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CHAPTER 1

PyTrajectory User’s Guide

1.1 About PyTrajectory

PyTrajectory is a Python library for trajectory generation for nonlinear control systems. It relies on solving a boundary
value problem (bvp) via a collocation method. It is based on the scientific work of Graichen et al., but does not depend
on proprietary code like Matlabs bvp4c.

PyTrajectory is developed at Dresden University of Technology at the Institute for Control Theory, see also other
control related software.

Based on the project thesis of Oliver Schnabel under the supervision of Carsten Knoll in February 2013 it has been
further developed by Andreas Kunze to increase its numeric performance.

1.1.1 Contacts

If you face any problems using PyTrajectory, feel free to contact us.

• andreas.kunze <at> mailbox.tu-dresden.de

• carsten.knoll <at> tu-dresden.de

1.1.2 Licence

Copyright (c) 20013-2016 Oliver Schnabel, Andreas Kunze, Carsten Knoll

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

a. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

b. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

c. Neither the name of PyTrajectory nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
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AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

1.2 Getting Started

This section provides an overview on what PyTrajectory is and how to use it. For a more detailed view please have a
look at the PyTrajectory Modules Reference.

Contents

• What is PyTrajectory?
• Installation

– Dependencies
– PyPI
– Source
– Windows
– MAC OSX

• Usage
• Visualisation

1.2.1 What is PyTrajectory?

PyTrajectory is a Python library for the determination of the feed forward control to achieve a transition between
desired states of a nonlinear control system.

Planning and designing of trajectories represents an important task in the control of technological processes. Here the
problem is attributed on a multi-dimensional boundary value problem with free parameters. In general this problem
can not be solved analytically. It is therefore resorted to the method of collocation in order to obtain a numerical
approximation.

PyTrajectory allows a flexible implementation of various tasks and enables an easy implementation. It suffices to
supply a function 𝑓(𝑥, 𝑢) that represents the vectorfield of a control system and to specify the desired boundary
values.

1.2.2 Installation

PyTrajectory has been developed and tested on Python 2.7

If you have troubles installing PyTrajectory, please don’t hesitate to contact us.

Dependencies

Before you install PyTrajectory make sure you have the following dependencies installed on your system.

4 Chapter 1. PyTrajectory User’s Guide
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• numpy

• sympy

• scipy

• optional

– matplotlib [visualisation]

– ipython [debugging]

PyPI

The easiest way of installing PyTrajectory would be

$ pip install pytrajectory

provided that you have the Python module pip installed on your system.

Source

To install PyTrajectory from the source files please download the latest release from here. After the download is
complete open the archive and change directory into the extracted folder. Then all you have to do is run the following
command

$ python setup.py install

Please note that there are different versions of PyTrajectory available (development version in github repository [vari-
ous branches], release versions at PyPI). Because the documentation is build automatically upon the source code, there
are also different versions of the docs available. Please make sure that you always use matching versions of code and
documentation.

Windows

To install PyTrajectory on Windows machines please make sure you have already installed Python version 2.7 on your
system. If not, please download the latest version and install it by double-clicking the installer file.

To be able to run the Python interpreter from any directory we have to append the PATH environment variable. This
can be done by right-clicking the machine icon (usually on your Desktop, called My Computer), choosing Properties,
selecting Advance and hitting Environment Variables. Then select the PATH (or Path) variable, click Edit an append
the following at the end of the line

;C:\Python27\;C:\Python27\Scripts\

If you can’t find a variable called PATH you can create it by clicking New, naming it PATH and insert the line above
without the first ‘;‘ as the value.

Before going on, open a command line with the shortcut consisting of the Windows-key and the R-key. Run cmd and
after the command line interface started type the following:

C:\> pip --version

If it prints the version number of pip you can skip the next two steps. Else, the next thing to do is to install a Python
software package called Setuptools that extends packaging and installation facilities. To do so, download the Python
script ez_setup.py and run it by typing

1.2. Getting Started 5

https://github.com/TUD-RST/pytrajectory/tree/master/dist
https://www.python.org/ftp/python/2.7.10/python-2.7.10.msi
https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py


pytrajectory Documentation, Release 1.3.1

C:>\path\to\file\python ez_setup.py

To simplify the installation of new packages we install a software called pip. This is simply done by downloading the
file get_pip.py and running

C:>\path\to\file\python get_pip.py

from the command line again.

After that, (and after you have installed the dependencies with a similar command like the next one) you can run

C:>\pip install pytrajectory

and pip should manage to install PyTrajectory.

Again, if you have troubles installing PyTrajectory, please contact us.

Note: The information provided in this section follows the guide available here.

MAC OSX

To install PyTrajectory on machines running OSX you first have to make sure there is Python version 2.7 installed on
your system (should be with OSX >= 10.8). To check this, open a terminal and type

$ python --version

If this is not the case we have to install it (obviously). To do so we will use a package manager called Homebrew that
allows an installation procedure similar to Linux environments. But before we do this pease check if you have XCode
installed.

Homebrew can be installed by opening a terminal and typing

$ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Once Homebrew is installed we insert its directory at the top of the PATH environment variable by adding the following
line at the bottom of your ~.profile file (you have to relogin for this to take effect)

export PATH=/usr/local/bin:/usr/local/sbin:$PATH

Now, installing Python version 2.7 is as easy as typing

$ brew install python2

into a terminal. Homebrew also will install packages called Setuptools and pip that manage the installation of addi-
tional Python packages.

Now, before installing PyTrajectory please make sure to install its dependencies via

$ pip install sympy

and similar commands for the others. After that you can install Pytrajectory by typing

$ pip install pytrajectory

or install it from the source files.

Again, if you have troubles installing PyTrajectory, please contact us.

6 Chapter 1. PyTrajectory User’s Guide
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Note: The information provided in this section follows the guide available here.

1.2.3 Usage

In order to illustrate the usage of PyTrajectory we consider the following simple example.

A pendulum mass 𝑚𝑝 is connected by a massless rod of length 𝑙 to a cart 𝑀𝑤 on which a force 𝐹 acts to accelerate it.

A possible task would be the transfer between two angular positions of the pendulum. In this case, the pendulum
should hang at first down (𝜙 = 𝜋) and is to be turned upwards (𝜙 = 0). At the end of the process, the car should be at
the same position and both the pendulum and the cart should be at rest. The (partial linearised) system is represented
by the following differential equations, where [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝑥𝑤, 𝑥𝑤, 𝜙, �̇�] and 𝑢 = �̈�𝑤 is our control variable:

𝑥1 = 𝑥2

𝑥2 = 𝑢

𝑥3 = 𝑥4

𝑥4 =
1

𝑙
(𝑔 𝑠𝑖𝑛(𝑥3) + 𝑢 𝑐𝑜𝑠(𝑥3))

To solve this problem we first have to define a function that returns the vectorfield of the system above. Therefor it is
important that you use SymPy functions if necessary, which is the case here with 𝑠𝑖𝑛 and 𝑐𝑜𝑠.

So in Python this would be

>>> from sympy import sin, cos
>>>
>>> def f(x,u):
... x1, x2, x3, x4 = x # system variables
... u1, = u # input variable
...
... l = 0.5 # length of the pendulum
... g = 9.81 # gravitational acceleration
...
... # this is the vectorfield
... ff = [ x2,
... u1,
... x4,
... (1/l)*(g*sin(x3)+u1*cos(x3))]
...

1.2. Getting Started 7
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... return ff

...
>>>

Wanted is now the course for 𝑢(𝑡), which transforms the system with the following start and end states within 𝑇 = 2[𝑠].

𝑥(0) =

⎡⎢⎢⎣
0
0
𝜋
0

⎤⎥⎥⎦ → 𝑥(𝑇 ) =

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦
so we have to specify the boundary values at the beginning

>>> from numpy import pi
>>>
>>> a = 0.0
>>> xa = [0.0, 0.0, pi, 0.0]

and end

>>> b = 2.0
>>> xb = [0.0, 0.0, 0.0, 0.0]

The boundary values for the input variable are

>>> ua = [0.0]
>>> ub = [0.0]

because we want 𝑢(0) = 𝑢(𝑇 ) = 0.

Now we import all we need from PyTrajectory

>>> from pytrajectory import ControlSystem

and pass our parameters.

>>> S = ControlSystem(f, a, b, xa, xb, ua, ub)

All we have to do now to solve our problem is

>>> x, u = S.solve()

After the iteration has finished x(t) and u(t) are returned as callable functions for the system and input variables, where
t has to be in (a,b).

In this example we get a solution that satisfies the default tolerance for the boundary values of 10−2 after the 7th
iteration step with 320 spline parts. But PyTrajectory enables you to improve its performance by altering some of its
method parameters.

For example if we increase the factor for raising the spline parts (default: 2)

>>> S.set_param('kx', 5)

and don’t take advantage of the system structure (integrator chains)

>>> S.set_param('use_chains', False)

we get a solution after 3 steps with 125 spline parts.

There are more method parameters you can change to speed things up, i.e. the type of collocation points to use or the
number of spline parts for the input variables. To do so, just type:

8 Chapter 1. PyTrajectory User’s Guide
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>>> S.set_param('<param>', <value>)

Please have a look at the PyTrajectory Modules Reference for more information.

1.2.4 Visualisation

Beyond the simple plot method (see: PyTrajectory Modules Reference) PyTrajectory offers basic capabilities to
animate the given system. This is done via the Animation class from the utilities module. To explain this
feature we take a look at the example above.

When instanciated, the Animation requires the calculated simulation results T.sim and a callable function that draws
an image of the system according to given simulation data.

First we import what we need by:

>>> import matplotlib as mpl
>>> from pytrajectory.visualisation import Animation

Then we define our function that takes simulation data x of a specific time and an instance image of Animation.Image
which is just a container for the image. In the considered example xt is of the form

𝑥𝑡 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝑥𝑤, �̇�𝑤, 𝜙, �̇�]

and image is just a container for the drawn image.

def draw(xt, image):
# to draw the image we just need the translation `x` of the
# cart and the deflection angle `phi` of the pendulum.
x = xt[0]
phi = xt[2]

# next we set some parameters
car_width = 0.05
car_heigth = 0.02

rod_length = 0.5
pendulum_size = 0.015

# then we determine the current state of the system
# according to the given simulation data
x_car = x
y_car = 0

x_pendulum = -rod_length * sin(phi) + x_car
y_pendulum = rod_length * cos(phi)

# now we can build the image

# the pendulum will be represented by a black circle with
# center: (x_pendulum, y_pendulum) and radius `pendulum_size
pendulum = mpl.patches.Circle(xy=(x_pendulum, y_pendulum), radius=pendulum_size, color='black')

# the cart will be represented by a grey rectangle with
# lower left: (x_car - 0.5 * car_width, y_car - car_heigth)
# width: car_width
# height: car_height
car = mpl.patches.Rectangle((x_car-0.5*car_width, y_car-car_heigth), car_width, car_heigth,

fill=True, facecolor='grey', linewidth=2.0)

1.2. Getting Started 9
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# the joint will also be a black circle with
# center: (x_car, 0)
# radius: 0.005
joint = mpl.patches.Circle((x_car,0), 0.005, color='black')

# and the pendulum rod will just by a line connecting the cart and the pendulum
rod = mpl.lines.Line2D([x_car,x_pendulum], [y_car,y_pendulum],

color='black', zorder=1, linewidth=2.0)

# finally we add the patches and line to the image
image.patches.append(pendulum)
image.patches.append(car)
image.patches.append(joint)
image.lines.append(rod)

# and return the image
return image

If we want to save the latest simulation result, maybe because the iteration took much time and we don’t want to run
it again every time, we can do this.

