

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pythontop40 0.1.6 documentation

PythonTop40 Project Documentation v 0.1.6

Contents

	Installation

	Exploring the Demo Code
	Our example program

	Importing the PythonTop40 module

	Creating a Top40 instance

	Retrieving the Top40 albums

	The format of the returned data

	Accessing the information within each chart entry

	Printing extra information about the chart entry

	Formatting the output columns

	Accessing the change information

	Printing the change information

	Some finishing touches

	PythonTop40 top40

	PythonTop40 errors

	Change Log for PythonTop40
	v0.1.6 3rd January 2105

	v0.1.5 29th December 2014

	v0.1.4 29th December 2014

	v0.1.3 29th December 2014

	v0.1.2 29th December 2014

	v0.1.1 14th December 2014

	v0.1.0 13th December 2014

	v0.1.0.dev9 - 12th December 2014

	v0.1.0.dev8 - 12th December 2014

	v0.1.0.dev7 - 11th December 2014

	v0.1.0.dev6 - 11th December 2014

	v0.1.0.dev5 - 8th December 2014

	v0.1.0.dev4 - 6th December 2014

	v0.1.0.dev3 - 6th December 2014

	v0.1.0.dev2 - 6th December 2014

	V0.1.0.dev1 - 4th December 2014

PythonTop40

The PythonTop40 library is designed to be used in UK schools to provide students with access to data that describes
the UK Top 40 singles and albums.

This is part of a wider initiative that I’m referring to as Code-Further. The hope is that by providing simple
interfaces to information that is relevant to students, they will be able to relate to the data and imagine more
ways in which they could consume and use it in their code - and hopefully Code-Further.

The data that PythonTop40 accesses is provided by the excellent work by
@Ben Major [https://twitter.com/benmajor88] and his
UK Top 40 Charts API [http://ben-major.co.uk/2013/12/uk-top-40-charts-api/].

PythonTop40 is under active development visit
this blog post [http://www.onebloke.com/2014/12/pythontop40-get-the-uk-top-40-albums-and-singles-from-python/]
for more information. and licensed under the Apache2 license [http://www.apache.org/licenses/LICENSE-2.0.html],
so feel free to contribute [https://bitbucket.org/dannygoodall/pythontop40/pull-requests] and
report errors and suggestions [https://bitbucket.org/dannygoodall/pythontop40/issues].

Note

The PythonTop40 library is designed to be used in UK schools to provide programmatic access to data that
describes the UK Top 40 singles and albums. The hope is that by providing simple interfaces to access
information that students may have an interest in, they may be inspired to code-further.
This documentation will therefore most likely be aimed at teachers and education professionals, who may not have a
deep knowledge of Python.

Warning

PythonTop40 is currently designed to work with Python version 3. I have recently carried out some work to make
it run on Python 2, but this does need to be more thoroughly tested that my current Nose tests allow. If you
encounter any issues [https://bitbucket.org/dannygoodall/pythontop40/issues], or you’d like to submit a pull
request [https://bitbucket.org/dannygoodall/pythontop40/pull-requests], please contact me on BitBucket.

Usage

PythonTop40 exposes a very simple API to developers. It is accessed by importing the Top40
class into your module and creating an instance of this class, like so:

from pythontop40 import Top40
top40 = Top40()

The top40 instance exposes a number of properties to the programmer. These include:

	top40.albums

	top40.singles

	top40.albums_chart

	top40.singles_chart

The example code below shows how you can use one of these properties to get a list of the current Top 40 albums.:

from pythontop40 import Top40

top40 = Top40()

albums = top40.albums

for album in albums:
 print(
 album.position,
 album.title,
 "BY",
 album.artist
)

This short program uses the albums property of the Top40
class to obtain the Python list [http://docs.python.org/3.3/library/stdtypes.html#list] of the current Top 40 UK albums. It then loops through this list, and at each
iteration of the loop the variable album is set to the next album entry in the list.

A print() [http://docs.python.org/3.3/library/functions.html#print] function then prints the position,
title and artist attributes of the album
entry resulting in something like this::

1 Never Been Better BY Olly Murs
2 X BY Ed Sheeran
3 FOUR BY One Direction
4 In The Lonely Hour BY Sam Smith
5 The Endless River BY Pink Floyd
.
.
.
40 The London Sessions BY Mary J. Blige

I hope it’s pretty clear what is going on, but a more detailed discussion of what the program does on can be found
here.

Features

PythonTop40 provides:

	a list of the current Top 40 UK singles using the singles property of the
Top40 class.

	a list of the current Top 40 UK albums using the albums property of the
Top40 class.

	a chart object relating to either singles or albums. The
chart object contains the:
	date that the chart was published

	the date that the chart was retrieved from the server

	a list [http://docs.python.org/3.3/library/stdtypes.html#list] containing an Entry for each Top 40 single or album

	PythonTop40 will also cache the results, so that once a result type (singles or albums) has been retrieved from
the remote server, it will be returned on subsequent requests from the cache without refreshing from the remote
server.
	PythonTop40 will use a persistent cache by default. This should ensure that the remote server is not hammered
with requests when the data is unlikely to change too frequently. The default duration for the cache is 3600
seconds (1 hour). Unlike the in-memory cache, the persistent cache will survive after the Python interpreter run
session ends. The duration can be changed by passing a cache_duration value to the Top40
constructor. Using a value of None for cache_duration will disable the persistent cache and rely on the
in-memory cache only.

