

Welcome to python_wow’s documentation!

What is python_wow?

python_wow is a console turn-based RPG game written in Python 3. It is inspired by the Warcraft universe.
The game works through user text commands. The goal with this pet project is to create a somewhat
complex game with good code structure, tests and documentation but most important of all: to learn how to
handle a project bigger than 500 lines of code.
python_wow does not use pygame/rpeg intentionally, the motive being to see how far I can go writing my own RPG logic.

Contents:

	Help

	Basics

	Starting out

	Creating/Loading a character

	Creating a character

	Loading a character

	Saving a character

Indices and tables

	Index

	Module Index

	Search Page

Help

Need help or have any questions regarding the projects?

Feel free to e-mail: familyguyuser192@windowslive.com

Basics

For placeholders, this article will use these symbols {}

Starting out

When first starting the game, you’re prompted to create a new character.
Immediately after creation, you’re popped into the world and the monsters are shown.
You have the choice to type “?” to see all available commands or engage an attack on a monster with

engage {monsterName}

	You swing at the monster using the

	attack

	command and all is well. Once you kill the monster, loot drops from it.

	
	Loot dropped:

	3 gold

Wolf Meat - Miscellaneous Item

Wolf Pelt - Miscellaneous Item

Strength Potion - Potion (Increases strength by 15 for 5 turns.)

	You can take specific items with the

	take {itemName}

	command, take everything with the

	take all

	command or simply exit the menu, using the (you guessed it)

	exit

command.

But enough about the action of playing the game, we can go on forever with that, let’s see how it works under the hood.

Creating/Loading a character

Creating/Loading a character

We get the character, which is an object of the class Character (more on that later) with this function in our main.py file:

from start_game_prompt import get_player_character
main_character = get_player_character()

In the start_game_prompt, we handle user input to see if we want to load or create a new character.

Creating a character

The function, stripped down to it’s essentials:

def handle_create_character() -> Character:
 class_choice = str.lower(input())

 while class_choice not in AVAILABLE_CLASSES: # check for valid class
 class_choice = str.lower(input())

 character_name = input()

 if class_choice == 'paladin':
 character = Paladin(name=character_name)

 return character

Really really straightforward, what we do is create a new Paladin object with default values.
Part of the Paladin constructor:

def __init__(self, name: str, level: int = 1, health: int = 12, mana: int = 15, strength: int = 4):

Loading a character

We do this by calling the load_saved_character function from the loader.py file.:

from loader import load_saved_character, load_all_saved_characters_general_info
character = load_saved_character(character_name)

I think the docstring to the method explains things fairly well:

"""
This function loads the information about a saved chacacter in the saved_character DB table.

 name, class, level, loaded_scripts_ID, killed_monsters_ID, completed_quests_ID, inventory_ID, gold
 Netherblood, Paladin, 10, 1, 1, 1, 1, 23

The attributes that end in ID like loaded_scripts_ID are references to other tables.

For more information:
https://github.com/Enether/python_wow/wiki/How-saving-a-Character-works-and-information-about-the-saved_character-database-table.
"""

In steps:

	We query the database and save the IDs used for sub-tables:

sv_char_reader = cursor.execute("SELECT * FROM saved_character WHERE name = ?", [name]).fetchone()
char_loaded_scripts_ID = sv_char_reader[DBINDEX_SAVED_CHARACTER_LOADED_SCRIPTS_TABLE_ID]
char_killed_monsters_ID = sv_char_reader[DBINDEX_SAVED_CHARACTER_KILLED_MONSTERS_ID]
char_completed_quests_ID = sv_char_reader[DBINDEX_SAVED_CHARACTER_COMPLETED_QUESTS_ID]
char_equipment_ID = sv_char_reader[DBINDEX_SAVED_CHARACTER_EQUIPMENT_ID]
char_inventory_ID = sv_char_reader[DBINDEX_SAVED_CHARACTER_INVENTORY_ID]

	
	Using the IDs, we call a function associated with each sub-table.

	
	load_saved_character_loaded_scripts returns a set, containing the name of special in-game scripts that the character has already seen, because we do not want him to see them again.