S.save(fname='ex0_InvertedPendulumSwingUp.pcl')

Next, we create an instance of the Animation class and pass our draw function, the simulation data and some lists
that specify what trajectory curves to plot along with the picture.

If we would like to either plot the system state at the end time or want to animate the system we need to create an
Animation object. To set the limits correctly we calculate the minimum and maximum value of the cart’s movement
along the x-axis.

A = Animation(drawfnc=draw, simdata=S.sim_data,
plotsys=[(0,'x'), (2,'phi')], plotinputs=[(0,'u')])

# as for now we have to explicitly set the limits of the figure
# (may involves some trial and error)
xmin = np.min(S.sim_data[1][:,0]); xmax = np.max(S.sim_data[1][:,0])
A.set_limits(xlim=(xmin - 0.5, xmax + 0.5), ylim=(-0.6,0.6))

Finally, we can plot the system and/or start the animation.

if 'plot' in sys.argv:
A.show(t=S.b)

if 'animate' in sys.argv:
# if everything is set, we can start the animation
# (might take some while)
A.animate()

The animation can be saved either as animated .gif file or as a .mp4 video file.

A.save('ex0_InvertedPendulum.gif')

If saved as an animated .gif file you can view single frames using for example gifview (GNU/Linux) or the standard
Preview app (OSX).
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1.3 Background

This section is intended to give some insights into the mathematical background that is the basis of PyTrajectory.

Contents

• Trajectory planning with BVP’s
• Collocation Method
• Candidate Functions

– Use of the system structure
• Levenberg-Marquardt Method

– Control of the parameter 𝜇
• Handling constraints

– Choice of the saturation functions
– An example

• References

1.3. Background 11
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1.3.1 Trajectory planning with BVP’s

The task in the field of trajectory planning PyTrajectory is intended to perform, is the transition of a control system
between desired states. A possible way to solve such a problem is to treat it as a two-point boundary value problem
with free parameters. This approach is based on the work of K. Graichen and M. Zeitz (e.g. see [Graichen05]) and
was picked up by O. Schnabel ([Schnabel13]) in the project thesis from which PyTrajectory emerged.

1.3.2 Collocation Method

Given a system of autonomous differential equations

�̇�1(𝑡) = 𝑓1(𝑥1(𝑡), ..., 𝑥𝑛(𝑡))

...
...

�̇�𝑛(𝑡) = 𝑓𝑛(𝑥1(𝑡), ..., 𝑥𝑛(𝑡))

with 𝑡 ∈ [𝑎, 𝑏] and Dirichlet boundary conditions

𝑥𝑖(𝑎) = 𝛼𝑖, 𝑥𝑖(𝑏) = 𝛽𝑖 𝑖 = 1, ..., 𝑛

the collocation method to solve the problem basically works as follows.

We choose 𝑁 + 1 collocation points 𝑡𝑗 , 𝑗 = 0, ..., 𝑁 from the interval [𝑎, 𝑏] where 𝑡0 = 𝑎, 𝑡𝑁 = 𝑏 and search for
functions 𝑆𝑖 : [𝑎, 𝑏] → R which for all 𝑗 = 0, .., 𝑁 satisfy the following conditions:

𝑆𝑖(𝑡0) = 𝛼𝑖, 𝑆𝑖(𝑡𝑁 ) = 𝛽𝑖 (1.1)

𝑑

𝑑𝑡
𝑆𝑖(𝑡𝑗) = 𝑓𝑖(𝑆1(𝑡𝑗), ..., 𝑆𝑛(𝑡𝑗)) 𝑖 = 1, ..., 𝑛 (1.2)

Through these demands the exact solution of the differential equation system will be approximated. The demands on
the boundary values (1) can be sure already by suitable construction of the candidate functions. This results in the
following system of equations.

𝐺0
1(𝑐) :=

𝑑

𝑑𝑡
𝑆1(𝑡0)− 𝑓(𝑆1(𝑡0)) = 0

...

𝐺0
𝑛(𝑐) :=

𝑑

𝑑𝑡
𝑆𝑛(𝑡0)− 𝑓(𝑆𝑛(𝑡0)) = 0

...

𝐺1
1(𝑐) :=

𝑑

𝑑𝑡
𝑆1(𝑡1)− 𝑓(𝑆1(𝑡1)) = 0

...

𝐺𝑁𝑛 (𝑐) :=
𝑑

𝑑𝑡
𝑆𝑛(𝑡𝑁 )− 𝑓(𝑆𝑛(𝑡𝑁 )) = 0

Solving the boundary value problem is thus reduced to the finding of a zero point of 𝐺 = (𝐺0
1, ..., 𝐺

𝑁
𝑛 )𝑇 , where 𝑐 is

the vector of all independent parameters that result from the candidate functions.

12 Chapter 1. PyTrajectory User’s Guide
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1.3.3 Candidate Functions

PyTrajectory uses cubic spline functions as candidates for the approximation of the solution. Splines are piecewise
polynomials with a global differentiability. The connection points 𝜏𝑘 between the polynomial sections are equidistantly
and are referred to as nodes.

𝑡0 = 𝜏0 < 𝜏1 < ... < 𝜏𝜂 = 𝑡𝑁 ℎ =
𝑡𝑁 − 𝑡0

𝜂

𝜏𝑘+1 = 𝜏𝑘 + ℎ 𝑘 = 0, ..., 𝜂 − 1

The 𝜂 polynomial sections can be created as follows.

𝑃𝑘(𝑡) = 𝑐𝑘,0(𝑡− 𝑘ℎ)3 + 𝑐𝑘,1(𝑡− 𝑘ℎ)2 + 𝑐𝑘,2(𝑡− 𝑘ℎ) + 𝑐𝑘,3

𝑐𝑘,𝑙 ∈ R, 𝑘 = 0, ..., 𝜂 − 1, 𝑙 = 0, ..., 3

Then, each spline function is defined by

𝑆𝑖(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑃1(𝑡) 𝑡0 ≤ 𝑡 < ℎ
...

...
𝑃𝑘(𝑡) (𝑘 − 1)ℎ ≤ 𝑡 < 𝑘ℎ
...

...
𝑃𝜂(𝑡) (𝜂 − 1)ℎ ≤ 𝑡 ≤ 𝜂ℎ

The spline functions should be twice continuously differentiable in the nodes 𝜏 . Therefore, three smoothness condi-
tions can be set up in all 𝜏𝑘, 𝑘 = 1, ..., 𝜂 − 1.

𝑃𝑘(𝑘ℎ) = 𝑃𝑘+1(𝑘ℎ)

𝑑

𝑑𝑡
𝑃𝑘(𝑘ℎ) =

𝑑

𝑑𝑡
𝑃𝑘+1(𝑘ℎ)

𝑑2

𝑑𝑡2
𝑃𝑘(𝑘ℎ) =

𝑑2

𝑑𝑡2
𝑃𝑘+1(𝑘ℎ)

In the later equation system these demands result in the block diagonal part of the matrix. Furthermore, conditions can
be set up at the edges arising from the boundary conditions of the differential equation system.

𝑑𝑗

𝑑𝑡𝑗
𝑃1(𝜏0) = �̃�𝑗

𝑑𝑗

𝑑𝑡𝑗
𝑃𝜂(𝜏𝜂) = 𝛽𝑗 𝑗 = 0, ..., 𝜈

1.3. Background 13
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The degree 𝜈 of the boundary conditions depends on the structure of the differential equation system. With these
conditions and those above one obtains the following equation system (𝜈 = 2).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ3 ℎ2 ℎ 1 0 0 0 −1
3ℎ2 2ℎ 1 0 0 0 −1 0 0
6ℎ 2 0 0 0 −2 0 0

ℎ3 ℎ2 ℎ 1 0 0 0 −1

0 3ℎ2 2ℎ 1 0 0 0 −1 0 0
6ℎ 2 0 0 0 −2 0 0

. . .
ℎ3 ℎ2 ℎ 1 0 0 0 −1

0 3ℎ2 2ℎ 1 0 0 0 −1 0
6ℎ 2 0 0 0 −2 0 0

0 0 0 −1
0 0 −1 0 0
0 −2 0 0

ℎ3 ℎ2 ℎ 1

0 3ℎ2 2ℎ 1 0
6ℎ 2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

=:𝑀

·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1,0
𝑐1,1
𝑐1,2
𝑐1,3
𝑐2,0
𝑐2,1
𝑐2,2
𝑐2,3

...

...

...

𝑐𝜂,0
𝑐𝜂,1
𝑐𝜂,2
𝑐𝜂,3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

=:𝑐

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
...
0
0
0

�̃�0

�̃�1

�̃�2

𝛽0
𝛽1
𝛽2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  
=:𝑟

The matrix 𝑀 of dimension 𝑁1×𝑁2, 𝑁1 < 𝑁2, where 𝑁2 = 4𝜂 and 𝑁1 = 3(𝜂−1)+2(𝜈+1), can be decomposed
into two subsystems 𝐴 ∈ R𝑁1×(𝑁2−𝑁1) and 𝐵 ∈ R𝑁1×𝑁1 . The vectors 𝑎 and 𝑏 belong to the two matrices with the
respective coefficients of 𝑐.

𝑀𝑐 = 𝑟

𝐴𝑎+𝐵𝑏 = 𝑟

𝑏 = 𝐵−1(𝑟 −𝐴𝑎)

With this allocation, the system of equations can be solved for 𝑏 and the parameters in 𝑎 remain as the free parameters
of the spline function.

Note: Optionally, there is available an alternative approach for defining the candidate functions, see non-standard-
approach.

Use of the system structure

In physical models often occur differential equations of the form

�̇�𝑖 = 𝑥𝑖+1

For these equations, it is not necessary to determine a solution through collocation. Without severe impairment of the
solution method, it is sufficient to define a candidate function for 𝑥𝑖 and to win that of 𝑥𝑖+1 by differentiation.

