

trepan2 - a gdb-like debugger for Python 2

trepan2 is a gdb-like debugger for Python. It is a rewrite of pdb
from the ground up.

A command-line interface (CLI) is provided as well as an remote access
interface over TCP/IP.

See ipython-trepan [https://github.com/rocky/ipython-trepan] for using this
in ipython or an ipython notebook.

This package is for Python 2.6 and 2.7. See trepan3k [https://pypi.python.org/pypi/trepan3k] for the same
code modified to work with Python 3. For Python before 2.6, use
pydbgr [https://pypi.python.org/pypi/pydbgr] .

An Emacs interface is available via realgud [https://github.com/realgud/realgud].

	Features
	Exact location information

	Debugging Python bytecode (no source available)

	Source-code Syntax Colorization

	Command Completion

	Terminal Handling

	Smart Eval

	More Stepping Control

	Event Tracing of Calls and Returns

	Debugger Macros via Python Lambda expressions

	Byte-code Instruction Introspection

	Debugger Command Arguments can be Variables and Expressions

	Out-of-Process Debugging

	Egg, Wheel, and Tarballs

	Modularity

	Documentation

	How to install
	Using pip

	Using easy_install

	Entering the Trepan Debugger
	Invoking the Debugger Initially

	Calling the debugger from IPython

	Calling the debugger from an Interactive Python Shell

	Calling the debugger from your program

	Calling the debugger from pytest

	Set up an exception handler to enter the debugger on a signal

	Set up an exception handler allow remote connections

	Startup Profile

	Command Syntax
	Syntax for Address Ranges

	Debugger Command Syntax

	Command examples

	Syntax for Indicating a Filename

	Syntax for List Ranges

	Command suffixes which have special meaning

	Trepan Command Reference
	Breakpoints

	Data

	Files

	Info

	Running

	Set

	Stack

	Show

	Support

	Manual Pages
	trepan2 - Python2 debugger

	trepan2c (Python2 client to connect to remote trepan session)

Indices and tables

	Index

	Search Page

	Features

	Exact location information

	Debugging Python bytecode (no source available)

	Source-code Syntax Colorization

	Command Completion

	Terminal Handling

	Smart Eval

	More Stepping Control

	Step Granularity

	Event Filtering and Tracing

	Event Tracing of Calls and Returns

	Debugger Macros via Python Lambda expressions

	Byte-code Instruction Introspection

	Debugger Command Arguments can be Variables and Expressions

	Out-of-Process Debugging

	Egg, Wheel, and Tarballs

	Modularity

	Documentation

Features

Since this debugger is similar to other [https://www.npmjs.com/package/trepanjs] trepanning [https://rubygems.org/gems/trepanning] debuggers [https://metacpan.org/pod/Devel::Trepan] and gdb
in general, knowledge gained by learning this is transferable to those
debuggers and vice versa.

There’s a lot of cool stuff here that’s not in the stock
Python debugger pdb.

Exact location information

Python reports line information on the granularity of a line. To get
more precise information, we can (de)parse into Python the byte code
around a bytecode offset such as the place you are stopped at.

So far as I know, there is no other debugger that can do this.

Debugging Python bytecode (no source available)

You can pass the debugger the name of Pytnon bytecode and many times,
the debugger will merrily proceed. This debugger tries very hard find
the source code. Either by using the current executable search path
(e.g. PATH) or for some by looking inside the bytecode for a
filename in the main code object (co_filename) and applying that
with a search path which takes into account directory where the
bytecode lives.

Failing to find source code this way, and in other situations where
source code can’t be found, the debugger will decompile the bytecode
and use that for showing source test.

But if you happen to know where the source code is located, you can
associate a file source code with the current name listed in the
bytecode. See the set_substitute [https://python2-trepan.readthedocs.org/en/latest/commands/set/substitute.html] command for details here.

Source-code Syntax Colorization

Starting with release 0.2.0, terminal source code is colorized via
pygments [http://pygments.org] . And with that you can set the pygments color style,
e.g. “colorful”, “paraiso-dark”. See set_style [https://python2-trepan.readthedocs.org/en/latest/commands/set/style.html] . Furthermore, we make use
of terminal bold and emphasized text in debugger output and help
text. Of course, you can also turn this off. Starting with release
0.6.0, you can use your own pygments_style [http://pygments.org/docs/styles/], provided you have a
terminal that supports 256 colors. If your terminal supports the basic
ANSI color sequences only, we support that too in both dark and light
themes.

Command Completion

Starting with release 2.8, readline command completion has been
added. Command completion is not just a simple static list, but varies
depending on the context. For example, for frame-changing commands
which take optional numbers, on the list of valid numbers is
considered.

Terminal Handling

We can adjust debugger output depending on the line width of your
terminal. If it changes, or you want to adjust it, see set_width [https://python2-trepan.readthedocs.org/en/latest/commands/set/width.html] .

Smart Eval

Starting with release 0.2.0, if you want to evaluate the current
source line before it is run in the code, use eval. To evaluate
text of a common fragment of line, such as the expression part of an
if statement, you can do that with eval?. See eval [https://python2-trepan.readthedocs.org/en/latest/commands/data/eval.html] for more
information.

More Stepping Control

Sometimes you want small steps, and sometimes large stepping.

This fundamental issue is handled in a couple ways:

Step Granularity

There are now step event and next event commands with
aliases to s+, s> and so on. The plus-suffixed commands force
a different line on a subsequent stop, the dash-suffixed commands
don’t. Suffixes >, <, and ! specify call, return
and exception events respectively. And without a suffix you get
the default; this is set by the set different command.

Event Filtering and Tracing

By default the debugger stops at every event: call, return,
line, exception, c-call, c-exception. If you just want
to stop at line events (which is largely what you happens in
pdb) you can. If however you just want to stop at calls and returns,
that’s possible too. Or pick some combination.

In conjunction with handling all events by default, the event status is shown when stopped. The reason for stopping is also available via info program.

Event Tracing of Calls and Returns

I’m not sure why this was not done before. Probably because of the
lack of the ability to set and move by different granularities,
tracing calls and returns lead to too many uninteresting stops (such
as at the same place you just were at). Also, stopping on function
definitions probably also added to this tedium.

Because we’re really handling return events, we can show you the return value. (pdb has an “undocumented” retval command that doesn’t seem to work.)

Debugger Macros via Python Lambda expressions

Starting with release 0.2.3, there are debugger macros. In gdb,
there is a macro debugger command to extend debugger commands.

However Python has its own rich programming language so it seems silly
to recreate the macro language that is in gdb. Simpler and more
powerful is just to use Python here. A debugger macro here is just a
lambda expression which returns a string or a list of strings. Each
string returned should be a debugger command.

We also have aliases for the extremely simple situation where you
want to give an alias to an existing debugger command. But beware:
some commands, like step [https://python2-trepan.readthedocs.org/en/latest/commands/running/step.html] inspect command suffixes and change their
behavior accordingly.

We also envision a number of other ways to allow extension of this
debugger either through additional modules, or user-supplied debugger
command directories.

If what you were looking for in macros was more front-end control over
the debugger, then consider using the experimental (and not finished)
Bullwinkle protocol.

Byte-code Instruction Introspection

We do more in the way of looking at the byte codes to give better information. Through this we can provide:

	a skip command. It is like the jump command, but you don’t have to deal with line numbers.

	disassembly of code fragments. You can now disassemble relative to the stack frames you are currently stopped at.

	Better interpretation of where you are when inside execfile or exec. (But really though this is probably a Python compiler misfeature.)

	Check that breakpoints are set only where they make sense.

	A more accurate determination of if you are at a function-defining def statement (because the caller instruction contains MAKE_FUNCTION.)

Even without “deparsing” mentioned above, the abilty to disassemble by line number range or byte-offset range lets you tell exactly where you are and code is getting run.

Debugger Command Arguments can be Variables and Expressions

Commands that take integer arguments like up, list or
disassemble allow you to use a Python expression which may include
local or global variables that evaluates to an integer. This
eliminates the need in gdb for special “dollar” debugger
variables. (Note however because of shlex parsing ,expressions can’t
have embedded blanks.)

Out-of-Process Debugging

You can now debug your program in a different process or even a different computer on a different network!

Egg, Wheel, and Tarballs

Can be installed via the usual pip or easy_install. There is a
source tarball. How To Install [https://python2-trepan.readthedocs.io/en/latest/install.html] has
full instructions and installing from git and by other means.

Modularity

The Debugger plays nice with other trace hooks. You can have several debugger objects.

Many of the things listed below doesn’t directly effect end-users, but
it does eventually by way of more robust and featureful code. And
keeping developers happy is a good thing.(TM)

	Commands and subcommands are individual classes now, not methods in a class. This means they now have properties like the context in which they can be run, minimum abbreviation name or alias names. To add a new command you basically add a file in a directory.

	I/O is it’s own layer. This simplifies interactive readline behavior from reading commands over a TCP socket.

	An interface is it’s own layer. Local debugging, remote debugging, running debugger commands from a file (source) are different interfaces. This means, for example, that we are able to give better error reporting if a debugger command file has an error.

	There is an experimental Python-friendly interface for front-ends

	more testable. Much more unit and functional tests. More of pydb’s integration test will eventually be added.

Documentation

Documentation: http://python2-trepan.readthedocs.org

How to install

Using pip

If you are using pyenv [https://github.com/yyuu/pyenv] or don’t need special root access to install:

$ pip install trepan2 # or trepan3k for Python 3.x

If you need root access you may insert sudo in front or become root:

$ sudo pip install trepan2

or:

$ su root
pip install trepan

Using easy_install

Basically the same as using pip, but change “pip install” to “easy_install”:

$ easy_install trepan # or trepan3k

$ git clone https://github.com/rocky/python2-trepan.git
$ cd python-trepan
$ make check-short # to run tests
$ make install # if pythonbrew or you don't need root access
$ sudo make install # if pythonbrew or you do need root access

Above I used GNU “make” to run and install. However this just calls python setup.py to do the right thing. So if you are more familiar with setup.py you can use that directly. For example:

$./setup.py test
$./setup.py install

Entering the Trepan Debugger

Contents

	Entering the Trepan Debugger

	Invoking the Debugger Initially

	Calling the debugger from IPython

	Installing the IPython extension

	Trepan IPython Magic Functions

	Example

	Calling the debugger from an Interactive Python Shell

	Calling the debugger from your program

	Calling the debugger from pytest

	Set up an exception handler to enter the debugger on a signal

	Set up an exception handler allow remote connections

	Startup Profile

Invoking the Debugger Initially

The simplest way to debug your program is to call run trepan2 (or
trepan3k for Python 3). Give the name of your program and its options
and any debugger options:

$ cat test.py
print('Hello, World!')