	load_saved_character_killed_monsters returns a set, containing the unique GUID for every special monster that the character has killed. Only monsters that should be killed once in the game are added here.

	load_saved_character_completed_quests returns a set, containing the names of the character’s completed quests. This, like the previous two, is stored so as to not load the quests in the game again.

	load_saved_character_inventory returns a dictionary, holding the inventory of the player as it is stored in the Character class, Key: item_name, Value: tuple(object of class Item, int item_count)

	load_saved_character_equipment returns a dictionary, holding the equipment of the player as it is stored in the Character class. Key: the equipment’s slot e.g: “Shoulderpad”, Value: an object of class Item

In the DB, the actual equipment’s value is stored as the item’s ID. In the function, we use a list comprehension to convert all the loaded IDs into objects of class Item:

saved_equipment_info = [load_item(id) if id is not None else None for id in saved_equipment_info]

Saving a character

A character is saved in one of three scenarios:

	He dies and given the choice to revive, the user declines.

	The user types in the save command

	The user quits the game in the conventional way, using Ctrl-C from the command line.

Saving a character is handled by the save_character command in the models/characters/saver.py file.
There, we generate IDs for the saved character sub-tables or load them from the DB, if the character has been saved before.

We save the character’s info in the main table:

char_to_save = SavedCharacterSchema(name=character.name, character_class=character_class, level=character_level, gold=character_gold,
 scripts_id=character_loaded_scripts_id, monsters_id=character_killed_monsters_id,
 quests_id=character_completed_quests_id, inventory_id=character_inventory_id,
 head_id=headpiece_id, shoulder_id=shoulderpad_id, necklace_id=necklace_id,
 chestguard_id=chestguard_id, belt_id=belt_id, bracer_id=bracer_id,
 gloves_id=gloves_id, leggings_id=leggings_id, boots_id=boots_id)
session.add(char_to_save)
session.commit()

It is worth noting that before inserting rows into the database, each function calls the delete_rows_from_table:

def delete_rows_from_table(table_name: str, id: int):
"""
This function will delete every row in TABLE_NAME with an id of ID
:param table_name: a string -> "saved_character_loaded_scripts" for example
:param id: the id of the rows we want to delete -> 1

The function is used whenever we want to save new information. To save the new updated information, we have to
delete the old one first.
"""
if table_name in ALLOWED_TABLES_TO_DELETE_FROM:
 session.query(ALLOWED_TABLES_TO_DELETE_FROM[table_name]).filter_by(id=id).delete()
 session.commit()
else:
 raise Exception(f'You do not have permission to delete from the {table_name} table!')

Finally, we save each sub-table:

save_loaded_scripts(character_loaded_scripts_ID, character.loaded_scripts)
save_killed_monsters(character_killed_monsters_ID, character.killed_monsters)
save_completed_quests(character_completed_quests_ID, character.completed_quests)
save_inventory(character_inventory_ID, character.inventory)

The functions in there are pretty straightforward, the Character class has sets for the scripts he’s loaded, special monsters he’s killed, quests he’s completed and inventory he has. In the functions above, we simply iterate through the sets and insert a row for each value.

Next:

Character Basics

Index

Disclaimer

The following code is heavily commented for presentation purposes. While the real code does have a fair
bit of comments, they’re not as over-abundant and obvious as here.

Character

This is the class for the player’s character. The main character of the game.
It starts off by inheriting another class called LivingThing:

class LivingThing:
 """
 This is the base class for all things _alive - characters, monsters and etc.
 """
 def __init__(self, name: str, health: int = 1, mana: int = 1, level: int = 1):
 self.name = name # as a string, the name of the LivingThing
 self.health = health # as an integer, the CURRENT hit points.
 #(this changes while fighting)
 self.max_health = health # maximum static hit points.
 #(this does not change while fighting)
 self.mana = mana # same as health but for mana points,
 #typically used as a resource for casting spells
 self.max_mana = mana # same as max_health
 self.level = level # the level of the LivingThing
 self.absorption_shield = 0 # holds as an integer the hit
 #points the LivingThing has as absorption-shield points.
 #Basically means how much damage it can absorb until it starts losing health

 self.attributes = {self.KEY_ARMOR: 0} # a dictionary holding the
 #amount of attributes the LivingThing currently has.

 self._alive = True # private boolean holding information if the LivingThing is alive
 self._in_combat = False # private boolean holding information
 #if the LivingThing is in combat (fighting with a monster, etc)
 self.buffs = {} # dict Key: an instance of class Buff,
 #Value: The turns it has left to be active, int
 # buffs is a dictionary holding instances of the class Buff, more on that later.

