

    
      
          
            
  


pyveda: Python tools for The Veda Machine Learning API

pyveda is a package for working with machine learning data, models and inference sets stored in Veda.


Warning

pyveda is beta software, and these docs are a work in progress




Veda

Veda is DigitalGlobe’s platform for machine learning data. Veda’s goals are:


	Generate sample data from satellite imagery


	Share and distribute organized sets of data


	Share and distribute machine learning models


	Use the models and data to perform inference




pyveda is MIT licenced.

Installation:

pip install pyveda





For general information on the Veda platform and API visit http://github.com/DigitalGlobe/veda.
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Getting started

Veda is a library of object knowledge for machine learning.

Veda stores organized collections of images and their labels. It is integrated with the GBDX library of imagery and can access almost 20 petabytes of satellite images to use for generating image chips. Data sets and models can be published and shared with others.

Veda is spatially aware.

Veda “speaks” geojson and can convert spatial data into machine learning data and back. Use spatially-targeted training sets to develop location-specific models.

Pyveda is the bridge between Veda and machine learning platforms

Pyveda is a Python access library that lets you generate and manage machine learning data. When you’re ready to train or test your model with that data, pyveda supplies the data to your algorithms in efficient formats that are ready to analyze. When your model is trained, you can also use pyveda to upload the model to Veda.

Veda does not train or run models - your choice of library and platform is up to you.


Getting access to Veda

Access to Veda requires GBDX credentials. You can sign up for a GBDX account at https://gbdx.geobigdata.io.

Your GBDX credentials are found under your account profile.

PyVeda’s authorization tools expect a config file to exist at ~/.gbdx-config with your credentials.
(See formatting for this file here:  https://github.com/tdg-platform/gbdx-auth#ini-file.)

For questions or troubleshooting email GBDX-Support@digitalglobe.com.




Installing pyveda

pip install pyveda











          

      

      

    

  

    
      
          
            
  


Accessing Data from Veda

Veda stores machine learning data collections. These can be generated from DigitalGlobe’s satellite imagery, or can be imported from other sources. For example, Veda hosts copies of the XView dataset.

So how do you get that data out of Veda and into your models?


Veda’s Data Storage

Let’s start with looking at how Veda stores data.


Note

The language used here is in flux - we use collection and dataset to mean the same thing. Similarly, sample and datapoint get interchanged.




Samples

The basic unit of training data is called a sample. It consists of an image, and a label that describes the features in the image. Veda supports three types of labels:


	Classification


	Object Detection


	Segmentation




Classification labels indicate whether a class of features exists in the image. The value is a boolean, where a true value for a class means the class is present.

Object Detection labels describe where features are located, if they are in the image. The value is a bounding box of pixel values, so each label would indicate where in the image the class feature exists.

Segmentation labels are similar to Object Detection labels, but instead of a bounding box, the feature is described by a polygon object that can trace the outline of the feature.

Sample objects also store geospatial information if it’s known. Any data generated by Veda will have spatial data, but it’s also possible to import ungeoreferenced images.

See the Label Formats section for more information about how labels are used in pyveda.




Collections

All of the samples are stored in groups called collections that keep things sorted and organized. A collection would group data around a theme or area. Collections have unique names to identify them. They also enforces consistency in the data. Some of the requirements of a collection are:


	All images must be the same size in pixels


	All images must have the same number of bands


	All images must share the same data type


	All labels must be the same type - classification, object detection, or segmentation.




Collections also track their contents. A collection knows all of the classes represented in the samples’ labels. It also tracks the spatial bounds of all the samples.






Finding Collections with pyveda

The first step to working with data stored in Veda is to find a collection to work with. If you’re following a tutorial or a notebook the name of the collection should be given. You can use the name to access the collection. This is covered in the section Accessing Collections.

If you’d like to find a collection to investigate, pyveda has the search method (see pyveda.main.search()). Let’s start with the simplest example:

import pyveda as pv
pv.search()

[VedaCollectionProxy of Las Vegas Buildings (SpaceNet2) (84810fa8-87e2-4f22-9386-4406b4c3add0), VedaCollectionProxy of X-View Data Complete (b030111a-f13f-40d4-90fb-3dcb826069d8)]





The search method searches Veda for collections and can take key words and filters. It returns a list of VedaCollectionProxy objects, which is a pyveda object that acts as an entry point to working with the collection. We can take a closer look at the collections returned by the search:

results = pv.search()
print(results[0])

X-View Data Complete (b030111a-f13f-40d4-90fb-3dcb826069d8)
    - Bounds: [-99.09676905613048, -34.9111829655798, 151.23452243531614, 53.92520692619612]
    - Count: 173075 samples, 87% cached
    - Chips: 256x256, 3 bands int8
    - Labels: object detection type, 113 classes





These collection objects have an informative __str__ method that prints collection details in a readable format. You can use the repr function to print the shorter representation of just the name and ID.

To search for terms, pass them to the search function:

pv.search('building')

[VedaCollectionProxy of Las Vegas Buildings (SpaceNet2) (84810fa8-87e2-4f22-9386-4406b4c3add0)]





Filters can also be added. The queries use ElasticSearch syntax:

pv.search('building', )








Accessing Collections

If you have a run a search, you can work directly on the VedaCollectionProxies returned by the search.

results = pv.search('building)
collection = results[0] # get the first search result
# do something with the collection





If you have a name or ID of a collection, you can access it with these methods:

collection = pv.from_name('X-View Data Complete')

collection = pv.from_id('b030111a-f13f-40d4-90fb-3dcb826069d8')








Working with the Samples

Once you have a collection in the form of a VedaCollectionProxy, you can treat it like a list of datapoints. It supports indexing and slicing:

sample = collection[0] # the first sample
print(sample)

{'mltype': 'segmentation', 'cached': 'true', 'dataset_id': '84810fa8-87e2-4f22-9386-4406b4c3add0', 'bounds': [-115.2847026, 36.1669076998, -115.2829476, 36.1686626998], 'dtype': 'uint8', 'tile_coords': [12......