	The cache can be reset using the reset_cache() method, so that the next request for
albums or singles information will be forced to obtain it by connecting to the remote server.

Installation

PythonTop40 can be found on the Python Package Index PyPi here. [https://pypi.python.org/pypi/pythontop40]
It can be installed using pip, like so.

pip install pythontop40

Documentation

The documentation for PythonTop40 can be found on the
ReadTheDocs site [http://pythontop40.readthedocs.org/en/latest/index.html].

API - Application Programming Interface

The full documentation of the classes and functions that make up PythonTop40 can be found here, and
the errors and exceptions can be found here.

Tests

To run the PythonTop40 test suite, you should install the test and development requirements and then run nosetests.

$ pip install -r dev-requirements.txt
$ nosetests tests

Changes

See Changes.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright Danny Goodall, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pythontop40 0.1.6 documentation

Installation

PythonTop40 can be found on the Python Package Index PyPi here. [https://pypi.python.org/pypi/pythontop40]
It can be installed using pip, like so.

pip install pythontop40

 Copyright Danny Goodall, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pythontop40 0.1.6 documentation

Exploring the Demo Code

Our example program

Let’s look at an example program, and examine in detail what it is doing and how it works.

from pythontop40 import Top40

top40 = Top40()

albums = top40.albums

for album in albums:
 print(
 album.position,
 album.title,
 "BY",
 album.artist,
 album.previousPosition,
 album.numWeeks
)

Importing the PythonTop40 module

The first line in our program

from pythontop40 import Top40

top40 = Top40()

albums = top40.albums

for album in albums:
 print(
 album.position,
 album.title,
 "BY",
 album.artist,
 album.previousPosition,
 album.numWeeks
)

uses the Python import [http://docs.python.org/3.3/reference/simple_stmts.html#import] command to bring the Top40 class from the top40
module into our code.

This import [http://docs.python.org/3.3/reference/simple_stmts.html#import] command means that our program can now use the Top40 class, to get the list
of Top 40 singles and albums. The import [http://docs.python.org/3.3/reference/simple_stmts.html#import] command is how we tell Python that we want to use a feature that
isn’t included in the Python standard library.

Creating a Top40 instance

The next line in our program creates a variable called top40 which becomes the way we will talk to the remote server
where the lists of Top 40 singles and albums information is held.

from pythontop40 import Top40

top40 = Top40()

albums = top40.albums

for album in albums:
 print(
 album.position,
 album.title,
 "BY",
 album.artist,
 album.previousPosition,
 album.numWeeks
)

Behind the Scenes

Technically speaking this code creates an instance of the Top40 class, and behind the
scenes it is this that manages the communication with the remote server that contains the list of singles and
albums.

We don’t really need to worry about that, as all of this complexity is hidden from us. Instead we simply
interact with the data and capabilities that the top40 variable provides us.

We can think of the top40 variable as providing us with a number of ways to access the Top 40 charts for
albums and singles.

top40 does this through a number of properties that each returns different results to our
program.

If we were to use the top40.singles property instead of the
top40.albums property, then as you might expect our
program would receive a python list [http://docs.python.org/3.3/library/stdtypes.html#list] of singles instead of a list [http://docs.python.org/3.3/library/stdtypes.html#list] of albums.

Other properties that we could use are top40.singles_chart and
top40.albums_chart which both return a little bit more information about the
chart itself - such as the date it was published and the date it was
retrieved from the server.

Retrieving the Top40 albums

The following line of code creates a variable called albums and assigns to it the value returned from the
top40.albums property.

from pythontop40 import Top40

top40 = Top40()

albums = top40.albums

for album in albums:
 print(
 album.position,
 album.title,
 "BY",
 album.artist,
 album.previousPosition,
 album.numWeeks
)

When this piece of code is executed, behind the scenes our top40 variable magically makes contact with a server
over the Internet, asks it for the list of the Top 40 albums, and returns this list list [http://docs.python.org/3.3/library/stdtypes.html#list] of information to
our albums variable.

The format of the returned data

If we could see the value returned to the albums variable in the above code, it would look something like this.

albums = [
 Entry(
 position = 1,
 artist = "One Direction"
 ...
),
 Entry(
 position = 2,
 artist = "Ed Sheeran"
 ...
),
 Entry(
 position = 3,
 artist = "Sam Smith"
 ...
)
]

Note

The ... in the above example shows that there are more pieces of information in the Entry, but
these are not shown to make the example easier to understand.

The data is enclosed in [] square brackets, which tells us that we have a Python list [http://docs.python.org/3.3/library/stdtypes.html#list] of ‘things‘. But
what are the things in the list? Well, because we have a list [http://docs.python.org/3.3/library/stdtypes.html#list] of things, we can access the first
(or 0 th item) in the list by placing ``[0]` after the name of a list [http://docs.python.org/3.3/library/stdtypes.html#list].

print(albums[0])
Entry(postition = 1, artist = "One Direction"...)