Here is the character class:

class Character(LivingThing):
 # keys are used to access the level_stats
 # dictionary that holds information on stats to update on each level up
 KEY_LEVEL_STATS_HEALTH = 'health'
 KEY_LEVEL_STATS_MANA = 'mana'
 # these keys are used to access the attributes
 # dictionary which holds information on the character's stats
 KEY_STRENGTH = 'strength'
 KEY_ARMOR = 'armor'
 KEY_AGILITY = 'agility'
 KEY_BONUS_HEALTH = 'bonus_health'
 KEY_BONUS_MANA = 'bonus_mana'
 spell_cooldowns = {} # dictionary that holds
 # Key: Spell Name(str), Value: It's cooldown in turns (int)

 def __init__(self, name: str, health: int = 1, mana: int = 1, strength: int = 1, agility: int = 1,
 loaded_scripts: set=set(), killed_monsters: set=set(), completed_quests: set=set(),
 saved_inventory: dict={'gold': 0}, saved_equipment: dict=CHARACTER_DEFAULT_EQUIPMENT):
 super().__init__(name, health, mana, level=1)
 self.min_damage = 0 # the minimum amount of damage
 #this Character can deal on an auto-attack
 self.max_damage = 1 # the maximum amount of damage
 #this Character can deal on an auto-attack
 self.equipped_weapon = Weapon(name="Starter Weapon", item_id=0) # The weapon the character has equipped
 self.experience = 0 # the amount of experience points
 #this character currently has. Experience Points are used to gain
 #levels
 self.xp_req_to_level = 400 # the amount of experience points
 #needed to get to the next level. It is updated when the character levels up

 self.bonus_health = 0 # variable holding the amount of bonus health the
 #character has accumulated at this very moment from Buffs and etc.
 #Stored as a variable to be able to easily remove it from the max_health once the Buff expires
 self.bonus_mana = 0 # analogous to bonus_health

 # dictionary holding information on the amount of
 #attributes the character has. More on that here
 self.attributes = {self.KEY_STRENGTH: strength, self.KEY_ARMOR: 75,
 self.KEY_AGILITY: agility, self.KEY_BONUS_HEALTH: 0,
 self.KEY_BONUS_MANA: 0} # dictionary holding attributes, KEY: strength, Value: 5

 # the zone and subzone the character is currently in
 self.current_zone = "Northshire Abbey"
 self.current_subzone = "Northshire Valley"

 self.loaded_scripts = loaded_scripts # holds the scripts
 #that the character has seen (which should load only once)
 self.killed_monsters = killed_monsters # a set that
 #holds the GUIDs of the creatures that
 #the character has killed (and that should not be killable a second time)

 self.completed_quests = completed_quests
 # a set that holds the name of the quests that the character has completed

 # a dictionary of dictionaries holding information about the amount
 #of stats a character should get according to the level he has just
 #reached. ex: {5: {health: 10, mana: 5}} - meaning when the character
 #gets to level 5, he will receive 10 health and 5 mana points as a reward
 self._LEVEL_STATS = load_character_level_stats()

 # a dictionary holding information about how much XP the character
 #needs to level up when at a certain level.
 # ex {2: 800} means that at level 2, the character needs 800 XP to reach level 3
 self._REQUIRED_XP_TO_LEVEL = load_character_xp_requirements()

 # dictionary holding as a key: the unique ID of a quest and as a value:
 #an instance of the class Quest. More on that here
 self.quest_log = {}

 # dictionary holding information about the items the character has in his inventory.
 #Like commented: the key is the name of the item he has and the value
 #is a tuple of a object of the Item class and an integer, accounting for how many
 #times he has that item.
 #ex: Worn Axe: {<Weapon>, 2} means that the character has 2 Worn Axes in his inventory
 self.inventory = saved_inventory # dict Key: str, Value: tuple(Item class instance, Item Count)