If you look representation of the sample object (cut short here), you’ll see it’s metadata and label data. We can also look at the some of the sample’s specific properties:

>>> rr.classes
['buildings']

>>> rr.label
{'buildings': [{'type': 'Polygon'..........

>>> rr.image
[image]





The sample object also has some basic CRUD methods:

# a modified label
label = {buildings: [.......
# update the sample with the new label
sample.update(label)

#delete a sample
sample.delete()








Using Samples with Models

In most machine learning examples, you have to download all of the sample image files and labels to a local directory. Then you have to split up your data into training and testing groups, and probably also convert the data into array formats that can be read as inputs.

We saw in the previous section how to look at the samples in the collection. So what’s the best way to get that sample data to your model? You could certainly loop through all the samples and save their images and labels to files.

Pyveda does provide a way to download the image and label files - see the Releases section. Pyveda makes it easy to get the data in this format - with a single command you get a link to download the compressed file. But pyveda also provides better ways to access the data locally.

To fetch a local cache of the data, use the store method. This downloads the sample data to a local file called a VedaBase. Instead of directories of images, Vedabases are single files that hold optimized sample data. All of the sample points have been converted to the correct array formats: the images are numpy arrays, and the labels are one-hot encoded. The store method takes a collections name or ID, and a path to store the file to. It then uses a multithreaded downloader to fetch all the data. You will need to wait for this step to complete before proceeding.

pv.store('./lasvegas.vdb', dataset_name='Las Vegas Buildings (SpaceNet2)')





You can open a saved VedaBase with the open function. We recommend using a Vedabase with a context manager:

with pv.open(filename='./lasvegas.vdb') as data:
    # do something with the data





The store method also works as a context manager, but you still will have to wait for the data to download locally.




Collection Groups

VedaBases internally store separate training, validation, and testing groups, so you don’t have to divide the data. The ratio of sample is each group is set by the partition property of the collection.

Each group is an accessor on the collection. You can access samples in the group just like a list, through iteration or indexing. The value returned is an (image, label) tuple. As mentioned above, the image and label have been coverted to the appropriate arrays already.

data.train[0] # the first sample in the training group

for image, label in data.test:
    # do something with each image and label in the testing group





The collection also lets you access the images and labels separately:

for label in data.test.labels:
    # do something with just each label in the testing group





This means that a typical training example might look like:

from SuperMLDetector import MegaModel

megamodel = MegaModel()

with pv.open(filename='./lasvegas.vdb') as data:
    megamodel.train(data.train)
    megamodel.score(data.test)








Batching and Transforming Data

Pyveda includes tools for batching and transforming data. The three groups have a batch_generator method that returns a generator that emits batches of data. Optionally the generator can randomly flip the sample, rescale the values of the image, and move the channel data to the end of the numpy array. The basic use of the generator is to pass the size of the batch.

# generate batches of 32 samples
gen = vb.train.batch_generator(32)

for x, y in gen:
    # x and y will have a length of 32





The batcher takes the following optional arguments:


	shuffle (Boolean): return the samples in the group in random order. Default is True.


	channels_last (Boolean): return image data as Height-Width-Depth. Default is False (RDA returns imagery with the bands last).


	rescale (Boolean): rescale image values between 0 and 1. Default is False.


	flip_horizontal: Boolean. Randomly flip image and labels horizontally. Default is False.


	flip_vertical: Boolean. Randomly flip the image and labels vertically. Default is False.




When using either flip option there is a 50% chance an image will be flipped in a given direction.

To create a batcher that will return 16 samples at a time, rescaled to a range of 0 to 1, and flipped randomly in either direction:

gen = vb.train.batch_generator(16, rescale=True, flip_horizontal=True, flip_vertical=True)








Streaming Remote Data


Warning

This direct access will probably be removed so that data can be accessed on demand while being locally cached. Because the samples aren’t cached, they are loaded every time they are accessed. Using this over many epochs will be slower than saving a local file.



For preliminary testing, or algorithms that only need to work with the datapoints once, it’s possible to open the collection directly from Veda, and the samples are loaded on demand. This uses the same open function as loading a local file, and data access is performed the same.

with pv.open(dataset_name='Las Vegas Buildings (SpaceNet2)') as data:
    # do something with the data or

with pv.open(dataset_id='84810fa8-87e2-4f22-9386-4406b4c3add0') as data:
    # do something with the data








Creating Releases

A Veda Release is a compressed archive of the images and labels stored as individual files. You can see more about the Release format and structure in the Releases section. To generate a release, run:

collection.release()











          

      

      

    

  

    
      
          
            
  


Creating Data


Note

This tutorial is a work in progress. While Veda is set in its functionality, the pyveda



interface is steadily evolving.

The previous section looked at how to access data from Veda. Now we’ll look at how to create your own training data.


Creating New Training Data

Veda is a repository for machine learning data.  It can also generate data. It can read spatial data and then generate the images from DigitalGlobe’s catalog of satellite imagery. It can also use the spatial data’s feature properties to generate labels.

To generate data Veda needs to know three things:


	WHERE is the feature


	WHAT is the feature


	WHICH image to use




The WHERE and WHAT of the features are inputted using the GeoJson format. The image can be any gbdxtools Image object from the DigitalGlobe catalog. Veda will handle generating the appropriate tiles to cover the input features. The same basic concept applies to the three machine learning types that Veda supports: classification, object detection, and classification.

All training data sets consist of image/label pairs. The training images are fixed-sized chips extracted from the source image. The labels vary depending on the type of data being stored:


	
	Classification

	
	Classification describes whether an object class exists in the image.


	Multiple classes are supported.


	Classification data are stored using “one hot encoding”, so for a single class the label is either [1] or [0].


	For multi-class the labels are lists: [0, 0, 0, 1, 0] (zero for every class not present and 1 for every class that is present).