Behind the Scenes

Whilst you will never have to do this yourself, an Entry instance is created by passing
named arguments to the Entry class. If we were to manually create the
Entry instance, it might look something like this.

entry = Entry(
 position = 3,
 previousPosition = 4,
 numWeeks = 26,
 artist = "Sam Smith",
 title = "In The Lonely Hour",
 Change(
 direction = "up",
 amount = 1,
 actual = 1
)
)

If we then asked Python to print the position attribute of the entry variable, we would get the following result

print(entry.position)
3

Likewise if we wanted to see how many weeks this entry had been in the chart we could access it like this.

print(entry.numWeeks)
26

So you should be able to see that inside our Entry object, we have another object called
Change. This means that to access the Change object that is inside
the Entry object, we would do the following.

print(entry.change)
<Change(
 amount=1,
 actual=1,
 direction='up'
)>

And finally, to access the direction of the change since last week’s chart, we can see that we would have to access
the direction attribute of the Change object that is
embedded in the Entry object. And to do that, we could type the following.

print(entry.change.direction)
up

Accessing the information within each chart entry

This tells us that we have a list of things of type Entry. There is one
Entry for every album in our Top 40 chart. The example data above only shows the first 3
entries, but given that this is the Top 40 we are dealing with, we would expect to see 40 entries in our list.

Each entry is represented by a Python object called Entry. The Entry
class has been created as part of the PythonTop40 project to hold the details of albums or singles in the chart.

As you’d expect from looking at the example code, the Entry class can hold information about the
position of this entry, the name of the
artist, the title of the album or single.

In addition, the number of weeks the album or single has been in the chart is accessed via the
numWeeks attribute and the position that the entry occupied last week can be
found by using the previousPosition attribute.

So in our original example, the next part the code loops through each of the album entries in the chart using the
for [http://docs.python.org/3.3/reference/compound_stmts.html#for] statement, and then inside the loop, the value of album is set to each of the albums in our
list.

This means that we can use the print() [http://docs.python.org/3.3/library/functions.html#print] function to print the position, title and artist of each of the
albums in our chart.

from pythontop40 import Top40

top40 = Top40()

albums = top40.albums

for album in albums:
 print(
 album.position,
 album.title,
 "BY",
 album.artist,
 album.previousPosition,
 album.numWeeks
)

Printing extra information about the chart entry

If we wanted to extend our demo program to print the number of weeks that the album had been in the chart, as well as
the chart position it occupied in the previous week’s chart, we could do this by accessing the
numWeeks and previousPosition
attributes respectively.

The following code would achieve that.

from pythontop40 import Top40

top40 = Top40()

albums = top40.albums

for album in albums:
 print(
 album.position,
 album.title,
 "BY",
 album.artist,
 album.numWeeks,
 album.previousPosition
)

If this code is run, it would result in something similar to this.

1 Never Been Better BY Olly Murs 1 0
2 X BY Ed Sheeran 23 2
3 FOUR BY One Direction 2 1
4 In The Lonely Hour BY Sam Smith 27 3
5 The Endless River BY Pink Floyd 3 4
6 Wanted On Voyage BY George Ezra 22 8
.
.
.
40 The London Sessions BY Mary J. Blige 1 0

Formatting the output columns

It’s not easy to see the information, but you can now see that there are two numbers at the end of each line that
represent the numWeeks and
previousPosition attributes respectively.

So if we now wanted to make the formatting a little easier to read, we can make use of the format() [http://docs.python.org/3.3/library/functions.html#format] function
that allows us to carry out formatting on a string. The description of the format() [http://docs.python.org/3.3/library/functions.html#format] function is outside the
scope of this tutorial, but hopefully the following code will be relatively simple to follow.

from pythontop40 import Top40

top40 = Top40()

albums = top40.albums

for album in albums:
 print(
 "{:5} {:50} by {:50} {:5} {:5}".format(
 album.position,
 album.title,
 album.artist,
 album.numWeeks,
 album.previousPosition
)
)

When this code is run, it produces a column-based list of album entries that is much easier to understand.

 1 Never Been Better by Olly Murs 1 0
 2 X by Ed Sheeran 23 2
 3 FOUR by One Direction 2 1
 4 In The Lonely Hour by Sam Smith 27 3
 5 The Endless River by Pink Floyd 3 4
 6 Wanted On Voyage by George Ezra 22 8
 .
 .
 .
40 The London Sessions by Mary J. Blige 1 0

Hopefully you can see that the format string features a series of place markers - represented by the {}
braces, and that each place marker brace corresponds with a data value in the list format() variables that follow.

from pythontop40 import Top40

top40 = Top40()

albums = top40.albums

for album in albums:
 print(
 "{:5} {:50} by {:50} {:5} {:5}".format(
 album.position,
 album.title,
 album.artist,
 album.numWeeks,
 album.previousPosition
)
)

Again, it will probably be clear that the text inside each of the braces such as {:5} tells the format() [http://docs.python.org/3.3/library/functions.html#format]
function how many columns that specific entry will take up.