 # a dictionary holding the current equipment of the character.
 #the keys are as a string - the name of the slot for gear. ex:
 #Shoulder and the value is an object of class Equipment, which inherits Item More on that here
 self.equipment = saved_equipment # dict Key: Equipment slot, Value: object of class Equipment

 # this method iterates through the equipment of a character
 #and adds up the attribute sto the self.attributes dictionary.
 self._handle_load_saved_equipment() # add up the attributes for our saved_equipment

As you can see, lots of stuff. Now let me present some basic functions of the Character class

It’s worth noting that whenever we stop fighting a monster (leave combat), we regen back to full hp/mana:

def leave_combat(self):
 self._in_combat = False
 self._regenerate()
def _regenerate(self):
 self.health = self.max_health
 self.mana = self.max_mana

Dealing damage

Speaking of fighting, let’s see how we deal damage:

def get_auto_attack_damage(self, target_level: int) -> Damage:
 # get the base auto attack damage
 damage_to_deal = random.randint(int(self.min_damage), int(self.max_damage) + 1)

Takes a random integer between the minimum and maximum auto attack damage:

factor in the level difference
damage_to_deal = self._calculate_level_difference_damage(damage_to_deal, target_level)

Factors in the level difference of the attacker and victim, which is, long story short:
10% bonus for every level difference in respect to both sides. Meaning that if the character is level 5 and the victim
is level 10, the character will deal 50% less damage. Vice-versa if the character is level 10 and the victim - level 5, the
character will deal 50% more damage.:

return Damage(phys_dmg=damage_to_deal)

Returns an object of class Damage with it’s phys_dmg variable set to the amount of auto attack damage.

Taking Damage

You can’t deal damage without taking any:

def take_attack(self, monster_name:str, damage: Damage, attacker_level: int):
 damage = self._apply_armor_reduction(damage, attacker_level)
 damage = self._apply_damage_absorption(damage)
 print("{0} attacks {1} for {2}!".format(monster_name, self.name, damage))
 self._subtract_health(damage)

	We reduce the damage according to the armor the character has:

def _apply_armor_reduction(self, damage: Damage, attacker_level: int) -> Damage:
"""
This method applies the armor reduction to a blow, the formula is as follows:
Percentage to Reduce = Armor / (Armor + 400 + 85 * Attacker_Level)
:param damage: the raw damage
:return: the damage with the applied reduction
"""
armor = self.attributes[self.KEY_ARMOR]
reduction_percentage = armor / (armor + 400 + 85 * attacker_level) # we get the percentage of damage to reduce

Note

We take only the .phys_dmg property of the Damage class and leave the magical damage untouched

damage_to_deduct = damage.phys_dmg * reduction_percentage # get the damage we need to deduct
reduced_damage = damage.phys_dmg - damage_to_deduct # deduct the damage

return Damage(phys_dmg=reduced_damage, magic_dmg=damage.magic_dmg)

	Then, we direct as much damage as we can to the Character’s absorption shield:

def _apply_damage_absorption(self, damage: Damage, to_print=False) -> Damage:
 """
 This method subtracts the absorption (if any) from the damage
 :param to_print: A boolean indicating if we want to actually subtract the damage from the shield. If it's true,
 we're getting the damage for the sole reason to print it only, therefore we should not modify anything
 :return Tuple(Damage, absorbed(float)
 """

 if self.absorption_shield: # if there is anything to absorb
 # lowers the damage and returns our shield
 if not to_print: # we want to modify the shield
 self.absorption_shield = damage.handle_absorption(self.absorption_shield)

Note

The Damage class has a method that deducts the damage given an absorption shield value. More on that here

The to_print boolean variable is used when we want to modify the damage variable only to print it later.