	
	Object Detection

	
	Object detection describes where in an image objects occur.


	Object Detection data are arrays of pixel based bounding boxes for each feature.


	Labels are stored as lists of bounding boxes: [[minx, miny, maxx, maxy], [minx, miny, maxx, maxy], …]


	The bounding box values must be in pixel coordinates relative the upper left of the image in the same pair










	
	Segmentation

	
	Segmentation also describes where in an image objects or classes occur but uses freeform boundaries instead of boxes.


	Segmentation data are expected to be arrays of geojson features in the same projected units as the image.


	These features are converted to pixel locations when saving into Veda and are served back to clients are ndarrays of segmentation data.












See the Label Formats for more information and examples.


Warning

This is not totally set up to use like a tutorial yet, sorry!






Sample Data

The PyVeda git repository includes a sample geojson file to get started with. The file sample_data/turbines.geojson contains bounding boxes of wind turbines in the Alta Wind Energy Center, located outside of the Mojave Desert in California. Each feature has a property called label with the value turbine.

For a corresponding image to generate the chips from we’ll use catalog ID ‘123456788’ from DigitalGlobe’s Worldview 2 satellite. To search for other images covering this area see the “Searching for images” section below.




Creating a Collection from Spatial Data

A VedaCollection stores machine learning data in the Veda system. As mentioned above, it needs the inputs of geojson features and an Image object. For the geojson we’ll use the sample wind turbine data. We’ll also need a gbdxtools Image object. This could be a CatalogImage or a complicated RDA output; gbdxtools gives you almost unlimited processing options for generating images. The images could be a custom mix of bands or have pansharpening applied, for instance.

For most cases we would like imagery that just has the three visible RGB bands, has been pansharpened for maximum detail, atmospheric effects removed, and dynamic range adjusted to an optimum range. These processing options are all included in PyVeda’s MLImage class. Only a Catalog ID is needed to create an MLImage object.

First, let’s get set up:

import pyveda as pv
from pyveda.rda import MLImage

catID = '123456789'
geojson = 'path/to/data/turbines.geojson'





Next, let’s create our VedaCollection. It requires some basic parameters to get started:


	The geojson source to use


	The gbdxtools image object to use for the source imagery


	A name for the collection.




There are other parameters to set like the size of the images, but to start we can use the default settings.

name = 'Wind Turbines' # give this a more distinctive name
image = MLImage(catID)
vc = pv.create_from_geojson(gojson, image, name)





It will take about 5 minutes for Veda to generate all the training data. You can check vc.status to track its progress.

The end result will be collection of 256x256 pixel image tiles extracted from catalog ID 123456. Each image will have a corresponding label of the class turbine. Because this analysis is classification (the default type), each label will be 1.

(more stuff about creating VCs)




Creating a Collection using the Bulk Import API

If you would like to import existing image and label data, you can have Veda download and process a compressed archive of the data using the Bulk Import API:

pv.create_from_tarball('s3://path/to/tarball', 'Collection Name')





The compressed archive needs to follow the pyveda Release format, as described in the Releases for Importing section. It also has to be stored in Amazon S3. The path should be given as a s3://bucket/prefix/file path.


Running this command will create a new collection in Veda and it can be accessed with the standard access methods of pyveda.main.open() and pyveda.main.store().







Adding Data to Existing Collections




Creating Samples from Scratch







          

      

      

    

  

    
      
          
            
  


Features and Labels

Veda features are serialized as geojson features. The machine learning labels are specified in the Properties item of the geojson feature. The label format varies based on the machine learning type.


Label Formats


Classification

Input

Geojson features must have a single positive class , from either a Properties field called label, mapped from another field using the label_field parameter, or supplied as a default value using the default_value parameter. All of these examples add a positive label of the class _house_ to the matching image.

Classification labels are 1 for positive detection and 0 for the absence of the class. It is not needed to have negative classes labelled - if a class is missing it will automatically be labelled as 0. A shorthand version passing just the positive class name is also acceptable. The class name does not have to be a string as an input, but will be stored as a string.

A full label of a house feature, in a VedaCollection that has classes ['house', 'car', 'boat'] is:

'Properties': {
    'label': {'house':1, 'car':0, 'boat':0}
}





The same feature with a label with the positive value only:

'Properties': {
    'label': {'house':1}
}





Shorthand version:

'Properties': {
    'label': 'house'
}





Using the parameter label_field:

// using label_field='building_type'
'Properties': {
    'building_type': 'house'
}





or default_value:

default_value='house'





The parent VedaCollection can determine the classes on the first load of data, or the classes can be set by passing an optional classes parameter on initialization, in the case that not all classes are present in the first set of data uploaded. Classes are fixed and can not be modified after the first set of data is loaded.

Classification features can be any geometry type, though it is recommended that multi-geometry types be exploded to individual features.

DataPoint Output

The DataPoint class has a labels property that includes all labels in the parent VedaCollection. This is a dictionary keyed with class names, with 0 or 1 labels that indicate positive or negative presence of that class in the image tile. For this and all following examples we’ll assume the image tile has houses and cars, but no boats. The DataPoint API JSON response has a labels property in the Properties field.

datapoint.labels = {
    'house': 1,
    'car': 1,
    'boat': 0
}





VedaBase Output

The VedaBase class stores labels as a NumPy array of boolean values using one-hot encoding. The label classes are stored in a classes property that maps to the same position in the label array. The label order is always alphabetical.

vedabase.classes = ['boat', 'car', 'house']
vedabase.train.labels[0] = [0, 1, 1]








Object Detection

Input

Input features for object detection share the same label requirements as for classification. The objects will be stored as the bounding box of the feature’s geometry. The geometry must be of type Polygon but does not need to be a rectangle. Point and Polyline geometries will need to be buffered by an appropriate amount first.

