

    
      
          
            
  
Welcome to pyUnitTypes

[image: _images/pyUnitTypes.svg]
 [https://travis-ci.org/flxdot/pyUnitTypes][image: _images/badge.svg]
 [https://coveralls.io/github/flxdot/pyUnitTypes?branch=master][image: Documentation Status]
 [https://pyunittypes.readthedocs.io/en/latest/?badge=latest]This is a python package to work with different physical units as types and pythons type annotations.

*Source code*

https://github.com/flxdot/pyUnitTypes

*Documentation*

https://pyunittypes.readthedocs.io/en/latest/




Contents



	Overview
	Converting your first value

	Calculating with units





	Base Units
	Length

	Temperature

	Mass

	Time





	Composite Units
	Area

	Volume

	Speed

	Flow

	Force





	Creating your own UnitTypes
	Extending a existing Unit type

	Creating your own Unit type













          

      

      

    

  

    
      
          
            
  
Overview

This package is designed to easily work with physical units. The main usage is to display different units and unit
systems in FrontEnds. Typical use case would be: Your application make it’s calculation in SI units and then you’ll need
to deploy your application in the US. So instead of display temperatures in °C you’ll now have to display it in °F.

Warning: It should never be used to make precise calculations, since the accuracy is
limited to 3-4 digits at the moment. Especially when converting SI units to imperial units.


Converting your first value

The following example illustrates how to convert from one unit to another in the same type of physical unit (e.g. lengths):

from pyUnitTypes.length import Meter, KiloMeter, MilliMeter, Inch

# define the value as KiloMeter
a_long_distance = KiloMeter(2.5)
a_short_distance = Inch(1)

# print the value as Meter
print(Meter(a_long_distance))
print(MilliMeter(a_short_distance))





The output will look like this:




Calculating with units

Calculation with unit values is as easy as normal calculation. Sofar following operators are implemented:


Arithmetic Operators

The following mathematical operators can be used to calculate with the units.


	add (+): Works as within a UnitType package. Raises a TypeError if Units from different modules are used.

from pyUnitTypes.length import Meter, KiloMeter

two_kilometer = Meter(1000) + KiloMeter(1)







	sub (-): Works as within a UnitType package. Raises a TypeError if Units from different modules are used.

from pyUnitTypes.length import Meter, KiloMeter

half_kilometer = KiloMeter(1) - Meter(500)







	mul (*): Works when multiplied with float or int.

Raises pyUnitTypes.basics.UnknownUnitMultiplicationError when multiplication of the two units has not been implemented

Raises TypeError if multiplied with objects which are not inherited from pUnitTypes.basics.BaseUnit.

from pyUnitTypes.length import Meter, KiloMeter

five_kilometer = KiloMeter(2) * 2.5







	div (*): Works when divided by float or int.

Raises pyUnitTypes.basics.UnknownUnitDivisionError when division of the two units has not been implemented or
if division of float or int by the unit is not implemented.

Raises TypeError if multiplied with objects which are not inherited from pUnitTypes.basics.BaseUnit.

from pyUnitTypes.length import Meter, KiloMeter

four_kilometer = KiloMeter(10) / 2.5












Comparison Operators

Any pyUnitTypes object can be compared to another object from the same module. Comparing to a object of a different
package or any other object will raise as TypeError.

from pyUnitTypes.length import Meter, KiloMeter

is_eq = Meter(1000) == KiloMeter(1)
is_ne = Meter(0) != KiloMeter(1)
is_lt = Meter(1) < KiloMeter(1)
is_gt = Meter(2000) > KiloMeter(1)
is_le = Meter(1000) >= KiloMeter(1)
is_ge = Meter(1000) <= KiloMeter(1)








Other numeric functionality

Besides the four basic arithmetic operators several other mathematical operations are supported:


	round()


	math.ceil()


	math.floor()


	__neg__: Meter(-1) is equal to -Meter(1)


	__pos__: Meter(+1) is equal to +Meter(1)




All pyUnitType objects can be converted to int or float.









          

      

      

    

  

    
      
          
            
  
Base Units

For this package Base Units are defined as units which are not able to be displayed by a multiplication or division
of other units.

For Example meters and seconds are Base Units but the combination of both meters / seconds is a Composite Unit.