𝑆𝑖+1(𝑡) =
𝑑

𝑑𝑡
𝑆𝑖(𝑡)

Then in addition to the boundary conditions of 𝑆𝑖(𝑡) applies

𝑑

𝑑𝑡
𝑆𝑖(𝑡0 = 𝑎) = 𝛼𝑖+1

𝑑

𝑑𝑡
𝑆𝑖(𝑡𝑁 = 𝑏) = 𝛽𝑖+1

Similar simplifications can be made if relations of the form �̇�𝑖 = 𝑢𝑗 arise.
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1.3.4 Levenberg-Marquardt Method

The Levenberg-Marquardt method can be used to solve nonlinear least squares problems. It is an extension of the
Gauss-Newton method and solves the following minimization problem.

‖𝐹 ′(𝑥𝑘)(𝑥𝑘+1 − 𝑥𝑘) + 𝐹 (𝑥𝑘)‖22 + 𝜇2‖𝑥𝑘+1 − 𝑥𝑘‖22 → min!

The real number 𝜇 is a parameter that is used for the attenuation of the step size (𝑥𝑘+1 − 𝑥𝑘) and is free to choose.
Thus, the generation of excessive correction is prevented, as is often the case with the Gauss-Newton method and leads
to a possible non-achievement of the local minimum. With a vanishing attenuation, 𝜇 = 0 the Gauss-Newton method
represents a special case of the Levenberg-Marquardt method. The iteration can be specified in the following form.

𝑥𝑘+1 = 𝑥𝑘 − (𝐹 ′(𝑥𝑘)
𝑇𝐹 ′(𝑥𝑘) + 𝜇2𝐼)−1𝐹 ′(𝑥𝑘)𝐹 (𝑥𝑘)

The convergence can now be influenced by means of the parameter 𝜇. Disadvantage is that in order to ensure the
convergence, 𝜇must be chosen large enough, at the same time, this also leads however to a very small correction. Thus,
the Levenberg-Marquardt method has a lower order of convergence than the Gauss-Newton method but approaches
the desired solution at each step.

Control of the parameter 𝜇

The feature after which the parameter is chosen, is the change of the actual residual

𝑅(𝑥𝑘, 𝑠𝑘) := ‖𝐹 (𝑥𝑘)‖22 − ‖𝐹 (𝑥𝑘 + 𝑠𝑘)‖22
𝑠𝑘 := 𝑥𝑘+1 − 𝑥𝑘

and the change of the residual of the linearized approximation.

�̃�(𝑥𝑘, 𝑠𝑘) := ‖𝐹 (𝑥𝑘)‖22 − ‖𝐹 (𝑥𝑘) + 𝐹 ′(𝑥𝑘)𝑠𝑘‖22

As a control criterion, the following quotient is introduced.

𝜌 =
𝑅(𝑥𝑘, 𝑠𝑘)

�̃�(𝑥𝑘, 𝑠𝑘)

It follows that 𝑅(𝑥𝑘, 𝑠𝑘) ≥ 0 and for a meaningful correction �̃�(𝑥𝑘, 𝑠𝑘) ≥ 0 must also hold. Thus, 𝜌 is also positive
and 𝜌 → 1 for 𝜇 → ∞. Therefor 𝜌 should lie between 0 and 1. To control 𝜇 two new limits 𝑏0 and 𝑏1 are introduced
with 0 < 𝑏0 < 𝑏1 < 1 and for 𝑏0 = 0.2, 𝑏1 = 0.8 we use the following criteria.

• 𝜌 ≤ 𝑏0 : 𝜇 is doubled and 𝑠𝑘 is recalculated

• 𝑏0 < 𝜌 < 𝑏1 : in the next step 𝜇 is maintained and 𝑠𝑘 is used

• 𝜌 ≥ 𝑏1 : 𝑠𝑘 is accepted and 𝜇 is halved during the next iteration

1.3.5 Handling constraints

In practical situations it is often desired or necessary that the system state variables comply with certain limits. To
achieve this PyTrajectory uses an approach similar to the one presented by K. Graichen and M. Zeitz in [Graichen06].

The basic idea is to transform the dynamical system into a new one that satisfies the constraints. This is done by
projecting the constrained state variables on new unconstrained coordinates using socalled saturation functions.

Suppose the state 𝑥 should be bounded by 𝑥0, 𝑥1 such that 𝑥0 ≤ 𝑥(𝑡) ≤ 𝑥1 for all 𝑡 ∈ [𝑎, 𝑏]. To do so the following
saturation function is introduced

𝑥 = 𝜓(𝑦, 𝑦±)

1.3. Background 15
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that depends on the new unbounded variable 𝑦 and satisfies the saturation limits 𝑦−, 𝑦+, i.e. 𝑦− ≤ 𝜓(𝑦(𝑡), 𝑦±) ≤ 𝑦+

for all 𝑡. It is assumed that the limits are asymptotically and 𝜓(·, 𝑦±) is strictly increasing , that is 𝜕𝜓
𝜕𝑦 > 0. For the

constraints 𝑥 ∈ [𝑥0, 𝑥1] to hold it is obvious that 𝑦− = 𝑥0 and 𝑦+ = 𝑥1. Thus the constrained variable 𝑥 is projected
on the new unconstrained varialbe 𝑦.

By differentiating the equation above one can replace �̇� in the vectorfield with a new term for �̇�.

�̇� =
𝜕

𝜕𝑦
𝜓(𝑦, 𝑦±)�̇� ⇔ �̇� =

�̇�
𝜕
𝜕𝑦𝜓(𝑦, 𝑦

±)

Next, one has to calculate new boundary values 𝑦𝑎 = 𝑦(𝑎) and 𝑦𝑏 = 𝑦(𝑏) for the variable 𝑦 from those, 𝑥𝑎 = 𝑥(𝑎)
and 𝑥𝑏 = 𝑥(𝑏), of 𝑥. This is simply done by

𝑦𝑎 = 𝜓−1(𝑥𝑎, 𝑦
±) 𝑦𝑏 = 𝜓−1(𝑥𝑏, 𝑦

±)

Now, the transformed dynamical system can be solved where all state variables are unconstrained. At the end a solution
for the original state variable 𝑥 is obtained via a composition of the calculated solution 𝑦(𝑡) and the saturation function
𝜓(·, 𝑦±).

There are some aspects to take into consideration when dealing with constraints:

• The boundary values of a constrained variable have to be strictly within the saturation limits

• It is not possible to make use of an integrator chain that contains a constrained variable

Choice of the saturation functions

As mentioned before the saturation functions should be continuously differentiable and strictly increasing. A possible
approach for such functions is the following.

𝜓(𝑦, 𝑦±) = 𝑦+ − 𝑦+ − 𝑦−

1 + 𝑒𝑥𝑝(𝑚𝑦)

The parameter 𝑚 affects the slope of the function at 𝑦 = 0 and is chosen such that 𝜕
𝜕𝑦𝜓(0, 𝑦

±) = 1, i.e.

𝑚 =
4

𝑦+ − 𝑦−

An example

For examples on how to handle constraints with PyTrajectory please have a look at the Examples section, e.g. the
Constrained double integrator or the Constrained swing up of the inverted pundulum.

1.3.6 References

1.4 Examples

The following example systems from mechanics demonstrate the application of PyTrajectory. The derivation of the
model equations is omittted here.

The source code of the examples can be downloaded here. In order to run them simply type:

$ python ex<ExampleNumber>_<ExampleName>.py

16 Chapter 1. PyTrajectory User’s Guide
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The results of the examples latest simulation are saved in a pickle dump file by default. To prevent this add the
no-pickle command line argument to the command above.

If you want to plot the results and/or animate the example system add the plot and/or the animate argument to the
command.

So the command may look something like:

$ python ex0_InvertedPendulumSwingUp.py no-pickle plot animate

For even more examples, which might not be part of the documentation, have a look at the repository.

1.4.1 Translation of the inverted pendulum

An example often used in literature is the inverted pendulum. Here a force 𝐹 acts on a cart with mass 𝑀𝑤. In addition
the cart is connected by a massless rod with a pendulum mass𝑚𝑝. The mass of the pendulum is concentrated in 𝑃2 and
that of the cart in 𝑃1. The state vector of the system can be specified using the carts position 𝑥𝑤(𝑡) and the pendulum
deflection 𝜙(𝑡) and their derivatives.

With the Lagrangian Formalism the model has the following state representation where 𝑢1 = 𝐹 and 𝑥 =
[𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝑥𝑤, �̇�𝑤, 𝜙, �̇�]

�̇�1 = 𝑥2

�̇�2 =
𝑚𝑝 sin(𝑥3)(−𝑙𝑥24 + 𝑔 cos𝑥3)

𝑀𝑤𝑙 +𝑚𝑝 sin
2(𝑥3)

+
cos(𝑥3)

𝑀𝑤𝑙 +𝑚𝑝𝑙 sin
2(𝑥3)

𝑢1

�̇�3 = 𝑥4

�̇�4 =
sin(𝑥3)(−𝑚𝑝𝑙𝑥

2
4 cos(𝑥3) + 𝑔(𝑀𝑤 +𝑚𝑝))

𝑀𝑤𝑙 +𝑚𝑝 sin
2(𝑥3)

+
cos(𝑥3)

𝑀𝑤𝑙 +𝑚𝑝𝑙 sin
2(𝑥3)

𝑢1

A possibly wanted trajectory is the translation of the cart along the x-axis (i.e. by 0.5𝑚). In the beginning and end
of the process the cart and pendulum should remain at rest and the pendulum should be aligned vertically upwards
(𝜙 = 0). As a further condition 𝑢1 should start and end steadily in the rest position (𝑢1(0) = 𝑢1(𝑇 ) = 0). The
operating time here is 𝑇 = 1[𝑠].

Source Code

# translation of the inverted pendulum

# import trajectory class and necessary dependencies
from pytrajectory import ControlSystem
from sympy import sin, cos
import numpy as np

1.4. Examples 17
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# define the function that returns the vectorfield
def f(x,u):

x1, x2, x3, x4 = x # system state variables
u1, = u # input variable

l = 0.5 # length of the pendulum rod
g = 9.81 # gravitational acceleration
M = 1.0 # mass of the cart
m = 0.1 # mass of the pendulum

s = sin(x3)
c = cos(x3)

ff = np.array([ x2,
m*s*(-l*x4**2+g*c)/(M+m*s**2)+1/(M+m*s**2)*u1,

x4,
s*(-m*l*x4**2*c+g*(M+m))/(M*l+m*l*s**2)+c/(M*l+l*m*s**2)*u1

])
return ff

# boundary values at the start (a = 0.0 [s])
xa = [ 0.0,

0.0,
0.0,
0.0]

# boundary values at the end (b = 2.0 [s])
xb = [ 1.0,

0.0,
0.0,
0.0]

# create trajectory object
S = ControlSystem(f, a=0.0, b=2.0, xa=xa, xb=xb)

# change method parameter to increase performance
S.set_param('use_chains', False)

# run iteration
S.solve()

1.4.2 Swing up of the inverted dual pendulum

In this example we add another pendulum to the cart in the system.
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The system has the state vector 𝑥 = [𝑥1, �̇�1, 𝜙1, �̇�1, 𝜙2, �̇�2]. A partial linearization with 𝑦 = 𝑥1 yields the following
system state representation where �̃� = 𝑦.