So {:5} at the beginning of the format string, tells the format() [http://docs.python.org/3.3/library/functions.html#format] function to use 5 columns for the first
variable, and as album.position is the first in the list of variables inside the
format() [http://docs.python.org/3.3/library/functions.html#format] function, the position of the album in the chart will take up the first 5 columns.

The second {} brace contains {:50} which means it will occupy 50 columns, and
the second variable is album.title, so the album title will occupy the next 50 columns,
and so on...

Notice that in amongst all those {} braces, the format string actually contains the word by, because it’s fine
to put other things in the format string alongside the {} braces - even spaces! If it isn’t a {} brace then it just gets
produced as is.

Accessing the change information

As mentioned above the album Entry object has a
Change object embedded within it.

entry = Entry(
 position = 3,
 previousPosition = 4,
 numWeeks = 26,
 artist = "Sam Smith",
 title = "In The Lonely Hour",
 Change(
 direction = "up",
 amount = 1,
 actual = 1
)
)

The Change object actually describes the change since last week’s chart in a little bit more
detail. It provides access to the following pieces of information about the chart Entry.

	The amount of change in position since last week’s chart. The is an
absolute [http://docs.python.org/3.3/library/functions.html#abs] value - i.e. it describes the amount of change, but not the direction. So unless it is zero,
it is always positive.

	The actual amount of change in positions since last week’s chart. This can be
negative, positive or zero.

	The direction of the change since last week. This is a :py:func`str` and is either
up or down.

Printing the change information

So if we wanted to alter our program so that we started printed a summary of whether the album had gone up or down since
last week, we could do so as follows.

from pythontop40 import Top40

top40 = Top40()

albums = top40.albums

for album in albums:
 print(
 "{:5} {:50} by {:50} {:5} {:5} - {:4}({:4})".format(
 album.position,
 album.title,
 album.artist,
 album.numWeeks,
 album.previousPosition,
 album.change.direction,
 album.change.amount
)
)

You’ll see that we’ve added the following {} braces to the format string

"{:4}({:4})"

and we’ve also added two more variables to the format() [http://docs.python.org/3.3/library/functions.html#format] function.

album.change.direction,
album.change.amount

These changes result in the following text output when the code is run.

 1 Never Been Better by Olly Murs 1 0 - down(1)
 2 X by Ed Sheeran 23 2 - none(0)
 3 FOUR by One Direction 2 1 - down(2)
 4 In The Lonely Hour by Sam Smith 27 3 - down(1)
 5 The Endless River by Pink Floyd 3 4 - down(1)
 6 Wanted On Voyage by George Ezra 22 8 - up (2)
 .
 .
 .
40 The London Sessions by Mary J. Blige 1 0 - down(40)

Some finishing touches

Finally, we’ll make some significant changes to the program to add column headings, column formatting, and to alter the
text that describes the change since last week.

The output of the new program looks like this.

No.	Title	Artist	Weeks	Previous	Change since last week
1	Never Been Better	Olly Murs	1	0	**NEW ENTRY**
2	X	Ed Sheeran	23	2	
3	FOUR	One Direction	2	1	v by 2 places
4	In The Lonely Hour	Sam Smith	27	3	v by 1 place
5	The Endless River	Pink Floyd	3	4	v by 1 place
6	Wanted On Voyage	George Ezra	22	8	^ by 2 places
7	1989	Taylor Swift	5	7	
8	Listen	David Guetta	1	0	**NEW ENTRY**
9	Sonic Highways	Foo Fighters	3	5	v by 4 places
10	It's The Girls	Bette Midler	2	6	v by 4 places
11	Partners	Barbra Streisand	11	16	^ by 5 places
12	Love In Venice	André Rieu	4	11	v by 1 place
13	Hope	Susan Boyle	1	0	**NEW ENTRY**
14	Dublin To Detroit	Boyzone	1	0	**NEW ENTRY**
15	No Sound Without Silence	The Script	11	17	^ by 2 places
16	Forever	Queen	3	13	v by 3 places
17	Christmas	Michael Bublé	34	27	^ by 10 places
18	Motion	Calvin Harris	4	18	
19	Blue Smoke - The Best Of	Dolly Parton	25	26	^ by 7 places
20	Home Sweet Home	Katherine Jenkins	2	10	v by 10 places
21	The Greatest Hits	Luther Vandross	2	22	^ by 1 place
22	Strictly Come Dancing	Dave Arch & The Strictly Come Dancing Band	1	0	**NEW ENTRY**
23	Melody Road	Neil Diamond	6	15	v by 8 places
24	A Perfect Contradiction	Paloma Faith	38	23	v by 1 place
25	Sirens Of Song	Jools Holland & His Rhythm & Blues Orchestra	1	0	**NEW ENTRY**
26	Chapter One	Ella Henderson	7	25	v by 1 place
27	Serenata	Alfie Boe	2	14	v by 13 places
28	My Dream Duets	Barry Manilow	1	0	**NEW ENTRY**
29	Aquostic (Stripped Bare)	Status Quo	6	29	
30	Nothing Has Changed (The Best of David Bowie)	David Bowie	2	9	v by 21 places
31	Love In The Future	John Legend	52	32	^ by 1 place
32	Stand Beside Me: Live In Concert	Daniel O'Donnell	2	20	v by 12 places
33	Royal Blood	Royal Blood	14	35	^ by 2 places
34	5 Seconds Of Summer	5 Seconds of Summer	22	39	^ by 5 places
35	Caustic Love	Paolo Nutini	33	38	^ by 3 places
36	Nostalgia	Annie Lennox	5	30	v by 6 places
37	No Fixed Address	Nickelback	2	12	v by 25 places
38	If Everyone Was Listening	Michael Ball	2	21	v by 17 places
39	+	Ed Sheeran	168	42	^ by 3 places
40	The London Sessions	Mary J. Blige	1	0	**NEW ENTRY**