$ trepan2 test.py # or trepan3k test.py

For help on trepan2’s or trepan3k’s options, use the --help option.

$ trepan2 --help
Usage: trepan2 [debugger-options] [python-script [script-options...]]
...

To separate options to the program you want to debug from trepan2’s
options put – after the debugger’s options:

$ trepan2 --trace -- test.py --test-option1 b c

If you have previously set up remote debugging using
trepan2 --server, you’ll want to run the client version of trepan2
which is a separate program trepan2c.

Calling the debugger from IPython

Installing the IPython extension

Use the trepan IPython extension [https://github.com/rocky/ipython-trepan].

To install execute the the following code snippet in an IPython shell or IPython notebook cell:

or put trepanmagic.py in $HOME/.python/profile_default/startup:

cd `$HOME/.python/profile_default/startup`:
wget https://raw.github.com/rocky/ipython-trepan/master/trepanmagic.py

Trepan IPython Magic Functions

After installing the trepan extension, the following IPython magic functions are added:

	%trepan_eval evaluate a Python statement under the debugger

	%trepan run the debugger on a Python program

	%trepan_pm do post-mortem debugging

Example

$ ipython
Python 2.7.8 (default, Apr 6 2015, 16:25:30)
...

In [1]: %load_ext trepanmagic
trepanmagic.py loaded
In [2]: import os.path
In [3]: %trepan_eval(os.path.join('foo', 'bar'))
(/tmp/eval_stringS9ST2e.py:1 remapped <string>): <module>
-> 1 (os.path.join('foo', 'bar'))
(trepan2) s
(/home/rocky/.pyenv/versions/2.7.8/lib/python2.7/posixpath.py:68): join
-> 68 def join(a, *p):
(trepan2) s
(/home/rocky/.pyenv/versions/2.7.8/lib/python2.7/posixpath.py:73): join
-- 73 path = a
(trepan2) c
Out[3]: 'foo/bar'
In [4]:

See also the examples [https://github.com/rocky/ipython-trepan/tree/master/examples] directory.

Calling the debugger from an Interactive Python Shell

Note: by “interactive python shell” I mean running “python” or “python -i” and this is distinct from going into IPython which was covered in the last section.

Put these lines in a file:

import inspect
from trepan.api import run_eval
def debug(str):
 frame = inspect.currentframe()
 return run_eval(str, globals_=frame.f_globals, locals_=frame.f_locals)
print(".pythonrc.py loaded") # customize or remove this

A copy of the above can be found here [https://github.com/rocky/python2-trepan/blob/master/PYTHONSTARTUP/pythonrc]. I usually put these line in $HOME/.pythonrc.py. Set the environment variable PYTHONSTARTUP to $HOME/.pythonrc.py.

After doing this, when you run python -i you should see on entry the print message from the file. For example:

$ python -i
Python ...
Type "help", "copyright", "credits" or "license" for more information.
.pythonrc.py loaded
>>>

If you see the above “.pythonrc.py” message, great! If not, it might be that PYTHONSTARTUP is not defined. Here run:

and you should see the “.pythonrc.py” message as shown above.

Once that code is loaded, the debug() function is defined. To debug some python code, you can call that function. Here is an example:

>>> import os.path
>>> debug('os.path.join("a", "b")')
(/tmp/eval_stringBMzXCQ.py:1 remapped <string>): <module>
-> 1 os.path.join("a", "b")
(trepan2) step
(/home/rocky/.pyenv/versions/2.7.8/lib/python2.7/posixpath.py:68): join
-> 68 def join(a, *p):
(trepan2) continue
'a/b'
>>>

Note in the above, we pass to the debug() function a string.
That is, we pass ‘os.path.join(“a”, “b”)’, not
os.path.join(“a”, “b”) which would have the effect of running the code to be evaluated first before calling debug(). This is not an error, but debugging evaluating a string, is probably not what you want to do.

To do: add and document run_call()

Calling the debugger from your program

Sometimes it is not feasible to invoke the program from the debugger.
Although the debugger tries to set things up to make it look like your
program is called, sometimes the differences matter. Also the debugger
adds overhead and slows down your program.

Another possibility then is to add statements into your program to call
the debugger at the spot in the program you want. To do this,
import trepan.api and make a call to trepan.api.debug(). For
example:

Code run here trepan2/trepan3k doesn't even see at all.
...
from trepan.api import debug
trepan is accessible but inactive.
work, work, work...
debug() # Get thee to thyne debugger!

Since debug() is a function, call it can be nested inside some sort of
conditional statement allowing one to be very precise about the
conditions you want to debug under. And until first call to debug(),
there is no debugger overhead.

debug() causes the statement after the call to be stopped at.
Sometimes though there is no after statement. In this case, adding the
named parameter step_ignore=0 will cause the debugger to be entered
inside the debug() call:

...
def foo():
 # some code
 debug(step_ignore=0) # Stop before even returning from the debug() call
foo() # Note there's no statement following foo()

If you want a startup profile to get run, you can pass a list of file
names in option start_opts. For example, let’s say I want to set the
formatting style and automatic source code listing in by debugger
session. I would put the trepan debugger commands in a file, say
/home/rocky/trepan-startup, and then list that file like this:

debug(start_opts={'startup-profile': ["/home/rocky/trepan-startup"]})

See Startup Profile for a sample profile.

Calling the debugger from pytest

Install pytest-trepan [https://pypi.python.org/pypi/pytest-trepan]:

pip install pytest-trepan

After installing, to set a breakpoint to enter the trepan debugger:

import pytest
def test_function():
 ...
 pytest.trepan() # get thee to thyne debugger!
 x = 1
 ...

The above will look like it is stopped at the pytest.trepan()
call. This is most useful when this is the last statement of a
scope. If you want to stop instead before x = 1 pass immediate=False or just False:

import pytest
def test_function():
 ...
 pytest.trepan(immediate=False)
 # same as py.trepan(False)
 x = 1
 ...

You can also pass as keyword arguments any parameter accepted by trepan.api.debug().

To have the debugger entered on error, use the --trepan option:

$ py.test --trepan ...

Set up an exception handler to enter the debugger on a signal

This is really just a variation of one of the other methods. To install
and call the debugger on signal USR1:

import signal
def signal_handler(num, f):
 from trepan.api import debug; debug()
 return
signal.signal(signal.SIGUSR1, signal_handler)
Go about your business...

However, if you have entered the debugger either by running intially or
previously via a debug() call, trepan has already set up such default
handlers for many of the popular signals, like SIGINT. To see what
trepan2 has installed use the info signals command:

(trepan2) info signals INT
 Signal Stop Print Stack Pass Description
 SIGINT Yes Yes No No Interrupt
(trepan2) info signals
Signal Stop Print Stack Pass Description

SIGHUP Yes Yes No No Hangup
SIGSYS Yes Yes No No Bad system call
...

Commonly occuring signals like CHILD and unmaskable signals like
KILL are not intercepted.

Set up an exception handler allow remote connections

The extends the example before to set to allow remote debugging when
the process gets a USR1 signal

import signal

def signal_handler(num, f):
 from trepan.interfaces import server as Mserver
 from trepan.api import debug
 connection_opts={'IO': 'TCP', 'PORT': 1955}
 intf = Mserver.ServerInterface(connection_opts=connection_opts)
 dbg_opts = {'interface': intf}
 print('Starting TCP server listening on port 1955.')
 debug(dbg_opts=dbg_opts)
 return

signal.signal(signal.SIGUSR1, signal_handler)
Go about your business...

import time
import os
print(os.getpid())
for i in range(10000):
 time.sleep(0.2)

Now run that:

$ python /tmp/foo.py
8530

From above output we helpfully listed the pid of the Python process we want to debug.

Now in a shell we send the signal to go into the debugger listening for commands on port 1955. You will have to adjust the
process id.

$ kill -USR1 8530 # Adjust the pid to what you see above

And in the shell where we ran /tmp/foo.py you should now see
the new output:

$ python /tmp/foo.py
8530
Starting TCP server listening on port 1955. # This is new

Back to the shell where we issued the kill -USR1 we can now
attach to the debugger on port 1955:

$ trepan2 --client --port 1955
Connected.
(/tmp/foo.py:11 @101): signal_handler
-- 11 return
(trepan2*) backtrace
 6 connection_opts={'IO': 'TCP', 'PORT': 1955}
 7 intf = Mserver.ServerInterface(connection_opts=connection_opts)
 8 dbg_opts = {'interface': intf}
 9 print('Starting TCP server listening on port 1955.')
 10 debug(dbg_opts=dbg_opts)
 11 -> return
 12
 13 signal.signal(signal.SIGUSR1, signal_handler)
 14 # Go about your business...
(trepan2*) list
 -> 0 signal_handler(num=10, f=<frame object at 0x7f9036796050>)
 called from file '/tmp/foo.py' at line 11
 ## 1 <module> file '/tmp/foo.py' at line 20

Startup Profile

A startup profile is a text file that contains debugger commands. For
example it might look like this:

$ cat ~/.config/trepanpy/profile/alternate-profile.py
set autolist
set different on
set autoeval on
set style colorful
Note that the below is a debugger command, not a Python command
print "My trepan startup file loaded"
$

By default, the file $HOME/.config/trepanpy/profile/profile.py is
loaded, and that a file exists trepan2 starts up. To change this
default behavior and not have the default profile loaded, use the
option -n, or –nx in the trepan2 invocation.