�̇�1 = 𝑥2

�̇�2 = �̃�

�̇�3 = 𝑥4

�̇�4 =
1

𝑙1
(𝑔 sin(𝑥3) + �̃� cos(𝑥3))

�̇�5 = 𝑥6

�̇�6 =
1

𝑙2
(𝑔 sin(𝑥5) + �̃� cos(𝑥5))

Here a trajectory should be planned that transfers the system between the following two positions of rest. At the
beginning both pendulums should be directed downwards (𝜙1 = 𝜙2 = 𝜋). After a operating time of 𝑇 = 2[𝑠] the cart
should be at the same position again and the pendulums should be at rest with 𝜙1 = 𝜙2 = 0.

𝑥(0) =

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
𝜋
0
𝜋
0

⎤⎥⎥⎥⎥⎥⎥⎦ → 𝑥(𝑇 ) =

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦

Source Code

# swing up of the inverted dual pendulum with partial linearization

# import trajectory class and necessary dependencies
from pytrajectory import ControlSystem
from sympy import cos, sin
import numpy as np

# define the function that returns the vectorfield
def f(x,u):

x1, x2, x3, x4, x5, x6 = x # system variables
u, = u # input variable

# length of the pendulums
l1 = 0.7
l2 = 0.5

1.4. Examples 19
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g = 9.81 # gravitational acceleration

ff = np.array([ x2,
u,
x4,

(1/l1)*(g*sin(x3)+u*cos(x3)),
x6,

(1/l2)*(g*sin(x5)+u*cos(x5))
])

return ff

# system state boundary values for a = 0.0 [s] and b = 2.0 [s]
xa = [0.0, 0.0, np.pi, 0.0, np.pi, 0.0]
xb = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

# boundary values for the input
ua = [0.0]
ub = [0.0]

# create trajectory object
S = ControlSystem(f, a=0.0, b=2.0, xa=xa, xb=xb, ua=ua, ub=ub)

# alter some method parameters to increase performance
S.set_param('su', 10)
S.set_param('eps', 8e-2)

# run iteration
S.solve()

1.4.3 Aircraft

In this section we consider the model of a unmanned vertical take-off aircraft. The aircraft has two permanently
mounted thrusters on the wings which can apply the thrust forces 𝐹1 and 𝐹2 independently of each other. The two
engines are inclined by an angle 𝛼 with respect to the aircraft-fixed axis 𝜂2 and engage in the points 𝑃1 = (𝑙, ℎ) and
𝑃2 = (−𝑙,−ℎ). The coordinates of the center of mass 𝑀 of the aircraft in the inertial system are denoted by 𝑧1 and
𝑧2. At the same time, the point is the origin of the plane coordinate system. The aircraft axes are rotated by the angle
𝜃 with respect to the 𝑧2-axis.
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Through the establishment of the momentum balances for the model one obtains the equations

𝑚𝑧1 = − sin(𝜃)(𝐹1 + 𝐹2) cos(𝛼) + cos(𝜃)(𝐹1 − 𝐹2) sin(𝛼)

𝑚𝑧2 = cos(𝜃)(𝐹1 + 𝐹2) sin(𝛼) + sin(𝜃)(𝐹1 − 𝐹2) cos(𝛼)−𝑚𝑔

𝐽𝜃 = (𝐹1 − 𝐹2)(𝑙 cos(𝛼) + ℎ sin(𝛼))

With the state vector 𝑥 = [𝑧1, �̇�1, 𝑧2, �̇�2, 𝜃, 𝜃]
𝑇 and 𝑢 = [𝑢1, 𝑢2]

𝑇 = [𝐹1, 𝐹2]
𝑇 the state space representation of the

system is as follows.

�̇�1 = 𝑥2

�̇�2 =
1

𝑚
(− sin(𝑥5)(𝑢1 + 𝑢2) cos(𝛼) + cos(𝑥5)(𝑢1 − 𝑢2) sin(𝛼))

�̇�3 = 𝑥4

�̇�2 =
1

𝑚
(cos(𝑥5)(𝑢1 + 𝑢2) cos(𝛼) + sin(𝑥5)(𝑢1 − 𝑢2) sin(𝛼))− 𝑔

�̇�5 = 𝑥6

�̇�6 =
1

𝐽
(𝑙 cos(𝛼) + ℎ sin(𝛼))

For the aircraft, a trajectory should be planned that translates the horizontally aligned flying object from a rest position
(hovering) along the 𝑧1 and 𝑧2 axis back into a hovering position. The hovering is to be realized on the boundary
conditions of the input. Therefor the derivatives of the state variables should satisfy the following conditions. �̇�1 =
𝑧1 = �̇�2 = 𝑧2 = 𝜃 = 𝜃 = 0 For the horizontal position applies 𝜃 = 0. These demands yield the boundary conditions
for the inputs. 𝐹1(0) = 𝐹1(𝑇 ) = 𝐹2(0) = 𝐹2(𝑇 ) =

𝑚𝑔
2 cos(𝛼)

Source Code

# vertical take-off aircraft

# import trajectory class and necessary dependencies
from pytrajectory import ControlSystem
from sympy import sin, cos
import numpy as np
from numpy import pi

# define the function that returns the vectorfield
def f(x,u):

x1, x2, x3, x4, x5, x6 = x # system state variables
u1, u2 = u # input variables

# coordinates for the points in which the engines engage [m]
l = 1.0
h = 0.1

g = 9.81 # graviational acceleration [m/s^2]
M = 50.0 # mass of the aircraft [kg]
J = 25.0 # moment of inertia about M [kg*m^2]

alpha = 5/360.0*2*pi # deflection of the engines

sa = sin(alpha)
ca = cos(alpha)

s = sin(x5)
c = cos(x5)
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ff = np.array([ x2,
-s/M*(u1+u2) + c/M*(u1-u2)*sa,

x4,
-g+c/M*(u1+u2) +s/M*(u1-u2)*sa ,

x6,
1/J*(u1-u2)*(l*ca+h*sa)])

return ff

# system state boundary values for a = 0.0 [s] and b = 3.0 [s]
xa = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
xb = [10.0, 0.0, 5.0, 0.0, 0.0, 0.0]

# boundary values for the inputs
ua = [0.5*9.81*50.0/(cos(5/360.0*2*pi)), 0.5*9.81*50.0/(cos(5/360.0*2*pi))]
ub = [0.5*9.81*50.0/(cos(5/360.0*2*pi)), 0.5*9.81*50.0/(cos(5/360.0*2*pi))]

# create trajectory object
S = ControlSystem(f, a=0.0, b=3.0, xa=xa, xb=xb, ua=ua, ub=ub)

# don't take advantage of the system structure (integrator chains)
# (this will result in a faster solution here)
S.set_param('use_chains', False)

# also alter some other method parameters to increase performance
S.set_param('kx', 5)

# run iteration
S.solve()

1.4.4 Underactuated Manipulator

In this section, the model of an underactuated manipulator is treated. The system consists of two bars with the mass
𝑀1 and𝑀2 which are connected to each other via the joint𝐺2. The angle between them is designated by 𝜃2. The joint
𝐺1 connects the first rod with the inertial system, the angle to the 𝑥-axis is labeled 𝜃1. In the joint 𝐺1 the actuating
torque 𝑄 is applied. The bars have the moments of inertia 𝐼1 and 𝐼2. The distances between the centers of mass to the
joints are 𝑟1 and 𝑟2.

The modeling was taken from the thesis of Carsten Knoll (April, 2009) where in addition the inertia parameter 𝜂 was
introduced.

𝜂 =
𝑚2𝑙1𝑟2

𝐼2 +𝑚2𝑟22
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For the example shown here, strong inertia coupling was assumed with 𝜂 = 0.9. By partial linearization to the output
𝑦 = 𝜃1 one obtains the state representation with the states 𝑥 = [𝜃1, 𝜃1, 𝜃2, 𝜃2]

𝑇 and the new input �̃� = 𝜃1.

�̇�1 = 𝑥2

�̇�2 = �̃�

�̇�3 = 𝑥4

�̇�4 = −𝜂𝑥22 sin(𝑥3)− (1 + 𝜂 cos(𝑥3))�̃�

For the system, a trajectory is to be determined for the transfer between two equilibrium positions within an operating
time of 𝑇 = 1.8[𝑠].

𝑥(0) =

⎡⎢⎢⎣
0
0

0.4𝜋
0

⎤⎥⎥⎦ → 𝑥(𝑇 ) =

⎡⎢⎢⎣
0.2𝜋
0

0.2𝜋
0

⎤⎥⎥⎦
The trajectory of the inputs should be without cracks in the transition to the equilibrium positions (�̃�(0) = �̃�(𝑇 ) = 0).

Source Code

# underactuated manipulator

# import trajectory class and necessary dependencies
from pytrajectory import ControlSystem
import numpy as np
from sympy import cos, sin

# define the function that returns the vectorfield
def f(x,u):

x1, x2, x3, x4 = x # state variables
u1, = u # input variable

e = 0.9 # inertia coupling

s = sin(x3)
c = cos(x3)

ff = np.array([ x2,
u1,
x4,

-e*x2**2*s-(1+e*c)*u1
])

return ff

# system state boundary values for a = 0.0 [s] and b = 1.8 [s]
xa = [ 0.0,

0.0,
0.4*np.pi,
0.0]

xb = [ 0.2*np.pi,
0.0,
0.2*np.pi,
0.0]

# boundary values for the inputs
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ua = [0.0]
ub = [0.0]

# create trajectory object
S = ControlSystem(f, a=0.0, b=1.8, xa=xa, xb=xb, ua=ua, ub=ub)

# also alter some method parameters to increase performance
S.set_param('su', 20)
S.set_param('kx', 3)

# run iteration
S.solve()

1.4.5 Acrobot

One further interesting example is that of the acrobot. The model can be regarded as a simplified gymnast hanging on
a horizontal bar with both hands. The movements of the entire system is to be controlled only by movement of the
hip. The body of the gymnast is represented by two rods which are jointed in the joint 𝐺2. The first rod is movably
connected at joint 𝐺1 with the inertial system, which corresponds to the encompassing of the stretching rod with the
hands.

