create a file “workdir.py” in the directory.
All functions, classes, and variables defined in “workdir.py” will be added as attributes to the WorkDir.

>>> # -- workdir.py --
>>> def custom_sum_function(a, b):
>>> return a + b

>>> # -- main.py --
>>> wd = WorkDir(".")
>>> result = wd.custom_sum_function(a,b)

By default, these attributes get added recursively from parent directories as well, where more specific
settings (further down in the directory tree) override more general ones. This mimics a kind of inheritance,
where subdirectories inherit attributes from their parents.

When defining functions in the workdir.py file, some argument names have special meaning:
- The argument name workdir refers to the working directory instance.

It represents the self argument of the method.

	The argument name here refers to the absolute path of the directory that contains the workdir.py file.

Environment variables can be changed inside a context as follows.

>>> import os
>>> with WorkDir(environment={"VAR_ONE": "ONE", "VAR_TWO": "TWO"}):
>>> print(os.environ["VAR_ONE"])
>>> assert "VAR_ONE" not in os.environ

Environment variables and simple attributes can also be set through yml files.
The templates {{ workdir }} and {{ here }} are available and will be replaced by the working directory
instance and the directory that contains the yml file, respectively.

>>> # -- workdir.yml --
 environment:
 VAR_ONE: "a"
 attributes:
 my_number: 1
 my_list:
 - 1
 - 2
 - 3
 my_tmpdir: {{ here/"tmpdir" }}
 my_local_tmpfile: {{ workdir/"file.tmp" }}

>>> with WorkDir() as wd:
>>> print(wd.my_number + 5, wd.my_tmpdir , wd.my_local_tmpfile)
>>> for el in wd.my_list:
>>> print(el)
>>> print(os.environ["VAR_ONE"])

Note that environment variables passed to the constructor have preference over those in a yml file.

A logging instance is available; the default output file is workdir.log:

>>> wd = WorkDir()
>>> wd.log("my message")
>>> import logging
>>> wd.log("debug info", level=logging.DEBUG)

	
add_members_from_pyfile(pyfile)

	Initialize members of this WorkDir from a python file.

The following attributes are not added as members of the WorkDir:

	imported modules

	built-ins and private objects, i.e. if the name starts with an underscore

	objects that are imported from other modules using from … import …

The only exception to 3. is if the imported function has a command-line interface,
i.e. @click.option-decorated functions added to the workdir so that they can be
called from the command line.

	Parameters

	pyfile (path-like object) – Absolute path of a python file.

Notes

The function arguments workdir and here of imported functions
are replaced by the WorkDir instance and the directory containing the
pyfile, respectively.

	
add_members_from_yml_file(yml_file)

	Initialize members and environment variables from a yml file.

	
files(abs=False)

	Iterator over files in this work dir.

	Parameters

	abs (bool, Optional, default=False) – Yield absolute filenames

	Yields

	file (str) – Filenames in this directory

Examples

>>> with WorkDir("some_directory") as wd:
>>> for file in wd.files():
>>> print(file)

	
log(message, level=20)

	Write logging output to the console and/or a log file.

	Parameters

	
	message (str) –

	level (int, Optional, default: logging.DEBUG) –

util

Utilities for workdir

	
exception pyworkdir.util.WorkDirException

	Bases: Exception

General exception class for pyworkdir module.

	
pyworkdir.util.forge_method(instance, func, replace_args={}, name=None, add=True)

	Forge a method and add it to an instance.

	Parameters

	
	instance (class instance) – The instance to which the function should be added as a method

	func (function) – The function to be added to the instance

	replace_args (dict, Optional, default = dict()) – Any arguments that are replaced by default values in the spirit of functools.partial

	name (str, Optional, default=None) – The function’s name; if None, infer from function.__name__

	add (bool, Optional, default=True) – If False, do not add the function but return it instead.

Notes

This function takes care of option-decorated functions. They retain
their __click_params__ field; also all replace_args
get added as hidden options so that they are not visible on the command line interface.

	
pyworkdir.util.import_from_file(filename)

	Import a python module from a file by path.

	Parameters

	filename (str or path-like) – The file to be imported

	Returns

	pymod – The imported module

	Return type

	python module

	
pyworkdir.util.recursively_get_filenames(path, filenames, recursion_depth, current_recursion_level=0)

	Get all filenames (python/yaml) that attributes should be read from.

	Parameters

	
	path (str or path-like object) – the current directory

	filenames (str) – The base filenames.

	recursion_depth (int) – The maximum recursion depth (0 = only current directory, 1 = current and parents).
-1 means recurse until root.

	current_recursion_level (int, Optional, default = 0) – Current recursion level of the function.

	Returns

	filenames – A list of filenames, where the ones further up front in the list are further up in the directory tree.
The files do not need to exist.

	Return type

	list

main

Command line interface

	
pyworkdir.main.bash_function(bash_command)

	Bash command as a python function

	Parameters

	bash_command (str) –

	Returns

	function – A python function that runs the bash command.

	Return type

	callable

	
pyworkdir.main.entrypoint()

	Entrypoint for the workdir command.

	
pyworkdir.main.forge_command_line_interface(*args, **kwargs)

	Forge the click.Group that holds all commands defined in workdir.py
All arguments are forwarded to the constructor of WorkDir.

	Returns

	

	Return type

	A click.Group that defines one command for every custom function in the WorkDir.

	
pyworkdir.main.no_cli(function)

	Function decorator to suppress generation of a command-line interface for this function.