Command Syntax

	Syntax for Address Ranges

	Debugger Command Syntax

	Command examples

	Syntax for Indicating a Filename

	Syntax for List Ranges

	Command suffixes which have special meaning

Syntax for Address Ranges

Address ranges are used in the disassemble command. It is like a
range but we allow addresses. An add

An address range is in one of the following forms:

location # starting line only
first, last # starting and ending line
, last # ending line only

A location is described elsewhere. first and last can also be
linespecs but they also may be a number or address (bytecode
offset). And finally last can be an (line number) offset.

A number is just a decimal number. An offset is a number prefaced with “+” and
indicates the number to increment the line number found in first.

Examples

*5 # start from bytecode offset 5 of current file
*5 , # Same as above.
foo.py:*5 # start from bytecode offset 5 of file foo.py

help syntax location

Debugger Command Syntax

Command names and arguments are separated with spaces like POSIX shell
syntax. Parenthesis around the arguments and commas between them are
not used. If the first non-blank character of a line starts with #,
the command is ignored.

Commands are split at whereever ;; appears. This process disregards
any quotes or other symbols that have meaning in Python. The strings
after the leading command string are put back on a command queue, and
there should be white space around ‘;;’.

Within a single command, tokens are then white-space split. Again,
this process disregards quotes or symbols that have meaning in Python.
Some commands like eval, macro, and
break have access to the untokenized string entered and
make use of that rather than the tokenized list.

Resolving a command name involves possibly 4 steps. Some steps may be
omitted depending on early success or some debugger settings:

1. The leading token is first looked up in the macro table. If it is
in the table, the expansion is replaces the current command and
possibly other commands pushed onto a command queue. Run help macros for
help on how to define macros, and info macro for current macro
definitions.

2. The leading token is next looked up in the debugger alias table and
the name may be substituted there. See “help alias” for how to define
aliases, and “show alias” for the current list of aliases.

3. After the above, The leading token is looked up a table of debugger
commands. If an exact match is found, the command name and arguments
are dispatched to that command.

4. If after all of the above, we still don’t find a command, the line
may be evaluated as a Python statement in the current context of the
program at the point it is stoppped. However this is done only if
“auto evaluation” is on. It is on by default.

If auto eval is not set on, or if running the
Python statement produces an error, we display an error message that
the entered string is “undefined”.

If you want python-, ipython- or bpython-like shell
command-processing, it’s possible to go into an python shell with the
corresponding command. It is also possible to arrange going into an
python shell every time you enter the debugger.

See also

help syntax suffixes

Command examples

This line does nothing. It is a comment. Useful in debugger command files.
This line also does nothing.
s # by default, this is an alias for the "step" command
info program;;list # error no command 'program;;list'
info program ;; list # Runs two commands "info program" and "list"

See also

macro, alias, python, set auto eval, info macro, and the show variants of the above set commands.

Syntax for Indicating a Filename

Filename Examples:

file.py => file.py
/tmp/file.py => /tmp/file.py
"C:file.py" => C:file.py # For Microsoft OS's
'C:file.py' => same as above
'''C:file.py''' => same as above
'C:\file.py' => C:\file.py # For Microsoft OS's
'\new.py' => \new.py
'my file.py' => 'my file.py'

Syntax for List Ranges

List ranges are used in the list and disassemble commands.

A list range is in one of the following forms:

location # starting line only
first, last # starting and ending line
, last # ending line only

A location is described elsewhere. first and last can also be
locations but they also may be a number. And finally last can be a (line number)
offset.

A number is just a decimal number. An offset is a number prefaced with “+” and
indicates the number to increment the line number found in first.

Examples

5 # start from line 5 of current file
5 , # Same as above.
, 5 # listsize lines before and up to 5
foo.py:5 # start from line 5 of file foo.py
foo() # start from function foo
os.path:5 # start from line 5 of module os.path
os.path:5 # Same as above.
os.path:5, 6 # list lines 5 and 6 of os.path
os.path:5, +1 # Same as above. +1 is an offset
os.path:5, 1 # Same as above, since 1 < 5.
os.path:5, +6 # lines 5-11
os.path.join() # lines starting with the os.join.path function.
"c:\foo.py":10, # listsize lines starting from line 10 of c:\foo.py
, 'My Doc/foo.py':20 # listsize lines ending at line 20 of file: My Doc/foo.py

See also

help syntax location

Command suffixes which have special meaning

Some commands like step, or list do different things when an
alias to the command ends in a particular suffix like >.

Here are a list of commands and the special suffixes:

	command

	suffix

	list

	>

	step

	+, -, <, >

	next

	+, -, <, >

	quit

	!

	kill

	!

	eval

	?

See the help on the specific commands listed above for the specific
meaning of the suffix.

Trepan Command Reference

Following gdb, we classify commands into categories. Note though
that some commands, like quit, and restart, are in different categories
and some categories are new, like set, show, and info.

	Breakpoints

	Data

	Files

	Info

	Running

	Set

	Stack

	Show

	Support

Breakpoints

Making the program stop at certain points

A breakpoint can make your program stop at that point. You can set
breakpoints with the break command and its variants. You can specify
the place where your program should stop by file and line number or by
function name.

The debugger assigns a number to each breakpoint when you create it;
these numbers are successive integers starting with 1. In many of the
commands for controlling various features of breakpoints you use this
number. Each breakpoint may be enabled or disabled; if disabled, it
has no effect on your program until you enable it again.

The debugger allows you to set any number of breakpoints at the same
place in your program. There is nothing unusual about this because
different breakpoints can have different conditions associated with
them.

The simplest sort of breakpoint breaks every time your program reaches
a specified place. You can also specify a condition for a
breakpoint. A condition is just a Boolean expression in your
programming language. A breakpoint with a condition evaluates the
expression each time your program reaches it, and your program stops
only if the condition is true.

This is the converse of using assertions for program validation; in
that situation, you want to stop when the assertion is violated-that
is, when the condition is false.

Break conditions can have side effects, and may even call functions in
your program. This can be useful, for example, to activate functions
that log program progress, or to use your own print functions to
format special data structures. The effects are completely predictable
unless there is another enabled breakpoint at the same address. (In
that case, pydb might see the other breakpoint first and stop your
program without checking the condition of this one.) Note that
breakpoint commands are usually more convenient and flexible than
break conditions for the purpose of performing side effects when a
breakpoint is reached.

Break conditions can be specified when a breakpoint is set, by adding
a comma in the arguments to the break command. They can also be
changed at any time with the condition command.

	Break (set a breakpoint)

	Clear (Remove all breakpoints on a line)

	Condition (add condition to breakpoint)

	Delete (remove breakpoints)

	Disable (disable breakpoints)

	Enable (enable breakpoints)

	Tbreak (temporary breakpoint)

Break (set a breakpoint)

break [location] [if condition]]

Sets a breakpoint, i.e. stopping point just before the
execution of the instruction specified by location.

Without arguments or an empty location, the breakpoint is set at the
current stopped location.

See help syntax location for detailed information on a location.

If the word if is given after location, subsequent arguments given
Without arguments or an empty location, the breakpoint is set
the current stopped location.

Normally we only allow stopping at lines that we think are
stoppable. If the command has a ! suffix, force the breakpoint anyway.

Examples:

break # Break where we are current stopped at
break if i < j # Break at current line if i < j
break 10 # Break on line 10 of the file we are
 # currently stopped at
break! 10 # Break where we are current stopped at, even if
 # we don't think line 10 is stoppable
break os.path.join() # Break in function os.path.join
break x[i].fn() # break in function specified by x[i].fn
break x[i].fn() if x # break in function specified by x[i].fn
 # if x is set
break os.path:45 # Break on line 45 file holding module os.path
break myfile.py:2 # Break on line 2 of myfile.py
break myfile.py:2 if i < j # Same as above but only if i < j
break "foo's.py":1" # One way to specify path with a quote
break 'c:\\foo.bat':1 # One way to specify a Windows file name,
break '/My Docs/foo.py':1 # One way to specify path with blanks in it

See also

info break, tbreak, condition, and help syntax location.

Clear (Remove all breakpoints on a line)

clear [linenumber]

Clear some breakpoints by line number.

See also

delete

Condition (add condition to breakpoint)

condition bp_number condition

bp_number is a breakpoint number. condition is an expression which
must evaluate to True before the breakpoint is honored. If condition
is absent, any existing condition is removed; i.e., the breakpoint is
made unconditional.

Examples:

condition 5 x > 10 # Breakpoint 5 now has condition x > 10
condition 5 # Remove above condition

See also

break, tbreak.

Delete (remove breakpoints)

delete [bpnumber [bpnumber…]]

Delete some breakpoints.

Arguments are breakpoint numbers with spaces in between. To delete
all breakpoints, give no argument. Without
arguments, clear all breaks (but first ask confirmation).

See also

clear

Disable (disable breakpoints)

disable bpnumber [bpnumber …]

Disables the breakpoints given as a space separated list of breakpoint
numbers. See also info break to get a list.

See also

enable

Enable (enable breakpoints)

enable bpnumber [bpnumber …]

Enables the breakpoints given as a space separated list of breakpoint
numbers. See also info break to get a list.

See also

disable, tbreak

Tbreak (temporary breakpoint)

tbreak [location] [if condition]

With a line number argument, set a break there in the current file.
With a function name, set a break at first executable line of that
function. Without argument, set a breakpoint at current location. If
a second argument is if, subequent arguments given an expression
which must evaluate to true before the breakpoint is honored.

The location line number may be prefixed with a filename or module
name and a colon. Files is searched for using sys.path, and the .py
suffix may be omitted in the file name.

Examples:

tbreak # Break where we are current stopped at
tbreak 10 # Break on line 10 of the file we are currently stopped at
tbreak os.path.join # Break in function os.path.join
tbreak os.path:45 # Break on line 45 of os.path
tbreak myfile.py:45 # Break on line 45 of myfile.py
tbreak myfile:45 # Same as above.

See also

break.

Data

Examining data.