For the model, two equal-length rods with a length 𝑙1 = 𝑙2 = 𝑙 are assumed with a homogeneous distribution of mass
𝑚1 = 𝑚2 = 𝑚 over the entire rod length. This does not correspond to the proportions of a man, also no restrictions
were placed on the mobility of the hip joint.

The following figure shows the schematic representation of the model.

Using the previously assumed model parameters and the write abbreviations

𝐼 =
1

3
𝑚𝑙2

𝑑11 =
𝑚𝑙2

4
+𝑚(𝑙2 +

𝑙2

4
+ 𝑙2 cos(𝜃2)) + 2𝐼

ℎ1 = −𝑚𝑙
2

2
sin(𝜃2)(𝜃2(𝜃2 + 2𝜃1))

𝑑12 = 𝑚(
𝑙2

4
+
𝑙2

2
cos(𝜃1)) + 𝐼

𝜙1 =
3

2
𝑚𝑙𝑔 cos(𝜃1) +

1

2
𝑚𝑙𝑔 cos(𝜃1 + 𝜃2)

as well as the state vector 𝑥 = [𝜃2, 𝜃2, 𝜃1, 𝜃1] one obtains the following state representation with the virtual input
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𝑢 = 𝜃2

�̇�1 = 𝑥2

�̇�2 = 𝑢

�̇�3 = 𝑥4

�̇�4 = −𝑑−1
11 (ℎ1 + 𝜙1 + 𝑑12𝑢)

Now, the trajectory of the manipulated variable for an oscillation of the gymnast should be determined. The starting
point of the exercise are the two downward hanging rods. These are to be transferred into another rest position in
which the two bars show vertically upward within an operating time of 𝑇 = 2[𝑠]. At the beginning and end of the
process, the input variable is to merge continuously into the rest position 𝑢(0) = 𝑢(𝑇 ) = 0.

The initial and final states thus are

𝑥(0) =

⎡⎢⎢⎣
0
0
3
2𝜋
0

⎤⎥⎥⎦ → 𝑥(𝑇 ) =

⎡⎢⎢⎣
0
0
1
2𝜋
0

⎤⎥⎥⎦

Source Code

# acrobot

# import trajectory class and necessary dependencies
from pytrajectory import ControlSystem
import numpy as np
from sympy import cos, sin

# define the function that returns the vectorfield
def f(x,u):

x1, x2, x3, x4 = x
u1, = u

m = 1.0 # masses of the rods [m1 = m2 = m]
l = 0.5 # lengths of the rods [l1 = l2 = l]

I = 1/3.0*m*l**2 # moments of inertia [I1 = I2 = I]
g = 9.81 # gravitational acceleration

lc = l/2.0

d11 = m*lc**2+m*(l**2+lc**2+2*l*lc*cos(x1))+2*I
h1 = -m*l*lc*sin(x1)*(x2*(x2+2*x4))
d12 = m*(lc**2+l*lc*cos(x1))+I
phi1 = (m*lc+m*l)*g*cos(x3)+m*lc*g*cos(x1+x3)

ff = np.array([ x2,
u1,
x4,

-1/d11*(h1+phi1+d12*u1)
])

return ff

# system state boundary values for a = 0.0 [s] and b = 2.0 [s]
xa = [ 0.0,
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0.0,
3/2.0*np.pi,
0.0]

xb = [ 0.0,
0.0,
1/2.0*np.pi,
0.0]

# boundary values for the inputs
ua = [0.0]
ub = [0.0]

# create System
first_guess = {'seed' : 1529} # choose a seed which leads to quick convergence
S = ControlSystem(f, a=0.0, b=2.0, xa=xa, xb=xb, ua=ua, ub=ub, use_chains=True, first_guess=first_guess)

# alter some method parameters to increase performance
S.set_param('su', 10)

# run iteration
S.solve()

1.4.6 Constrained double integrator

This example is intended to present PyTrajectory’s capabilities on handling system constraints. To do so, consider the
double integrator which models the dynamics of a simple mass in an one-dimensional space, where a force effects the
acceleration. The state space representation is given by the following dynamical system.

𝑥1 = 𝑥2

𝑥2 = 𝑢1

A possibly wanted trajectory is the translation from 𝑥1(𝑡0 = 0) = 0 to 𝑥1(𝑇 ) = 1 within 𝑇 = 2[𝑠]. At the beginning
and end the mass should stay at rest, that is 𝑥2(0) = 𝑥2(2) = 0.

Now, suppose we want the velocity to be bounded by 𝑥2,𝑚𝑖𝑛 = 0.0 ≤ 𝑥2 ≤ 0.65 = 𝑥2,𝑚𝑎𝑥. To achieve this
PyTrajectory needs a dictionary containing the index of the constrained variable in 𝑥 = [𝑥1, 𝑥2] and a tuple with the
corresponding constraints. So, normally this would look like

>>> con = {1 : [0.0, 0.65]}

But, due to how the approach for handling system constraints is implemented, this would throw an exception because
the lower bound of the constraints 𝑥2,𝑚𝑖𝑛 is equal to 𝑥2(0) and has to be smaller. So instead we use the dictionary

>>> con = {1 : [-0.1, 0.65]}

Source Code

'''
This example of the double integrator demonstrates how to pass constraints to PyTrajectory.
'''
# imports
from pytrajectory import ControlSystem
import numpy as np
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# define the vectorfield
def f(x,u):

x1, x2 = x
u1, = u

ff = [x2,
u1]

return ff

# system state boundary values for a = 0.0 [s] and b = 2.0 [s]
xa = [0.0, 0.0]
xb = [1.0, 0.0]

# constraints dictionary
con = {1 : [-0.1, 0.65]}

# create the trajectory object
S = ControlSystem(f, a=0.0, b=2.0, xa=xa, xb=xb, constraints=con, use_chains=False)

# start
x, u = S.solve()

1.4.7 Constrained swing up of the inverted pundulum

Reconsider the example of the inverted pendulum in the Usage section.

This example is intended to show how PyTrajectory can handle constraints that affect some state variables. Assume
we want to restrict the carts movement along the 𝑥-axis to the interval [−0.8, 0.3] that is ∀𝑡 − 0.8 ≤ 𝑥1(𝑡) ≤
0.3 (remember: [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝑥𝑤, 𝑥𝑤, 𝜙, �̇�]). Furthermore we want the velocity of the cart to be bounded by
[−2.0, 2.0].

To set these constraints PyTrajectory expects a dictionary containing the index of the constrained variables as keys and
the box constraints as corresponding values. In our case this dictionary would look like

>>> con = {0 : [-0.8, 0.3], 1 : [-2.0, 2.0]}

(remember that Python starts indexing at 0).

In order to get a solution we raise the translation time from 𝑇 = 2[𝑠] to 𝑇 = 3[𝑠]. Next, the only different thing to do
is to pass the dictionary when instantiating the trajectory object.

>>> T = Trajectory(f, a, b=3.0, xa, xb, uab, constraints=con)

Source Code

'''
This example of the inverted pendulum demonstrates how to handle possible state constraints.
'''

# import all we need for solving the problem
from pytrajectory import ControlSystem
import numpy as np
from sympy import cos, sin

# first, we define the function that returns the vectorfield
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def f(x,u):
x1, x2, x3, x4 = x # system variables
u1, = u # input variable

l = 0.5 # length of the pendulum
g = 9.81 # gravitational acceleration

# this is the vectorfield
ff = [ x2,

u1,
x4,

(1/l)*(g*sin(x3)+u1*cos(x3))]

return ff

# then we specify all boundary conditions
a = 0.0
xa = [0.0, 0.0, np.pi, 0.0]

b = 3.0
xb = [0.0, 0.0, 0.0, 0.0]

ua = [0.0]
ub = [0.0]

# next, this is the dictionary containing the constraints
con = { 0 : [-0.8, 0.3],

1 : [-2.0, 2.0] }

# now we create our Trajectory object and alter some method parameters via the keyword arguments
S = ControlSystem(f, a, b, xa, xb, ua, ub, constraints=con, kx=5, use_chains=False)

# time to run the iteration
S.solve()

1.4.8 Constrained swing up of the inverted double pendulum

In this example we consider the inverted double pendulum. ... to be continued!

Source Code

# constrained double pendulum

# import all we need for solving the problem
from pytrajectory import ControlSystem
import numpy as np
import sympy as sp
from sympy import cos, sin, Matrix
from numpy import pi

# to define a callable function that returns the vectorfield
# we first solve the motion equations of form Mx = B

def solve_motion_equations(M, B, state_vars=[], input_vars=[], parameters_values=dict()):
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'''
Solves the motion equations given by the mass matrix and right hand side
to define a callable function for the vector field of the respective
control system.

Parameters
----------

M : sympy.Matrix
A sympy.Matrix containing sympy expressions and symbols that represents
the mass matrix of the control system.

B : sympy.Matrix
A sympy.Matrix containing sympy expressions and symbols that represents
the right hand site of the motion equations.

state_vars : list
A list with sympy.Symbols's for each state variable.

input_vars : list
A list with sympy.Symbols's for each input variable.

parameter_values : dict
A dictionary with a key:value pair for each system parameter.