The following Base Units are currently available:



	Length

	Temperature

	Mass

	Time









          

      

      

    

  

    
      
          
            
  
Length

Module: pyUnitTypes.length

ModuleSuperclass: pyUnitTypes.length.Length

BaseUnit: pyUnitTypes.length.Meter


Available Units


	KiloMeter: https://en.wikipedia.org/wiki/Meter#km


	Meter: https://en.wikipedia.org/wiki/Meter


	DeciMeter: https://en.wikipedia.org/wiki/Meter#dm


	CentiMeter: https://en.wikipedia.org/wiki/Meter#cm


	MilliMeter: https://en.wikipedia.org/wiki/Meter#mm


	MicroMeter: https://en.wikipedia.org/wiki/Meter#Mikrometer


	NanoMeter: https://en.wikipedia.org/wiki/Meter#nm


	Mile: https://en.wikipedia.org/wiki/Mile


	Yard: https://en.wikipedia.org/wiki/Yard


	Feet: https://en.wikipedia.org/wiki/Foot_(unit)


	Inch: https://en.wikipedia.org/wiki/Inch










          

      

      

    

  

    
      
          
            
  
Temperature

Module: pyUnitTypes.temperature

ModuleSuperclass: pyUnitTypes.temperature.Temperature

BaseUnit: pyUnitTypes.temperature.Celsius


Available Units


	Celsius: https://en.wikipedia.org/wiki/Celsius


	Fahrenheit: https://en.wikipedia.org/wiki/Fahrenheit


	Kelvin: https://en.wikipedia.org/wiki/Kelvin










          

      

      

    

  

    
      
          
            
  
Mass

Module: pyUnitTypes.mass

ModuleSuperclass: pyUnitTypes.mass.Mass

BaseUnit: pyUnitTypes.mass.KiloGram


Available Units


	KiloGram: https://en.wikipedia.org/wiki/Kilogram


	Gram: https://en.wikipedia.org/wiki/Gram


	MilliGram: https://en.wikipedia.org/wiki/Kilogram#SI_multiples


	MicroGram: https://en.wikipedia.org/wiki/Microgram


	Pound: https://en.wikipedia.org/wiki/Pound_(mass)


	Ton: https://en.wikipedia.org/wiki/Ton


	Tonne: https://en.wikipedia.org/wiki/Tonne


	ShortTon: https://en.wikipedia.org/wiki/Ton


	Ounce: https://en.wikipedia.org/wiki/Ounce










          

      

      

    

  

    
      
          
            
  
Time

Module: pyUnitTypes.time

ModuleSuperclass: pyUnitTypes.time.Time

BaseUnit: pyUnitTypes.time.Day


Available Units


	Year: https://en.wikipedia.org/wiki/Year


	Week: https://en.wikipedia.org/wiki/Week


	Day: https://en.wikipedia.org/wiki/Day


	Hour: https://en.wikipedia.org/wiki/Hour


	Minute: https://en.wikipedia.org/wiki/Minute


	Second: https://en.wikipedia.org/wiki/Second


	MilliSecond: https://en.wikipedia.org/wiki/Millisecond


	MicroSecond: https://en.wikipedia.org/wiki/Microsecond










          

      

      

    

  

    
      
          
            
  
Composite Units

For this package Composite Units are defined as units which are able to be displayed by a multiplication or division
of other units.

For Example meters, kilograms and seconds are Base Units. But the combination of all meters / seconds creates a new unit
Newton:

The following Base Units are currently available:



	Area

	Volume

	Speed

	Flow

	Force









          

      

      

    

  

    
      
          
            
  
Area





          

      

      

    

  

    
      
          
            
  
Volume





          

      

      

    

  

    
      
          
            
  
Speed





          

      

      

    

  

    
      
          
            
  
Flow





          

      

      

    

  

    
      
          
            
  
Force





          

      

      

    

  

    
      
          
            
  
Creating your own UnitTypes

It is possible to build your own units based on the provided classes. If you want to extend a existing Base or Composite
Unit you’ll have to inherit the  in your custom class


Extending a existing Unit type

Let’s supose we want to create a custom length based unit Marathon. As you might know a Marathon is 42 km.

To get started let’s create a new module my-custom-units.py.

from pyUnitTypes.basics import Conversion
from pyUnitTypes.length import Length

class Marathon(Length):
  """Nice."""

  def __init__(self, value=float()):
      """Create instance of the marathon class.

      :param value: (optional, int or float
      """

      super().__init__(name='Marathon', symbol='Marathon', to_base=Conversion(factor=42000, offset=0), value=value)





Quite simple right? See the documentation of pyUnitTypes.length.Length and  pyUnitTypes.basics.BaseUnit to
understand the parameter used in the superclass constructor.