	Deparse (CPython bytecode deparser)

	Disassemble (CPython disassembly)

	Display (set display expression)

	Eval (evaluate Python code)

	Examine

	Pdef

	Pp (pretty print expression)

	Pr (print expression)

	Pydocx (show pydoc)

	Undisplay (cancel a display expression)

	Whatis

Deparse (CPython bytecode deparser)

deparse [options] [.]

Options are:

-p | --parent show parent node
-P | --pretty show pretty output
-A | --tree | --AST show abstract syntax tree (AST)
-o | --offset [num] show deparse of offset NUM
-h | --help give this help

deparse around where the program is currently stopped. If no offset is given,
we use the current frame offset. If -p is given, include parent information.

If an ‘.’ argument is given, deparse the entire function or main
program you are in. The -P parameter determines whether to show the
prettified as you would find in source code, or in a form that more
closely matches a literal reading of the bytecode with hidden (often
extraneous) instructions added. In some cases this may even result in
invalid Python code.

Output is colorized the same as source listing. Use set highlight plain to turn
that off.

Examples:

deparse # deparse current location
deparse --parent # deparse current location enclosing context
deparse . # deparse current function or main
deparse --offset 6 # deparse starting at offset 6
deparse --offsets # show all exect deparsing offsets
deparse --AST # deparse and show AST

See also

disassemble, list, and set highlight

Disassemble (CPython disassembly)

disassemble [thing]

disassemble [address-range]

Disassembles bytecode. See help syntax arange for what can go in an
assembly-list range.

Without arguments, print lines starting from where the last list left off
since the last entry to the debugger. We start off at the location indicated
by the current stack.

in addition you can also use:

	a ‘.’ for the location of the current frame

	a ‘-’ for the lines before the last list

	a ‘+’ for the lines after the last list

With a class, method, function, pyc-file, code or string argument
disassemble that.

Examples:

disassemble # Possibly lots of stuff dissassembled
disassemble . # Disassemble lines starting at current stopping point.
disassemble + # Same as above
disassemble os.path # Disassemble all of os.path
disassemble os.path.normcase() # Disaassemble just method os.path.normcase
disassemble 3 # Disassemble starting from line 3
disassemble 3, 10 # Disassemble lines 3 to 10
disassemble *0, *10 # Disassemble offset 0-10
disassemble myprog.pyc # Disassemble file myprog.pyc

See also

help syntax arange for the specification of a address range deparse, list, info pc

Display (set display expression)

display [format] expression

Print value of expression expression each time the program stops.
format may be used before expression and may be one of /c for
char, /x for hex, /o for octal, /f for float or /s for string.

For now, display expressions are only evaluated when in the same
code as the frame that was in effect when the display expression
was set. This is a departure from gdb and we may allow for more
flexibility in the future to specify whether this should be the
case or not.

With no argument, evaluate and display all currently requested
auto-display expressions.

See also

ref:undisplay <undisplay> to cancel display requests previously made.

Eval (evaluate Python code)

eval python-statement

Run python-statement in the context of the current frame.

If no string is given, we run the string from the current source code
about to be run. If the command ends ? (via an alias) and no string is
given, the following translations occur:

assert = <expr> => <expr>
{if|elif} <expr> : => <expr>
while <expr> : => <expr>
return <expr> => <expr>
for <var> in <expr> : => <expr>
<var> = <expr> => <expr>

The above is done via regular expression matching. No fancy parsing is
done, say, to look to see if expr is split across a line or whether
var an assignment might have multiple variables on the left-hand side.

Examples:

eval 1+2 # 3
eval # Run current source-code line
eval? # but strips off leading 'if', 'while', ..
 # from command

See also

set autoeval, pr,
pp and examine.

Examine

examine expr1 [expr2 …]

Examine value, type and object attributes of an expression.

In contrast to normal Python expressions, expressions should not have
blanks which would cause shlex to see them as different tokens.

Examples:

examine x+1 # ok
examine x + 1 # not ok

See also

pr, pp, and whatis.

Pdef

pdef obj

Print the definition header for a callable object obj.
If the object is a class, print the constructor information.

See also

pydocX, pp

Pp (pretty print expression)

pp expression

Pretty-print the value of the expression.

Simple arrays are shown columnized horizontally. Other values are printed
via pprint.pformat().

See also:

pr and examine for commands which do more
in the way of formatting.

Pr (print expression)

pr expression

Print the value of the expression. Variables accessible are those of the
environment of the selected stack frame, plus globals.

The expression may be preceded with /fmt where fmt is one of the
format letters ‘c’, ‘x’, ‘o’, ‘f’, or ‘s’ for chr, hex, oct,
float or str respectively.

If the length output string large, the first part of the value is
shown and … indicates it has been truncated.

See also

pp and examine for commands which do more
in the way of formatting; pydocx

Pydocx (show pydoc)

pydocx name …

Show pydoc documentation on something. name may be the name of a
Python keyword, topic, function, module, or package, or a dotted
reference to a class or function within a module or module in a
package. If name contains a ‘/’, it is used as the path to a Python
source file to document. If name is keywords, topics, or
modules, a listing of these things is displayed.

See also

whatis, undisplay

Undisplay (cancel a display expression)

undisplay display-number…

Cancel some expressions to be displayed when program stops.
Arguments are the code numbers of the expressions to stop displaying.

No argument cancels all automatic-display expressions and is
the same as delete display.

See also

info display to see current list of code numbers.
whatis

Whatis

whatis arg

Prints the information argument which can be a Python expression.

When possible, we give information about:

	type of argument

	doc string for the argument (if a module, class, or function)

	comments around the definition of the argument (module)

	the module it was defined in

	where the argument was defined

We get this most of this information via the inspect module.

See also

pydocx, the inspect module.

Files

Specifying and examining files.

	Edit

	List (show me the code!)

Edit

edit position

Edit specified file or module.
With no argument, edits file containing most recent line listed.

See also

list

List (show me the code!)

list [range]

list + | - | .

List source code. See help syntax range for what can go in a list range.

Without arguments, print lines centered around the current line. If
num is given that number of lines is shown.

Without arguments, print lines starting from where the last list left off
since the last entry to the debugger. We start off at the location indicated
by the current stack.

in addition you can also use:

	a ‘.’ for the location of the current frame

	a ‘-’ for the lines before the last list

	a ‘+’ for the lines after the last list

Examples:

list 5 # List starting from line 5 of current file
list 5 , # Same as above.
list , 5 # list listsize lines before and up to 5
list foo.py:5 # List starting from line 5 of file foo.py
list foo() # List starting from function foo
list os.path:5 # List starting from line 5 of module os.path
list os.path:5, 6 # list lines 5 and 6 of os.path
list os.path:5, +1 # Same as above. +1 is an offset
list os.path:5, 1 # Same as above, since 1 < 5.
list os.path:5, +6 # list lines 5-11
list os.path.join() # List lines centered around the os.join.path function.
list . # List lines centered from where we currently are stopped
list - # List lines previous to those just shown
list # List continuing from where we last left off

See also

set listsize, or show listsize to see or set the number of source-code lines to list. help syntax location for the specification of a location and help syntax range for the specification of a range.

Info

info [info-subcommand]

Get information on the program being debugged.

You can give unique prefix of the name of a subcommand to get
information about just that subcommand.

Type info for a list of info subcommands and what they do. Type help
info * for just a list of info subcommands.

	Info Args

	Info Break

	Info Builtins

	Info Code

	Info Display

	Info Files

	Info Frame

	Info Globals

	Info Line

	Info Lines

	Info Locals

	Info Macro

	Info PC

	Info Program

	Info Return

	Info Signals

	Info Source

	Info Threads

Info Args

info args

Show parameters of the current stack frame.

See also

info locals, info globals,
info frame

Info Break

info breakpoints [bp-number…]

Show the status of specified breakpoints (or all user-settable
breakpoints if no argument).

The Disp column contains one of keep, or del, to indicate the
disposition of the breakpoint after it gets hit. del means that the
breakpoint will be deleted. The Enb column indicates if the
breakpoint is enabled. The Where column indicates the file/line
number of the breakpoint.

Also shown are the number of times the breakpoint has been hit,
when that count is at least one, and any conditions the breakpoint
has.

Example:

(trepan3k) info break
Num Type Disp Enb Where
1 breakpoint del n at /tmp/fib.py:9
2 breakpoint keep y at /tmp/fib.py:4
 breakpoint already hit 1 time
3 breakpoint keep y at /tmp/fib.py:6
 stop only if x > 0

See also

break, delete enable, Disable (disable breakpoints), condition

Info Builtins

info builtins

Show the builtin-functions for the current stack frame.

 info code [frame-number | code-object]

Info Code

Specific information includes:

	the number of arguments (not including * or ** args)

	the number of local variables

	maximum stack size used by the frame

	first line associated with the code

	constants used in the bytecode

	whether code is optimized

	Should a new local namespace be created for this code? (This is True for functions and False for modules and exec code.)

	name with which this code object was defined

See also

info frame, info frame, info locals,

Info Display

info display

Show the display expression evaluated when the program stops.

See also

display, undisplay

Info Files

info files [filename [all | brkpts | lines | sha1 | size]]

Show information about the current file. If no filename is given and
the program is running then the current file associated with the
current stack entry is used. Sub options which can be shown about a file are:

	brkpts

	Line numbers where there are statement boundaries. These lines can be used in breakpoint commands.

	sha1

	A SHA1 hash of the source text. This may be useful in comparing source code

	size

	The number of lines in the file.

	all

	All of the above information.

 info frame [-v] [frame-number | frame-object]

Info Frame

Show the detailed information for frame-number or the current frame if
frame-number is not specified. You can also give a frame object instead of
a frame number

Specific information includes:

	the frame number (if not an object)

	the source-code line number that this frame is stopped in

	the last instruction executed; -1 if the program are before the first instruction

	a function that tracing this frame or None

	Whether the frame is in restricted execution

	Exception type and value if there is one

If -v is given we show builtin and global names the frame sees.