Returns
-------

callable
'''

M_shape = M.shape
B_shape = B.shape
assert(M_shape[0] == B_shape[0])

# at first we create a buffer for the string that we complete and execute
# to dynamically define a function and return it
fnc_str_buffer ='''

def f(x, u):
# System variables
%s # x_str
%s # u_str

# Parameters
%s # par_str

# Sympy Common Expressions
%s # cse_str

# Vectorfield
%s # ff_str

return ff
'''

#################################
# handle system state variables #
#################################
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# --> leads to x_str which shows how to unpack the state variables
x_str = ''
for var in state_vars:

x_str += '%s, '%str(var)

# as a last we remove the trailing '; ' to avoid syntax erros
x_str = x_str + '= x'

##########################
# handle input variables #
##########################
# --> leads to u_str which will show how to unpack the inputs of the control system
u_str = ''
for var in input_vars:

u_str += '%s, '%str(var)

# after we remove the trailing '; ' to avoid syntax errors x_str will look like:
# 'u1, u2, ... , um = u'
u_str = u_str + '= u'

############################
# handle system parameters #
############################
# --> leads to par_str
par_str = ''
for k, v in parameters_values.items():

# 'k' is the name of a system parameter such as mass or gravitational acceleration
# 'v' is its value in SI units
par_str += '%s = %s; '%(str(k), str(v))

# as a last we remove the trailing '; ' from par_str to avoid syntax errors
par_str = par_str[:-2]

# now solve the motion equations w.r.t. the accelerations
sol = M.solve(B)

# use SymPy's Common Subexpression Elimination
cse_list, cse_res = sp.cse(sol, symbols=sp.numbered_symbols('q'))

################################
# handle common subexpressions #
################################
# --> leads to cse_str
cse_str = ''
#cse_list = [(str(l), str(r)) for l, r in cse_list]
for cse_pair in cse_list:

cse_str += '%s = %s; '%(str(cse_pair[0]), str(cse_pair[1]))

# add result of cse
for i in xrange(M_shape[0]):

cse_str += 'q%d_dd = %s; '%(i, str(cse_res[0][i]))

cse_str = cse_str[:-2]

######################
# create vectorfield #
######################
# --> leads to ff_str
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ff_str = 'ff = ['

for i in xrange(M_shape[0]):
ff_str += '%s, '%str(state_vars[2*i+1])
ff_str += 'q%s_dd, '%(i)

# remove trailing ',' and add closing brackets
ff_str = ff_str[:-2] + ']'

############################
# Create callable function #
############################
# now we can replace all placeholders in the function string buffer
fnc_str = fnc_str_buffer%(x_str, u_str, par_str, cse_str, ff_str)
# and finally execute it which will create a python function 'f'
exec(fnc_str)

# now we have defined a callable function that can be used within PyTrajectory
return f

# system and input variables
state_vars = sp.symbols('x, dx, phi1, dphi1, phi2, dphi2')
input_vars = sp.symbols('F,')
x, dx, phi1, dphi1, phi2, dphi2 = state_vars
F, = input_vars

# parameters
l1 = 0.25 # 1/2 * length of the pendulum 1
l2 = 0.25 # 1/2 * length of the pendulum
m1 = 0.1 # mass of the pendulum 1
m2 = 0.1 # mass of the pendulum 2
m = 1.0 # mass of the car
g = 9.81 # gravitational acceleration
I1 = 4.0/3.0 * m1 * l1**2 # inertia 1
I2 = 4.0/3.0 * m2 * l2**2 # inertia 2

param_values = {'l1':l1, 'l2':l2, 'm1':m1, 'm2':m2, 'm':m, 'g':g, 'I1':I1, 'I2':I2}

# mass matrix
M = Matrix([[ m+m1+m2, (m1+2*m2)*l1*cos(phi1), m2*l2*cos(phi2)],

[(m1+2*m2)*l1*cos(phi1), I1+(m1+4*m2)*l1**2, 2*m2*l1*l2*cos(phi2-phi1)],
[ m2*l2*cos(phi2), 2*m2*l1*l2*cos(phi2-phi1), I2+m2*l2**2]])

# and right hand site
B = Matrix([[ F + (m1+2*m2)*l1*sin(phi1)*dphi1**2 + m2*l2*sin(phi2)*dphi2**2 ],

[ (m1+2*m2)*g*l1*sin(phi1) + 2*m2*l1*l2*sin(phi2-phi1)*dphi2**2 ],
[ m2*g*l2*sin(phi2) + 2*m2*l1*l2*sin(phi1-phi2)*dphi1**2 ]])

f = solve_motion_equations(M, B, state_vars, input_vars)

# then we specify all boundary conditions
a = 0.0
xa = [0.0, 0.0, pi, 0.0, pi, 0.0]

b = 4.0
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xb = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

ua = [0.0]
ub = [0.0]

# here we specify the constraints for the velocity of the car
con = {0 : [-1.0, 1.0],

1 : [-2.0, 2.0]}

# now we create our Trajectory object and alter some method parameters via the keyword arguments
S = ControlSystem(f, a, b, xa, xb, ua, ub, constraints=con,

eps=2e-1, su=20, kx=2, use_chains=False,
use_std_approach=False)

# time to run the iteration
x, u = S.solve()

1.4.9 Swing up of a 3-bar pendulum

Now we consider a cart with 3 pendulums attached to it.

To get a callable function for the vector field of this dynamical system we need to set up and solve its motion equations
for the accelaration.

Therefore, the function n_bar_pendulum generates the mass matrix 𝑀 and right hand site 𝐵 of the motion equa-
tions 𝑀�̈� = 𝐵 for a general 𝑛-bar pendulum, which we use for the case 𝑛 = 3.

The formulas this function uses are taken from the project report ‘Simulation of the inverted pendulum’ written by C.
Wachinger, M. Pock and P. Rentrop at the Mathematics Departement, Technical University Munich in December 2004.

Source Code

# 3-bar pendulum

# import all we need for solving the problem
from pytrajectory import ControlSystem

import numpy as np
import sympy as sp

from sympy import cos, sin
from numpy import pi

def n_bar_pendulum(N=1, param_values=dict()):
'''
Returns the mass matrix :math:`M` and right hand site :math:`B` of motion equations

.. math::
M * (d^2/dt^2) x = B

for the :math:`N`\ -bar pendulum.

Parameters
----------

N : int
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Number of bars.

param_values : dict
Numeric values for the system parameters,
such as lengths, masses and gravitational acceleration.

Returns
-------

sympy.Matrix
The mass matrix `M`

sympy.Matrix
The right hand site `B`

list
List of symbols for state variables

list
List with symbol for input variable

'''

# first we have to create some symbols
F = sp.Symbol('F') # the force that acts on the car
g = sp.Symbol('g') # the gravitational acceleration
m = sp.symarray('m', N+1) # masses of the car (`m0`) and the bars
l = sp.symarray('l', N+1)#[1:] # length of the bars (`l0` is not needed nor used)
phi = sp.symarray('phi', N+1)#[1:] # deflaction angles of the bars (`phi0` is not needed nor used)
dphi = sp.symarray('dphi', N+1)#[1:] # 1st derivative of the deflaction angles (`dphi0` is not needed nor used)

if param_values.has_key('F'):
F = param_values['F']

elif param_values.has_key(F):
F = param_values[F]

if param_values.has_key('g'):
g = param_values['g']

elif param_values.has_key(g):
g = param_values[g]

else:
g = 9.81

for i, mi in enumerate(m):
if param_values.has_key(mi.name):

m[i] = param_values[mi.name]
elif param_values.has_key(mi):

m[i] = param_values[mi]

for i, li in enumerate(l):
if param_values.has_key(li.name):

l[i] = param_values[li.name]
elif param_values.has_key(li):

l[i] = param_values[li]

C = np.empty((N,N), dtype=object)
S = np.empty((N,N), dtype=object)
I = np.empty((N), dtype=object)
for i in xrange(1,N+1):
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for j in xrange(1,N+1):
C[i-1,j-1] = cos(phi[i] - phi[j])
S[i-1,j-1] = sin(phi[i] - phi[j])

for i in xrange(1,N+1):
if param_values.has_key('I_%d'%i):

I[i-1] = param_values['I_%d'%i]
#elif param_values.has_key(Ii):
# I[i] = param_values[Ii]
else:

I[i-1] = 4.0/3.0 * m[i] * l[i]**2

#-------------#
# Mass matrix #
#-------------#
M = np.empty((N+1, N+1), dtype=object)

# 1st row
M[0,0] = m.sum()
for j in xrange(1,N):

M[0,j] = (m[j] + 2*m[j+1:].sum()) * l[j] * cos(phi[j])
M[0,N] = m[N] * l[N] * cos(phi[N])

# rest of upper triangular part, except last column
for i in xrange(1,N):

M[i,i] = I[i-1] + (m[i] + 4.0*m[i+1:].sum()) * l[i]**2
for j in xrange(i+1,N):

M[i,j] = 2.0*(m[j] + 2.0*m[j+1:].sum())*l[i]*l[j]*C[j-1,i-1]

# the last column
for i in xrange(1,N):

M[i,N] = 2.0*(m[N]*l[i]*l[N]*C[N-1,i-1])
M[N,N] = I[N-1] + m[N]*l[N]**2

# the rest (lower triangular part)
for i in xrange(N+1):

for j in xrange(i,N+1):
M[j,i] = 1 * M[i,j]

#-----------------#
# Right hand site #
#-----------------#
B = np.empty((N+1), dtype=object)

# first row
B[0] = F
for j in xrange(1,N):

B[0] += (m[j] + 2.0*m[j+1:].sum())*l[j]*sin(phi[j]) * dphi[j]**2
B[0] += (m[N]*l[N]*sin(phi[N])) * dphi[N]**2

# rest except for last row
for i in xrange(1,N):

B[i] = (m[i] + 2.0*m[i+1:].sum())*g*l[i]*sin(phi[i])
for j in xrange(1,N):

B[i] += (2.0*(m[j] + 2.0*m[j+1:].sum())*l[j]*l[i]*S[j-1,i-1]) * dphi[j]**2
B[i] += (2.0*m[N]*l[N]*l[N]*S[N-1,i-1]) * dphi[N]**2

# last row
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B[N] = m[N]*g*l[N]*sin(phi[N])
for j in xrange(1,N+1):

B[N] += (2.0*m[N]*l[j]*l[N]*S[j-1,N-1]) * dphi[j]**2

# build lists of state and input variables
x, dx = sp.symbols('x, dx')
state_vars = [x, dx]
for i in xrange(1,N+1):

state_vars.append(phi[i])
state_vars.append(dphi[i])

input_vars = [F]

# return stuff
return sp.Matrix(M), sp.Matrix(B), state_vars, input_vars

def solve_motion_equations(M, B, state_vars=[], input_vars=[], parameters_values=dict()):
'''
Solves the motion equations given by the mass matrix and right hand side
to define a callable function for the vector field of the respective
control system.

Parameters
----------

M : sympy.Matrix
A sympy.Matrix containing sympy expressions and symbols that represent
the mass matrix of the control system.

B : sympy.Matrix
A sympy.Matrix containing sympy expressions and symbols that represent
the right hand site of the motion equations.

state_vars : list
A list with sympy.Symbols's for each state variable.

input_vars : list
A list with sympy.Symbols's for each input variable.

parameter_values : dict
A dictionary with a key:value pair for each system parameter.

Returns
-------

callable
A callable function for the vectorfield.