To stress on it: to_print is True only when the returned variable of _apply_damage_absorption is used for printing exclusively,
not touching the Character’s health/absorption shield at all.:

 else:
 damage.handle_absorption(self.absorption_shield) # only modify the specific damage in order to print it

return damage

	Finally, we subtract the damage from the Character’s health:

def _subtract_health(self, damage: Damage):
 """ This method is called whenever the health of the Character is damaged """
 self.health -= damage
 self.check_if_dead()

Well, I can’t just leave you there without letting you see the check_if_dead method!:

def check_if_dead(self):
 if self.health <= 0:
 self._die()

def _die(self):
 self._alive = False # super()._die()
 print("Character {} has died!".format(self.name))

Join us next time where we delve into the zones system of the game and the overall loading of monsters/npcs

Zones

Disclaimer

The following code is heavily commented for presentation purposes. While the real code does have a fair
bit of comments, they’re not as over-abundant and obvious as here.

Zones

Long story short

In general, all the Zones are split into SubZones. The actual storage of monsters/npcs is on a subzone basis.
The Zone class is sort of a wrapper object that holds all our subzones together and holds the current subzone’s information in it.
This approach gives us easy access to monsters/etc. of the current subzone we are in and gives us an easy way to store
information about changes in that subzone when we are not in it.

Long story

If you didn’t notice, or maybe I didn’t show you, we have a pre-defined constant dictionary of ZONES in our main.py:

"line 11 in main.py"
ZONES = {"Northshire Abbey": None}
"Northshire Abbey is considered the starter zone for every character in the game"

which we populate with an instance of our starter zone’s class Northshire Abbey:

"line 17 in main.py"
ZONES["Northshire Abbey"] = NorthshireAbbey(main_character)

Okay well what the hell is all of this? To understand let’s delve into the zones folder in the module holding the base classes for zones - zone.py:

class Zone:
 # the _map that shows us where we can go from our current subzone
 zone_map = {} # type: dict - key: current_subzone: str, value: A list of subzones: str which we can go to
 zone_name = "" # name of the zone
 starter_subzone = "" # the subzone you start in
 loaded_zones = {} # dictionary that will hold the subzone class objects

 # the cs in cs_alive_monsters and similar names stands for Current Subzone

The alive monsters/npcs in the subzone. More on these _alive_monsters and _monster_guid_name_set::

cs_alive_monsters, cs_monsters_guid_name_set = {}, set()
cs_alive_npcs, cs_npcs_guid_name_set = {}, set() # the alive npcs in the subzone

cs_available_quests = {} # the subzone's quests that are available to the character. (A quest which the character finished is removed from here)
the current subzone's map, a list of string representing to which subzone we can go from the current one
this is literally taken from the zone_map dictionary using the curr_subzone as key
cs_map = []
curr_subzone = "" # the current subzone the character is in

I feel like this isn’t doing you much of a favor explaining how it works, so I’ll jump onto an example of it’s implementation in northshire_abbey.py:

class NorthshireAbbey(Zone):
 # the _map that shows us where we can go from our current subzone
 # ex: from the subzone Northshire Vineyards we can go to either Northshire Valley or A Peculiar Hut
 zone_map = {"Northshire Valley": ["Northshire Vineyards"],
 "Northshire Vineyards": ["Northshire Valley", "A Peculiar Hut"],
 "A Peculiar Hut": ["Northshire Vineyards"]}
 zone_name = "Northshire Abbey"
 starter_subzone = "Northshire Valley"
 # dictionary that will hold the subzone class objects
 # here we will subzone class objects so that we're able to store
 # information like alive monsters, available quests and etc easily upon navigation from zone to zone
 loaded_zones = {"Northshire Valley": None,
 "Northshire Vineyards": None,
 "A Peculiar Hut": None}

 def __init__(self, character):
 super().__init__() # the Zone parent class does not have an __init__ method
 # here we create an object of class SubZone, more on that in a bit
 subzone_object = NorthshireValley(name="Northshire Valley", parent_zone_name=self.zone_name,
 zone_map=self.zone_map["Northshire Valley"],
 character=character)
 self.cs_alive_monsters, self.cs_monsters_guid_name_set = subzone_object.get_monsters()
 self.cs_alive_npcs, self.cs_npcs_guid_name_set = subzone_object.get_npcs()
 self.cs_available_quests = subzone_object.get_quests()
 self.cs_map = subzone_object.get_map_directions()
 self.curr_subzone = "Northshire Valley"
 self.loaded_zones["Northshire Valley"] = subzone_object # we attach the subzone object to our loaded_zones dictionary