Creating your own Unit type

But what if we want to create a new base unit, because length, time, temperature is to boring for you.

So you have a lot of pets and you want to figure our old each of your pets is in human years? No problem.

First let’s create a new module age.py with our super class of the unit type age:

from pyUnitTypes.basics import BaseUnit, Conversion

class Age(BaseUnit):
  """
  The Age class is the superclass of all age based unit classes. It provides the magic method to calculate
  with the different length based units.
  """

  def __init__(self, name, symbol, to_base, value, from_base=None):
      """Constructor of the Age Superclass. Please don't use this class as standalone.

      :param name: (mandatory, string) name of the unit as word
      :param symbol: (mandatory, string) symbol of the unit
      :param to_base: (mandatory, pyUnitTypes.basics.Conversion) conversion object to convert the value to the base
      value
      :param value: (mandatory, float, int or subclass of pyUnitTypes.length.Length) The actual value of the class.
      :param from_base: (optional, pyUnitTypes.basics.Conversion) conversion object to convert the value back from
      the base to the value of the actual class. Default: inversion of to_base
      """

      super().__init__(name=name, symbol=symbol, unit_type=Age, base_class=HumanYear, to_base=to_base,
                       from_base=from_base)

      # store the value and calculate the value in the base class
      if isinstance(value, (float, int)):
          self.value = value
      elif issubclass(type(value), Age):
          self.value = self.from_base(value.base_value)
      else:
          raise TypeError('Can not create object of type {0} from object of type {1}'.format(type(self).__name__,
                                                                                             type(value).__name__))





Note how we set the unit_type, and base_class attribute. And how we allowed a conversion from different Age subclasses.

Now let’s add some Units:

class HumanYear(Length):
  """The BaseClass of the age.py module"""

  def __init__(self, value=float()):
      """Create instance of the Age class.

      :param value: (optional, int or float
      """

      super().__init__(name='HumanYear', symbol='Human Year(s)', to_base=Conversion(), value=value)

class DogYear(Length):
  """A dog year is generally know as 7 human years."""

  def __init__(self, value=float()):
      """Create instance of the DogYear class.

      :param value: (optional, int or float
      """

      super().__init__(name='DogYear', symbol='Dog Year(s)', to_base=Conversion(factor=7), value=value)

class CatYear(Length):
  """Funny enough a cat year is also supposed to be 7 human years."""

  def __init__(self, value=float()):
      """Create instance of the DogYear class.

      :param value: (optional, int or float
      """

      super().__init__(name='CatYear', symbol='Cat Year(s)', to_base=Conversion(factor=7), value=value)





That wasn’t to hard right? So hold old is your 3.5 year old dog and your 4 year old cat? Let’s assume your 24 ;-).

from age import HumanYear, DogYear, CatYear

# define the ages
my_age = HumanYear(24)
cat_age = CatYear(4)
dog_age = DogYear(3.5)

# check who's older
cat_is_older = cat_age > my_age
dog_is_older = dog_age > my_age

if cat_is_older and dog_is_older:
  print('It seems like your the youngest among your furry friends.')
else:
  if cat_is_older:
    print('Your cat is older. But at least your dog younger.')
  elif dog_is_older:
     print('Your dog is older. But at least your cat is younger.')
  else:
     print('Damn your an old fart.')











          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/file.png





_static/down-pressed.png





_static/down.png





_static/minus.png





_static/plus.png





_static/ajax-loader.gif





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to pyUnitTypes
        


        		
          Overview
          
            		
              Converting your first value
            


            		
              Calculating with units
              
                		
                  Arithmetic Operators
                


                		
                  Comparison Operators
                


                		
                  Other numeric functionality
                


              


            


          


        


        		
          Base Units
          
            		
              Length
              
                		
                  Available Units
                


              


            


            		
              Temperature
              
                		
                  Available Units
                


              


            


            		
              Mass
              
                		
                  Available Units
                


              


            


            		
              Time
              
                		
                  Available Units
                


              


            


          


        


        		
          Composite Units
          
            		
              Area
            


            		
              Volume
            


            		
              Speed
            


            		
              Flow
            


            		
              Force
            


          


        


        		
          Creating your own UnitTypes
          
            		
              Extending a existing Unit type
            


            		
              Creating your own Unit type
            


          


        


      


    
  

_static/up-pressed.png





_static/up.png