And below is the complete program that produced the output above.

from pythontop40 import Top40

top40 = Top40()
format_string = "| {:5} | {:50} | {:50} | {:8} | {:8} | {:22} |"
up_arrow = "^ "
down_arrow = " v"

Print the column headings
print(
 format_string.format(
 " No.",
 "Title",
 "Artist",
 " Weeks",
 "Previous",
 "Change since last week"
)
)

Print the heading underline
print(
 format_string.format(
 "-----",
 "-----",
 "------",
 "--------",
 "--------",
 "----------------------"
)
)

albums = top40.albums

for album in albums:

 # Create the string that describes that change since last week
 # If the amount of change since last week's chart is 0, or previous position in the chart was 0 (i.e. it is a new
 # entry to the chart), then we should set the change_text to be empty.
 if album.change.amount == 0:
 change_text = ''
 elif album.previousPosition == 0:
 change_text = ' **NEW ENTRY**'
 else:
 # We now know that there was a change in position since last week

 # We want to use the word place if there is only 1 place change, but if there is more than one place change
 # then we want to use the word places. To do this we will use a Python conditional assignment
 places_text = "place" if album.change.amount == 1 else "places"

 # We want to use the up arrow text if the album has moved up since last week, and the down arrow text if it
 # has moved down. To do this we will also use a Python conditional assignment
 arrow_text = up_arrow if album.change.direction == "up" else down_arrow

 # Now let's build the change_text variable from the three components
 # - The arrow text
 # - The amount of change since last week
 # - The place text - using the correct plural term
 change_text = "{} by {} {}".format(
 arrow_text,
 album.change.amount,
 places_text
)

 # Print the output using the same format string that we used for the heading and underline
 print(
 format_string.format(
 album.position,
 album.title,
 album.artist,
 album.numWeeks,
 album.previousPosition,
 change_text
)
)

It might be worth spending a little time looking at the program and the output that it produces, to see if you can see
which changes in the code produce which changes in the output.

 Copyright Danny Goodall, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pythontop40 0.1.6 documentation

PythonTop40 top40

The top40 module contains the high level classes that are used to package the returned data such as
Entry, Chart and Change.

In addition the Top40 class provides the main external interface into the module. Once an instance of the
Top40 class has been instantiated it can be used to return data from the remote API to the called program:

from pythontop40 import Top40

top40 = Top40()

album_list = top40.albums
singles_list = top40.singles

albums_chart = top40.albums_chart
singles_chart = top40.singles_chart

From there, the returned objects can be interrogated and interacted with:

first_album = album_list[0]
print(first_album.position)
print(first_album.artist)

print("The date of the singles chart is", singles_chart.date)
print(The album_chart was retrieved from the server on", albums_chart.retrieved

And this, don’t forget this:

class Repo(Model):
 name = fields.String()
 owner = fields.Embedded(User)

booby = Repo(
 name='Booby',
 owner={
 'login': 'jaimegildesagredo',
 'name': 'Jaime Gil de Sagredo'
 })

print booby.to_json()
'{"owner": {"login": "jaimegildesagredo", "name": "Jaime Gil de Sagredo"}, "name": "Booby"}'

	
class top40.Change(**kwargs)

	The Change model that describes the change of this entry since last week’s chart.

This class isn’t made publicly visible, so it should never really need to be initialised manually. That said,
it is initialised by passing a series of keyword arguments, like so:

change = Change(
 direction = "down",
 amount = 2,
 actual = -2
)

The model does not feature any validation.

	
direction

	str

The direction of the change “up” or “down”.

	
amount

	int

The amount of change in chart position expressed as a positive integer.

	
actual

	int

The amount of the change in chart position expressed as positive or negative (or 0).

	Returns:	Change: The Change model instance created from the passed arguments.

	
class top40.Chart(**kwargs)

	The Chart model that contains the embedded list of entries.