'''

M_shape = M.shape
B_shape = B.shape
assert(M_shape[0] == B_shape[0])

# at first we create a buffer for the string that we complete and execute
# to dynamically define a function and return it
fnc_str_buffer ='''

def f(x, u):
# System variables
%s # x_str
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%s # u_str

# Parameters
%s # par_str

# Sympy Common Expressions
%s # cse_str

# Vectorfield
%s # ff_str

return ff
'''

###########################################
# handle system state and input variables #
###########################################
# --> leads to x_str and u_str which show how to unpack the variables
x_str = ''
u_str = ''

for var in state_vars:
x_str += '%s, '%str(var)

for var in input_vars:
u_str += '%s, '%str(var)

x_str = x_str + '= x'
u_str = u_str + '= u'

############################
# handle system parameters #
############################
# --> leads to par_str
par_str = ''
for k, v in parameters_values.items():

# 'k' is the name of a system parameter such as mass or gravitational acceleration
# 'v' is its value in SI units
par_str += '%s = %s; '%(str(k), str(v))

# as a last we remove the trailing '; ' from par_str to avoid syntax errors
par_str = par_str[:-2]

# now solve the motion equations w.r.t. the accelerations
# (might take some while...)
#print " -> solving motion equations w.r.t. accelerations"

# apply sympy.cse() on M and B to speed up solving the eqs
M_cse_list, M_cse_res = sp.cse(M, symbols=sp.numbered_symbols('M_cse'))
B_cse_list, B_cse_res = sp.cse(B, symbols=sp.numbered_symbols('B_cse'))

# solve abbreviated equation system
#sol = M.solve(B)
Mse = M_cse_res[0]
Bse = B_cse_res[0]
cse_sol = Mse.solve(Bse)

# substitute back the common subexpressions to the solution
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for expr in reversed(B_cse_list):
cse_sol = cse_sol.subs(*expr)

for expr in reversed(M_cse_list):
cse_sol = cse_sol.subs(*expr)

# use SymPy's Common Subexpression Elimination
#cse_list, cse_res = sp.cse(sol, symbols=sp.numbered_symbols('q'))
cse_list, cse_res = sp.cse(cse_sol, symbols=sp.numbered_symbols('q'))

################################
# handle common subexpressions #
################################
# --> leads to cse_str
cse_str = ''
#cse_list = [(str(l), str(r)) for l, r in cse_list]
for cse_pair in cse_list:

cse_str += '%s = %s; '%(str(cse_pair[0]), str(cse_pair[1]))

# add result of cse
for i in xrange(M_shape[0]):

cse_str += 'q%d_dd = %s; '%(i, str(cse_res[0][i]))

cse_str = cse_str[:-2]

######################
# create vectorfield #
######################
# --> leads to ff_str
ff_str = 'ff = ['

for i in xrange(M_shape[0]):
ff_str += '%s, '%str(state_vars[2*i+1])
ff_str += 'q%s_dd, '%(i)

# remove trailing ',' and add closing brackets
ff_str = ff_str[:-2] + ']'

############################
# Create callable function #
############################
# now we can replace all placeholders in the function string buffer
fnc_str = fnc_str_buffer%(x_str, u_str, par_str, cse_str, ff_str)
# and finally execute it which will create a python function 'f'
exec(fnc_str)

# now we have defined a callable function that can be used within PyTrajectory
return f

# we consider the case of a 3-bar pendulum
N = 3

# set model parameters
l1 = 0.25 # 1/2 * length of the pendulum 1
l2 = 0.25 # 1/2 * length of the pendulum 2
l3 = 0.25 # 1/2 * length of the pendulum 3
m1 = 0.1 # mass of the pendulum 1
m2 = 0.1 # mass of the pendulum 2
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m3 = 0.1 # mass of the pendulum 3
m = 1.0 # mass of the car
g = 9.81 # gravitational acceleration
I1 = 4.0/3.0 * m1 * l1**2 # inertia 1
I2 = 4.0/3.0 * m2 * l2**2 # inertia 2
I3 = 4.0/3.0 * m2 * l2**2 # inertia 3

param_values = {'l_1':l1, 'l_2':l2, 'l_3':l3,
'm_1':m1, 'm_2':m2, 'm_3':m3,
'm_0':m, 'g':g,
'I_1':I1, 'I_2':I2, 'I_3':I3}

# get matrices of motion equations
M, B, state_vars, input_vars = n_bar_pendulum(N=3, param_values=param_values)

# get callable function for vectorfield that can be used with PyTrajectory
f = solve_motion_equations(M, B, state_vars, input_vars)

# then we specify all boundary conditions
a = 0.0
xa = [0.0, 0.0, pi, 0.0, pi, 0.0, pi, 0.0]

b = 3.5
xb = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

ua = [0.0]
ub = [0.0]

# now we create our Trajectory object and alter some method parameters via the keyword arguments
S = ControlSystem(f, a, b, xa, xb, ua, ub, constraints=None,

eps=4e-1, su=30, kx=2, use_chains=False,
use_std_approach=False)

# time to run the iteration
x, u = S.solve()
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CHAPTER 2

PyTrajectory Modules Reference

PyTrajectory is a Python library for the determination of the feed forward control to achieve a transition between
desired states of a nonlinear control system.

Contents

• system Module
• trajectories Module
• collocation Module
• splines Module
• solver Module
• simulation Module
• auxiliary Module
• visualisation Module

2.1 system Module

class pytrajectory.system.ControlSystem(ff, a=0.0, b=1.0, xa=[], xb=[], ua=[], ub=[], con-
straints=None, **kwargs)

Bases: object

Base class of the PyTrajectory project.

Parameters

• ff (callable) – Vector field (rhs) of the control system.

• a (float) – Left border of the considered time interval.

• b (float) – Right border of the considered time interval.

• xa (list) – Boundary values at the left border.

• xb (list) – Boundary values at the right border.

• ua (list) – Boundary values of the input variables at left border.

• ub (list) – Boundary values of the input variables at right border.

• constraints (dict) – Box-constraints of the state variables.
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• kwargs –

key default value meaning
sx 10 Initial number of spline parts for the system variables
su 10 Initial number of spline parts for the input variables
kx 2 Factor for raising the number of spline parts
maxIt 10 Maximum number of iteration steps
eps 1e-2 Tolerance for the solution of the initial value problem
ierr 1e-1 Tolerance for the error on the whole interval
tol 1e-5 Tolerance for the solver of the equation system
dt_sim 1e-2 Sample time for integration (initial value problem)
use_chains True Whether or not to use integrator chains
sol_steps 100 Maximum number of iteration steps for the eqs solver
first_guess None to initiate free parameters (might be useful: {‘seed’:

value})

set_param(param=’‘, value=None)
Alters the value of the method parameters.

Parameters

• param (str) – The method parameter

• value – The new value

unconstrain(constraints)
This method is used to enable compliance with desired box constraints given by the user. It transforms the
vectorfield by projecting the constrained state variables on new unconstrained ones.

Parameters constraints (dict) – The box constraints for the state variables

constrain()
This method is used to determine the solution of the original constrained state variables by creating a com-
position of the saturation functions and the calculated solution for the introduced unconstrained variables.

solve()
This is the main loop.

While the desired accuracy has not been reached, the collocation system will be set up and solved with a
iteratively raised number of spline parts.

Returns

• callable – Callable function for the system state.

• callable – Callable function for the input variables.

simulate()
This method is used to solve the resulting initial value problem after the computation of a solution for the
input trajectories.

check_accuracy()
Checks whether the desired accuracy for the boundary values was reached.

It calculates the difference between the solution of the simulation and the given boundary values at the
right border and compares its maximum against the tolerance.

If set by the user it also calculates some kind of consistency error that shows how “well” the spline func-
tions comply with the system dynamic given by the vector field.

plot()
Plot the calculated trajectories and show interval error functions.

This method calculates the error functions and then calls the visualisation.plotsim function.
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save(fname=None)
Save data using the python module pickle.

a

b

class pytrajectory.system.DynamicalSystem(f_sym, a=0.0, b=1.0, xa=[], xb=[], ua=[], ub=[])
Bases: object

Provides access to information about the dynamical system that is the object of the control process.

Parameters

• f_sym (callable) – The (symbolic) vector field of the dynamical system

• b (a,) – The initial end final time of the control process

• xb (xa,) – The initial and final conditions for the state variables

• ub (ua,) – The initial and final conditions for the input variables

2.2 trajectories Module

class pytrajectory.trajectories.Trajectory(sys, **kwargs)
Bases: object

This class handles the creation and managing of the spline functions that are intended to approximate the desired
trajectories.

Parameters sys (system.DynamicalSystem) – Instance of a dynamical system providing
information like vector field function and boundary values

n_parts_x
Number of polynomial spline parts for system variables.

n_parts_u
Number of polynomial spline parts for input variables.

x(t)
Returns the current system state.

Parameters t (float) – The time point in (a,b) to evaluate the system at.

u(t)
Returns the state of the input variables.

Parameters t (float) – The time point in (a,b) to evaluate the input variables at.

dx(t)
Returns the state of the 1st derivatives of the system variables.

Parameters t (float) – The time point in (a,b) to evaluate the 1st derivatives at.

init_splines()
This method is used to create the necessary spline function objects.

Parameters boundary_values (dict) – Dictionary of boundary values for the state and
input splines functions.

set_coeffs(sol)
Set found numerical values for the independent parameters of each spline.
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This method is used to get the actual splines by using the numerical solutions to set up the coefficients of
the polynomial spline parts of every created spline.

Parameters sol (numpy.ndarray) – The solution vector for the free parameters, i.e. the
independent coefficients.

save()

2.3 collocation Module

class pytrajectory.collocation.CollocationSystem(sys, **kwargs)
Bases: object

This class represents the collocation system that is used to determine a solution for the free parameters of the
control system, i.e. the independent coefficients of the trajectory splines.

Parameters sys (system.DynamicalSystem) – Instance of a dynamical system

build()
This method is used to set up the equations for the collocation equation system and defines functions for
the numerical evaluation of the system and its jacobian.

get_guess()
This method is used to determine a starting value (guess) for the solver of the collocation equation system.

If it is the first iteration step, then a vector with the same length as the vector of the free parameters with
arbitrary values is returned.

Else, for every variable a spline has been created for, the old spline of the iteration before and the new
spline are evaluated at specific points and a equation system is solved which ensures that they are equal in
these points.

The solution of this system is the new start value for the solver.

save()

solve(G, DG, new_solver=True)
This method is used to solve the collocation equation system.

Parameters

• G (callable) – Function that “evaluates” the equation system.

• DG (callable) – Function for the jacobian.

• new_solver (bool) – flag to determine whether a new solver instance should be ini-
tialized (default True)

class pytrajectory.collocation.Container(**kwargs)
Bases: object

Simple data structure to store additional internal information for debugging and checking the algorithms. Some
of the attributes might indeed be neccessary

pytrajectory.collocation.collocation_nodes(a, b, npts, coll_type)
Create collocation points/nodes for the equation system.

Parameters

• a (float) – The left border of the considered interval.

• b (float) – The right border of the considered interval.
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• npts (int) – The number of nodes.

• coll_type (str) – Specifies how to generate the nodes.

Returns The collocation nodes.

Return type numpy.ndarray

2.4 splines Module

class pytrajectory.splines.Spline(a=0.0, b=1.0, n=5, bv={}, tag=’‘, use_std_approach=False,
**kwargs)

Bases: object

This class provides a representation of a cubic spline function.