"Properties": {
    "label": {
        "car": [
            {"type": "Polygon", "coordinates": [[[...]]]},
            {"type": "Polygon", "coordinates": [[[...]]]}
        ],
        "house": [
            {"type": "Polygon", "coordinates": [[[...]]]}
        ]
    }





DataPoint Output

The label property of the DataPoint is similar in structure to the Classification case, with keys representing  classes. The value of each class is a list of features representing the bounding box of the input geometries. The features use GeoJSON structure, but use the NumPy convention of the origin at top left, and uses units of pixels.

datapoint.labels[0] = {
    'house': [f1, f2,..fn],
    'car': [f1, f2,..fn],
    'boat': []
}





VedaBase Output

Object detection classes are stored in the classes property in the same manner as Classification data. Because object bounding boxes can overlap, the labels are in the form of a list of lists of bounding boxes. The bounding boxes are lists of [minx, miny, maxx, maxy] in pixel coordinates with the origin at top left. The position of the classes and labels lists match.

vedabase.classes = ['boat', 'car', 'house']
vedabase.train.labels[0] = [
    [], # boat bboxes
    [[0, 0, 1, 1], [1, 2, 4, 5], [3, 3, 7, 9]], # car bboxes
    [[0, 0, 1, 1], [1, 2, 4, 5], [3, 3, 7, 9]] # house bboxes
]








Segmentation

Input

The requirements for input data features for segmentation are the same as for object detection. The object must be a Polygon. The geometry will automatically be clipped to fit inside the image tile.

DataPoint Output

The label property of the DataPoint has the same structure as for object detection, except the label features represent the input feature’s geometry instead of the feature’s bounding box. The coordinate values are again in pixels from the top left of the image.

VedaBase Output

Segmentation classes continue in the same structure as the other machine learning types, but include a None value in the first position representing the pixels that have no segmentation data. The background pixel value is set to 0, and the segmented pixels store values that match the array index of the class name in the classes list. The labels for segmentation are 2D NumPy arrays with the pixels representing the class list indices. The 2D array is the same size as the image tile.

vedabase.classes = [None, 'boat', 'car', 'house']
vedabase.train.labels[0] = [
    [0, 0, 0, 0, 0, ...],
    [0, 3, 3, 0, 2, ...],
    [0, 3, 3, 0, 0, ...]
]













          

      

      

    

  

    
      
          
            
  


Model Training

from pyveda.pretrainedmodels.keras.classification.resnet50 import ResNet50

model = ResNet50()
ds = pv.open(filename='buildings.vdb')

batch_size = 16
tester = ds.test.batch_generator(batch_size)
trainer = ds.train.batch_generator(batch_size)

# Train the model...
epochs = 1
model.fit_generator(trainer, steps_per_epoch=len(trainer), epochs=epochs, validation_data=tester)









          

      

      

    

  

    
      
          
            
  


Models


Saving a Model

my_model.save('model.h5')
my_model.save_weights('model_weights.h5')
!tar -cvzf model_test.tar.gz model.h5 model_weights.h5








Uploading a Model to Veda

from pyveda.models import Model
import pyveda as pv

pv.config.set_dev()

vc = pv.from_id('db3c619b-8774-4051-a330-a21771822586')

model_path = './model.tar.gz'

model = Model('XView Burkina Faso Model',
            model_path,
            library="keras",
            bounds=vc.bounds,
            mltype="object_detection",
            shape=vc.imshape,
            dtype=vc.dtype,
            training_set=vc.id)

model.save()








Deploying a Model

m = Model.from_id('930638be-a247-423a-bdca-987eb19026689')
m.deploy()








Searching for Models

from pyveda.models import search as model_search

for m in model_search():
    print(m.name, m.id)
    print('\t location:', m.location)
    print('\t lib:', m.library)
    print('\t type:', m.mltype)
    print('\t deployed', m.deployed)
    print('\t public:', m.public, '\n')








Downloading a Model

m = Model.from_id('930638be-a247-423a-bdca-987eb19026689')
m.download(path='my_local_model.tar.gz')

!ls my_local_model2.tar.gz








Predicting with Veda Models

image = MLImage(...)
AOI = [...]
model.predict(image, aoi)


model.status











          

      

      

    

  

    
      
          
            
  


Releases

Releases are compressed files storing metadata files and two directories, one for images and one for labels. meta.json contains information about the training set. bounds.geojson is a geojson FeatureSet containing the bounds of all the image chips. Images and labels have matching names based on their ID, so a typical file stucture looks like:

ts_104-1.0.1.tar.gz

ts_104-1.0.1
|    meta.json
|    bounds.geojson
|
└--  images
|       1.tif
|       2.tif
|       3.tif
└--  labels
        1.json
        2.json
        3.json





Images are saved as geotiff.

The meta.json file includes:

{'bbox': [<coordinate list>],
'classes': <class data, varies>,
'mlType': <classification type, str>,
'name': <name, str>,
'nclasses': <number of classes, int>,
'public': <bool>,
'source': <image source, str>,
'version': <release version, str>,
's3_location': <S3 location, str>,
'source_url': <url of parent dataset in Veda, str>}





The bounds.geojson file contains a geojson feature describing the bounds of the release data.


Releases for Importing

The release format can also be used for imported existing data in Veda using the Bulk Loading API. The meta.json and bounds.geojson files are not needed for importing. The only requirement is that the data are stored in a tar.gz file, and follow the image and tile structure shown above. Each tile and corresponding json file needs to have the same base name and the extensions .tif and .json.

Images must in tif format. They do not need to be geotiff files. The image’s georeferencing information is taken from the matching json file.

The json file is a single geojson feature consisting of a Polygon `describing the image bounds. The label for the image is stored in the feature’s `Properties. The label format is the same as described in the Label Formats section.