	Parameters:	
	entries (list [http://docs.python.org/3.3/library/stdtypes.html#list] of dict [http://docs.python.org/3.3/library/stdtypes.html#dict]) – A list of Python dictionaries. Each dictionary describes each
Entry type in the chart, so the keys in the dictionary should match the properties of the
Entry class.

	date (int) – The date of this chart as an integer timestamp containing the total number of seconds.

	retrieved (int) – The date that this chart was retrieved from the API server as an integer timestamp
containing the total number of seconds.

	current (bool) – Optional. A flag used in V2 of the API to signify if the last scheduled read from the BBC’s
server worked on not. A value True means that the returned chart is the latest version that we have
tried to read. A value of False means that the chart that is being returned is old. In all liekliehood
the chart is probably still in accurate as it is only updated once per week, so this flag only means that
the last scheduled read from the BBC’s server did not work.

	
entries

	list [http://docs.python.org/3.3/library/stdtypes.html#list] of Entry

A list of Entry types for each entry in the
specific Chart. The entries are returned in the list [http://docs.python.org/3.3/library/stdtypes.html#list] with the highest chart position
(i.e. the lowest number - #1 in the chart) first.

	
date

	int

The date of this chart as an integer timestamp containing the total number of seconds.
This value can then be converted to a Python datetime.datetime [http://docs.python.org/3.3/library/datetime.html#datetime.datetime] type by
datetime_type = datetime.datetime.fromtimestamp(chart.date)
(assuming that the chart variable was of type Chart).

	
retrieved

	int

The date that this chart was retrieved from the API server as an integer timestamp
containing the total number of seconds. This can be converted to a datetime type in the same as described
for date above.

	
current

	bool

Optional. A flag used in V2 of the API to signify if the last scheduled read from the BBC’s
server worked on not. A value True means that the returned chart is the latest version that we have
tried to read. A value of False means that the chart that is being returned is old. In all liekliehood
the chart is probably still in accurate as it is only updated once per week, so this flag only means that
the last scheduled read from the BBC’s server did not work.

	Returns:	Chart –
The Chart model instance created from the arguments.

	Return type:	Chart

	
class top40.Entry(**kwargs)

	The Entry model that contains the details about the chart entry, a Change Model is embedded in each Entry model.

	Parameters:	
	position (int) – The position of this entry in the chart.

	previousPosition (int) – The position of this entry in the previous week’s chart.

	numWeeks (int) – The number of weeks this entry has been in the chart.

	artist (str [http://docs.python.org/3.3/library/stdtypes.html#str]) – The name of the artist for this entry.

	title (str [http://docs.python.org/3.3/library/stdtypes.html#str]) – The title of this entry.

	change (Change) – The embedded change model that describes the change in position.

	status (str [http://docs.python.org/3.3/library/stdtypes.html#str]) – NEW in dev6 The text status from the BBC chart - takes the format of
“new” ¦ “up 3” ¦ “down 4” ¦ “non-mover”. Not used in Ben Major’s V1 API - optional

	
position

	int

The position of this entry in the chart.

	
previousPosition

	int

The position of this entry in the previous week’s chart.

	
numWeeks

	int

The number of weeks this entry has been in the chart.

	
artist

	str [http://docs.python.org/3.3/library/stdtypes.html#str]

The name of the artist for this entry.

	
title

	str [http://docs.python.org/3.3/library/stdtypes.html#str]

The title of this entry.

	
change

	Change

The embedded change model that describes the change in position.

	
status

	str [http://docs.python.org/3.3/library/stdtypes.html#str]

NEW in dev6 The text status from the BBC chart - takes the format of
“new” ¦ “up 3” ¦ “down 4” ¦ “non-mover”. Not used in Ben Major’s V1 API - optional

	Returns:	Entry: The Entry model instance created from the arguments.

	
class top40.Top40(base_url='http://ben-major.co.uk/labs/top40/api/', cache_duration=3600, cache_config=None)

	Provides the programmer with properties that return the Top 40 chart data.

The programmer creates an instance of this object, and then uses the exposed properties to access the data about
the singles and albums charts.

Creates and returns the object instance.

All results will be cached for the duration of the existence of this instance in memory. However, if
cache_duration is specified (not None), then results will be persisted to a local
sqlite DB for the duration, in seconds, or cache_duration. A config for requests cache can also
be passed in cache_config too, or if None, the default setting is used.

	Parameters:	
	base_url (str [http://docs.python.org/3.3/library/stdtypes.html#str]) – The base url of the remote API before the specific service details are appended.
For example, the base url might be “a.site.com/api/”, and the service “/albums/”, when appended to the
base url, creates the total url required to access the album data.

	cache_duration (int) – If None, then the persistent cache will be disabled. Otherwise
the cache duration specified will be used.

	cache_config (dict [http://docs.python.org/3.3/library/stdtypes.html#dict]) – If None the default config will be used to pass to the
install_cache method of requests_cache, otherwise the config in this parameter will be used.
Any ‘expire_after’ key in the cache config will be replaced and the duration set to
cache_duration.

	
error_format

	str

The format string to be used when creating error messages.

	
base_url

	str [http://docs.python.org/3.3/library/stdtypes.html#str]

The base url used to access the remote api

	
cache_duration

	int

The duration in seconds that results will be returned from the cache before
a fresh read of the external API will replace them.

	
cache_config

	dict [http://docs.python.org/3.3/library/stdtypes.html#dict]

A dictionary that describes the config that will be passed to the
request_cache instance - allowing different backends and other options to be set.

	Returns:	Top40 –
The Top40 instance.