It simultaneously enables access to the spline function itself as well as to its derivatives up to the 3rd order.
Furthermore it has its own method to ensure the steadiness and smoothness conditions of its polynomial parts in
the joining points.

For more information see: Candidate Functions

Parameters

• a (float) – Left border of the spline interval.

• b (float) – Right border of the spline interval.

• n (int) – Number of polynomial parts the spline will be devided up into.

• tag (str) – The ‘name’ of the spline object.

• bv (dict) – Boundary values the spline function and/or its derivatives should satisfy.

• use_std_approach (bool) – Whether to use the standard spline interpolation approach
or the ones used in the project thesis

f(t)
This is just a wrapper to evaluate the spline itself.

df(t)
This is just a wrapper to evaluate the spline’s 1st derivative.

ddf(t)
This is just a wrapper to evaluate the spline’s 2nd derivative.

dddf(t)
This is just a wrapper to evaluate the spline’s 3rd derivative.

boundary_values

make_steady()
Please see pytrajectory.splines.make_steady

differentiate(d=1, new_tag=’‘)
Returns the d-th derivative of this spline function object.

Parameters d (int) – The derivation order.

get_dependence_vectors(points, d=0)
This method yields a provisionally evaluation of the spline while there are no numerical values for its free
parameters.
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It returns a two vectors which reflect the dependence of the spline’s or its d-th derivative’s coefficients on
its free parameters (independent coefficients).

Parameters

• points (float) – The points to evaluate the provisionally spline at.

• d (int) – The derivation order.

set_coefficients(free_coeffs=None, coeffs=None)
This function is used to set up numerical values either for all the spline’s coefficients or its independent
ones.

Parameters

• free_coeffs (numpy.ndarray) – Array with numerical values for the free coeffi-
cients of the spline.

• coeffs (numpy.ndarray) – Array with coefficients of the polynomial spline parts.

interpolate(fnc=None, m0=None, mn=None)
Determines the spline’s coefficients such that it interpolates a given function.

save()

plot(show=True, ret_array=False)
Plots the spline function or returns an array with its values at some points of the spline interval.

Parameters

• show (bool) – Whethter to plot the spline’s curve or not.

• ret_array (bool) – Wheter to return an array with values of the spline at points of the
interval.

pytrajectory.splines.get_spline_nodes(a=0.0, b=1.0, n=10, nodes_type=’equidistant’)
Generates 𝑛 spline nodes in the interval [𝑎, 𝑏] of given type.

Parameters

• a (float) – Lower border of the considered interval.

• b (float) – Upper border of the considered interval.

• n (int) – Number of nodes to generate.

• nodes_type (str) – How to generate the nodes.

pytrajectory.splines.differentiate(spline_fnc)
Returns the derivative of a callable spline function.

Parameters spline_fnc (callable) – The spline function to derivate.

pytrajectory.splines.make_steady(S)
This method sets up and solves equations that satisfy boundary conditions and ensure steadiness and smoothness
conditions of the spline S in every joining point.

Please see the documentation for more details: Candidate Functions

Parameters S (Spline) – The spline function object for which to solve smoothness and boundary
conditions.

pytrajectory.splines.get_smoothness_matrix(S, N1, N2)
Returns the coefficient matrix and right hand site for the equation system that ensures the spline’s smoothness
in its joining points and its compliance with the boundary conditions.

Parameters
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• S (Spline) – The spline function object to get the matrix for.

• N1 (int) – First dimension of the matrix.

• N2 (int) – Second dimension of the matrix.

Returns

• array_like – The coefficient matrix for the equation system.

• array_like – The right hand site of the equation system.

2.5 solver Module

class pytrajectory.solver.Solver(F, DF, x0, tol=1e-05, reltol=2e-05, maxIt=50, method=’leven’,
mu=0.0001)

This class provides solver for the collocation equation system.

Parameters

• F (callable) – The callable function that represents the equation system

• DF (callable) – The function for the jacobian matrix of the eqs

• x0 (numpy.ndarray) – The start value for the sover

• tol (float) – The (absolute) tolerance of the solver

• maxIt (int) – The maximum number of iterations of the solver

• method (str) – The solver to use

solve()
This is just a wrapper to call the chosen algorithm for solving the collocation equation system.

leven()
This method is an implementation of the Levenberg-Marquardt-Method to solve nonlinear least squares
problems.

For more information see: Levenberg-Marquardt Method

2.6 simulation Module

class pytrajectory.simulation.Simulator(ff, T, start, u, dt=0.01)
Bases: object

This class simulates the initial value problem that results from solving the boundary value problem of the control
system.

Parameters

• ff (callable) – Vectorfield of the control system.

• T (float) – Simulation time.

• u (callable) – Function of the input variables.

• dt (float) – Time step.

rhs(t, x)
Retruns the right hand side (vector field) of the ode system.
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calcStep()
Calculates one step of the simulation.

simulate()
Starts the simulation

Returns

Return type List of numpy arrays with time steps and simulation data of system and input vari-
ables.

2.7 auxiliary Module

exception pytrajectory.auxiliary.NanError
Bases: exceptions.ValueError

class pytrajectory.auxiliary.IntegChain(lst)
Bases: object

This class provides a representation of an integrator chain.

For the elements (𝑥𝑖)𝑖=1,...,𝑛 of the chain the relation �̇�𝑖 = 𝑥𝑖+1 applies.

Parameters lst (list) – Ordered list of the integrator chain’s elements.

elements
tuple

Ordered list of all elements that are part of the integrator chain

upper
str

Upper end of the integrator chain

lower
str

Lower end of the integrator chain

elements
Return an ordered list of the integrator chain’s elements.

upper
Returns the upper end of the integrator chain, i.e. the element of which all others are derivatives of.

lower
Returns the lower end of the integrator chain, i.e. the element which has no derivative in the integrator
chain.

pytrajectory.auxiliary.find_integrator_chains(dyn_sys)
Searches for integrator chains in given vector field matrix fi, i.e. equations of the form �̇�𝑖 = 𝑥𝑗 .

Parameters dyn_sys (pytrajectory.system.DynamicalSystem) – Instance of a dy-
namical system

Returns

• list – Found integrator chains.

• list – Indices of the equations that have to be solved using collocation.
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pytrajectory.auxiliary.sym2num_vectorfield(f_sym, x_sym, u_sym, vectorized=False,
cse=False)

This function takes a callable vector field of a control system that is to be evaluated with symbols for the state
and input variables and returns a corresponding function that can be evaluated with numeric values for these
variables.

Parameters

• f_sym (callable or array_like) – The callable (“symbolic”) vector field of the
control system.

• x_sym (iterable) – The symbols for the state variables of the control system.

• u_sym (iterable) – The symbols for the input variables of the control system.

• vectorized (bool) – Whether or not to return a vectorized function.

• cse (bool) – Whether or not to make use of common subexpressions in vector field

Returns The callable (“numeric”) vector field of the control system.

Return type callable

pytrajectory.auxiliary.check_expression(expr)
Checks whether a given expression is a sympy epression or a list of sympy expressions.

Throws an exception if not.

pytrajectory.auxiliary.make_cse_eval_function(input_args, replacement_pairs,
ret_filter=None, namespace=None)

Returns a function that evaluates the replacement pairs created by the sympy cse.

Parameters

• input_args (iterable) – List of additional symbols that are necessary to evaluate the
replacement pairs

• replacement_pairs (iterable) – List of (Symbol, expression) pairs created from
sympy cse

• ret_filter (iterable) – List of sympy symbols of those replacements that should be
returned from the created function (if None, all are returned)

• namespace (dict) – A namespace in which to define the function

pytrajectory.auxiliary.cse_lambdify(args, expr, **kwargs)
Wrapper for sympy.lambdify which makes use of common subexpressions.

pytrajectory.auxiliary.saturation_functions(y_fnc, dy_fnc, y0, y1)
Creates callable saturation function and its first derivative to project the solution found for an unconstrained
state variable back on the original constrained one.

For more information, please have a look at Handling constraints.

Parameters

• y_fnc (callable) – The calculated solution function for an unconstrained variable.

• dy_fnc (callable) – The first derivative of the unconstrained solution function.

• y0 (float) – Lower saturation limit.

• y1 (float) – Upper saturation limit.

Returns
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• callable – A callable of a saturation function applied to a calculated solution for an uncon-
strained state variable.

• callable – A callable for the first derivative of a saturation function applied to a calculated
solution for an unconstrained state variable.

pytrajectory.auxiliary.consistency_error(I, x_fnc, u_fnc, dx_fnc, ff_fnc, npts=500, re-
turn_error_array=False)

Calculates an error that shows how “well” the spline functions comply with the system dynamic given by the
vector field.

Parameters

• I (tuple) – The considered time interval.

• x_fnc (callable) – A function for the state variables.

• u_fnc (callable) – A function for the input variables.

• dx_fnc (callable) – A function for the first derivatives of the state variables.

• ff_fnc (callable) – A function for the vectorfield of the control system.

• npts (int) – Number of point to determine the error at.

• return_error_array (bool) – Whether or not to return the calculated errors (mainly
for plotting).

Returns

• float – The maximum error between the systems dynamic and its approximation.

• numpy.ndarray – An array with all errors calculated on the interval.

2.8 visualisation Module

pytrajectory.visualisation.plot_simulation(sim_data, H=[], fname=None)
This method provides graphics for each system variable, manipulated variable and error function and plots the
solution of the simulation.

Parameters

• sim_data (tuple) – Contains collocation points, and simulation results of system and
input variables.

• H (dict) – Dictionary of the callable error functions

• fname (str) – If not None, plot will be saved as <fname>.png

class pytrajectory.visualisation.Animation(drawfnc, simdata, plotsys=[], plotinputs=[], rc-
Params=None)

Provides animation capabilities.

Given a callable function that draws an image of the system state and smiulation data this class provides a
method to created an animated representation of the system.

Parameters

• drawfnc (callable) – Function that returns an image of the current system state ac-
cording to simdata

• simdata (numpy.ndarray) – Array that contains simulation data (time, system states,
input states)
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• plotsys (list) – List of tuples with indices and labels of system variables that will be
plotted along the picture

• plotinputs (list) – List of tuples with indices and labels of input variables that will
be plotted along the picture

class Image
This is just a container for the drawn system.

reset()

Animation.get_axes()

Animation.set_limits(ax=’ax_img’, xlim=(0, 1), ylim=(0, 1))

Animation.set_label(ax=’ax_img’, label=’‘)

Animation.show(t=0.0, xlim=None, ylim=None, axes_callback=None, save_fname=None,
show=True)

Plots one frame of the system animation.

Parameters t (float) – The time for which to plot the system

Animation.animate()
Starts the animation of the system.

Animation.save(fname, fps=None, dpi=200)
Saves the animation as a video file or animated gif.
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