So, ignoring the SubZone class and method for a while, we continue onto the methods of the NorthshireAbbey class:

def move_player(self, current_subzone: str, destination: str, character):
 """
 :param current_subzone: the subzone the character is in
 :param destination: the subzone he wants to go in
 :return: a boolean indicating if the move is possible
 """
 if current_subzone in self.zone_map.keys() and current_subzone == self.curr_subzone:

 if destination in self.zone_map[current_subzone] and destination in self.loaded_zones.keys():
 # Before moving:
 # update the information for our current in case we've killed monsters or done quests for example
 self._update_subzone_attributes(current_subzone)

Here we updated the subzone’s attributes before leaving the zone
Next is a hardcoded script to block the player from entering A Peculiar Hut if the Monster Garrick Padfoot is alive:

if destination == "A Peculiar Hut":
 # this means we are in Northshire Vineyards
 if self.GUID_GARRY_PADFOOT in self.cs_alive_monsters.keys(): # if garry padfoot is alive
 print("Garrick Padfoot is blocking the way.")
 return 0

if not self.loaded_zones[destination]: # if we don't have the destination's attributes loaded load them
 self._load_zone(destination, character)

self.curr_subzone = destination

We move, therefore update our attributes
self._update_attributes(destination)

This is different from the update_subzone_attributes method we called above, as this one changes the attributes in the ZONE class.
Basically loading up the creatures from the subzone we’re entering onto our Zone object.

To enter a zone, we need to create the class object first. This is where _load_zone comes to help:

def _load_zone(self, subzone: str, character):
 # if we have not loaded the zone before, we need to initialize it's class and put it in the loaded_zones
 if subzone == {ZONENAME}:
 self.loaded_zones[{ZONENAME}] = {ZONENAME}(name=subzone,
 parent_zone_name=self.zone_name,
 zone_map=self.zone_map[subzone],
 character=character)

This if check is repeated for each subzone in our main Zone.

So… this obviously loads the SubZone class. But what the heck is it? Time to find out!:

class SubZone:
 def __init__(self, name: str, parent_zone_name: str, zone_map: list, character):
 self.name = name
 self.parent_zone_name = parent_zone_name
 self._map = zone_map # the _map that shows us where we can go from here

 self._alive_monsters, self._monster_guid_name_set = load_monsters(self.parent_zone_name, self.name, character)

_alive_monsters and _monster_guid_name_set:

_alive_monsters is a dictionary, the Key of which holds the unique GUID (Database ID) for a given Monster(in the creatures DB table).
As a value, the _alive_monsters dict holds an object of class Monster associated with that specific monster.

The _monster_guid_name_set is a set of TUPLES, which hold the GUID of a monster and it’s name. This is essentially what connects
a monster’s name to it’s Monster object in the _alive_monsters dictionary.

Examples:

" in-game print of _alive_monsters "
{1: <entities.Monster object at 0x01A853F0>, 2: <entities.Monster object at 0x01A85B30>}
" in-game print of _monster_guid_name_set "
{(5, 'Wolf'), (2, 'Wolf'), (1, 'Wolf'), (4, 'Wolf'), (3, 'Wolf')}

self._alive_npcs, self._npc_guid_name_set = load_npcs(self.parent_zone_name, self.name)

The variables here are analogous to the monsters’

self._quest_list = load_quests(self.parent_zone_name, self.name, character)

_quest_list is a dictionary, thet Key of which holds the name of the quest and it’s value is a object of class Quest More on Quests here

SubZone summary

The SubZone class essentially is a container with a name that gets loaded with
specific monsters/npcs/quests associated with it and holds the information for them.
It has get and set(actually called update) methods in it for getting/updating the monsters/npcs/quests but they are not worth showing here.

Let’s continue on examining our game!

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to python_wow’s documentation!

 		
 Help

 		
 Basics

 		
 Starting out

 		
 Creating/Loading a character

 		
 Creating a character

 		
 Loading a character

 		
 Saving a character

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