See also

info locals, info globals,
info args

Info Globals

info globals [var1 …]

info globals *

With no arguments, show all of the global variables of the current stack
frame. If a list of names is provide limit display to just those
variables.

If * is given, just show the variable names, not the values.

See also

info locals, info args,
info frame

Info Line

info line

Show line information for location location.

If no location is given, use the the current stopped line.

Examples

(trepan3k) info line
Line 3 of "/tmp/python3-trepan/test/example/multi-line.py"
 starts at offset 0 of <module> and contains 2 instructions
There are multiple starting offsets this line. Other starting offsets: 4 of <module>

(trepan3k) info line 5
Line 5 of "/tmp/python3-trepan/test/example/multi-line.py"
 starts at offset 16 of <module> and contains 7 instructions

See also

info program, info frame and help syntax location.

Info Lines

info lines [-n function-or-module]

Show line - function/offset information.
Use -n function-or-module to filter results.

Examples

(trepan3k) info lines
Line - (fn, start offset) table for test/example/gcd.py
 10: <module> @0 21: check_args() @84 36: gcd() @30
 11: <module> @4 22: check_args() @106 37: gcd() @50
 13: <module> @12 23: check_args() @116 38: gcd() @54
 14: check_args() @0 24: check_args() @122 40: <module> @28
 16: check_args() @14 26: <module> @20 41: <module> @36
 17: check_args() @22 30: gcd() @0 43: <module> @42
 18: check_args() @36 31: gcd() @8 44: <module> @60
 19: check_args() @38 34: gcd() @18 45: <module> @84
 20: check_args() @70 35: gcd() @26
(trepan3k) info lines -n <module>
 10: <module> @0 11: <module> @4 13: <module> @12
 40: <module> @28 26: <module> @20 41: <module> @36
 43: <module> @42 44: <module> @60 45: <module> @84
(trepan3k) info lines -n gcd
 30: gcd() @0 31: gcd() @8 34: gcd() @18
 35: gcd() @26 36: gcd() @30 37: gcd() @50
 38: gcd() @54

See also

info program, info program, info pc, info frame

Info Locals

info locals [var1 …]

info locals *

With no arguments, show all of the local variables of the current stack
frame. If a list of names is provide limit display to just those
variables.

If * is given, just show the variable names, not the values.

See also

info globals, info args,
info frame

Info Macro

info macro

info macro *

info macro macro1 [macro2 ..]

In the first form a list of the existing macro names are shown
in column format.

In the second form, all macro names and their definitions are shown.

In the last form the only definitions of the given macro names is shown.

See also

show aliases

Info PC

info pc

List the current program counter or bytecode offset,
and disassemble the instructions around that.

See also

info line, info program

Info Program

info program

Execution status of the program. Listed are:

	Program name

	Instruction PC

	Reason the program is stopped.

See also

info line, info args,
info frame

Info Return

info return

Show the value that is to be returned from a function. This command
is useful after a running a debugger finish command or
stepping just after a ‘return’ statement.

Info Signals

info signals [signal-name]

info signals *

Show information about how debugger treats signals to the program.
Here are the boolean actions we can take:

	Stop: enter the debugger when the signal is sent to the debugged program

	Print: print that the signal was received

	Stack: show a call stack

	Pass: pass the signal onto the program

If signal-name is not given, we the above show information for all
signals. If ‘*’ is given we just give a list of signals.

Info Source

info source

Information about the current Python file.

Info Threads

info threads [thread-name | thread-number] [terse | verbose]

List all currently-known thread name(s).

If no thread name is given, we list info for all threads. Unless a
terse listing, for each thread we give:

	the class, thread name, and status as Class(Thread-n, status)

	the top-most call-stack information for that thread.

Generally the top-most calls into the debugger and dispatcher are
omitted unless set dbg_trepan is True.

If ‘verbose’ appended to the end of the command, then the entire stack
trace is given for each frame. If ‘terse’ is appended we just list
the thread name and thread id.

To get the full stack trace for a specific thread pass in the thread name.

Running

Running, restarting, or stopping the program.

When a program is stopped there are several possibilities for further
program execution. You can:

	terminate the program inside the debugger

	restart the program

	continue its execution until it would normally terminate or until a
breakpoint is hit

	step exection which is runs for a limited amount of code before stopping

	Continue

	Exit

	Finish (step out)

	Jump

	Kill

	Next (step over)

	Quit

	Run

	Restart

	Skip

	Step (step into)

Continue

continue [[file :] lineno | function]

Leave the debugger read-eval print loop and continue
execution. Subsequent entry to the debugger however may occur via
breakpoints or explicit calls, or exceptions.

If a line position or function is given, a temporary breakpoint is set at that
position before continuing.

Examples:

continue # Continue execution
continue 5 # Continue with a one-time breakpoint at line 5
continue basename # Go to os.path.basename if we have basename imported
continue /usr/lib/python2.7/posixpath.py:110 # Possibly the same as
 # the above using file
 # and line number

See also

step jump, next, and finish provide other ways to progress execution.

Exit

exit [exitcode]

Hard exit of the debugged program.

The program being debugged is exited via sys.exit(). If a return code
is given, that is the return code passed to sys.exit(), the
return code that will be passed back to the OS.

See also

quit and kill

Finish (step out)

finish [level]

Continue execution until leaving the current function. When level is
specified, that many frame levels need to be popped. Note that yield
and exceptions raised my reduce the number of stack frames. Also, if a
thread is switched, we stop ignoring levels.

See the break command if you want to stop at a
particular point in a program.

See also

step skip, jump, continue, and finish provide other ways to progress

Jump

jump lineno

Set the next line that will be executed. The line must be within the
stopped or bottom-most execution frame.

See also

step skip, next, continue, and finish provide other ways to progress

Kill

kill [signal-number] [unconditional]

Send this process a POSIX signal (‘9’ for ‘SIGKILL’ or ‘kill -SIGKILL’)

9 is a non-maskable interrupt that terminates the program. If program
is threaded it may be expedient to use this command to terminate the program.

However other signals, such as those that allow for the debugged to
handle them can be sent.

Giving a negative number is the same as using its
positive value.

Examples:

kill # non-interuptable, nonmaskable kill
kill 9 # same as above
kill -9 # same as above
kill! # same as above, but no confirmation
kill unconditional # same as above
kill 15 # nicer, maskable TERM signal
kill! 15 # same as above, but no confirmation

See also

quit for less a forceful termination command; exit for another way to force termination.
run and restart are ways to restart the debugged program.

Next (step over)

next [+ | -] [count]

Step one statement ignoring steps into function calls at this level.

With an integer argument, perform next that many times. However if
an exception occurs at this level, or we return, yield or the
thread changes, we stop regardless of count.

A suffix of + on the command or an alias to the command forces to
move to another line, while a suffix of - does the opposite and
disables the requiring a move to a new line. If no suffix is given,
the debugger setting ‘different-line’ determines this behavior.

See also

skip, jump, continue, and
finish provide other ways to progress execution.

Quit

quit [unconditionally]

Gently terminate the debugged program.

The program being debugged is aborted via a DebuggerQuit
exception.

When the debugger from the outside (e.g. via a trepan command), the
debugged program is contained inside a try block which handles the
DebuggerQuit exception. However if you called the debugger was
started in the middle of a program, there might not be such an
exception handler; the debugged program still terminates but generally
with a traceback showing that exception.

If the debugged program is threaded, we raise an exception in each of
the threads ending with our own. However this might not quit the
program.

See also

kill or kill for more forceful termination commands. run and restart are other ways to restart the debugged program.

Run

run

Soft restart debugger and program via a DebuggerRestart
exception.

See also

restart for another way to restart the debugged program.
quit, or kill for termination commands.

Restart

restart

Restart debugger and program via an exec() call. All state is lost,
and new copy of the debugger is used.

See also

run for another way to restart the debugged program. quit, or kill for termination commands.

Skip

skip [count]

Set the next line that will be executed. The line must be within the
stopped or bottom-most execution frame.

See also

step jump, continue, and finish provide other ways to progress execution.

Step (step into)

step [+ | - | < | > | !] [event…] [count]

Execute the current line, stopping at the next event.

With an integer argument, step that many times.

event is list of an event name which is one of: call,
return, line, exception c-call, c-return or c-exception.
If specified, only those stepping events will be considered. If no
list of event names is given, then any event triggers a stop when the
count is 0.

There is however another way to specify a single event, by
suffixing one of the symbols <, >, or ! after the command or on
an alias of that. A suffix of + on a command or an alias forces a
move to another line, while a suffix of - disables this requirement.
A suffix of > will continue until the next call. (finish will run
run until the return for that call.)

If no suffix is given, the debugger setting different-line
determines this behavior.

Examples:

step # step 1 event, *any* event
step 1 # same as above
step 5/5+0 # same as above
step line # step only line events
step call # step only call events
step> # same as above
step call line # Step line *and* call events

See also

next command. skip, jump (there’s no hop yet), continue, and finish provide other ways to progress execution.

 set [set-subcommand]

Modifies parts of the debugger environment.

You can give unique prefix of the name of a subcommand to get information
about just that subcommand.

Type set for a list of set subcommands and what they do. Type help set *
for just the list of set subcommands.

All of the “set” commands have a corresponding show command.

Set

Modifies parts of the debugger environment. You can see these
environment settings with the show command.

	Set Auto Eval

	Set Auto List

	Set Autopython

	Set Basename

	Set Cmdtrace

	Set Confirm

	Set Dbg_trepan

	Set Different

	Set Events

	Set Flush

	Set Highlight

	Set Listsize

	Set Maxstring

	Set Substition Pattern

	Set Skip

	Set Style

	Set Substitute

	Set Tempdir

	Set Trace

	Set Width

Set Auto Eval

set autoeval [on | off]

Evaluate unrecognized debugger commands.

Often inside the debugger, one would like to be able to run arbitrary
Python commands without having to preface Python expressions with
print or eval. Setting autoeval on will cause unrecognized
debugger commands to be eval’d as a Python expression.