Examples

>>> # in workdir.py
>>> from pyworkdir import no_cli
>>>
>>> @no_cli
>>> def function_without_command_line_interace()
>>> pass

	
pyworkdir.main.show(workdir, variables=False, functions=False, sources=False, environment=False, commands=False, out=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)

	Print the working directory in yaml format.

Indices and tables

	Index

	Module Index

	Search Page

Index

 C
 | E
 | L
 | P
 | S
 | Y

C

 	
 	commands (pyworkdir.workdir.WorkDir attribute)

 	
 	custom_attributes (pyworkdir.workdir.WorkDir attribute)

E

 	
 	environment (pyworkdir.workdir.WorkDir attribute)

L

 	
 	logfile (pyworkdir.workdir.WorkDir attribute)

 	logger (pyworkdir.workdir.WorkDir attribute)

 	
 	loglevel_console (pyworkdir.workdir.WorkDir attribute)

 	loglevel_file (pyworkdir.workdir.WorkDir attribute)

P

 	
 	path (pyworkdir.workdir.WorkDir attribute)

 	
 	python_files (pyworkdir.workdir.WorkDir attribute)

S

 	
 	scope_environment (pyworkdir.workdir.WorkDir attribute)

 	
 	scope_path (pyworkdir.workdir.WorkDir attribute)

Y

 	
 	yml_files (pyworkdir.workdir.WorkDir attribute)

Basic usage

Changing the current working directory:

from pyworkdir import WorkDir

with WorkDir("some_directory"):
 # everything in this context is run
 # in the specified directory
 pass

Directories are Customizable Classes

WorkDir classes can be be customized by adding a file workdir.py to the directory.
All variables, functions, or classes defined in this file will be added as attributes of
the WorkDir instances.

For instance, consider the following workdir.py file:

-- workdir.py --
def data_file(workdir, filename="data.csv"):
 return workdir/filename

The function can now be accessed from other code as follows:

from pyworkdir import WorkDir

with WorkDir() as wd:
 print(wd.data_file())

Note that the parameter workdir behaves like the self argument of the method. If workdir is not
an argument of the function, the function behaves like a static method.

By default, the WorkDir instance also recursively inherits attributes defined
in its parent directory’s workdir.py files.
Therefore, subdirectories behave like subclasses.

Directories have a Command Line Interface

Custom functions of the WorkDir are directly accessible from a terminal via the command workdir.
Before being called from the command line, all function parameters (except the reserved keywords workdir and here)
have to be declared as Click options [https://click.palletsprojects.com/options/]:

-- workdir.py --
import click

num_apples = 2

@click.option("-c", type=int, default=12, help="A number (default:12)")
@click.option("-s","--somebody", type=str, help="A name")
def hello(count, somebody, workdir):
 """This function says hello."""
 workdir.num_apples += 1
 print(
 f"{count} times Hello! to {somebody}: "
 f"we have {workdir.num_apples} apples."
)

Calling the function from the command line looks like this:

foo@bar:~$ workdir hello --help
Usage: workdir hello [OPTIONS]

 This function says hello.

Options:
 -c, --count INTEGER A number (default:12)
 -s, --somebody TEXT A name
 --help Show this message and exit.

foo@bar:~$ workdir hello -s "you"
12 times Hello! to you: we have 3 apples.

Writing workdir.py files like this makes it easy to define local functions that can be called both from inside python
and from a terminal. For the latter, the workdir.py behaves similar to a Makefile.

To suppress generation of the command line interface for a function, pyworkdir provides a no_cli decorator:

-- workdir.py --

from pyworkdir import no_cli

@no_cli
def a_function_without_command_line_interface():
 pass

Changing Environment Variables

Temporary changes of the environment:

from pyworkdir import WorkDir

with WorkDir(environment={"MY_ENVIRONMENT_VARIABLE":"1"}):
 # in this context the environment variable is set
 pass

outside the context, it is not set any longer

Yaml Files

Environment variables and simple attributes can also be set through yml files.
The templates {{ workdir }} and {{ here }} are available and will be replaced by the working directory
instance and the directory that contains the yml file, respectively:

-- workdir.yml --
environment:
 VAR_ONE: "a"
attributes:
 my_number: 1
 my_list:
 - 1
 - 2
 - 3
 my_tmpdir: {{ here/"tmpdir" }}
 my_local_tmpfile: {{ workdir/"file.tmp" }}
commands:
 echo: echo Hello // print Hello to the command line

The commands are shortcuts for terminal commands that can be called from python and from the command line.
Everything after // is used as a documentation string for the command line interface.
The attributes and environment variables get added to the WorkDir:

import os

with WorkDir() as wd:
 print(wd.my_number + 5, wd.my_tmpdir , wd.my_local_tmpfile)
 for el in wd.my_list:
 print(el)
 print(os.environ["VAR_ONE"])

Note that environment variables passed to the constructor have preference over those in a yml file.

Logging

A logger is available:

from pyworkdir import WorkDir
import logging

wd = WorkDir()
wd.log("a INFO-level message")
wd.log("a DEBUG-level message", logging.DEBUG)

By default, INFO-level and higher is printed to the console.
DEBUG-level output is only printed to a file workdir.log.

 nav.xhtml

 Table of Contents

 		
 pyworkdir

_static/plus.png

_static/file.png

_static/minus.png