A simplified example of the contents of the json file for classified images is:

>>> cat labels/tile_0.json

{
"type": "Feature",
"geometry": {
    "type": "Polygon",
    "coordinates": [[...]]
},
"properties": {
    "label": {
        "clouds": 1,
        "building": 0,
        "car": 1
    }
}
}





Images labelled for segmentation or object detection will have a json file like:

>>> cat labels/tile_0.json

{
"type": "Feature",
"geometry": {
    "type": "Polygon",
    "coordinates": [[...]]
},
"properties": {
    "label": {
        "building": [
            {"type": "Polygon", "coordinates": [[[]]]},
            {"type": "Polygon", "coordinates": [[[]]]}
        ],
        "car": [
            {"type": "Polygon", "coordinates": [[[]]]}
        ]
    }
}
}





Images that do not have georeferencing are also supported. If the geometry field is left empty Veda will treat the image as having a pixel-based coordinate system. Label geometries, if present, are described in units of pixels using the top left of the image as the origin. Data points without spatial information can not be found with spatial searches or filters.

>>> cat labels/tile_0.json

{
"type": "Feature",
"geometry": {},
"properties": {
    "label": {
        "clouds": 1,
        "building": 0,
        "car": 1
    }
}
}





Once the images and labels are collected in the correct formats and directory structure, they need to be compressed as a tar.gz file and placed in a publicly available accessible S3 bucket.

The data can be imported using the pyveda.main.create_from_tarball() method, see the Creating a Collection using the Bulk Import API section.
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Accessing Data from Veda

Veda stores machine learning data collections. These can be generated from DigitalGlobe’s satellite imagery, or can be imported from other sources. For example, Veda hosts copies of the XView dataset.

So how do you get that data out of Veda and into your models?


Veda’s Data Storage

Let’s start with looking at how Veda stores data.


The language used here is in flux - we use collection and dataset to mean the same thing. Similarly, sample and datapoint get interchanged.






Samples

The basic unit of training data is called a sample. It consists of an image, and a label that describes the features in the image. Veda supports three types of labels:


	Classification


	Object Detection


	Segmentation




Classification labels indicate whether a class of features exists in the image. The value is a boolean, where a true value for a class means the class is present.

Object Detection labels describe where features are located, if they are in the image. The value is a bounding box of pixel values, so each label would indicate where in the image the class feature exists.

Segmentation labels are similar to Object Detection labels, but instead of a bounding box, the feature is described by a polygon object that can trace the outline of the feature.

Sample objects also store geospatial information if it’s known. Any data generated by Veda will have spatial data, but it’s also possible to import ungeoreferenced images.

See the Label Formats section for more information about how labels are used in pyveda.




Collections

All of the samples are stored in groups called collections that keep things sorted and organized. A collection would group data around a theme or area. Collections have unique names to identify them. They also enforces consistency in the data. Some of the requirements of a collection are:


	All images must be the same size in pixels


	All images must have the same number of bands


	All images must share the same data type


	All labels must be the same type - classification, object detection, or segmentation.




Collections also track their contents. A collection knows all of the classes represented in the samples’ labels. It also tracks the spatial bounds of all the samples.




Finding Collections with pyveda

The first step to working with data stored in Veda is to find a collection to work with. If you’re following a tutorial or a notebook the name of the collection should be given. You can use the name to access the collection. This is covered in the section Accessing Collections.

If you’d like to find a collection to investigate, pyveda has the search method (see pyveda.main.search()). Let’s start with the simplest example:


[2]:






import pyveda as pv

pv.search()[:5]








[2]:






[VedaCollectionProxy of Austin Segmentation (1245073f-dae9-40ac-ac5c-52ca349ae8dd),
 VedaCollectionProxy of Clouds Classification (bulkload) (4cf03238-e5f6-48ca-a28c-fc742345f698),
 VedaCollectionProxy of Kaggle Amazon Small (97c03bd9-d83d-43c5-8dde-ceaf14e071bf),
 VedaCollectionProxy of Austin Obj Detection (e8cda011-e92d-4b99-80f5-28e628588bc8),
 VedaCollectionProxy of Kaggle Amazon Small (92e271dd-cc72-49e3-bf3d-26c0ada58531)]







The search method searches Veda for collections and can take key words and filters. It returns a list of VedaCollectionProxy objects, which is a pyveda object that acts as an entry point to working with the collection. We can take a closer look at the collections returned by the search:


[3]:






results = pv.search()
print(results[0])













Austin Segmentation (1245073f-dae9-40ac-ac5c-52ca349ae8dd)
        - Bounds: [-97.767934, 30.265703, -97.733246, 30.271354]
        - Count: 250 samples, 100% cached
        - Chips: 256x256, 3 bands uint8
        - Labels: segmentation type, 1 class







These collection objects have an informative __str__ method that prints collection details in a readable format. You can use the repr function to print the shorter representation of just the name and ID.

To search for terms, pass them to the search function:


[ ]:






pv.search('Austin')







Filters can also be added. The queries use ElasticSearch syntax:


[ ]:






# TODO
pv.search('Austin')












Accessing Collections

If you have a run a search, you can work directly on the VedaCollectionProxies returned by the search.


[7]:






results = pv.search()
collection = results[0] # get the first search result
# do something with the collection







If you have a name or ID of a collection, you can access it with these methods:


[9]:






collection = pv.from_name('Austin Segmentation')

collection = pv.from_id('1245073f-dae9-40ac-ac5c-52ca349ae8dd')

print(collection)













Austin Segmentation (1245073f-dae9-40ac-ac5c-52ca349ae8dd)
        - Bounds: [-97.767934, 30.265703, -97.733246, 30.271354]
        - Count: 250 samples, 100% cached
        - Chips: 256x256, 3 bands uint8
        - Labels: segmentation type, 1 class










Working with the Samples

Once you have a collection in the form of a VedaCollectionProxy, you can treat it like a list of datapoints. It supports indexing and slicing:


[10]:






sample = collection[0] # the first sample
print(sample)