Note that if this is set, on error the message shown on type a bad
debugger command changes from:

Undefined command: "fdafds". Try "help".

to something more Python-eval-specific such as:

NameError: name 'fdafds' is not defined

One other thing that trips people up is when setting autoeval is that
there are some short debugger commands that sometimes one wants to use
as a variable, such as in an assignment statement. For example:

s = 5

which produces when autoeval is on:

Command 'step' can take at most 1 argument(s); got 2.

because by default, s is an alias for the debugger step command.
It is possible to remove that alias if this causes constant problem.

See also

show autoeval

Set Auto List

set autolist [on | off]

Run the list command every time you stop in the
debugger.

With this, you will get output like:

-> 1 from subprocess import Popen, PIPE
(trepan2) next
(/users/fbicknel/Projects/disk_setup/sqlplus.py:2): <module>
** 2 import os
 1 from subprocess import Popen, PIPE
 2 -> import os
 3 import re
 4
 5 class SqlPlusExecutor(object):
 6 def __init__(self, connection_string='/ as sysdba', sid=None):
 7 self.__connection_string = connection_string
 8 self.session = None
 9 self.stdout = None
 10 self.stderr = None
(trepan2) next
(/users/fbicknel/Projects/disk_setup/sqlplus.py:3): <module>
** 3 import re
 1 from subprocess import Popen, PIPE
 2 import os
 3 -> import re
 4
 5 class SqlPlusExecutor(object):
 6 def __init__(self, connection_string='/ as sysdba', sid=None):
 7 self.__connection_string = connection_string
 8 self.session = None
 9 self.stdout = None
 10 self.stderr = None
(trepan2)

You may also want to put this this in your debugger startup file. See
Startup Profile

See also

show autolist

Set Autopython

set autopython [on | off]

Go into a Python shell on debugger entry.

See also

python

Set Basename

set basename [on | off]

Set short filenames in debugger output.

Setting this causes the debugger output to give just the basename for
filenames. This is useful in debugger testing or possibly showing
examples where you don’t want to hide specific filesystem and
installation information.

See also

show basename

Set Cmdtrace

set cmdtrace [on | off]

Set echoing lines read from debugger command files

See also

show cmdtrace

Set Confirm

set confirm [on | off]

Set confirmation of potentially dangerous operations.

Some operations are a bit disruptive like terminating the program.
To guard against running this accidentally, by default we ask for
confirmation. Commands can also be exempted from confirmation by suffixing
them with an exclamation mark (!).

See also

show confirm

Set Dbg_trepan

set dbg_trepan [on | off]

Set the ability to debug the debugger.

Setting this allows visibility and access to some of the debugger’s
internals. Specifically variable “frame” contains the current frame and
variable “debugger” contains the top-level debugger object.

See also

show dbg_trepan

Set Different

set different [on | off]

Set consecutive stops must be on different file/line positions.

By default, the debugger traces all events possible including line,
exceptions, call and return events. Just this alone may mean that for
any given source line several consecutive stops at a given line may
occur. Independent of this, Python allows one to put several commands in
a single source line of code. When a programmer does this, it might be
because the programmer thinks of the line as one unit.

One of the challenges of debugging is getting the granualarity of
stepping comfortable. Because of the above, stepping all events can
often be too fine-grained and annoying. By setting different on you can
set a more coarse-level of stepping which often still is small enough
that you won’t miss anything important.

Note that the step and next debugger commands have ‘+’ and ‘-’
suffixes if you wan to override this setting on a per-command basis.

See also

set trace to change what events you want to filter.
show trace.

Set Events

set events [event …]

Sets the events that the debugger will stop on. Event names are:

	
	c_call

	c_exception

	c_return

	
	call

	exception

	
	line

	return

all can be used as an abbreviation for listing all event names.

Changing trace event filters works independently of turning on or off
tracing-event printing.

Examples:

set events line # Set trace filter for line events only.
set events call return # Trace calls and returns only
set events all # Set trace filter to all events.

See also

set trace, show trace, and
show events

Set Flush

set flush [on | off]

Set flushing output after each write

See also

show flush

Set Highlight

set highlight [reset] {plain | light | dark | off}

Set whether we use terminal highlighting for ANSI 8-color terminals. Permissible values are:

	plain

	no terminal highlighting

	off

	same as plain

	light

	terminal background is light (the default)

	dark

	terminal background is dark

If the first argument is reset, we clear any existing color formatting
and recolor all source code output.

A related setting is style which sets the Pygments style for terminal
that support, 256 colors. But even here, it is useful to set
the highlight to tell the debugger for bold and emphasized text what
values to use.

Examples:

set highlight off # no highlight
set highlight plain # same as above
set highlight # same as above
set highlight dark # terminal has dark background
set highlight light # terminal has light background
set highlight reset light # clear source-code cache and
 # set for light background
set highlight reset # clear source-code cache

See also

show highlight and set style

Set Listsize

set listsize number-of-lines

Set the number lines printed in a list command by default

See also

show listsize

Set Maxstring

set maxstring number

Set the number of characters allowed in showing string values

See also

show maxstring

Set Substition Pattern

set patsub from-re replace-string

Add a substitution pattern rule replacing patsub with
replace-string anywhere it is found in source file names. If a
substitution rule was previously set for from-re, the old rule is
replaced by the new one.

In the following example, suppose in a docker container /mnt/project is
the mount-point for /home/rocky/project. You are running the code
from the docker container, but debugging this from outside of that.

Example:

set patsub ^/mmt/project /home/rocky/project

See also

set substitute

Set Skip

Set stopping before def or class (function or class) statements.

Classes may have many methods and stand-alone programs may have many
functions. Often there isn’t much value to stopping before defining a
new function or class into Python’s symbol table. (More to the point,
it can be an annoyance.) However if you do want this, for example
perhaps you want to debug methods is over-writing one another, then
set this off.

See also

show skip

Set Style

set style [pygments-style]

Set the pygments style in to use in formatting text for a 256-color terminal.
Note: if your terminal doesn’t support 256 colors, you may be better off
using –highlight=plain or –highlight=dark instead. To turn off styles
use set style none.

To list the available pygments styles inside the debugger, omit the style name.

Examples:

set style # give a list of the style names
set style colorful # Pygments 'colorful' style
set style fdasfda # Probably display available styles
set style none # Turn off style, still use highlight though

See also

show style and set highlight

Set Substitute

set substitute from-name to-path

Add a substitution rule replacing from-name into to-path in source file names.
If a substitution rule was previously set for from-name, the old rule
is replaced by the new one.

Spaces in “filenames” like <frozen importlib._bootstrap> messes up our normal shell
tokenization, so we have added a hack to ignore <frozen .. >.

So, for frozen files like <frozen importlib._bootstrap>, use importlib._bootstrap

Examples:

set substitute importlib._bootstrap /usr/lib/python3.4/importlib/_bootstrap.py
set substitute ./gcd.py /tmp/gcd.py

See also

set patsub

Set Tempdir

set tempdir directory

This is sometimes useful remote debugging where you might set up a
common shared location available between the debugged process and
the front end client.

Example:

set tempdir /code/tmp # /code is a shared directory

See also

show tempdir

Set Trace

set trace [on | off]

Set event tracing.

See also

set events, set trace, and
show trace

Set Width

set width number

Set the number of characters the debugger thinks are in a line.

See also

show width

Stack

Examining the call stack.

The call stack is made up of stack frames. The debugger assigns
numbers to stack frames counting from zero for the innermost
(currently executing) frame.

At any time the debugger identifies one frame as the “selected” frame.
Variable lookups are done with respect to the selected frame. When
the program being debugged stops, the debugger selects the innermost
frame. The commands below can be used to select other frames by
number or address.

	Backtrace (show call-stack)

	Frame (absolute frame positioning)

	Up (relative frame motion towards a less-recent frame)

	Down (relative frame motion towards a more-recent frame)

Backtrace (show call-stack)

backtrace [options] [count]

Print backtrace of all stack frames, or innermost count frames.

With a negative argument, print outermost -count frames.

An arrow indicates the ‘current frame’. The current frame determines
the context used for many debugger commands such as expression
evaluation or source-line listing.

opts are:

-d | –deparse - show deparsed call position
-s | –source - show source code line
-f | –full - locals of each frame
-h | –help - give this help

Examples:

backtrace # Print a full stack trace
backtrace 2 # Print only the top two entries
backtrace -1 # Print a stack trace except the initial (least recent) call.
backtrace -s # show source lines in listing
backtrace -d # show deparsed source lines in listing
backtrace -f # show with locals
backtrace -df # show with deparsed calls and locals
backtrace --deparse --full # same as above

See also

frame, info locals, deparse and list.

Frame (absolute frame positioning)

frame [thread-Name*|*thread-number] [frame-number]

Change the current frame to frame frame-number if specified, or the
current frame, 0, if no frame number specified.

If a thread name or thread number is given, change the current frame
to a frame in that thread. Dot (.) can be used to indicate the name of
the current frame the debugger is stopped in.

A negative number indicates the position from the other or
least-recently-entered end. So frame -1 moves to the oldest frame,
and frame 0 moves to the newest frame. Any variable or expression
that evaluates to a number can be used as a position, however due to
parsing limitations, the position expression has to be seen as a single
blank-delimited parameter. That is, the expression (5*3)-1 is okay
while (5 * 3) - 1) isn’t.

Examples:

frame # Set current frame at the current stopping point
frame 0 # Same as above
frame 5-5 # Same as above. Note: no spaces allowed in expression 5-5
frame . # Same as above. "current thread" is explicit.
frame . 0 # Same as above.
frame 1 # Move to frame 1. Same as: frame 0; up
frame -1 # The least-recent frame
frame MainThread 0 # Switch to frame 0 of thread MainThread
frame MainThread # Same as above
frame -2434343 0 # Use a thread number instead of name

See also

down, up, backtrace, and
info threads.

Up (relative frame motion towards a less-recent frame)

up [count]

Move the current frame up in the stack trace (to an older frame). 0 is
the most recent frame. If no count is given, move up 1.

See also

down and frame.