	Return type:	Top40

	
albums

	A property that returns a list [http://docs.python.org/3.3/library/stdtypes.html#list] of album Entry types.

	Returns:	list [http://docs.python.org/3.3/library/stdtypes.html#list] : A list [http://docs.python.org/3.3/library/stdtypes.html#list] of Entry instances. Each entry describes an album in the
chart.

	Raises:	
	Top40HTTPError (Top40HTTPError) –
If a status code that is not 200 is returned

	Top40ConnectionError (Top40ConnectionError) –
If a connection could not be established to the remote server

	Top40ReadTimeoutError (Top40ReadTimeoutError) –
If the remote server took too long to respond

	
albums_chart

	A property that returns the Chart object for the current Top40 albums

	Returns:	Chart: The albums’ chart object - an instance of the Chart class containing the album
information and the and the issue and retrieval dates specific to this chart.

	Raises:	
	Top40HTTPError (Top40HTTPError) –
If a status code that is not 200 is returned

	Top40ConnectionError (Top40ConnectionError) –
If a connection could not be established to the remote server

	Top40ReadTimeoutError (Top40ReadTimeoutError) –
If the remote server took too long to respond

	
reset_cache(cache_duration=None)

	Remove any cached singles or albums charts

Because the UK Top40 charts only change once per week, Top40 will cache the results of singles and
albums. This means that during the execution of a program, repeated calls to retrieve singles and albums chart
information will only actually call the remote API once. If, for whatever reason you need to ensure that an
attempt to access single or album information actually results in a call to the remote API, then calling the
Top40.reset_cache() method will do this, by clearing down any existing cached chart information.

If a cache is in place, then the results will also be cached across python runtime executions.

	Params:

	
	cache_duration (int): If None we will uninstall the requests cache and the next

	read from the API will cause a remote call to be executed. Otherwise it specifies the number of
seconds before the persistent cache will expire.

	
singles

	A property that returns a list of single entries.

	Returns:	list [http://docs.python.org/3.3/library/stdtypes.html#list]: A list [http://docs.python.org/3.3/library/stdtypes.html#list] of Entry instances. Each entry describes a single in the
chart.

	Raises:	
	Top40HTTPError (Top40HTTPError) –
If a status code that is not 200 is returned

	Top40ConnectionError (Top40ConnectionError) –
If a connection could not be established to the remote server

	Top40ReadTimeoutError (Top40ReadTimeoutError) –
If the remote server took too long to respond

	
singles_chart

	A property that returns the Chart object for the current Top40 singles

	Returns:	Chart: The singles’ chart object - an instance of the Chart class containing the
singles information and the issue and retrieval dates specific to this chart.

	Raises:	
	Top40HTTPError (Top40HTTPError) –
If a status code that is not 200 is returned

	Top40ConnectionError (Top40ConnectionError) –
If a connection could not be established to the remote server

	Top40ReadTimeoutError (Top40ReadTimeoutError) –
If the remote server took too long to respond

 Copyright Danny Goodall, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pythontop40 0.1.6 documentation

PythonTop40 errors

The errors module containing the exceptions that PythonTop40 uses

	
exception errors.Top40ConnectionError

	This is raised when a connection cannot be established to the remote
server

	
exception errors.Top40ConversionError

	This is raised when a conversion is specified, but causes an error

	
exception errors.Top40Error

	Base class for all exceptions

	
exception errors.Top40HTTPError(message, return_code=0)

	This exception is raised if an HTTP level error was experienced. i.e.
no physical or connection error, but a web server error was returned.

	
exception errors.Top40ReadTimeoutError

	This is raised when an ongoing action takes longer than expected

 Copyright Danny Goodall, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pythontop40 0.1.6 documentation

Change Log for PythonTop40

v0.1.6 3rd January 2105

	Minor change. Bumped version number. Changed cache file generation to use system temp directory instead of CWD.

v0.1.5 29th December 2014

	Minor change. Bumped version number. Updated changes docs. Testing the automated build from a bitbucket push.

v0.1.4 29th December 2014

	Minor change. Removed the embedded test-requirments requirement from the dev-requirements.txt file.

v0.1.3 29th December 2014

	Minor change. Modified install_requires list. Removed nap and munch. Added requests-cache.

v0.1.2 29th December 2014

	Top40HTTPError now defaults to return_code=0

	Added the request-cache sqlite file to .gitignore

	Added requests-cache to requirements.txt

	Removed munch and nap from requirements.txt

	Added httpretty to test-requirements.txt

	Refactored errors returned when reading from the remote server

	Refactored tests away from mock and to use httpretty instead

	Implemented requests-cache. This should be seamless with existing code and will now persist results to local sqlite
storage with a cache duration of 3600 seconds (one hour)

	Added option to pass an extended persistent_cache_config dictionary, which will be passed to the request_cache
instance - this should allow for other cache types to sqlite.

	Removed the code to recursively create a Munch structure, Python native dicts are now used

	Removed the code to create a nap api object to access the remote server, and instead have replaced it with pure
requests access. This was overkill for this project.