{'mltype': 'segmentation', 'cached': 'true', 'dataset_id': '1245073f-dae9-40ac-ac5c-52ca349ae8dd', 'bounds': [-97.74184363143011, 30.270496899310096, -97.74107094008983, 30.271269590650377], 'dtype': 'uint8', 'tile_coords': [962, 178], 'sha': '36e016e0e9db8ce7d8c8b579ec91d53e6dd5d6dc77506b4d5b483f0e37dce685', 'queue': 'b98i8k5ca8m6', 'rda_template': '87856bc985e698e4eb5d0c7784771c8fb5117ad818c4cfe35e5e8a80e7269eb2', 'id': '8728c1fd-533a-4f5c-bc60-4dee90d3ad2f', 'label': {'building': [{'type': 'Polygon', 'coordinates': [[[0, 5], [4, 6], [0, 18], [0, 5]]]}, {'type': 'Polygon', 'coordinates': [[[68, 188], [223, 231], [213, 256], [43, 256], [68, 188]]]}]}, 'classes': ['building']}






If you look representation of the sample object, you’ll see it’s metadata and label data. We can also look at the some of the sample’s specific properties:


[12]:






print(sample.classes)
print(sample.label)













['building']
{'building': [{'type': 'Polygon', 'coordinates': [[[0, 5], [4, 6], [0, 18], [0, 5]]]}, {'type': 'Polygon', 'coordinates': [[[68, 188], [223, 231], [213, 256], [43, 256], [68, 188]]]}]}






We can also look at the sample’s image data, which is returned as a numpy array:


[15]:






%matplotlib inline
import matplotlib.pyplot as plt
plt.imshow(sample.image)








[15]:






<matplotlib.image.AxesImage at 0x7fb600259748>












[image: _images/Accessing_Veda_Data_17_1.png]




To browse the samples in a collection, use the preview() method:


[ ]:






# this is an interactive widget
# so it's not displayed in the docs
collection.preview()







The sample object also has some basic CRUD methods:

# a modified label
label = {buildings: [.......
# update the sample with the new label
sample.update(label)

#delete a sample
sample.delete()






Using Samples with Models

In most machine learning examples, you have to download all of the sample image files and labels to a local directory. Then you have to split up your data into training and testing groups, and probably also convert the data into array formats that can be read as inputs.

We saw in the previous section how to look at the samples in the collection. So what’s the best way to get that sample data to your model? You could certainly loop through all the samples and save their images and labels to files.

Pyveda does provide a way to download the image and label files - see the Releases section. Pyveda makes it easy to get the data in this format - with a single command you get a link to download the compressed file. But pyveda also provides better ways to access the data locally.

To fetch a local cache of the data, use the store method. This downloads the sample data to a local file called a VedaBase. Instead of directories of images, Vedabases are single files that hold optimized sample data. All of the sample points have been converted to the correct array formats: the images are numpy arrays, and the labels are one-hot encoded. The store method takes a collections name or ID, and a path to store the file to. It then uses a multithreaded downloader to fetch all the
data. You will need to wait for this step to complete before proceeding.


[ ]:






pv.store('./lasvegas.vdb', dataset_name='Las Vegas Buildings (SpaceNet2)')







You can open a saved VedaBase with the open function. We recommend using a Vedabase with a context manager:


[ ]:






with pv.open(filename='./lasvegas.vdb') as data:
    # do something with the data







When used as a context manager you still will have to wait for the data to download locally before the rest of the code executes.




Collection Groups

VedaBases internally store separate training, validation, and testing groups, so you don’t have to divide the data. The ratio of sample is each group is set by the partition property of the collection.

Each group is an accessor on the collection. You can access samples in the group just like a list, through iteration or indexing. The value returned is an (image, label) tuple. As mentioned above, the image and label have been coverted to the appropriate arrays already.


[ ]:






data.train[0] # the first sample in the training group

for image, label in data.test:
    # do something with each image and label in the testing group







The collection also lets you access the images and labels separately:


[ ]:






for label in data.test.labels:
    # do something with just each label in the testing group







This means that a typical training example might look like:

from SuperMLDetector import MegaModel

megamodel = MegaModel()

with pv.open(filename='./lasvegas.vdb') as data:
    megamodel.train(data.train)
    megamodel.score(data.test)










Batching and Transforming Data

Pyveda includes tools for batching and transforming data. The three groups have a batch_generator method that returns a generator that emits batches of data. Optionally the generator can randomly flip the sample, rescale the values of the image, and move the channel data to the end of the numpy array. The basic use of the generator is to pass the size of the batch.


[ ]:






# generate batches of 32 samples
gen = vb.train.batch_generator(32)

for x, y in gen:
    # x and y will have a length of 32







The batcher takes the following optional arguments:


	shuffle (Boolean): return the samples in the group in random order. Default is True.


	channels_last (Boolean): return image data as Height-Width-Depth. Default is False (RDA returns imagery with the bands last).


	rescale (Boolean): rescale image values between 0 and 1. Default is False.


	flip_horizontal (Boolean): Randomly flip image and labels horizontally. Default is False.


	flip_vertical (Boolean): Randomly flip the image and labels vertically. Default is False.




When using either flip option there is a 50% chance an image will be flipped in a given direction.

To create a batcher that will return 16 samples at a time, rescaled to a range of 0 to 1, and flipped randomly in either direction:


[ ]:






gen = vb.train.batch_generator(16, rescale=True, flip_horizontal=True, flip_vertical=True)








Streaming Remote Data


This direct access will probably be removed so that data can be accessed on demand while being locally cached. Because the samples aren’t cached, they are loaded every time they are accessed. Using this over many epochs will be slower than saving a local file.



For preliminary testing, or algorithms that only need to work with the datapoints once, it’s possible to open the collection directly from Veda, and the samples are loaded on demand. This uses the same open function as loading a local file, and data is accessed in the same manner.