Down (relative frame motion towards a more-recent frame)

down [count]

Move the current frame down in the stack trace (to a newer frame). 0
is the most recent frame. If no count is given, move down 1.

See also

up and frame.

 show [subcommand]

A command for showing things about the debugger. You can give unique
prefix of the name of a subcommand to get information about just that
subcommand.

Type show for a list of show subcommands and what they do. Type help
show * for just a list of show subcommands. Many of the “show”
commands have a corresponding set command.

Show

	Show Aliases (show debugger command aliases)

	Show Args (show arguments when program is started)

	Show Autoeval

	Show Autolist

	Show Autopython

	Show Basename

	Show Cmdtrace

	Show Confirm

	Show Dbg_trepan

	Show Different

	Show Events

	Show Highlight

	Show Listsize

	Show Maxstring

	Show Skip

	Show Style

	Show Tempdir

	Show Trace

	Show Width

Show Aliases (show debugger command aliases)

show aliases [alias …| *]

Show command aliases. If parameters are given a list of all aliases
and the command they run are printed. Alternatively one can list
specific alias names for the commands those specific aliases are
attached to. If instead of an alias “*” appears anywhere as an alias
then just a list of aliases is printed, not what commands they are
attached to.

See also

alias

Show Args (show arguments when program is started)

show args

Show the argument list to give debugged program when it is started

Show Autoeval

show autoeval

Show Python evaluation of unrecognized debugger commands.

See also

set autoeval

Show Autolist

show autolist

Run a debugger ref:list <list> command automatically on debugger entry.

See also

set autolist

Show Autopython

show autopython

Show whether we go into a Python shell when automatically when the
debugger is entered.

See also

set autopython

Show Basename

show basename

Show Python evaluation of unrecognized debugger commands.

See also

set basename

Show Cmdtrace

show cmdtrace

Show debugger commands before running them

See also

set cmdtrace

Show Confirm

show confirm

Show confirmation of potentially dangerous operations

See also

show confirm

Show Dbg_trepan

Show debugging the debugger

See also

Set Dbg_trepan

Show Different

Show consecutive stops on different file/line positions

See also

set different

Show Events

show events

Show the kinds of events the debugger will stop on.

See also

set events

Show Highlight

show highlight

Show whether we use terminal highlighting.

See also

set highlight

Show Listsize

show listsize

Show the number lines printed in a list command by default

See also

set listsize

Show Maxstring

show maxstring

Show maximum string length to use in string-oriented output

See also

set maxstring

Show Skip

show skip

Show whether debugger steps over lines which define functions and classes

See also

set skip

Show Style

show style pygments-style

Show the pygments style used in formatting 256-color terminal text.

See also

set style and show highlight

Show Tempdir

show tempdir

Show directory where temporary files will be created.

See also

set tempdir

Show Trace

show trace

Show event tracing.

See also

set trace, show events

Show Width

show width

Show the number of characters the debugger thinks are in a line.

See also

set width

Support

	Alias (add debugger command alias)

	BPython (go into a bpython shell)

	Debug (recursively debug an expression)

	Help (Won’t you please help me if you can)

	IPython (go into an IPython shell)

	Macro (add a debugger macro)

	Python (go into a Python shell)

	Source (Read and run debugger commands from a file)

	Unalias (remove debugger command alias)

Alias (add debugger command alias)

alias alias-name debugger-command

Add alias alias-name for a debugger command debugger-comand.

Add an alias when you want to use a command abbreviation for a command
that would otherwise be ambigous. For example, by default we make s
be an alias of step to force it to be used. Without the alias, s
might be step, show, or set among others

Example:

alias cat list # "cat myprog.py" is the same as "list myprog.py"
alias s step # "s" is now an alias for "step".
 # The above example is done by default.

See also

unalias and show alias.

BPython (go into a bpython shell)

bpython [-d]

Note

this command is available only if bpython is installed

Run Python as a command subshell. The sys.ps1 prompt will be set to
trepan2 >>>.

If -d is passed, you can access debugger state via local variable
debugger.

To issue a debugger command use function dbgr(). For example:

dbgr('info program')

See also

python, and ipython.

Debug (recursively debug an expression)

debug python-expression

Enter a nested debugger that steps through the python-expression argument
which is an arbitrary expression to be executed the current
environment.

Help (Won’t you please help me if you can)

help [command [subcommand]|*expression*]

Without argument, print the list of available debugger commands.

When an argument is given, it is first checked to see if it is command
name.

If the argument is an expression or object name, you get the same
help that you would get inside a Python shell running the built-in
help() command.

If the environment variable $PAGER is defined, the file is
piped through that command. You’ll notice this only for long help
output.

Some commands like info, set, and show can accept an
additional subcommand to give help just about that particular
subcommand. For example help info line give help about the
info line command.

See also

examine and whatis.

IPython (go into an IPython shell)

ipython [-d]

Note

this command is available only if ipython is installed

Run Python as a command subshell. The sys.ps1 prompt will be set to
trepan2 >>>.

If -d is passed, you can access debugger state via local variable
debugger.

To issue a debugger command use function dbgr(). For example:

dbgr('info program')

See also

python, and bpython.

Macro (add a debugger macro)

macro macro-name lambda-object

Define macro-name as a debugger macro. Debugger macros get a list of
arguments which you supply without parenthesis or commas. See below for
an example.

The macro (really a Python lambda) should return either a String or an
List of Strings. The string in both cases is a debugger command. Each
string gets tokenized by a simple split() . Note that macro processing
is done right after splitting on ;;. As a result, if the macro
returns a string containing ;; this will not be interpreted as
separating debugger commands.

If a list of strings is returned, then the first string is shifted from
the list and executed. The remaining strings are pushed onto the command
queue. In contrast to the first string, subsequent strings can contain
other macros. ;; in those strings will be split into separate
commands.

Here is an trivial example. The below creates a macro called l=
which is the same thing as list .:

macro l= lambda: 'list .'

A simple text to text substitution of one command was all that was
needed here. But usually you will want to run several commands. So those
have to be wrapped up into a list.

The below creates a macro called fin+ which issues two commands
finish followed by step:

macro fin+ lambda: ['finish','step']

If you wanted to parameterize the argument of the finish command you
could do that this way:

macro fin+ lambda levels: ['finish %s' % levels ,'step']

Invoking with:

fin+ 3

would expand to: ['finish 3', 'step']

If you were to add another parameter for step, the note that the
invocation might be:

fin+ 3 2

rather than fin+(3,2) or fin+ 3, 2.

See also

alias, and info macro.

Python (go into a Python shell)

python [-d]

Run Python as a command subshell. The sys.ps1 prompt will be set to
trepan2 >>>.

If -d is passed, you can access debugger state via local variable
debugger.

To issue a debugger command use function dbgr(). For example:

dbgr('info program')

See also

ipython, and bpython.

Source (Read and run debugger commands from a file)

source [-v][-Y**|-N**][-c] file

Read debugger commands from a file named file. Optional -v switch
(before the filename) causes each command in file to be echoed as it
is executed. Option -Y sets the default value in any confirmation
command to be “yes” and -N sets the default value to “no”.

Note that the command startup file .trepanc is read automatically
via a source command the debugger is started.

An error in any command terminates execution of the command file
unless option -c is given.

Unalias (remove debugger command alias)

unalias alias-name

Remove alias alias-name.

See also

alias.

Manual Pages

	trepan2 - Python2 debugger

	trepan2c (Python2 client to connect to remote trepan session)

trepan2 - Python2 debugger

Synopsis

trepan2 [debugger-options] [–] [python-script [script-options …]]

Description

Run the Python2 trepan debugger from the outset.

Options

	-h, –help

	Show the help message and exit

	-x, –trace

	Show lines before executing them.

	-F, –fntrace

	Show functions before executing them.

	–basename

	Filenames strip off basename, (e.g. for regression tests)

	–client

	Connect to an existing debugger process started with the –server option

	-x FILE, –command= FILE

	Execute commands from FILE

	–cd= DIR

	Change current directory to DIR

	-confirm

	Confirm potentially dangerous operations

	–dbg_trepan

	Debug the debugger

	–different

	Consecutive stops should have different positions

	-e EXECUTE-CMDS, –exec= EXECUTE-CMDS

	list of debugger commands to execute. Separate the commands with ;;

	–highlight={light|dark|plain}

	Use syntax and terminal highlight output. “plain” is no highlight

	–private

	Don’t register this as a global debugger

	–post-mortem

	Enter debugger on an uncaught (fatal) exception

	-n, –nx

	Don’t execute commands found in any initialization files

	-o FILE, –output= FILE

	Write debugger’s output (stdout) to FILE

	-p PORT,–port= PORT

	Use TCP port number NUMBER for out-of-process connections.

	–server

	Out-of-process server connection mode

	–sigcheck

	Set to watch for signal handler changes

	-t TARGET, –target= TARGET

	Specify a target to connect to. Arguments should be of form, protocol:address

	–from_ipython

	Called from inside ipython

	–

	Use this to separate debugger options from any options your Python script has

See also

trepan3k (1), trepan2c (Python2 client to connect to remote trepan session) (1), trepan3kc

Full Documentation is available at http://python2-trepan.readthedocs.org

trepan2c (Python2 client to connect to remote trepan session)

Synopsis

trepan2c [debugger-options] [–] [python-script [script-options …]]

Description

Run the Python2 trepan debugger client to connect to an existing out-of-process Python trepan session

Options

	-h, –help

	Show the help message and exit

	-x, –trace

	Show lines before executing them.

	-H IP-OR-HOST, –host= IP-OR-HOST

	connect to IP or HOST

	-P NUMBER, –port= *NUMBER

	Use TCP port number NUMBER for out-of-process connections.

	–pid=*NUMBER*

	Use PID to get FIFO names for out-of-process connections.

