
PythoniC Documentation
Release 0.0.1

lightsing, Cubic Pills

Apr 16, 2017

Contents:

1 Reference Guide 3
1.1 PythoniC Keywords . 3
1.2 PythoniC Identifiers . 4
1.3 PythoniC Lexical Analysis . 4

i

ii

PythoniC Documentation, Release 0.0.1

PythoniC is a variant of C language. With writing code in Python style, you can enjoy your life with C‘s efficiency.

You should realize that PythoniC is still compiled by c compiler. So, PythoniC should has the same behaviour as
C rather than Python. For example, you shoud care about the type of your variables, the range of int numbers, etc.
Alought Python style can bring you convenient , you should realize this is based on setting restrictions on your code.
You should not write hacking code anymore. “Please think problems in Python.”

Contents: 1

PythoniC Documentation, Release 0.0.1

2 Contents:

CHAPTER 1

Reference Guide

PythoniC Keywords

PythoniC Part

Keyword Description Example
and Logical and. True and False == False
break Stop this loop right now. while True: break
bool Boolean type
class Define a class. class Person(object)
continue Don’t process more of the loop, do it again. while True: continue
def Define a function. def X(): pass
elif Else if condition. if: X; elif: Y; else: J
else Else condition. if: X; elif: Y; else: J
for Loop over a collection of things. for X in Y: pass
from Include header from subdirectory. from foo import bar
is Same as == a = 1; a is 1 == True
if If condition. if: X; elif: Y; else: J
import Include header import stdio
in Part of for-loops. Also a test of X in Y. for X in Y: pass also 1 in [1] == True
lambda Create a short anonymous function. s = lambda y: y ** y; s(3)
not Logical not. not True == False
or Logical or. True or False == True
pass Do nothing def empty(): pass
print Print this string. print("Hello")
return Exit the function with a return value. def X(): return Y
while While loop. while X: pass

3

PythoniC Documentation, Release 0.0.1

C Part

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default sizeof volatile goto
do if static while

goto is no longer supported in PythoniC, but it still is a part of PythoniC keywords.

PythoniC Identifiers

PythoniC Identifiers are the same as C Identifiers.

“Identifiers” or “symbols” are the names you supply for variables, types, functions, and labels in your program.
Identifier names must differ in spelling and case from any keywords. You cannot use keywords as identifiers; they are
reserved for special use. You create an identifier by specifying it in the declaration of a variable, type, or function. In
this example, result is an identifier for an integer variable, and main and print are identifier names for functions.

C code

#include <stdio.h>

int main() {
int result;
if(result != 0) {

printf("Bad file handle\n");
}
return 0;

}

PythoniC Code

import stdio

def main() -> int:
int result
if result != 0:

print("Bad file handle")
return 0

Once declared, you can use the identifier in later program statements to refer to the associated value.

PythoniC Lexical Analysis

PythoniC learn from Python’s design ideas, as much as possible to implement similar designs with Python on the
premise of guaranteeing usability.

4 Chapter 1. Reference Guide

PythoniC Documentation, Release 0.0.1

Encoding

Considering the compatibility, donnot put non-ASCII characters in your source code (except for comments). The
default encoding is UTF-8.

Comment for encding declarations isn’t supported. If the file cannot be decoded, an Encoding Errorwill be throw
out.

Line structure

A PythoniC program is divided into a number of logical lines.

Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries
except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line
is constructed from one or more physical lines by following the explicit or implicit line joining rules.

Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files, any of the standard
platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the Windows form using
the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the ASCII CR (return)
character. All of these forms can be used equally, regardless of platform.

Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical line. A
comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are ignored
by the syntax; they are not tokens.

Specially, C style comment is not supported in PythoniC. Including single line comment (//) and multiline comment
(/* */).

Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does
not continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines
using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

1.3. PythoniC Lexical Analysis 5

PythoniC Documentation, Release 0.0.1

Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE
token is generated). During interactive input of statements, handling of a blank line may differ depending on the
implementation of the read-eval-print loop. In the standard interactive interpreter, an entirely blank logical line (i.e.
one containing not even whitespace or a comment) terminates a multi-line statement.

Indentation

Same as Python, PythoniC won’t use curly brackets ({}).

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of the
line, which in turn is used to determine the grouping of statements. The recommend indentation for one group is 4
spaces.

Tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and including
the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number of spaces
preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split over multiple
physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Indentation is rejected as inconsistent if a source file mixes tabs and spaces in a way that makes the meaning dependent
on the worth of a tab in spaces; a Tab Error will be throw out. in that case.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to use
a mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different platforms
may explicitly limit the maximum indentation level.

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as
follows.

6 Chapter 1. Reference Guide

	Reference Guide
	PythoniC Keywords
	PythoniC Identifiers
	PythoniC Lexical Analysis