[ ]:






with pv.open(dataset_name='Las Vegas Buildings (SpaceNet2)') as data:
    # do something with the data or

with pv.open(dataset_id='84810fa8-87e2-4f22-9386-4406b4c3add0') as data:
    # do something with the data












Creating Releases

A Veda Release is a compressed archive of the images and labels stored as individual files. You can see more about the Release format and structure in the Releases section. To generate a release, run:


[ ]:






collection.release()
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Pyveda PR-55: An Overview

This is an overview to the changes introduced in pyveda PR #55, “Flat arrays pave the way.”


Background/motivation

The original motivation for this work is rooted in the general frustration that grew out the manner in which the pyveda api provides mutliple data access modes - each specifically designed object structures meant to address some particular ML-problem-based workflow or use-case (or a part thereof) - as first-class objects. The source of this frustration was principally singular, but two-fold manifest: both at the user level and developer level.

At the public level, all but the most trivial use cases require a user to interface with multiple data access objects, each parameterized by seemingly arbitrarily self-similar/intersecting input parameters along with their own specific input arguments (often technical in nature), without a paved path in between. Besides the technical onus this places on any user with even a shell of a real-world problem working in the veda system/api, this design enforces a conceptual construct that has the
effect of ascribing some kind of fundamentality to those objects in the framework, which implies an inherent and unique purpose. What that means is that, eg, any user is required to conceptualize their workflow in terms of, in general, an interface to Veda, a network-based io object, and a disk-based io object, all of which provide similar methods (eg, iteration interfaces) and require similar data parameters (potentially), but without much of any straighforward mapping interfaces between them.

Internal development is similarly affected by this emergent component-based framework conceptualization. In the virtuous pursuit of providing consistent, self-similar extension functions or classes, developers are inevitably tasked with engineering multiple versions of components due to the multiplicity of the base access structures, frequently requiring the manual bushwacking that goes along with passing one structure to the initialization/parameterization of another, all under the table. Not
only does this make progress inefficient as well as introduces lots of transitory parameterization code, but it introduces hard requirements between the underlying objects themselves, often static, which can be fault-prone to core development as well as potentially constrain further development of objects that extend or incorporate them in any way. All the while, we perpetuate the conceptual framework of these apparently unique components throughout our codebase as atomic, self-contained freakin
things.

Why is it like this? The basic reason is because early development was done in parallel and sought to provide the basic methods required to interface with Veda as well as the technically based io-optimized components, meant to serve data from veda, but designed for agnostic data at the same time. Parameterization intoduced nuances in such a way that made it difficult to both provide general and flexible instantiation protocols. Moreover, meaningful parameter scopes were changing often, with new
ones being introduced as necessary as we learned from our engineering as well as the enormous problem scope, which still represents one of the biggest challenges facing our engineering team as the project matures and use cases discovered.




Concepts/approach

The first step in mitigating the current framework is to build wide-open paths between the accessor objects that already exist, and provide the methods that are the building blocks of our api. One way to do that is to programmatically and conceptually separate the data parameters that characterize our datasets and the fundamental operations and apis that the accessors provide, while still providing protocols to incorporate the nuances those data parameters introduce on the objects themselves.
One way to try to do that is to try to make a very general object from which everything else can derive from while providing flexibility for specification down the line.

BaseDataSet provides an interface that any obeject that provides the usual train, test, validate interface and the methods needed to be specified for that. BaseSampleArray provides an analogous protocol, and is very much a close proxy to BaseDataSet, inhereting presecribd methods on look-up from it’s parent dataset. Notice that BaseDataSet defines no data parameter properties on its code body; instead, these properties are defined as class properties and are populated
from instantiation arguments according to the _vprops specification. The _vprops specification is a dictionary of relevant property names and values, and are all functions that specify the descriptor protocol. Subclasses can inheret these properties, define their own, add new, or exclude using the register_vprops wrapper. One consequence of this is that we can delegate all data parameter initialization in any child class down to BaseDataSet, making the initialization of our
accessor objects specific to the object itself, making them more flexible to use and more clear what they do. Take a look, for instance, at the initialization signature for H5DataBase:

class H5DataBase(BaseDataSet):
    """
    An interface for consuming and reading local data intended to be used with
    machine learning training
    """
    _sample_class = H5SampleArray
    _variable_class = H5VariableArray

    def __init__(self, fname, title="SBWM", overwrite=False, mode="a", **kwargs):





Our object requires a filename, specifically, with some object-specific keyword arguments, and passes **kwargs down to BaseDataSet, which handles them appropriately. We don’t even need to spec them to get a basic H5 object:


[ ]:






from pyveda.vedaset import VedaBase
import os

fname = os.getcwd() + "/temp.h5"
vb = VedaBase(fname, overwrite=True)







Of course, most interface methods that depend on data parameters will fail at the moment, but we could use this object to, eg, simply write out dataset ids. We can also assign data parameters dynamically, so that our VedaBase can be naively passed to another object and specified or customized as needed at a later time, or maybe we want to build a database from non-veda data. VedaStream can be similarly naievly instantiated.


Data descriptors and local actions (flat arrays: paving ways)

Some of the properties we commonly pass around to describe datasets shouldn’t necessarily need to be static in nature. For instance, we may want to specify additional classes on our dataset when concatenating outside data, or remove classes based on some representative metric. But what if that property is used by the data accessor in one or more op critical ways? The accessor object needs to be able to take the appropriate actions as necessary.

Suppose we have some spatio-temporal vedabase dataset where N is small, but new data becomes available each day. In general, model accuracy scales… well exponentially in the low N regime. So after getting crappy results with a [70, 30, 20] data partition, we decide to load the training set and test our results on new data that will come in in the future. What happens when we write vb.partition = [90, 0, 10]?