See also

trepan3k (1), trepan2c (Python2 client to connect to remote trepan session) (1), trepan3kc

Full Documentation is available at http://python2-trepan.readthedocs.org

Index

 A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

A

 	
 	alias

B

 	
 	backtrace

 	
 	bpython

 	break

C

 	
 	clear

 	
 	condition

 	continue

D

 	
 	debug

 	delete

 	deparse

 	
 	disable

 	disassemble

 	display

 	down

E

 	
 	edit

 	enable:

 	
 	eval

 	examine

 	exit

F

 	
 	finish

 	
 	frame

H

 	
 	help

I

 	
 	
 info

 	args

 	break

 	builtins

 	code

 	display

 	files

 	frame

 	globals

 	line

 	lines

 	locals

 	macro

 	pc

 	program

 	return

 	signals

 	source

 	threads

 	
 	ipython

J

 	
 	jump

K

 	
 	kill

L

 	
 	list

M

 	
 	macro

N

 	
 	next

P

 	
 	pdef

 	pp

 	
 	pr

 	pydocx

 	python

Q

 	
 	quit

R

 	
 	restart

 	
 	run

S

 	
 	
 set

 	autoeval

 	autolist

 	autopython

 	basename

 	cmdtrace

 	confirm

 	dbg_trepan

 	different

 	events

 	flush

 	highlight

 	listsize

 	maxstring

 	patsub

 	skip

 	style

 	substitute

 	tempdir

 	trace

 	width

 	
 show

 	aliases

 	args

 	autoeval

 	autolist

 	autopython

 	basename

 	cmdtrace

 	confirm

 	dbg_trepan

 	different

 	events

 	highlight

 	listsize

 	maxstring

 	skip

 	style

 	tempdir

 	trace

 	width

 	
 	skip

 	source

 	step

T

 	
 	tbreak

U

 	
 	unalias

 	
 	undisplay

 	up

W

 	
 	whatis

Syntax for Source-Code Locations

A number of commands like “break”, and “list” have locations
embedded in them.

A location can be either a linespec an explicit function, or a module linespec

Linespec

A linespec has a colon-separated pair of a source-location parameter
and a line number. A source location is a file path or a module name.

In [path:]*linenum* , the line linenum in the source file path
is indicated. When path is omitted, some default value is given,
usually it is the path associated with the current frame. Or in
list-like commands it is the path what was most-recently set; the
most-recently set path starts out as the current frame’s path.

If filename is a relative file name, then Python’s sys.path items
(which are assumed to be a list of directories) is tried in the order
given. Often the current working directory or . is in that
list. Note that . can be set with cd debugger command.

To specify a path containing non-alphanumeric characters, specifically
blanks (” “), backslashes (“”), or quotes, in there are a number of
quoting mechanisms one can use. You can enclose the path in single
quotes, double quotes or triple double as you would do in Python

Examples:

10 # line 10 of the most-recently used path
myfile.py:2 # line 2 of myfile.py where the directory name is
 #resolved from `sys.path`
./../myfile.py:3 # line 3 of the parent of some directory in `sys.path`
/tmp/foo.py:4 # line 4 of absolute path /tmp/foo.py
"foo's.py":1" # One way to specify a path with a quote
'''foo's.py"''':2 # Another way to specify a path with a quote
'c:\foo.bat':1" # One way to specify a Windows file name,
'/My Docs/foo.py':1" # One way to specify path with blanks in it

function()

Specifies the line that function function starts on. This is the
line that contains def. We get this information from the Python code
object, in particular the co_firstlineno field.

contrast to gdb, use parenthesis at the end of the function name
to indicate this is a function.

You can also specify functions though the values in Python program
variables or the function indicated in an instance method.

For example consider this program:

class Foo():
 def food(): return
f = Foo()
b = [f.food]
x = 2

If you are stopped at the last line x = 2. You can specify the function food
as either of these ways:

Foo.food()
f.food()
b[0]()

Although in the last example b[0]() the expressions can get a bit
complex, to simplify parsing, we don’t allow arbitrary expressions. We
currently allow only alphanumeric symbols as you’d find in valid
Python identifiers along with extra symbols “.”, “[”, and “]”. This
means b[i+1]() would be invalid because it contains “+”. So would
b[“foo”](), assuming b were a dictionary, because of the quote
symbol.

Right now we don’t allow line offsets from functions. If the need
arises we may do so in the future.

module linespec

While functions need a closing () to indicate their function-ness,
Python module names don’t. What we do here is first look up the name
as a file path. If that’s not found we look up the file as a Python
module name. Modules have to have been imported before it accepted in
the debugger. However you can run eval (or autoeval) to have
Python import the module inside the debugger.

In sum file names are distinguished from method names purely by
semantic means. However gdb and thus this debugger has no means to
explicitly tag names as a file path or Python module name. We, but not
gdb, make a distinction between functions versus modules and file
paths.

Examples:

os.path:45 # Line 45 of the file that contains os.path
os:1 # First line of module os
os # Invalid! (for now)

Note that the last line is invalid. In contrast to functions, you need
to give a line numbers. Also it is assumed there is not a file
called os in the last example line. Nor a file called os.path in
the first example.

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 trepan2 - a gdb-like debugger for Python 2

 		
 Features

 		
 Exact location information

 		
 Debugging Python bytecode (no source available)

 		
 Source-code Syntax Colorization

 		
 Command Completion

 		
 Terminal Handling

 		
 Smart Eval

 		
 More Stepping Control

 		
 Step Granularity

 		
 Event Filtering and Tracing

 		
 Event Tracing of Calls and Returns

 		
 Debugger Macros via Python Lambda expressions

 		
 Byte-code Instruction Introspection

 		
 Debugger Command Arguments can be Variables and Expressions

 		
 Out-of-Process Debugging

 		
 Egg, Wheel, and Tarballs

 		
 Modularity

 		
 Documentation

 		
 How to install

 		
 Using pip

 		
 Using easy_install

 		
 Entering the Trepan Debugger

 		
 Invoking the Debugger Initially

 		
 Calling the debugger from IPython

 		
 Installing the IPython extension

 		
 Trepan IPython Magic Functions

 		
 Calling the debugger from an Interactive Python Shell

 		
 Calling the debugger from your program

 		
 Calling the debugger from pytest

 		
 Set up an exception handler to enter the debugger on a signal

 		
 Set up an exception handler allow remote connections

 		
 Startup Profile

 		
 Command Syntax

 		
 Syntax for Address Ranges

 		
 Examples

 		
 Debugger Command Syntax

 		
 Command examples

 		
 Syntax for Indicating a Filename

 		
 Filename Examples:

 		
 Syntax for List Ranges

 		
 Examples

 		
 Command suffixes which have special meaning

 		
 Trepan Command Reference

 		
 Breakpoints

 		
 Break (set a breakpoint)

 		
 Clear (Remove all breakpoints on a line)

 		
 Condition (add condition to breakpoint)

 		
 Delete (remove breakpoints)

 		
 Disable (disable breakpoints)

 		
 Enable (enable breakpoints)

 		
 Tbreak (temporary breakpoint)

 		
 Data

 		
 Deparse (CPython bytecode deparser)

 		
 Disassemble (CPython disassembly)

 		
 Display (set display expression)

 		
 Eval (evaluate Python code)

 		
 Examine

 		
 Pdef

 		
 Pp (pretty print expression)

 		
 Pr (print expression)

 		
 Pydocx (show pydoc)

 		
 Undisplay (cancel a display expression)

 		
 Whatis

 		
 Files

 		
 Edit

 		
 List (show me the code!)

 		
 Info

 		
 Info Args

 		
 Info Break

 		
 Info Builtins

 		
 Info Code

 		
 Info Display

 		
 Info Files

 		
 Info Frame

 		
 Info Globals

 		
 Info Line

 		
 Info Lines

 		
 Info Locals

 		
 Info Macro

 		
 Info PC

 		
 Info Program

 		
 Info Return

 		
 Info Signals

 		
 Info Source

 		
 Info Threads

 		
 Running

 		
 Continue

 		
 Exit

 		
 Finish (step out)

 		
 Jump

 		
 Kill

 		
 Next (step over)

 		
 Quit

 		
 Run

 		
 Restart

 		
 Skip

 		
 Step (step into)

 		
 Set

 		
 Set Auto Eval

 		
 Set Auto List

 		
 Set Autopython

 		
 Set Basename

 		
 Set Cmdtrace

 		
 Set Confirm

 		
 Set Dbg_trepan

 		
 Set Different

 		
 Set Events

 		
 Set Flush

 		
 Set Highlight

 		
 Set Listsize

 		
 Set Maxstring

 		
 Set Substition Pattern

 		
 Set Skip

 		
 Set Style

 		
 Set Substitute

 		
 Set Tempdir

 		
 Set Trace

 		
 Set Width

 		
 Stack

 		
 Backtrace (show call-stack)

 		
 Frame (absolute frame positioning)

 		
 Up (relative frame motion towards a less-recent frame)

 		
 Down (relative frame motion towards a more-recent frame)

 		
 Show

 		
 Show Aliases (show debugger command aliases)

 		
 Show Args (show arguments when program is started)

 		
 Show Autoeval

 		
 Show Autolist

 		
 Show Autopython

 		
 Show Basename

 		
 Show Cmdtrace

 		
 Show Confirm

 		
 Show Dbg_trepan

 		
 Show Different

 		
 Show Events

 		
 Show Highlight

 		
 Show Listsize

 		
 Show Maxstring

 		
 Show Skip

 		
 Show Style

 		
 Show Tempdir

 		
 Show Trace

 		
 Show Width

 		
 Support

 		
 Alias (add debugger command alias)

 		
 BPython (go into a bpython shell)

 		
 Debug (recursively debug an expression)

 		
 Help (Wonâ��t you please help me if you can)

 		
 IPython (go into an IPython shell)

 		
 Macro (add a debugger macro)

 		
 Python (go into a Python shell)

 		
 Source (Read and run debugger commands from a file)

 		
 Unalias (remove debugger command alias)

 		
 Manual Pages

 		
 trepan2 - Python2 debugger

 		
 Synopsis

 		
 Description

 		
 Options

 		
 See also

 		
 trepan2c (Python2 client to connect to remote trepan session)

 		
 Synopsis

 		
 Description

 		
 Options

 		
 See also

_static/up.png

_static/ajax-loader.gif