	Changed documentation

	Removed utils module and associated documentation

	Changed CHANGES.RST to CHANGES.rst

	Bumped version to 0.1.2

v0.1.1 14th December 2014

	Fix for TypeError ‘encoding’ is an invalid keyword argument for this function - trying to install PythonTop40 on Python 2.7

v0.1.0 13th December 2014

	Minor changes to the documentation relating to Python 2 status

	First official release

v0.1.0.dev9 - 12th December 2014

	Updated docs from previous change

	First cut at a Python 2 version. Need to create more tests so that I have greater coverage, but passing so far

	Changes to demo code so that it will run in V2 or V3

	Removed python3_compat.py

	Created extra dependencies - six and future

	Increased version number to v0.1.0.dev9

v0.1.0.dev8 - 12th December 2014

	Added optional field “current” to the Chart model - used in V2 of the API, but not in V1

	Increased version number to v0.1.0.dev8

v0.1.0.dev7 - 11th December 2014

	Refactoring of Doc generation and setup.py - both now get config information from package_info.json

	Increased version number to v0.1.0.dev7

v0.1.0.dev6 - 11th December 2014

	Added an optional field “status” to the Entry model - This will be filled in using V2 of the API, but will be not present for V1.

	Added Test changes to ensure “status” field can be present or non-present.

	Increased version number to v0.1.0.dev6

v0.1.0.dev5 - 8th December 2014

	Removed requirement for development version of Booby from setup.py

	Removed the trailing slash from the URL for /singles and /albums

v0.1.0.dev4 - 6th December 2014

	Changed the way the setuptools long_description is accessed

	Documentation changes

	Removed demo.py
	Changed installation instructions to refer to PythonTop40 on PyPI

	Moved changes text into project route directory’s CHANGES.RST and included them into docs/changes.rst

	Moved code examples out of the moredetail.rst file, and used literalinclude instead.

	Added a link to the ReadTheDocs documentation into the README.rst file

v0.1.0.dev3 - 6th December 2014

	Minor change to documentation

ToDo Modify links to PyPI and ReadTheDocs in the rest of the documentation.

v0.1.0.dev2 - 6th December 2014

	Test coverage increased

	Initial documentation complete

	Documentation uploaded to ReadTheDocs [http://pythontop40.readthedocs.org/en/latest/changes.html]

	PythonTop40 now installable using pip - pip install pythontop40

	PythonTop40 now uploaded to PyPi [https://pypi.python.org/pypi/pythontop40]

ToDo Modify links to PyPI and ReadTheDocs in the rest of the documentation.

V0.1.0.dev1 - 4th December 2014

Initial version with working code and some tests.

ToDo:

	Complete tests coverage

	Complete documentation

	Upload documentation to readthedocs.

	Make code installable using setup.py / pip.

	Make code installable from PyPI using pip.

 Copyright Danny Goodall, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	pythontop40 0.1.6 documentation

 Python Module Index

 e |
 t

 			

 		
 e	

 	
 	
 errors	

 			

 		
 t	

 	
 	
 top40	

 Copyright Danny Goodall, 2014.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	pythontop40 0.1.6 documentation

Index

 A
 | B
 | C
 | D
 | E
 | N
 | P
 | R
 | S
 | T

A

 	

 	actual (top40.Change attribute)

 	albums (top40.Top40 attribute)

 	albums_chart (top40.Top40 attribute)

 	

 	amount (top40.Change attribute)

 	artist (top40.Entry attribute)

B

 	

 	base_url (top40.Top40 attribute)

C

 	

 	cache_config (top40.Top40 attribute)

 	cache_duration (top40.Top40 attribute)

 	Change (class in top40)

 	

 	change (top40.Entry attribute)

 	Chart (class in top40)

 	current (top40.Chart attribute)

D

 	

 	date (top40.Chart attribute)

 	

 	direction (top40.Change attribute)

E

 	

 	entries (top40.Chart attribute)

 	Entry (class in top40)

 	

 	error_format (top40.Top40 attribute)

 	errors (module)

N

 	

 	numWeeks (top40.Entry attribute)

P

 	

 	position (top40.Entry attribute)

 	

 	previousPosition (top40.Entry attribute)

R

 	

 	reset_cache() (top40.Top40 method)

 	

 	retrieved (top40.Chart attribute)

S

 	

 	singles (top40.Top40 attribute)

 	singles_chart (top40.Top40 attribute)

 	

 	status (top40.Entry attribute)

T

 	

 	title (top40.Entry attribute)

 	Top40 (class in top40)

 	top40 (module)

 	Top40ConnectionError

 	

 	Top40ConversionError

 	Top40Error

 	Top40HTTPError

 	Top40ReadTimeoutError

 Copyright Danny Goodall, 2014.
 Created using Sphinx 1.2.3.

 _static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/plus.png

_static/up.png

_static/down.png

search.html

 Navigation

 		
 index

 		
 modules |

 		pythontop40 0.1.6 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright Danny Goodall, 2014.
 Created using Sphinx 1.2.3.

_static/comment-close.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		pythontop40 0.1.6 documentation »

 All modules for which code is available

		errors

		top40

 © Copyright Danny Goodall, 2014.
 Created using Sphinx 1.2.3.

_static/up-pressed.png

_static/down-pressed.png