Currently, nothing. Data is physically partitioned according to the .partition distribution set during the write process to three different arrays. That might be some default value like 70, 30, 10 that we didn’t even specify. There is no support for arbitrary iteration over virtually grouped arrays of arbitrary length, that would be ridiculous. So literally, nothing changes: your size of your training data is the same as it was before, there’s not even a warning (which is messed up). Dynamic
group partitioning is a simple but critical kind of feature that is central to the value-prop domain of pyveda. To support this, H5DataBase structures have been re-engineered to write data to single, flat arrays, and some new array interfaces have been introduced to handle the delicacies of calculating and maintaining virtual indexes instead. This turned out to have immediate potential engineering gains across the codebase, for instance: * partition-based h5 batch-writes off of the client
stream became way simpler * as a consequence, this opened the door to consolidate VedaStream and VedaBase io clients into a single boss client * Stream, Base array wrapper classes effectively identical, consolidating iteration interfaces and opening door for accessor-agnostic extension classes and plugins for any implementer of virtual-indexed based access-pattern * Less complicated file-struture; H5DataBase core functionality effectively taken care of by BaseDataSet, bridging functionality
structure gap between stream and base

Those are exciting prospects, especially in the context of the approach outlined above. However, the partition data descriptor needs some way to schedule a call back to the object so that the relevant actions are taken, according to the object it lives on, which is a nontrivial design challenge.




Descriptor callbacks

BaseDataSet has a private attribute, ._prc. This is a special attribute, and can be used to register custom callbacks on properties, depending on how a subclass down the line might need to respond when a property is assigned with a certain value, or changes in a certain way. This works due to a special descriptor mixin that looks and checks if ._prc exists on object calling it, and if it does, it attempts to make any callbacks registered to its name. The base descriptor object is
pretty straightforward and implements the classic decriptor pattern:

class BaseDescriptor(object):
    __vname__ = NotImplemented

    def __init__(self, **kwargs):
        self.__dict__.update(kwargs)
        if not getattr(self, "name", None):
            self.name = type(self).__vname__

    def __get__(self, instance, klass):
        if instance is None:
            return self
        try:
            return instance.__dict__[self.name]
        except KeyError as ke:
            raise AttributeError("'{}' object has no attribute '{}'"
                                 .format(type(instance).__name__, self.name)) from None

    def __set__(self, instance, value):
        instance.__dict__[self.name] = value





As a python property, this looks something like:

@property
def namedattr(self):
    return self.name

@namedattr.setter
def namedattr(self):
    return self.name





Since our descriptors are meant to be object-agnostic for general applicability, we can define a mixin that, instead of holding some callback state locally, looks to the object it’s describing and checks for the special ._prc attribute, which holds a catalog of callbacks indexed by property name:

class PropCallbackExecutor(BaseDescriptor):
registry_target = "_prc"

def __set__(self, instance, value):
    super().__set__(instance, value)
    registry = getattr(instance, self.registry_target, None)
    if registry:
        for cb in registry[self.name]:
            if inspect.ismethod(cb):
                cb(self.name, value)
            else:
                cb(self.name, value, instance)





If the object has a property callback register accessible via ._prc, this descriptor mixin first sets the value on the object and then proceeds to execute any callbacks the object has registered on its name. Depending on the type of callback (function, method), the callback should support the relevant call signature. Delegating the callback state to the object gives the object dynamic callback control, and thus is exposed at the interface level programmatically.

This turns out to be a useful construct; different objects may require various property callbacks. For VedaStream and VedaBase, updating either count or partition should change group allocation, and in the context of VedaBase, update the virtual index cache ._vidx. Let’s see how this works with example objects.


[7]:






import pyveda as pv
pv.config.set_dev()

from pyveda.vedaset import VedaStream, VedaBase
vc = pv.from_id("94493508-dd19-4d30-b207-2466ecfc0d2f")

source = vc.gen_sample_ids(count=100)
vs = VedaStream(source, write_h5=False, write_index=False,
        mltype=vc.mltype, classes=vc.classes, image_shape=vc.imshape, image_dtype=vc.dtype,
        count=100, partition=[70,20,10])

print(vs.train.allocated, vs.test.allocated, vs.validate.allocated)














70 20 10






Group count allocations as expected. Changing the partition or the count should change these numbers:


[8]:






vs.partition = [90, 10, 10]













---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-8-0fe0d6fbe205> in <module>()
----> 1 vs.partition = [90, 10, 10]

~/pyveda/pyveda/vedaset/props.py in __set__(self, instance, value)
     74         if len(value) not in self.allowed_sizes: # size desc? lol
     75             raise ValueError("Size '{}' must match '{}'".format(len(value), self.allowed_sizes))
---> 76         super().__set__(instance, value)
     77
     78

~/pyveda/pyveda/vedaset/props.py in __set__(self, instance, value)
     80     def __set__(self, instance, value):
     81         if sum(value) != 100:
---> 82             raise ValueError("Probability distribution must sum to 100")
     83         super().__set__(instance, value)
     84

ValueError: Probability distribution must sum to 100






We can customize our data descriptors as well - setting expected types, checksums, size checks, etc. Check out the pyveda.vedaset.props module for all available type descriptions and how they can be subclassed and mixed in.


[9]:






vs.partition = [90, 5, 5]
print(vs.train.allocated, vs.test.allocated, vs.validate.allocated)













90 5 5






Vedabase requires actual index values, which must update on count or partition assignments:


[10]:






vb = VedaBase(fname, overwrite=True, **vs._unpack())





















[14]:






vb.partition = [80, 0, 20]
vb.count = 200
print(vb.train.allocated, vb.test.allocated, vb.validate.allocated)
print([vb.train.images._start, vb.train.images._stop], [vb.test.images._start, vb.test.images._stop],[vb.validate.images._start, vb.validate.images._stop])













160 0 40
[0, 159] [160, 159] [160, 199]






Registering descriptor callbacks is accomplished via the CatalogRegister api:


[16]:






def classes_callback(name, value):
    print("Hello from classes descriptor!")
    print(value)

vb._prc.classes.register(classes_callback)
classes = vb.classes
classes.append("Horse")








[17]:






vb.classes = classes













Hello from classes descriptor!
['boat', 'Horse']






In general, property callbacks should be registered before passing initialization **kwargs to BaseDataSet so that they are ready for action when the properties are set.


[ ]:
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